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Abstract

This work investigates two aspects linked to the nature of the feasible domain of

anisotropic laminates. In the first part of the paper, proofs are given on the non-

convexity of the feasible domain for full anisotropic and for membrane-orthotropic

laminates, either in the lamination parameters space or in the polar parameters one.

Then, adopting the polar formalism, some particular cases are studied, providing

analytical expressions of new narrower bounds, in terms of polar parameters of the

membrane stiffness tensor. For a particular case, the exact expression of the mem-

brane stiffness tensor feasible domain is determined. In the second part of the paper,

a discussion on the necessary and sufficient condition to get membrane/bending un-

coupled and/or homogeneous laminates is presented. It is proved that, when the

distinct orientations within the stack are two, quasi-triviality represents a necessary

and sufficient condition to achieve uncoupling and/or quasi-homogeneity. This work

disproves the common belief of the convexity of the feasible domain in the lamination

parameters space and fosters new ideas to face the problem of the determination of

the feasible domain of laminates.

Keywords: Anisotropy, Plane elasticity, Polar method, Composite materials,

Laminates, Quasi-triviality, Convexity

1. Introduction

Two still-open problems in anisotropic plane elasticity for composite laminates

are: (a) the definition of the general expression of the feasible domain; (b) the defi-

nition of sufficient and necessary conditions to obtain membrane/bending uncoupled
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laminates (uncoupling property), and/or the same group of symmetry for membrane

and bending stiffness tensors (homogeneity property).

One can deal with the two problems in the general framework of the First-Order

Shear Deformation Theory (FSDT) (Reddy (2003)). The FSDT is the generalization

of the Classical Laminate Theory (CLT) (Jones (1975)) and constitutes a theoretical

framework to describe the behaviour of composite laminates.

In the FSDT (Reddy (2003)), the analytic expression of the laminate stiffness

tensor is

Klam =

 A B O

D O

sym H

 , (1)

where A is the membrane stiffness tensor of the laminate, D the bending stiffness

tensor, H the out-of-plane shear stiffness tensor, B the membrane/bending coupling

stiffness tensor. It is convenient to introduce also the following normalised tensors:

A∗ :=
1

h
A, B∗ :=

2

h2
B, D∗ :=

12

h3
D, C∗ := A∗ −D∗, H∗ :=

1

h
H, (2)

where h is the total thickness of the laminate.

In the special case of laminates made of identical plies, i.e. same material and

thickness for the elementary layer, the expressions of the above tensors read:

A∗ =
1

N

N∑
k=1

akQ(θk), B∗ =
1

N2

N∑
k=1

bkQ(θk), D∗ =
1

N3

N∑
k=1

dkQ(θk),

H∗ =
1

N

N∑
k=1

hkQ̂(θk), C∗ =
1

N3

N∑
k=1

ckQ(θk).

(3)

In Eq. (3), N is the number of plies of the laminate and θk is the orientation angle

of the k-th ply. Q(θk) is the in-plane reduced stiffness tensor of the k-th ply whose

material frame is turned by an angle θk with respect to the global reference frame

of the laminate. Analogously, Q̂(θk) is the out-of-plane reduced stiffness tensor of

the k-th ply. Furthermore, coefficients ak, bk, dk, hk and ck read:

ak = 1, bk = 2k −N − 1, dk = 12k(k −N − 1) + 4 + 3N(N + 2),

hk = 1, ck = −2N2 − 12k(k −N − 1)− 4− 6N.
(4)

The ordered sequence of orientations, from the bottom to the top of the laminate,

is called stacking sequence (SS), or stack.
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It is well known that there is no bijective relationship between arbitrary macro-

scopic elastic properties of the laminate (in terms of A∗, B∗, D∗ and H∗ components)

and SSs. This means that, given an arbitrary SS, a set of elastic properties is al-

ways uniquely determined, whilst the converse is generally false. This aspect is

particularly important in practical applications, such as laminates design and SSs

recovery. Without entering in the details, after the determination of the optimal

stiffness distribution within a structure, with respect to a given merit function, SSs

matching the target optimal elastic properties must be found out (Catapano and

Montemurro (2014); Montemurro et al. (2019, 2013, 2012); Picchi Scardaoni and

Montemurro (2020)). It is then of primary importance to determine the expressions

of the feasible domain of the aforementioned elasticity tensors. However, given a

SS, the feasible domains of A∗, B∗, D∗ must be correlated, since these tensors are

associated to the same SS.

A first kind of bounds derives directly from thermodynamic considerations, since

the elasticity tensor is positive-definite. Therefore, the elastic constants live in a

feasible domain whose boundary constitutes the so-called elastic-bound.

However, a second kind of bounds can be introduced, which are often referred as

geometrical bounds. To this purpose, it is important to adopt some mathematical

descriptors of the anisotropy. The most common approach makes use of the well-

known lamination parameters (LPs) (Jones (1975); M. (1982); Tsai and Hahn (1980);

Tsai and Pagano (1968)). LPs unquestionably provide a compact representation of

the stiffness tensor of the laminate; although, they are not all tensor invariants. A

sound alternative for describing plane anisotropy is represented by the polar formal-

ism introduced in (Verchery (1982)). Thanks to the polar formalism, it is possible

to represent any plane tensor by means of tensor invariants, referred as polar pa-

rameters (PPs), which are related to the symmetries of the tensor. In particular,

for a fourth-order elasticity-like plane tensor (i.e. a tensor having both major and

minor symmetries), all possible elastic symmetries can be easily expressed in terms

of conditions on the PPs. Moreover, the polar formalism offers a frame-invariant

description of any plane tensor (Verchery (1982)).

In (Hammer et al. (1997)), geometrical bounds were derived as a consequence

of the nature of the trigonometric functions involved in the definition of the lam-

inate stiffness tensors. In (Vannucci (2012)), Vannucci derives the expressions of

the geometrical bounds in the framework of the polar method, showing that these

bounds are always stricter than the elastic counterpart: hence these bounds must

be considered in practical design problems.

In (Grenestedt and Gudmundson (1993)) Grenestedt and Gudmundson claimed
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to provide a proof of the convexity of the feasible domain of general anisotropic

laminates in the LPs space. However, as it will be discussed later in this paper,

the proof provided in (Grenestedt and Gudmundson (1993)) proves only that the

projection of the LPs on each axis (in the LPs space, which is of dimension 12) is

convex. Indeed, this proof does not respect a fundamental lemma of convex analysis

(Boyd and Vandenberghe (2019)), which states that if a set is convex then the pro-

jection over some of its coordinates is convex too, while the converse is not generally

true. Based on this incorrect result, many works, dealing with the optimisation of

laminates and making use of the formalism based on LPs, claim that this descrip-

tion endows the composite design problems with nice properties (Bloomfield et al.

(2008); Diaconu et al. (2002); Hammer et al. (1997); Macquart et al. (2018); Raju

et al. (2014); Setoodeh et al. (2006)). It is noteworthy that this is one of the main

reasons at the basis of the wider diffusion of the approach based on LPs with respect

to that based on PPs, which are intrinsic and frame-independent quantities of the

stiffness tensor.

However, several works, based on LPs description, seem to provide evidences,

both mathematical and graphical, of the convexity of the feasible domain. How is

it possible? The answer is probably due to the overlapping of two concepts: the

geometrical-admissible region (i.e. the region delimited through the geometrical

bounds) and the actual feasible region, i.e. the set of all the mapped SSs, through

LPS (or PPs), in the corresponding space. In fact, although the geometrical bounds

define a region, possibly convex, it is not generally true that the actual feasible

domain, which is a subset of the geometrical-admissible region, is a convex set.

It is evident the conceptual overlapping between the geometrical-admissible region

(which can be convex or not) and the actual feasible region, which should be the

true object of investigation. In (Diaconu et al. (2002)) the authors formulate a vari-

ational problem to find the actual shape of the feasible domain in the LPs space.

Moreover, they provide some plots of some 2D projections of the domain, which are

convex set. Similar approaches are provided in (Bloomfield et al. (2008); Setoodeh

et al. (2006)). All of these studies, as stated by the authors themselves, rely on the

fact that the feasible region, in the LPs space, is a convex sets. In the light of the

results of this work, it is possible to consider the findings of the existing literature as

convex hulls (regardless of the number of layers) of the actual feasible region, which

can be narrower by far.

The derivation of the laminate actual feasible domain in a closed form is of

paramount importance when formulating the laminate design problem as a con-

strained non-linear programming problem. Keeping this in mind, a simple investi-
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gation led to the discovery of the analytic expression of a further bound, valid for

any kind of symmetry of the laminate, which makes the feasible region a stricter

non-convex region. These new bounds introduce the dependence from the number

of plies. Indeed, up to now, it is odd that the feasible region of laminates having

even very different number of plies is provided by the same equations, which in turn

do not depend on the number of plies!

Starting from these considerations, and from some recent advances in the de-

velopment of a global/local modelling approach for the multi-scale optimization of

composite structures discussed in (Picchi Scardaoni and Montemurro (2020)), the

research has been extended to the feasible domain determination problem for com-

posite laminates. In particular, in this paper, the rigorous proof of the non-convexity

of the laminate feasible domain is provided, regardless of the formalism used to de-

scribe the anisotropy (i.e. LPs or PPs).

A laminate is uncoupled if and only if B∗ = O. This means that in-plane forces

do not produce curvatures and, similarly, bending moments do not deform the lam-

inate middle plane. A laminate is said homogeneous if and only if C∗ = O. The

homogeneity property is linked to the design of the pure bending tensor D∗. The

design of D∗ is quite difficult because its properties depend not only on the plies ori-

entation angles, but also on their position within the SS. In order to have the same

properties both in membrane and bending in any direction, i.e. the same group of

symmetry, the homogeneity property must be imposed.

The uncoupling property is often sought in many engineering applications. Since

coefficients bk assume antisymmetric values with respect to the laminate middle

plane, a simple way to obtain B∗ = O consists of using a symmetric SSs, as com-

monly done in several works (Adams et al. (2004); Bloomfield et al. (2008); Macquart

et al. (2016); Raju et al. (2014); Seresta et al. (2007)). Of course, this is only a suf-

ficient condition, since asymmetric uncoupled SSs exist. In (Caprino and Crivelli

Visconti (1982)), the existence of uncoupled anti-symmetric stacks was proven, while

in (Verchery and Vong (1986)), the existence of completely asymmetric uncoupled

SSs was shown. In (Vannucci and Verchery (2001)), a special class of uncoupled and

possibly homogeneous laminates was found; the solutions belonging to this class are

called quasi-trivial (QT) and represent a class of arithmetically-exact solutions. Fur-

thermore, authors have shown that the number of independent QT solutions is by

far larger than the number of symmetric ones. An efficient enumerating algorithm

has been recently proposed in (Garulli et al. (2018)). In this work, the enumeration

of all independent QT SSs, up to N = 35, is presented.

Up to the present, it is not clear if quasi-triviality is a sufficient or even neces-
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sary condition to have uncoupled and/or homogeneous laminates. This work aims

at clarifying this aspect too, by showing that quasi-triviality is, in general, only a

sufficient condition. However, for a particular case, quasi-triviality becomes also a

necessary condition. In other words, for that particular case, QT solutions constitute

the full set of all possible uncoupled and/or homogeneous SSs.

The paper is organized as follows: a short recall of the polar formalism in the

FSDT framework and of the LPs in the CLT framework is presented in Section 2.

Section 3 provides the proofs of the non-convexity of the feasible domain in the

PPs and LPs spaces for general anisotropic and membrane-orthotropic laminates.

Sections 4 and 5 present the new analytical bounds for multilayer plates, together

with some exact solutions. Section 6 provides the proof that quasi-triviality is not

a necessary condition for uncoupling and/or homogeneity in the most general case.

Finally, Section 7 ends the paper with some meaningful conclusions and prospects.

2. Fundamentals of the Polar Method and of the Lamination Parameters

2.1. Polar Method

The Polar Method allows representing any n-th order plane tensor in terms of

invariants: this method was introduced, for the first time, in (Verchery (1982)). For

a deeper insight in the matter, the reader is addressed to (Vannucci (2017)). In

this context, a second-order symmetric plane tensor Z can be expressed in the local

frame Γ = {O, x1, x2, x3} as:

Z11 = T +R cos 2Φ, Z12 = R sin 2Φ, Z22 = T −R cos 2Φ, (5)

where T is the isotropic modulus, R the deviatoric one and Φ the polar angle.

Among them, only the moduli are invariants, whilst Φ is needed to set the reference

frame. If L is a fourth-order plane elasticity-like tensor, i.e. with major and minors

symmetries, its Cartesian components can be expressed by means of four moduli and

two polars angles, namely T0, T1, R0, R1, Φ0, Φ1. The complete expression reads:

L1111 = T0 + 2T1 +R0 cos 4Φ0 + 4R1 cos 2Φ1,

L1112 = R0 sin 4Φ0 + 2R1 sin 2Φ1,

L1122 = −T0 + 2T1 −R0 cos 4Φ0,

L1212 = T0 −R0 cos 4Φ0,

L2212 = −R0 sin 4Φ0 + 2R1 sin 2Φ1,

L2222 = T0 + 2T1 +R0 cos 4Φ0 − 4R1 cos 2Φ1.

(6)
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In Eq. (6), T0 and T1 are the isotropic moduli, R0 and R1 the anisotropic ones,

Φ0 and Φ1 the polar angles. Among them, only the four moduli and the difference

Φ0 − Φ1 are tensor invariants.

One of the advantages of the polar method is that for a fourth-order elasticity-like

plane tensor, the polar invariants are related to the elastic symmetries of the tensor.

Indeed the polar formalism offers an algebraic characterization of the elastic sym-

metries (Catapano et al. (2012); Catapano and Montemurro (2018)). In particular,

four different symmetries can be defined:

• Orthotropy : this symmetry corresponds to the condition Φ0−Φ1 = K
π

4
, K =

0, 1.

• R0-Orthotropy : the algebraic condition to obtain this special orthotropy is

R0 = 0. This case has been studied in (Vannucci (2002)).

• Square symmetry : it can be achieved by imposing R1 = 0. This case represents

the 2D counterpart of the well-known 3D cubic syngony.

• Isotropy : the condition to be satisfied is R0 = R1 = 0.

In order to properly analyse the mechanical behaviour of a laminate, it is possible

to express the stiffness tensors appearing in Eq. (3) in terms of their PPs. In partic-

ular, A∗, B∗, D∗, and thus C∗, are fourth-order elasticity-like plane tensor, while H∗

behaves like a second-order symmetric plane tensor (Montemurro (2015a,b)). The

PPs of the laminate stiffness tensors can be expressed as functions of the PPs of

the lamina reduced stiffness matrices and of the geometrical properties of the stack

(i.e. the layers orientation, position and number). The polar representation of the

normalised stiffness tensors of the laminate reads:

TA
∗

0 = T0, TA
∗

1 = T1, RA∗

0 ei4ΦA∗
0 =

R0

N
ei4Φ0

N∑
k=1

ake
i4θk , RA∗

1 ei2ΦA∗
1 =

R1

N
ei2Φ1

N∑
k=1

ake
i2θk ,

(7)

TB
∗

0 = TB
∗

1 = 0, RB∗

0 ei4ΦB∗
0 =

R0

N2
ei4Φ0

N∑
k=1

bke
i4θk , RB∗

1 ei2ΦB∗
1 =

R1

N2
ei2Φ1

N∑
k=1

bke
i2θk ,

(8)
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TD
∗

0 = T0, TD
∗

1 = T1, RD∗

0 ei4ΦD∗
0 =

R0

N3
ei4Φ0

N∑
k=1

dke
i4θk , RD∗

1 ei2ΦD∗
1 =

R1

N3
ei2Φ1

N∑
k=1

dke
i2θk ,

(9)

TH
∗

= T, RH∗
ei2ΦH∗

1 =
R

N
ei2Φ

N∑
k=1

hke
−i2θk = RA∗

1

R

R1

ei2(φ+φ1−φA
∗

1 ), (10)

TC
∗

0 = 0, TC
∗

1 = 0, RC∗

0 ei4ΦC∗
0 =

R0

N3
ei4Φ0

N∑
k=1

cke
i4θk , RC∗

1 ei2ΦC∗
1 =

R1

N3
ei2Φ1

N∑
k=1

cke
i2θk ,

(11)

In the above equations, T0, T1, R0, R1, Φ0 and Φ1 are the polar parameters of

the in-plane reduced stiffness matrix Q of the lamina, while T , R, and Φ are those of

the transverse shear stiffness matrix Q̂: all of these parameters solely depend upon

the ply material properties. Since basic layers are actually orthotropic, without loss

of generality it can be assumed that Φ1 = 0 (Φ0 = K π
4

with K ∈ {0, 1}) (Vannucci

(2012)). For further details on the Polar Method in the FSDT framework, the reader

is addressed to (Montemurro (2015a,b)).

2.2. Lamination Parameters

LPs are often used together with the parameters of Tsai and Pagano to describe

the anisotropic behaviour of the laminate in the framework of the CLT (Grenest-

edt and Gudmundson (1993); Hammer et al. (1997); Jones (1975); Reddy (2003)).

LPs express the properties of a laminate in terms of moments, relative to the plate

mid-plane, of the trigonometric functions entering in the frame rotation formulas

(Hammer et al. (1997)). For the sake of brevity, the complete expressions of the LPs

in the CLT framework are not here reported. The interested reader is addressed to

(Jones (1975)).

LPs are closely related to PPs: from a mathematical viewpoint, it is sufficient to

report the following identities between PPs and LPs, using the same nomenclature
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of (Vannucci (2017)).

ξ1 + iξ2 =
1

N

N∑
k=1

ake
i4θk , ξ3 + iξ4 =

1

N

N∑
k=1

ake
i2θk , ξ5 + iξ6 =

1

N2

N∑
k=1

bke
i4θk ,

ξ7 + iξ8 =
1

N2

N∑
k=1

bke
i2θk , ξ9 + iξ10 =

1

N3

N∑
k=1

dke
i4θk , ξ11 + iξ12 =

1

N3

N∑
k=1

dke
i2θk .

(12)

It is evident that 12 parameters are necessary to completely define the behaviour

of the laminate in the CLT framework.

3. The Non-Convexity of the Feasible Domain

For a generic anisotropic laminate, the geometrical bounds in the PPs space read

(Vannucci (2012)):
0 ≤ ρ0 ≤ 1,

0 ≤ ρ1 ≤ 1,

2ρ2
1 ≤

1− ρ2
0

1− (−1)Kρ0 cos 4ΦA∗
0

,

(13)

where

ρ0 :=
RA∗

0

R0

=
1

N

√√√√( N∑
j=1

cos 4θj

)2

+

(
N∑
j=1

sin 4θj

)2

, (14)

ρ1 :=
RA∗

1

R1

=
1

N

√√√√( N∑
j=1

cos 2θj

)2

+

(
N∑
j=1

sin 2θj

)2

. (15)

In the LPs space, they read (Hammer et al. (1997))
2ξ2

3(1− ξ1) + 2ξ2
4(1 + ξ1) + ξ2

1 + ξ2
2 − 4ξ3ξ2ξ4 ≤ 1

ξ2
3 + ξ2

4 ≤ 1

−1 ≤ ξ1 ≤ 1.

(16)
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For a membrane-orthotropic laminate, geometrical bounds in the PPs space simplify

to 
−1 ≤ ρ0K ≤ 1

0 ≤ ρ1 ≤ 1

2ρ2
1 − 1− (−1)−Kρ0K ≤ 0

(17)

where ρ0K := (−1)K
A∗
ρ0, KA∗ ∈ {0, 1}. In the LPs space, they read (M. (1982))−1 ≤ ξ3 ≤ 1

2ξ2
3 − 1 ≤ ξ1 ≤ 1.

(18)

As discussed in (Montemurro (2015a,b); Vannucci (2017)), the design of a lami-

nate lives in R12, since four PPs are needed to define the anisotropic part of tensors

A∗, B∗ and D∗ (the deviatoric part of tensor H∗ being directly related, in general,

to the anisotropic one of tensors A∗ and D∗). Regarding LPs, the same remark

holds since 12 LPs are needed to fully describe the laminate behaviour in the CLT

framework, as stated above. For both representations, the feasible domain is then a

subset of R12. The determination of the feasible domain, in the most general case,

is still an open problem. As stated in the introduction, in the literature some mis-

leading results can be found about the convexity of the laminate feasible domain.

For example, in (Grenestedt and Gudmundson (1993)), the feasible domain in the

LPs space is claimed to be convex. Conversely, in (Vannucci (2017)), the feasible

domain in the PPs space is claimed to be non-convex for anisotropic laminates and

convex for orthotropic ones.

The main result of this Section is a rigorous proof of the non-convexity of the

feasible domain in the LPs and PPs spaces, both for anisotropic and orthotopic

laminates. To this purpose, some nomenclature must be introduced.

Let z∗ ∈ [0, 1] be the dimensionless coordinate defined through the laminate

thickness, from the bottom to the top. The layup function is a combination of

piecewise functions defined as

θ(z∗) :=
N∑
i=1

ciχ[∆z∗i ], (19)

where N ≥ 1, N ∈ N, ci ∈ [−π
2
, π

2
] and χ[∆z∗i ] is the indicator function assuming
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unit value in the interval ∆z∗i . The function χ [∆z∗i ] is defined as:

χ [∆z∗i ] :=

1 if z∗ ∈ ∆z∗i ,

0 otherwise .
(20)

Intervals ∆z∗i are such that
N⋃
i=1

∆z∗i = [0, 1],
N⋂
i=1

∆z∗i = ∅ and meas(∆z∗i ) = 1/N .

It is clear that the range of θ(z∗) is [−π
2
, π

2
]. The layup function can be seen as the

SS counterpart when the integral description is used instead of summations.

Proposition 3.1. The set of layup functions ΘN :=
{
θ(z∗) : θ(z∗) =

N∑
i=1

ciχ[∆z∗i ], ci ∈ [−π
2
, π

2
]
}

is convex.

Proof. Let α ∈ [0, 1] and suppose that θ̂(z∗) and θ̌(z∗) belong to ΘN . There-

fore, there exist some ĉi and či belonging to the interval [−π
2
, π

2
] such that θ̂(z∗) =

N∑
i=1

ĉiχ[∆z∗i ] and θ̌(z∗) =
N∑
i=1

čiχ[∆z∗i ].

A convex combination of these two elements satisfies the following identity:

αθ̂ + (1− α)θ̌ = α
N∑
i=1

ĉiχ[∆z∗i ] + (1− α)
N∑
i=1

čiχ[∆z∗i ]

=
N∑
i=1

(αĉi + (1− α)či)χ[∆z∗i ] =:
N∑
i=1

c̃iχ[∆z∗i ],

(21)

where c̃i are defined through the last equality. Therefore, the right-hand side mem-

ber belongs to ΘN for every α and for every θ̂(z∗), θ̌(z∗). This claim is sufficient to

conclude the proof.

The following lemma (Boyd and Vandenberghe (2019)) is needed before intro-

ducing the main result of this Section.

Lemma 3.1. Let C ⊂ Rm×n be a convex set. Then, the projection over some of its

coordinates P(C) = {x1 ∈ Rm | (x1, x2) ∈ C for some x2 ∈ Rn} is convex.

It is then immediate the following

Corollary 3.1. If a projection P(S) (in the sense of Lemma 3.1) of a set S is

non-convex, then S is a non-convex set.

Of course, Lemma 3.1 has an important consequence: if a projection of the set S

is convex, the set is not necessarily convex. Indeed, the proof provided in (Grenest-

edt and Gudmundson (1993)) about the convexity of the LPs space does not take

into account for this aspect.
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Let p[θ] denote the vector consisting of twelve PPs (or LPs) obtained with the

layup function θ(z∗). The following four Propositions express the non-convexity of

the feasible domain regardless of the anisotropy representation. A more detailed

proof is given only for full-anisotropic laminates in PPs space, the remaining four

being conceptually identical.

Proposition 3.2. The feasible region in the PPs space of all anisotropic laminates

composed of N plies ΠN := {p[θ(z∗)]∀ θ(z∗) ∈ ΘN} is a non-convex bounded subset

of R12 for every N > 1 (N ∈ N).

Proof. For the boundedness, it is sufficient to see that the twelve components of p

are bounded. In fact, the six dimensionless anisotropic moduli (ρ0, ρ1 for tensor

A∗, B∗, D∗) take values in the set [0, 1], whilst the six dimensionless polar angles

(φ0 := Φ0

π/4
and φ1 := Φ1

π/2
for tensors A∗, B∗, D∗) take values in the set [−1, 1].

Therefore, ΠN is a bounded subset of the 12D-parallelepiped [0, 1]6× [−1, 1]6 ⊂ R12.

Let p̂ := p[θ̂(z∗)] and p̌ := p[θ̌(z∗)] be two points of the feasible domain for the

layup functions θ̂(z∗) and θ̌(z∗) belonging to ΘN . Moreover, consider the interval

[0, 1] subdivided into N disjoint intervals ∆z∗i of equal length, and let α ∈ [0, 1].

A convex set, by definition, contains the whole line segment that joins any two

points belonging to the set. For the characterisation of ΠN , its convexity would

imply the existence of a layup function θ̃ ∈ ΘN such that p[θ̃] = αp̂ + (1 − α)p̌

belongs to ΠN for every α and for every p̂, p̌. Therefore, to prove the thesis of the

proposition, it is sufficient to prove the violation of such definition at least for one

case. Moreover, thanks to Proposition 3.1 and Corollary 3.1, it is sufficient to seek

the violation in the projection of ΠN onto some of its hyper-planes. To this purpose,

consider the projection of ΠN onto the plane (ρ1, ρ0).

If layup functions are considered instead of SSs:

ρ0[θ(z∗)] :=

√√√√√
 1∫

0

cos 4θ(z∗)dz∗

2

+

 1∫
0

sin 4θ(z∗) dz∗

2

=

√√√√√2

1∫
0

1∫
0

cos2 2(θ(z∗)− θ(t∗)) dz∗ dt∗ − 1,

(22)
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and

ρ1[θ(z∗)] :=

√√√√√
 1∫

0

cos 2θ(z∗)dz∗

2

+

 1∫
0

sin 2θ(z∗) dz∗

2

=

√√√√√ 1∫
0

1∫
0

cos 2(θ(z∗)− θ(t∗)) dz∗ dt∗,

(23)

where the identities
∫
f(x) dx

∫
g(x) dx =

∫ ∫
f(x)g(t) dx dt, cos(α − β) =

cosα cos β + sinα sin β and cos(4α) = 2 cos2 2α − 1 have been used. Consider two

points of the (ρ1, ρ0) plane having coordinates P̌ = (1, 1) and P̂ = (1 − 2
N
, 1).

These two points belong to ΠN . In fact, P̌ corresponds to layup functions of the

form
N∑
i=1

cχ[∆z∗i ] (c ∈ [−π
2
, π

2
]), whilst P̂ corresponds to layup functions of the form

N−1∑
i=1

cχ[∆z∗i ] +
(
−π

2
+ c
)
χ[∆z∗N ] (c ∈ [−π

2
, π

2
]), as it can be easily verified. Then,

assuming that the convex combination of these two points belongs to ΠN , one has:

α

(
1− 2

N

1

)
+ (1− α)

(
1

1

)
=

(
ρ1[θ̃(z∗)]

ρ0[θ̃(z∗)]

)
, (24)

for some θ̃(z∗) ∈ ΘN . The second component of Eq. (24) is satisfied only if

ρ0[θ̃(z∗)] = 1. Considering Eq. (22), it means that
1∫
0

1∫
0

cos2 2(θ(z∗)−θ(t∗)) dz∗ dt∗ =

1. This condition is achieved if θ̃(z∗) is the constant function (the line segment

represented by Eq. (24) would collapse in a point, so this case is disregarded) or if

it is of the form

θ̃(z∗) =
M∑
i=1

cχ[∆z∗i ] +
N∑

i=M+1

(
−π

2
+ c
)
χ[∆z∗i ], (25)

for some M < N , M ∈ N. Assuming θ̃(z∗) as in Eq. (25), the value of ρ1

[
θ̃ (z∗)

]

13



can be calculated from Eq. (23) as:

ρ2
1[θ̃(z∗)] =

∫ 1

0

∫ 1

0

cos 2(θ̃(z∗)− θ̃(t∗))dt∗dz∗

=

∫ 1

0

∫ 1

0

cos 2

(
M∑
i=1

cχ[∆z∗i ] +
N∑

i=M+1

(
−π

2
+ c
)
χ[∆z∗i ]+

−
M∑
i=1

cχ[∆t∗i ]−
N∑

i=M+1

(
−π

2
+ c
)
χ[∆t∗i ]

)
dt∗dz∗

=

M/N∫
0

M/N∫
0

cos 2

(
c

M∑
i=1

χ[∆z∗i ]− χ[∆t∗i ]

)
dt∗dz∗

+

M/N∫
0

1∫
M/N

cos 2

(
c

M∑
i=1

χ[∆z∗i ]−
(
−π

2
+ c
) N∑
i=M+1

χ[∆t∗i ]

)
dt∗dz∗

+

1∫
M/N

M/N∫
0

cos 2

(
−c

M∑
i=1

χ[∆t∗i ] +
(
−π

2
+ c
) N∑
i=M+1

χ[∆z∗i ]

)
dt∗dz∗

+

1∫
M/N

1∫
M/N

cos 2

((
−π

2
+ c
) N∑
i=M+1

χ[∆z∗i ]− χ[∆t∗i ]

)
dt∗dz∗

=

(
M

N

)2

− M

N

(
1− M

N

)
− M

N

(
1− M

N

)
+

(
1− M

N

)2

=

(
1− 2

M

N

)2

,

(26)

and, hence,

ρ1[θ̃(z∗)] =

√(
1− 2

M

N

)2

. (27)

Finally, from Eqs. (24) and (27), one obtains

1− 2α

N
=

√(
1− 2

M

N

)2

=

1− 2M
N
, if 1 > 2M

N
,

2M
N
− 1, otherwise .

(28)

From Eq. (28), either M = α or M = N − α. Both results are absurd, since M

must be, by definition, an integer number (for all α). Therefore, no θ̃(z∗) exists

satisfying Eq. (24), and the entire line segment between P̂ and P̌ does not belong

to the projection of ΠN onto the (ρ1, ρ0) plane. This counter-example proves the

14



statement of the Proposition, remembering also Corollary 3.1.

It is noteworthy that Proposition 3.2 considers only geometrical aspects of lami-

nate layups. With the same argument used to prove Proposition 3.2, one can prove

that the feasible domain of laminates with an orthotropic membrane behaviour is a

non-convex bounded set.

Proposition 3.3. The feasible region in the PPs space of all membrane-orthotropic

laminates composed of N plies ΠOrt
N := {p[θ(z∗)] |ΦA∗

0 − ΦA∗
1 = KA∗ π

4
, KA∗ ∈

{0, 1}, ∀ θ(z∗) ∈ ΘN} is a non-convex bounded subset of R12 for every N > 1

(N ∈ N).

Proof. To show the boundedness, the argument is the same of the proof of Proposi-

tion 3.2. Adopting the integral description,

Φ0[θ(z∗)] :=
1

4
arctan


1∫
0

sin 4θ(z∗)dz∗

1∫
0

cos 4θ(z∗)dz∗

 , Φ1[θ(z∗)] :=
1

2
arctan


1∫
0

sin 2θ(z∗)dz∗

1∫
0

cos 2θ(z∗)dz∗

 .

(29)

For the non-convexity, it is sufficient to notice that points P̂ and P̌ , used for the the

proof of Proposition 3.2, actually belong to ΠOrt
N (with KA∗

= 0).

Proposition 3.4. The feasible region in the LPs space of all anisotropic laminates

composed of N plies ΠN := {p[θ(z∗)]∀ θ(z∗) ∈ ΘN} is a non-convex bounded subset

of R12 for every N > 1 (N ∈ N).

Proof. To show the boundedness, the argument is the same as the proof of Proposi-

tion 3.2. For the non-convexity, the same argument of Proposition 3.2 is used, but

settled in the (ξ3, ξ1) plane. Adopting the integral description,

ξ1 =

1∫
0

cos 4θ(z∗)dz∗, ξ3 =

1∫
0

cos 2θ(z∗)dz∗. (30)

Let P̌ = (1, 1) and P̂ = (1 − 2
N
, 1) be the same points used for Proposi-

tion 3.2. These two points belong to ΠN . In fact, P̌ corresponds to layup func-

tions of the form
N∑
i=1

0χ[∆z∗i ], whilst P̂ corresponds to layup functions of the form

N−1∑
i=1

0χ[∆z∗i ]+
(
−π

2
+ 0
)
χ[∆z∗N ], as it can be easily verified. The convexity condition,
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to be confuted, reads:(
ξ3[θ̃(z∗)]

ξ1[θ̃(z∗)]

)
= αP̂ + (1− α)P̌ = α

(
1− 2

N

1

)
+ (1− α)

(
1

1

)
(31)

for some θ̃(z∗) ∈ ΘN and for all α ∈ [0, 1]. Considering the second component of

Eq. (31), θ̃(z∗) is necessarily of the form

θ̃(z∗) =
M∑
i=1

c1χ[∆z∗i ] +
N∑

i=M+1

c2χ[∆z∗i ] (32)

with c1, c2 ∈ {0,−π
2
, π

2
} and M < N , M ∈ N. As a consequence, it is easy to see

that, for all combinations of c1 and c2, ξ3[θ̃(z∗)] ∈ {−1, 1,−1 + 2M
N
, 1 − 2M

N
}. The

first component of Eq. (31) reads {−1, 1,−1 + 2M
N
, 1− 2M

N
} = 1− 2α

N
, which either

cannot be satisfied regardless of α or violates the condition M ∈ N. Considerations

similar to those of the proof of Proposition 3.2 can also be repeated for this case,

allowing to conclude the proof.

Proposition 3.5. The feasible region in the LPs space of all membrane-orthotropic

laminates composed of N plies ΠOrt
N := {p[θ(z∗)] |ΦA∗

0 − ΦA∗
1 = KA∗ π

4
, KA∗ ∈

{0, 1}, ∀ θ(z∗) ∈ ΘN} is a non-convex bounded subset of R12 for every N > 1

(N ∈ N).

Proof. The proof follows straightforwardly from the previous ones. Indeed, points

P̂ and P̌ used in the proof of Proposition 3.4 correspond to membrane-orthotropic

laminates (they are a particular case of the ones chosen in the proof of Proposition

3.2 and 3.3). Therefore, the proof can be considered concluded.

Propositions 3.2 and 3.4 claim that, for an anisotropic laminate, the feasible re-

gion ΠN , in terms of PPs or PPs, is a non-convex set. Propositions 3.3 and 3.5 state

that the non-convexity of the feasible domain holds also in the case of laminates

having an orthotropic membrane stiffness tensor. Specifically, the non-convexity is

maintained in the projection of the 12-D feasible domain onto either the (ρ1, ρ0K)

or the (ξ3, ξ1) plane1.

1In the proof of Proposition 3.3, the non-convexity appears in the (ρ1, ρ0) plane. However, since
the points P̂ and P̌ correspond to orthotropic laminates with KA∗

= 0, the line segment delimited
by the two points is still not included in the projection of the feasible domain onto the (ρ1, ρ0K)
plane.
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A way to visualise the non-convexity of the feasible domain is, trivially, to plot all

the possible points of ΠN and ΠOrt
N , projected in the corresponding plane according

to the anisotropy representation, for an arbitrary number of plies N . Inasmuch as

the number of all the possible SSs grows exponentially with the number of layers N ,

a sampling step is assumed. It is convenient to introduce the notion of number of

groups, denoted by m, which is is the number of distinct orientations within a SS.

The number of plies associated to the i-th orientation is denoted by ni (obviously∑m
i=1 ni = N). Figure 1 shows the feasible domain projections for a laminate having

N = 4 plies (K = 0). Indeed, the projected feasible domains are non-convex sets.

(a) Anisotropic (PPs) (b) Orthotropic (PPs)

(c) Anisotropic (LPs) (d) Orthotropic (LPs)

Figure 1: Feasible domain projections for anisotropic (on the left) and membrane-orthotropic (on
the right) laminates (K = 0) of N = 4 plies, on the top in terms of PPs, on the bottom in terms
of LPs (discretisation step = 5◦). In red the points P̂ and P̌ used in the proofs of Section 3.

In (Grenestedt and Gudmundson (1993)), it was claimed that the feasible do-

main in LPs space is convex. The thesis and the proof of this claim are erroneous.

The authors consider one of the twelve components of p at time. Each component

of p is a continuous function whose range is a continuous bounded set: in R such a

set (a segment) is necessary convex. Moreover, considering Lemma 3.1, one cannot

conclude that a set is convex by knowing that some (not all) of its projections are
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convex sets. The point is that the components of p are not independent, since they

rely on the same SS. This mutual influence is the actual reason of the shrinkage of

the feasible domain from the 12D parallelepiped, as Fig. 1 clearly shows.

The feasible region of the limit infinite-ply laminate, i.e. Π∞, is, actually, the

convex hull of the feasible region of laminates regardless of the number of plies. How-

ever, a laminate has always a finite number of plies, which makes the determination

of ΠN the true problem to address.

4. Some Exact Solutions for Geometrical Bounds

In this section, only anisotropic laminates, in the PPs space, will be considered.

The non-convexity of the feasible region ΠN is preserved in the projection onto the

(ρ1, ρ0) plane.

Fig. 2 shows some results for the cases N = 2, · · · , 7, equivalent to the cases

m = 2, · · · , 7 with ni mutually equal. It is evident the non-convexity of the feasible

domain, which may degenerate to a curve or to a point. In fact, it is easy to see

that, if N = 1 or m = 1, i.e. the case of a laminate where all plies share a single

orientation, ρ0 = ρ1 = 1.

More interesting is the case m = 2. After few calculations, considering that

n2 = N − n1, one achieves the following relation:

ρ0 =

√√√√λ2 + (1− λ)2 + 2λ(1− λ)

{[
ρ2

1 − λ2 − (1− λ)2

2λ(1− λ)

]2

− 1

}
, (33)

or, in the implicit form:

F2(ρ0, ρ1, λ) := ρ0−

√√√√λ2 + (1− λ)2 + 2λ(1− λ)

{[
ρ2

1 − λ2 − (1− λ)2

2λ(1− λ)

]2

− 1

}
,

(34)

where λ := n1/N . Eq. (33) means that, for m = 2, the locus of lamination points,

i.e. the pairs (ρ1, ρ0), is represented by a family of curves, parametrised with the

relative number of plies of each orientation within the SS. Eq. (33) intersects the

axis ρ0 = 1 for the following values of ρ1:
1− 2λ, if λ ≤ 1/2,

2λ− 1, if λ ≥ 1/2,

1,

(35)
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(a) N = 2 (discretisation step = 1◦) (b) N = 3 (discretisation step = 1◦)

(c) N = 4 (discretisation step = 2◦) (d) N = 5 (discretisation step = 3◦)

(e) N = 6 (discretisation step = 5◦) (f) N = 7 (discretisation step = 6◦)

Figure 2: Feasible domain projection onto the plane (ρ1, ρ0) for anisotropic laminates of N plies
(equivalent to consider laminates with m distinct orientations, all of them appearing the same
number of times within the SS)

in perfect agreement with the proof of Proposition 3.2. The family of implicit curves,

expressed by Eq.(34) in the form of F2(ρ0, ρ1, λ) = 0, admits envelope, represented

by the well-known geometrical-bound ρ0 = 2ρ2
1− 1 (Vannucci (2012)). As an exam-

ple, Fig. 3 shows the lamination points locus for a laminate having N = 20, m = 2,

when n1 varies in the range [0, N ] as a subset of N. The analytic solution of Eq.
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(33) is represented by the red curves. It is noteworthy the discrete nature of the

locus, due to the discrete nature of the stack.

Figure 3: Lamination points for N = 20, m = 2 (discretisation step = 3◦).

The process may be conceptually extended to a higher number of groups. How-

ever, computations become intricate. For the sake of simplicity, consider the case

m = 3. Eqs. (14) and (15) can be rearranged as (see Appendix A)

ρ0 =
1

N

√√√√ 3∑
j=1

n2
i − 2

2∑
i=1

3∑
j=i+1

ninj + 4
2∑
i=1

3∑
j=i+1

ninj cos2(2∆θij), (36)

ρ1 =
1

N

√√√√ 3∑
j=1

n2
i + 2

2∑
i=1

3∑
j=i+1

ninj cos(2∆θij). (37)

Injecting, for example, the expression of cos (2∆θ13) from Eq. (37) into Eq. (36),

one obtains

F3(ρ0, ρ1; ∆θ12,∆θ23) := ρ0 −
1

N

[
3∑
j=1

n2
i − 2

2∑
i=1

3∑
j=i+1

ninj + 4
2∑
i=1

nin(i+1) cos2(2∆θi(i+1))

+
1

n1n3

(
N2ρ2

1 −
3∑
j=1

n2
i − 2

2∑
i=1

nin(i+1) cos(2∆θi(i+1))

)2
1/2

.

(38)
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For the envelope, the following system must be solved:

F3(ρ0, ρ1; ∆θ12,∆θ23) = 0,

∂F3

∂∆θ12

(ρ0, ρ1; ∆θ12,∆θ23) = 0,

∂F3

∂∆θ23

(ρ0, ρ1; ∆θ12,∆θ23) = 0,

(39)

which simplifies to

F3(ρ0, ρ1; ∆θ12,∆θ23) = 0,

sin(2∆θ12)

[
N2ρ2

1 −
3∑
j=1

n2
i − 2n1(n2 + n3) cos(2∆θ12)− 2n2n3 cos(2∆θ23)

]
= 0,

sin(2∆θ23)

[
N2ρ2

1 −
3∑
j=1

n2
i − 2n3(n1 + n2) cos(2∆θ23)− 2n1n2 cos(2∆θ12)

]
= 0.

(40)

Four are the possibilities to annihilate the last two expressions of Eq. (40).

Case A: 2∆θ12 = K12π, 2∆θ23 = K23π, K12, K23 ∈ Z.. Therefore, cos(2∆θi(i+1)) =

(−1)Ki(i+1) , i = 1, 2. This case corresponds to a SS composed by parallel laminæ.

This condition corresponds to the point ρ0 = ρ1 = 1.

Case B: 2∆θ12 = K12π, 2∆θ23 6= K23π, K12, K23 ∈ Z.. From Eq.(40)3, one obtains

the expression of cos(2∆θ23), and thus
cos(2∆θ23) =

N2ρ2
1 −

3∑
i=1

n2
i − 2n1n2(−1)K12

2n3(n1 + n2)
,

ρ0 =
1

N

[
3∑
j=1

n2
i − 2

2∑
i=1

3∑
j=i+1

ninj + 4n1n2 + 4n3(n1 + n2) cos2(2∆θ23)

]1/2

.

(41)

Only the case K12 = 0 is effective, corresponding to the case m = 2, because orien-

tations 1 and 2 coincide.

Case C: 2∆θ12 6= K12π, 2∆θ23 = K23π, K12, K23 ∈ Z.. This case is analogous to

case B, exchanging indices 1, 2 with 2, 3, respectively. Fig. 4 depicts the curves of

cases B or C for a laminate having N = 6, m = 3 and n1 = 1, n2 = 2, n3 = 3,

obtained by permuting indices 1, 2, 3 modulo 3. This is due to the arbitrary substitu-

tion of cos (2∆θ13) in the derivation of Eq. (38). Because of the cyclic permutation,
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cases B and C coincide.

Figure 4: Cases B or C for n1 = 1, n2 = 2, n3 = 3, (discretisation step = 3◦) by permuting indices
1, 2, 3 modulo 3.

Case D: 2∆θ12 6= K12π, 2∆θ23 6= K23π, K12, K23 ∈ Z.. Subtracting term by term

the last two formulæ of Eq.(40), one gets the condition cos(2∆θ12) = cos(2∆θ23).


cos(2∆θ12) = cos(2∆θ23) =

N2ρ2
1 −

3∑
j=1

n2
i

2
2∑
i=1

3∑
j=i+1

ninj

,

F3(ρ0, ρ1; ∆θ12,∆θ23) = 0.

(42)

Fig. 5 depicts the bound. It can be shown that it defines a lower bound for the

feasible region.

A further case, arising from a different change of variables, is worthy to be con-

sidered.

Case E: 2∆θ12 6= K12π, 2∆θ23 6= K23π, K12, K23 ∈ Z.. Subtracting term by term

the last two formulæ of Eq.(40), one gets the condition cos(2∆θ12) = cos(2∆θ23).

Note that cos(2∆θ13) = cos(2∆θ12 + 2∆θ23). From Eq. (37) one obtains the value
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(a) Lamination points and envelope, n1 = 1, n2 = 2,
n3 = 3

(b) Lamination points and envelope, n1 = 1, n2 = 2,
n3 = 6

(c) Lamination points and envelope, n1 = 1, n2 = 2,
n3 = 9

(d) Lamination points and envelope, n1 = 1, n2 = 2,
n3 = 12

Figure 5: Case D for four different laminates (discretisation step = 3◦) .

23



of parameter cos(2∆θ12).



cos(2∆θ12) = cos(2∆θ23) =

N2ρ2
1 −

3∑
i=1

n2
i − 2n1n3

2n2(n1 + n3)
, if 2∆θ12 = −2∆θ23,

cos(2∆θ12) = cos(2∆θ23) =
−b±

√
b2 − 4c

2
, if 2∆θ12 = 2∆θ23,

F3(ρ0, ρ1; ∆θ12,∆θ23) = 0,

(43)

where

b =
n2(n1 + n3)

2n1n3

, c = −
N2ρ2

1 −
3∑
i=1

n2
i + 2n1n3

4n1n3

.
(44)

Fig. 6 depicts the bound. The area it encloses is always inside the actual feasible

region.

4.1. Exact analytic expression of the feasible domain for the case n1 = n2 = n3 = n

In the case n1 = n2 = n3 = n, for every N = 3n, the aforementioned relation-

ships can be further simplified. It is noteworthy that for this case, Eqs. (41) and

(43) provide the analytic expression of the actual projection of the feasible domain,

i.e. 

0 ≤ ρ0 ≤ 1,

0 ≤ ρ1 ≤ 1,

ρ0 ≤ ρ1 |3ρ1 + 2| ,

ρ0 ≥ ρ1 |3ρ1 − 2| ,

ρ0 ≤
1

3

√
1 +

(9ρ2
1 − 5)2

2
,

(45)

which, of course, does not depend on N . Fig. 7 shows the result for this case. To

the best of the authors’ knowledge, it is the first time that an exact closed-form

expression for the projection of the feasible domain of a laminate is given.

5. New Geometrical Bounds

It is possible to infer that Eq. (34) evaluated for λ = 1/N , i.e. F2(ρ0, ρ1, 1/N) =

0, is, in any case, a geometrical bound for anisotropic laminates. Similarly,
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(a) Lamination points and envelope, n1 = 1, n2 = 2,
n3 = 3

(b) Lamination points and envelope, n1 = 1, n2 = 2,
n3 = 6

(c) Lamination points and envelope, n1 = 1, n2 = 2,
n3 = 9

(d) Lamination points and envelope, n1 = 1, n2 = 2,
n3 = 12

Figure 6: Case E for four different laminates.

Figure 7: Lamination points and envelope for the case n1 = n2 = n3 = n (discretisation step =
3◦).

F2((−1)Kρ0K , ρ1, 1/N) = 0 is a geometrical bound for membrane-orthotropic lami-

nates.

From the proofs of Propositions 3.2 and 3.3, there exists a region in the (ρ1, ρ0)
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plane that is excluded from the feasible domain projection. This results has a phys-

ical interpretation. For a SS made of N plies, the case m = 2, n1 = 1, n2 = N − 1

is the minimal condition to make the feasible domain not to degenerate into a

point (case n1 = 0). Therefore, no lamination points can lie in the epigraph of

F2(ρ0, ρ1, 1/N) = 0. If so, the amount of plies would be a non-integer number, lead-

ing, thus, to a contradiction. The excluded area is more important for relative small

N , whilst it can be negligible as N increases.

Therefore, new geometrical bounds can be proposed for a general anisotropic

laminate:

0 ≤ ρ0 ≤ 1,

0 ≤ ρ1 ≤ 1,

2ρ2
1 ≤

1− ρ2
0

1− (−1)Kρ0 cos 4ΦA∗
0

,

F2(ρ0, ρ1, 1/N) ≤ 0.

(46)

Moreover, for a laminate having an orthotropic membrane stiffness tensor, the above

bounds simplifies to

−1 ≤ ρ0K ≤ 1,

0 ≤ ρ1 ≤ 1,

2ρ2
1 − 1− (−1)Kρ0K ≤ 0

F2((−1)Kρ0K , ρ1, 1/N) ≤ 0.

(47)

It is noteworthy that, for a quasi-homogeneous laminate, Eqs. (46) and (47) of-

fer a description of the laminate feasible domain richer than those available in the

literature (M. (1982); Vannucci (2012)).

Figure 8 shows the Vannucci’s geometrical bounds (Vannucci (2012)) and and

the proposed bound for anisotropic (Eq. (46)) and membrane-orthotropic (Eq. (47))

laminates with N = 4.

It is remarkable that the proposed bounds formulation depends also on the num-

ber of plies of the laminate.

6. On the Necessary and Sufficient Conditions for Uncoupling and Ho-

mogeneity

QT SSs are characterised by an interesting and very useful property: mem-

brane/bending uncoupling and/or homogeneity requirements can be exactly met
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(a) Anisotropic (b) Orthotropic K = 0

(c) Orthotropic K = 1

Figure 8: Vannucci’s geometrical bound (Vannucci (2012)) and proposed bounds for a laminate
having N = 4 (discretisation step = 3◦)

regardless of the values of the orientation angles. In particular, these require-

ments can be fulfilled by acting only on the position of the layers into the stack

(Garulli et al. (2018); Vannucci and Verchery (2001)). QT SSs have been efficiently

used in many practical problems (Montemurro and Catapano (2017); Montemurro

et al. (2016, 2019, 2018)). Specifically, a QT stack represents an equivalence class

for all possible orientations that each group of plies can assume. As an exam-

ple, {90◦,−26◦, 90◦, 90◦, 90◦,−26◦, 90◦} and {1◦, 42◦, 1◦, 1◦, 1◦, 42◦, 1◦} are elements

of the same equivalence class [{0, 1, 0, 0, 0, 1, 0}], where 0 and 1 are just labels iden-

tifying two possibly distinct orientations. Of course, the choice of the orientations

depends upon the desired elastic behaviour of the laminate.

To explain clearly the concept of QT solutions, consider a laminate with N plies

and m ≤ N different orientations and define

Gj := {k : θk = θj}, (48)

the set of indices within the SS sharing the same orientation θj. Conditions for
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uncoupling and homogeneity can be than split as multiple sums over the different

sets Gj, j = 1, . . . ,m (Garulli et al. (2018)). Therefore, the uncoupling condition

reads:

N∑
k=1

bke
iβθk =

m∑
j=1

eiβθj
∑
k∈Gj

bk = 0, β = 2, 4, (49)

while the homogeneity requirement can be expressed as:

N∑
k=1

cke
iβθk =

m∑
j=1

eiβθj
∑
k∈Gj

ck = 0, β = 2, 4. (50)

In this context, a group of plies oriented at θj, for which∑
k∈Gj

bk = 0,
∑
k∈Gj

ck = 0, (51)

is called saturated group with respect to coefficient bk and ck, respectively. QT SSs

are entirely composed of saturated groups. For more details on this topic, the reader

is addressed to (Garulli et al. (2018); Vannucci (2017)).

In this Section, some theorems of linear algebra are used to prove that quasi-

triviality is only a sufficient condition for uncoupling and/or homogeneity for m ≥ 3.

For m = 2, quasi-triviality is also a necessary condition. The results are based on

the following two theorems discussed in (Green (1916)), which are reported here for

the sake of completeness.

Theorem 6.1. Consider the p-dimensional cube A := (−π/2, π/2)p. Let y1 and

y2 be functions of the p independent variables u1, u2,. . . ,up for which all partial

derivatives of the first order, ∂y1/∂uk, ∂y2/∂uk, (k = 1, 2, . . . , p) exist throughout

the region A. Furthermore, suppose that one of the functions, i.e. yi, does not vanish

in A. Then, if all the two-rowed determinants in the matrix

y1 y2

∂y1

u1

∂y2

u1

∂y1

u2

∂y2

u2
...

...
∂y1

up

∂y2

up


, (52)
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vanish identically in A, y1 and y2 are linearly dependent in A.

Theorem 6.2. Consider the p-dimensional cube A := (−π/2, π/2)p. Moreover,

consider the matrix Ms(y1, y2, . . . , yr) in which the first row consists of the functions

y1, y2 up to yr (for some r) and the other s rows of derivatives of these functions:

Ms =



y1 y2 . . . yr

y
(1)
1 y

(1)
2 . . . y

(1)
r

...
...

...
...

y
(s)
1 y

(s)
2 . . . y

(s)
r


. (53)

Let the set of n functions y1, y2,. . . ,yn of the p independent variables u1, u2,. . . ,up

possess enough partial derivatives, of any orders whatever, to form a matrix M =

M(n−2)(y1, y2, . . . , yn), of n columns and n − 1 rows, in which at least one of the

(n− 1)-rowed determinants, i.e.

Wn =



y1 y2 . . . yn−1

y
(1)
1 y

(1)
2 . . . y

(1)
n−1

...
...

...
...

y
(n−2)
1 y

(n−2)
2 . . . y

(n−2)
n−1


, (54)

vanishes nowhere in A. Moreover, suppose that all of the first derivatives of

each of the elements of the above matrix M exist, and adjoin to the matrix M

such of these derivatives as do not already appear in M, to form the new matrix

M′ = Mq(y1, y2, . . . , yn), which has n columns and at least n rows, so that q ≥ n−1.

Then if all the n-rowed determinants of the matrix M′ in which the determinant Wn

is a first minor vanish identically in A, the functions y1, y2,. . . ,yn are linearly de-

pendent in A.

Thanks to the above Theorems, the following Proposition can be introduced.

Proposition 6.1. Quasi-trivial stacking sequences represent a necessary and suf-

ficient condition to satisfy membrane/bending uncoupling and/or homogeneity re-

quirements when the number of saturated groups m is equal to two.

Proof. Consider a laminate with a SS composed of m different orientations and ap-

ply Theorem 6.1 to the set of functions eiβθj , j = 1, . . . ,m, β = 2, 4. When m = 2,
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Eq. (52) reads eiβθ1 eiβθ2

iβeiβθ1 0

0 iβeiβθ2

 . (55)

One can easily check that none of the two-rowed determinants of Eq.(55) is singular

in A = (−π/2, π/2)2. Therefore, it follows that, for m = 2, the combination of

functions eiβθj , j = 1, 2, β = 2, 4 is linearly independent. Accordingly, the proof can

be considered concluded.

Remark 6.1. Proposition 6.1 means that uncoupled and/or homogeneous laminates

imply the annealing of the sum of coefficients bk and/or ck associated to each orien-

tation. In other words, when m = 2, uncoupled and/or homogeneous laminates can

be composed only of QT stacks and vice versa.

Remark 6.2. In the light of Theorem 6.1 and Proposition 6.1, it is not possible to

obtain membrane-isotropic laminates with only two different orientations, since the

sum of coefficients ak cannot be zero. This result is in agreement with the evidence

that no isotropic SS is known having only two distinct orientation angles (Vannucci

(2017); Warren and Norris (1953); Wu and Avery (1992)).

Remark 6.3. The application of Theorem 6.2 for m ≥ 3 is cumbersome, and it is

not reported here for the sake of simplicity. The application of such a Theorem proves

that functions eiβθj , j = 1, . . . ,m, β = 2, 4 are linearly dependent for m ≥ 3. There-

fore, for m ≥ 3, one can find uncoupled and/or homogeneous laminates which are

not QT solutions. Moreover, in this case, membrane-isotropic laminates exist. For

example, the laminate [0/− 60/60/0/602/− 603/02/60], from (Vannucci (2017)), is

membrane-isotropic (the isotropic behaviour in membrane has been obtained by us-

ing the well-known Warren and Norris rule (Warren and Norris (1953))). For this

laminate, the isotropy condition is achieved because of the linearly dependence of the

complex exponential functions appearing in the definition of the anisotropic moduli,

since ak = 1, ∀k.

7. Conclusions

In this paper two aspects linked to the nature of the feasible domain of compos-

ite laminates have been studied. Proofs of the non-convexity of the feasible domain

in polar parameters and lamination parameters spaces have been provided for both

anisotropic and orthotropic-membrane laminates. The results correct the erroneous
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common belief of the convexity of the feasible domain in lamination parameters

space. In the light of this finding, the old feasible domain can be interpreted as

the convex hull of the projected feasible domain, regardless of the number of plies

composing the laminate.

This work clarifies some preliminary aspects of the feasible domain determination

problem. Although tackling the problem in full generality is probably impractical, a

closed form of stricter feasibility bounds has been derived in terms of the membrane

stiffness tensor polar parameters. This is an aspect of paramount importance in the

optimisation of composite laminates, where the anisotropy is tailored to satisfy some

merit functions and constraints.

Furthermore, the problem of retrieving sufficient and necessary conditions for

membrane / bending uncoupling and homogeneity has been addressed in this study.

It has been shown that, in general, quasi-triviality is only a sufficient condition. It

becomes also a necessary one if the stacking sequence has only two distinct orienta-

tions.

As prospects of this study are concerned, the derivation of the analytic expres-

sions of the feasible domain of laminates (in both lamination parameters and polar

parameters spaces), at least for the membrane stiffness tensor, should be derived in

more general cases, maintaining the dependence from the number of plies. These

expressions must be included in the formulation of the optimisation problem of the

composite in order to get true feasible optimal solutions. Moreover, to support the

composite design, necessary and sufficient conditions to achieve uncoupled and/or

homogenous and/or isotropic laminates should be derived. This could represent

a step-forward to the definition of the feasible domain considering membrane and

bending stiffness tensors at once.

Of course, the main (and most difficult) problem to address still remains the

derivation of the actual feasible domain of a laminate when the full stiffness matrix

is considered either in the fully anisotropic case or when introducing some hypotheses

on the laminate stiffness tensors elastic symmetries.
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A. A note on the square of the sum of n terms

Consider the square of the sum of terms g1, g2, . . . , gn, n ∈ N. Hence, it easy to

see that(
n∑
k=1

gk

)2

=
n∑
k=1

g2
k + 2

n−1∑
k=1

gk

n∑
j=k+1

gj =
n∑
k=1

g2
k + 2

n−1∑
k=1

n∑
j=k+1

gkgj, (A.1)

where the distributivity property of sum and product operators has been used.

Therefore, for a laminate having N plies and m distinct orientations, Eq. (14)

reads

ρ0 =
1

N

√√√√( N∑
j=1

cos 4θj

)2

+

(
N∑
j=1

sin 4θj

)2

=
1

N

√√√√( m∑
j=1

nj cos 4θj

)2

+

(
m∑
j=1

nj sin 4θj

)2

.

(A.2)

Applying Eq. (A.1) to Eq. (A.2), one has

ρ0 =
1

N

√√√√( m∑
j=1

nj cos 4θj

)2

+

(
m∑
j=1

nj sin 4θj

)2

=
1

N

[
m∑
j=1

n2
j cos 42θj +

m∑
j=1

n2
j sin2 4θj+

+2
m−1∑
k=1

m∑
j=k+1

nknj cos 4θk cos 4θj + 2
m−1∑
k=1

m∑
j=k+1

nknj sin 4θk sin 4θj

]1

2

=
1

N

√√√√ m∑
j=1

n2
j + 2

m−1∑
k=1

m∑
j=k+1

nknj cos 4 (θk − θj)

=
1

N

√√√√ m∑
j=1

n2
j + 2

m−1∑
k=1

m∑
j=k+1

nknj [2 cos2 2 (θk − θj)− 1],

(A.3)

where the identity cos(2α) = 2 cos2 α − 1 has been used. In a similar manner, the

expression of ρ1 of Eq. (15) can be rearranged as Eq. (37).
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