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Abstract: Information on spatial, temporal, and depth variability of soil salinity at field and landscape
scales is important for a variety of agronomic and environment concerns including irrigation in arid
and semi-arid areas. However, challenges remain in characterizing and monitoring soil secondary
salinity as it can largely be impacted by managements including irrigation and mulching in addition to
natural factors. The objective of this study is to evaluate apparent electrical conductivity (ECa)-directed
soil sampling as a basis for monitoring management-induced spatio-temporal change in soil salinity
in three dimensions. A field experiment was conducted on an 18-ha saline-sodic field from Alar’s
Agricultural Science and Technology Park, China between March, and November 2018. Soil ECa was
measured using an electromagnetic induction (EMI) sensor for four times over the growing season
and soil core samples were collected from 18 locations (each time) selected using EMI survey data
as a-priori information. A multi-variate regression-based predictive relationship between ECa and
laboratory-measured electrical conductivity (ECe) was used to predict EC with confidence (R2 between
0.82 and 0.99). A three-dimensional inverse distance weighing (3D-IDW) interpolation clearly showed
a strong variability in space and time and with depths within the study field which were mainly
attributed to the human management factors including irrigation, mulching, and uncovering of
soils and natural factors including air temperature, evaporation, and groundwater level. This study
lays a foundation of characterizing secondary salinity at a field scale for precision and sustainable
management of agricultural lands in arid and semi-arid areas.

Keywords: soil profile; soil salinization; spatio-temporal variation; electromagnetic induction;
three-dimension visualization

1. Introduction

Soil salinization is one of the critical global problems threatening land productivity [1]. Saline soils
have been reported from more than 100 countries around the world and covers more than 1125 million
hectares of land [2]. It is increasing at about 1–2% every year and is estimated that 50% of the available
arable lands can be affected by soil salinity by 2050 and would pose a serious threat to the sustainable
development of global agriculture [3]. Salinity could form from both natural and artificial sources
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including human-induced land management. Low precipitation, high evapotranspiration, and saline
groundwater often contribute largely in soil salinization in arid and semi-arid environments [4].
Secondary salinization or human-induced management-driven salinization of agricultural farmlands
mainly in the arid and semi-arid desert environments cover more than 76 million ha area [2] and
became one of the serious environmental and resource problems affecting the ecosystem. Unlike natural
salinization and humid area, intense climate and short salt migration cycle with high frequency as
impacted by management create a very high spatial and temporal variations in soil salinity and
make the measurement, monitoring, and/or prediction highly difficult using traditional methods and
analysis. The strong spatio-temporal variability with depth adds difficulty in predicting soil salinity
in three dimensions using traditional methods of field sampling combined with laboratory analysis
while the field scale information is crucial for agronomic and environmental management decisions.
For example, information on salt content in addition to soil moisture in a profile is important for
irrigation scheduling as this may cause physiological drought [5]. Thus, a simple, fast, and accurate
methods to monitor soil salt content in three dimensions (space, time, and depth) is urgently needed to
ensure the safe and efficient production of salinized and secondary salinized farmlands in particular
arid and semi-arid regions [6,7].

Since the 1970s, apparent electrical conductivity measurement using electromagnetic induction
(EMI) technology helped characterizing, monitoring, and evaluating soil salinity [8–13]. It can more
efficiently and quickly obtain in situ salinity information at different depths by measuring apparent
conductivity and helped overcome some challenges in traditional sampling methods and reduce
costs [14]. For example, Guo et al. [15] mapped the spatio-temporal variation of soil salinity at
different site-specific areas based on EM38, which provide valuable information for formulating
suitable management strategies against soil salinization. Jiang et al. [16] used EMI technology and
three-dimensional (3D) inversion models to quantify spatial variability of soil salinity under four
typical land-use types in Aksu, Xinjiang.

Quantifying spatio-temporal variations of soil salinity in 3D can help understand dynamic changes
and help determine the degree of salinization and develop management strategies. Geostatistics is one
of the most effective methods to study spatial variability of soil properties [17–22]. Three-dimensional
geostatistics and Kriging have shown strong potential to capture and quantify spatial variability in
3D in different fields including precision agriculture [23]. It has also been used in quantifying soil
salinity. For example, Li et al. [24] used three-dimensional ordinary Kriging interpolation to predict the
spatial variation of soil salt in paddy fields. Liu et al. [25] used the three-dimensional ordinary Kriging
interpolation method to evaluate the spatial variation of soil salinity in the Yellow River Delta in China.
While these studies showed the potential of quantifying soil salinity in 3D from EMI sensor data and
Kriging interpolation, quantification of soil salinity at a point of time could not capture the dynamics
of soil salinization. For example, in arid and semi-arid areas, because of the high evaporation over
precipitation, salts frequently migrate, redistribute, and accumulate in the soil profile with changes
in precipitation, irrigation water, and evaporation. Salt dynamics as impacted by management can
greatly affect crop growth. Thus, it is critical to characterize and quantify spatio-temporal variations of
soil salinity at different depths to develop effective strategies such as irrigation to manage secondary
soil salinity in arid regions. It can also provide important information for regional salinized land
restoration, and scientific improvement and prevention of land degradation. The overall objective
of this study is to characterize and quantify dynamics of spatio-temporal variability of soil salinity
in three dimensions. This study used in situ apparent electrical conductivity measured using EMI
sensors and 3D inverse distance weighing interpolation to quantify spatio-temporal dynamics of soil
salinity at multiple depths under cotton irrigated with different amounts of irrigation from the arid
area of Xinjiang Uygur Autonomous Region in Northwest of China.
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2. Materials and Methods

2.1. Study Area

Xinjiang is the most important production base for high-quality cotton and fruits in China.
In 2017, the cotton planting area in Xinjiang accounted for 80% of China with a plant area of around
2,217,000 ha. A field experiment was conducted at the National Agricultural Science and Technology
Park of Alar City, southern Xinjiang (80◦30′~81◦58′E and 40◦22′~40◦57′N) (Figure 1). It is in the flood
plain and delta zone of the upper Tarim River and at the confluence of Hetian River, Aksu River,
and Yeerqiang River. The terrain is high in the southwest and low in the northeast with mild slope of
about 0.3 to 0.7%. The average annual evaporation is 1988 mm, and the average annual precipitation is
48.5 mm. The main crop in the park is cotton, and the agricultural production level is high, which is
reflected in the high level of crop yield per unit area, high degree of agricultural mechanization,
and high degree of intensification. The large-scale, standardized, and industrialized production and
management in the park provide a demonstration role for the agricultural production in southern
Xinjiang. The experimental field is about 18 hm2 in area and was planted with Xinluzhong No. 78
variety of cotton. During spring and winter, flood irrigation was employed to leach salts, while drip
irrigation was adopted for the cropping period. The winter irrigation was carried out on November 20,
with a total amount of 59,400 m3. A total of five irrigations were applied over the growing period;
first irrigation was on 22 June with 450 m3 hm−2 of water, and the second, third, fourth, and fifth
irrigations were applied on 9 July, 25 July, 13 August, and 25 August, respectively with 600 m3 hm−2 of
water each time. The soil type is Calcaric Cambisols on study area. The soil texture of the study area
is sandy loam, and the soil organic matter content is between 6.3 and 13.93 g kg−1, with an average
content of 8.76 g kg−1.

1 
 

 

Figure 1. Geographical location of experimental area and distribution of EM38-MK2 survey sites.
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2.2. Field Measurement of Soil Apparent Electrical Conductivity

An EMI sensor (geodetic conductivity meter, EM38-MK2) (Geonics Ltd., Mississauga, ON, Canada)
was used in this study to in situ measure soil apparent electrical conductivity (ECa, mS/m). While the
original EM38 model carries a transmitter and a receiver coil at 1-m apart, the EM38-MK2 model carries
two receiver coils at 0.5 m and 1.0 m far from the transmitter coil and can provide ECa data at four
different depths [26]. The new EM38-MK2 model also adopts new technology to automatically perform
temperature compensation, correct circuit faults, and eliminate data drift caused by the temperature
variations [27].

An EM38-MK2 model was embedded into a wooden cart along with a GPS and was used to map
the whole field for four times between July and October. Measurements were done on 15 March 2018
(after winter irrigation) before cotton sowing, 3 June (before the first drip irrigation), 7 July (before the
second drip irrigation), and 27 October (after cotton harvesting but before winter irrigation) using the
vertical measurement mode from south to north of the survey field. More details of the experiment
and data collection can be found in Liu et al. [28]. Based on the spatial scale of the study area, a total of
ten measurement rows were developed with a row spacing of 20 m (Figure 1). Descriptive details of
the soil ECa measurement are presented in Table 1.

Table 1. The statistical characteristic values of geospatial electromagnetic induction measurements of
apparent electrical conductivity (ECa) at different periods.

Date ECa Min (dS m−1) Max (dSm−1) Mean (dSm−1) CV (%) Skew Kurt.

15 March 2018 ECV1.5 0.26 2.05 0.77 0.63 1.51 1.34
ECV0.75 0.05 2.61 0.63 0.96 6.21 2.19

3 June 2018 ECV1.5 0.20 1.39 0.72 0.51 −1.16 0.29
ECV0.75 0.13 1.73 0.62 0.75 0.18 1.04

7 July 2020 ECV1.5 0.19 1.60 0.79 0.52 −0.64 0.22
ECV0.75 0.36 2.21 1.16 0.56 −1.57 0.35

27 October 2018 ECV1.5 0.44 1.99 1.00 0.46 −0.29 0.90
ECV0.75 0.49 1.78 1.05 0.41 −1.10 0.46

2.3. Soil Sampling and Analysis

To model the relationship between the measured electrical conductivity and the apparent electrical
conductivity, soil profile samples were collected from the field. While high density sampling can
ensure the stability of the relationship, it largely increases cost, time, and labor. In contrast, EM38-MK2
survey provides relative variability of soil salinization within the field and can be used to select
sampling locations a priori while capturing the variability. Roughly, the EM38-MK2 soil apparent
electrical conductivity data were divided into three groups: low (<50 mS m−1), medium (50~100 mS
m−1), and high (>100 mS m−1). Six sampling locations were randomly selected within each of these
zones identified from the EM38-MK2 survey data. A total of 18 soil cores were collected each time for
four times (15 March, 3 June, 7 July, and 27 October 2018) of field measurement. The profiles were
then sub-sampled at 0–20, 20–40, 40–60, 60–80, and 80–100 cm depth layers, placed in plastic bags,
numbered, and sent to laboratory for further analysis [28,29]. The soil samples were immediately
tested for soil moisture content using the over drying method. Remaining soil samples were air-dried,
gravel, roots, and other visible residues were picked out, and ground and passed through a 2-mm sieve.
After preparing the soil saturated extract [28,30], the LeiCi DDS-307A (Shengke, Shanghai, China)
conductivity meter was used to determine the soil conductivity ECe (dS m−1).

2.4. Model Construction and Evaluation

The 18 soil profiles were sorted and randomly divided into training dataset (12 profiles) and
validated dataset (6 profiles) at a ratio of 2:1. Linear and multivariate linear regression methods
were used to construct a predictive relationship between measured soil electrical conductivity and
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soil apparent electrical conductivity. Coefficient of determination (R2), root mean squared error
(RMSE), relative percent deviation (RPD), and mean error (ME) were calculated to evaluate the model
performance. The related formulas are as follows:

Mean error:

ME =
1
m

N∑
i=1

[z∗(si) − z(si)] (1)

Root-mean-square error:

RMSE =

√√√
1
N

N∑
i=1

[z∗(si) − z(si)]
2 (2)

Coefficient of determination:

R2 =


∑N

i=1(z(si) − z(si)ave)(z
∗(si) − z∗(si)ave)√∑N

i=1(z(si) − z(si)ave)
2 +

∑N
i=1(z∗(si) − z∗(si)ave)

2


2

(3)

Standard deviation:

SD =

√∑N
i=1(z(si) − z(si)ave)

2

n− 1
(4)

Relative percent deviation:

RPD =
SD

RMSE
(5)

where z∗(si) was the predicted value, and z(si) was the measured value. z∗(si)ave and z(si)ave were
the averaged predicted and measured value, respectively. N was the sample number. A RPD ≥ 2.0
indicates a good predictive ability of the model and a R2 value close to 1, RMSE close to 0, ME close to
0 indicate better model performance [23,31,32].

2.5. Spatial Interpolation and Mapping

Three-dimensional inverse distance weighting (3D-IDW) is one of the most used techniques for
three-dimensional interpolation. IDW is based on the basic assumption of the “first law of geography”:
that is, the similarity of two objects decreases as the distance between them increases. The weights
were calculated based on the distance between the observed points. The closer the sample point is,
the greater is the weight. This study used the method of calculating weight coefficients of known
points improved by Frank and Nielson in 1980 [33], which can obtain higher precision results than
Shepard’s classic method [12]. The relevant calculation formulas are:

F(x, y, z) =
n∑

i=1

wi fi (6)

wi =

[
R− hi

Rhi

]2/∑n

i=1

[
R− hi

Rhi

]2

(7)

hi =

√
(x− xi)

2 + (y− yi)
2 + (z− zi)

2 (8)

where, F is the attribute value of the point to be estimated; wi is the weight coefficient assigned to the
point to be estimated; hi is the distance from the point to be estimated to the interpolation point; R is
the distance from the interpolation point to the farthest point to be estimated; n is the total number
of points to be estimated; (x, y, z) are the coordinates of each interpolation point; (xi, yi, zi) are the
coordinates of each point to be estimated; and fi is the attribute value of the known interpolation point.
In interpolating, 75% (7500) of the total number of samples from different periods (10,000) were used
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as the training data set, and 25% as the independent validation data set. The RMSE, ME, R2 between
the measured value and the measured value were calculated to assess the model performance [12,34].

3. Results

3.1. Predictive Relationship between ECe and ECa

Best of linear and multiple linear regression relationships between ECe and ECa at five different
depths and four different times are presented in Table 2. The relationships were developed for ECe
values of 12 profiles (calibration dataset) and validated with the rest six profiles (validation dataset)
against two depths of EM38-MK2 measurement; ECv0.75 and ECv1.5 measuring ECa to the depth of
0.75 m and 1.5 m. In general, multiple linear regression always outperformed linear regression results
with R2 ranging from 0.70 to 0.96.

Table 2. Predictive relationship of soil conductivity at different depths and periods.

Soil
Layer/cm

15 March 2018 3 June 2018 7 July 2018 27 October 2018

Models R2 Models R2 Models R2 Models R2

0~20 ECe = 0.178X1 −

0.003X2 + 0.275 0.91 ECe = 0.101X1 −

0.085X2 + 3.368 0.94 ECe = 0.045X1 −

0.028 X2 + 0.981 0.75 ECe = −0.001X1 +
0.055 X2 − 0.170 0.93

20~40 ECe = −0.007X1 +
0.026X2 − 0.556 0.80 ECe = 0.025X1 −

0.011X2 + 0.296 0.77 ECe = 0.007X1 +
0.017X2 − 0.516 0.81 ECe = 0.020X1 −

0.004 X2 + 0.886 0.96

40~60 ECe = 0.003X1 +
0.012X2 − 0.194 0.90 ECe = 0.003X1 +

0.018X2 − 0.318 0.79 ECe = 0.002X1 +
0.011X2 − 0.075 0.76 ECe = 0.0004X1 +

0.012 X2 + 0.607 0.96

60~80 ECe = 0.004X1 +
0.011X2 − 0.135 0.91 ECe = 0.001X1 +

0.017X2 − 0.188 0.82 ECe = 0.003X1 +
0.022X2 − 0.895 0.82 ECe = 0.013X1 −

0.002 X2 + 0.327 0.90

80~100 ECe = −0.001X1 +
0.013X2 − 0.064 0.86 ECe = −0.00X1 +

0.021X2 − 0.045 0.78 ECe = −0.001X1 +
0.012X2 − 0.002 0.70 ECe = 0.008X1 −

0.001X2 + 0.352 0.93

Note: X1 means ECv0.75, X2 means ECv1.5.

The performance of the validation of these relationships are presented in Table 3. Overall,
the relationships showed strong agreement with R2 > 0.80, ME ranged between −0.45 and 0.32,
RMSE < 1.30 dS m−1 and RPD > 2.0 for all models. These clearly showed that the predictive models
have good ability and the ECa of EM38-MK2 can be successfully used to accurately estimate soil
ECe both in space and with depths. The predictive models of each soil layer in different periods
were then applied to the entire field, and the conductivity of each soil layer in different periods was
obtained which were then used to interpolate using 3D-IDW to quantify spatio-temporal variation of
soil salinization.

3.2. Temporal Variation of Soil Salinity

Descriptive statistics of predicted ECs from EM38-MK2 measured ECa data at different soil layers
and depths are presented in Table 4. Great differences were observed among the temporal distribution
characteristics and salt content in the soil profile. The salt content in March showed minor variations
in the distribution within the profiles with an average value between 0.78 and 0.88 dS m−1, a relatively
low amount. This is mainly attributed to the flood irrigation used during winter to wash the salts of the
0–100cm soil profile. Following the desalinization, the soil froze as the temperature went below 0 ◦C
during winter and the salts could not move within the profile. In contrast, soil profiles in June, July,
and October showed obvious salt accumulation at surface layers. Salts in June and October were mainly
concentrated in the surface 0–20 cm layer. The average conductivity of the topsoil (0–20 cm) layer in
June and October was 3.32 and 5.28 dS m−1, respectively. Average soil conductivity of the other four
soil layers (20–100 cm) in June and October ranged from 0.99 to 1.36 dS m−1, and 0.95 to 1.70 dS m−1,
respectively. Accumulation of salts at 0–20 cm layer during this period is related to the lack of irrigation
for a longer time. There was no irrigation between November 2017 (applied as winter irrigation) and
3 June 2018 (the first irrigation). Moreover, precipitation is also low during this period. In addition,
during April, as the temperature in this area reached above 20 ◦C, evaporation became stronger. As the
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water left soil surface as evaporation, salts accumulated on the surface. However, salts were mainly
concentrated within 0–40 cm layers during the July measurement. The average conductivity of 0–20 cm
and 20–40 cm soil layer were 2.45 and 2.25 dS m−1, respectively. The amount of drip irrigation water
contributed to the accumulation of salts in July at a depth of 0–40 cm. The maximum drip irrigation
water volume was only 600 m3 hm−2, and the maximum wetting depth of this water volume was 40 cm.
Therefore, the salt accumulated in 0–20 cm in the early stage can only be transported within the soil
depth of 0–40 cm. The conductivity in deeper soil layers (40–100 cm) ranged from 0.87 to 0.93 dS m−1.

Table 3. Cross-validated results of models for soil conductivity at different periods.

Date Soil Layer/cm R2 ME RMSE RPD

15 March 2018

0~20 0.82 −0.24 0.51 2.01
20~40 0.85 0.02 0.41 2.51
40~60 0.93 −0.06 0.26 3.03
60~80 0.87 −0.25 0.48 2.02
80~100 0.85 −0.16 0.46 2.02

3 June 2018

0~20 0.85 −0.09 0.86 2.47
20~40 0.91 −0.15 0.33 2.48
40~60 0.96 0.32 0.36 2.13
60~80 0.89 −0.04 0.23 2.86
80~100 0.82 0.04 0.22 2.25

7 July 2020

0~20 0.89 −0.12 1.22 2.23
20~40 0.91 −0.02 0.50 2.50
40~60 0.98 −0.15 0.35 2.01
60~80 0.98 0.20 0.40 2.09
80~100 0.96 −0.01 0.10 4.78

27 October 2018

0~20 0.99 −0.45 0.56 4.56
20~40 0.92 0.05 0.21 3.35
40~60 0.95 0.04 0.17 3.73
60~80 0.94 −0.02 0.13 3.97
80~100 0.98 −0.02 0.04 6.77

Table 4. The statistical characteristic values of soil salinity (ECe) attributes at different periods.

Date Layer
(cm)

Min
(dS m−1)

Max
(dS m−1)

Mean
(dS m−1)

SD CV Skew Kurt.

15 March 2018

0~20 0.35 3.19 0.88 0.48 0.55 1.63 2.48
20~40 0.06 3.72 0.87 0.61 0.70 0.86 1.14
40~60 0.13 2.76 0.78 0.45 0.58 1.08 1.01
60~80 0.21 2.82 0.88 0.44 0.50 1.01 0.94

80~100 0.23 2.39 0.81 0.35 0.43 0.93 0.92

3 June 2018

0~20 0.85 20.40 3.32 5.33 1.61 −0.01 −0.19
20~40 0.01 5.99 1.28 1.38 1.08 0.21 −0.34
40~60 0.05 4.51 1.36 0.69 0.51 0.40 0.06
60~80 0.06 4.11 1.09 0.64 0.59 0.45 0.17

80~100 0.12 3.51 0.99 0.52 0.53 0.51 0.29

7 July 2018

0~20 0.26 6.89 2.45 1.22 0.50 0.97 0.03
20~40 0.58 8.55 2.25 1.54 0.67 0.46 −0.04
40~60 0.04 2.92 0.87 0.50 0.57 0.46 −0.03
60~80 0.16 3.52 0.93 0.59 0.63 0.45 0.10

80~100 0.05 3.63 0.88 0.48 0.55 0.47 0.96

27 October 2018

0~20 1.40 18.69 5.28 1.76 0.33 0.89 3.63
20~40 0.15 5.17 1.41 0.80 0.57 0.20 −0.44
40~60 0.78 4.83 1.70 0.425 0.25 0.78 2.99
60~80 0.09 3.30 0.95 0.45 0.47 0.26 −0.11

80~100 0.74 2.77 1.19 0.20 0.17 1.11 5.04
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From a general evaluation based on coefficient of variation, CV < 0.1 indicates weak variability,
0.1 ≤ CV < 1.0 indicates moderate variability, and CV ≥ 1.0 indicates strong variability [34]. The soil
conductivity in different periods showed moderate variability except on 3 June which showed strong
variability within 0–40 cm soil layer. It may be that the temperature reached at the highest in
June and thus the evaporation compared with the other months [33]. This led to strong variability
of surface soil water and salt. During this time, an extreme high salt content of 20.40 dS m−1

was observed in the surface soil layer. Though, the skewness of soil conductivity was close to 0,
the kurtosis deviated from 3 indicating a deviation from normal distribution in soil salinity values.
After logarithmic transformation, the distribution of soil conductivity approximated to the normal
distribution, though there existed a long tail on the left because of the existence of outliers.

3.3. Spatio-Temporal of Distribution of Soil Electrical Conductivity in Three Dimensions

The predicted soil ECe from the ECa measurements and the models (Table 2) were used to
characterize the spatio-temporal distribution of soil salinity in 3D. In visualizing the spatio-temporal
distribution, a 3D gridded system was used in the format of X-Y-Z for 3D-IDW interpolation where the
X-axis was equal to the width of the field, i.e., 200 m, the Y-axis was equal to the length of the field,
i.e., 1000 m, the Z-axis was the depth of the soil profile, i.e., 1 m. The 3D grid system provided a voxel
size of 10 m × 10 m × 0.01 m to a total of 20 × 100 × 10 = 20,000 voxels or cells (Figure 2). In performing
3D-IDW interpolation, the Z axis was enlarged by 300 times, and the number of search points was set
to 6 [35], and then the map of spatio-temporal distribution of soil conductivity was obtained (Figure 3).
Figure 3 intuitively revealed spatio-temporal variation of soil salinity in 3D and the simple visual
observation could provide valuable information on the status of soil salinity [36] and development of
management practices such as irrigation in cotton field.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 17 
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Following the grading standard of soil salinization defined by the American Salinity Laboratory [30],
the soil ECe in this study was divided into five levels: non-saline soil (0~2 dS m−1), mildly saline
soil (2~4 dS m−1), moderately saline soil (4~8 dS m−1), heavily saline soil (8~16 dS m−1), saline soil
(>16 dS m−1). Most areas in March after winter irrigation exhibited low soil salinity (Figure 2), with an
average soil conductivity of 0.84 dS m−1 and was categorized as non-saline soil. Between June
and October with cotton on ground, soils were categorized as mildly saline soil, moderately saline
soil, and heavily saline soil. While heavily saline soils exhibited scattered spatial patterns in June,
more concentrated spatial patterns were observed in July and October. The degree of soil salinization
in October was stronger than other months. Most of the soils in October were categorized as moderate
to heavily salinized soils with a low amount of non-salinized soils.

The cross-sections in different directions of the study field were selected to analyze the spatial
characteristics of soil salts (Figure 4). For example, the A-A’ and B-B’ sections traversed from the
northeast to the southwest of the study area, and the C-C’ and D-D’ sections traversed from the southwest
to the northeast of the study area (Figure 2). In general, an increasing amount of salt accumulated in
whole of the 0–100 cm soil profile from March to October (Figure 4). However, temporal differences
were observed in the spatial distribution of soil salts. For example, in the northern part of the study
area, the soil mainly changed from non-salinized soil to mild and moderately salinized from March to
June. However, from June to July, the part of mildly and moderately salinized soil in the middle to the
northern part of the study area became non-salinized. The area under moderately and heavily saline
soil in the southern part of the experimental area increased during this time. However, from July to
October, the area of mildly, moderately, and heavily saline soil increased significantly, and the area of
non-saline soil decreased sharply.
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3.4. Soil Salinization Areas at Different Periods

After 3D-IDW interpolation, each voxel had a soil conductivity value. In this paper, voxel was the
basic unit, and the proportion to the total voxels occupying area by the five grades of salinized soil in
each soil layer in different periods was calculated (Table 5). The area of non-salinized soil in the study
area increased with depth at different periods, while the area of saline soil (mild, moderate, and severe)
exhibited reverse pattern within the soil profile (Table 5). Salts exhibited a tendency to accumulate in
the surface soil layers. This accumulation also differed with the amount of salts that are present in the
soil profile. The salt accumulation pattern covering certain areas also varied with time. For example,
the area of mildly salinized soil increased in soil layer of 0–20 cm to 20–40 cm while the area of mildly
salinized soil decreased with increase in soil depth.

Table 5. Proportion of soil salinization grades in different periods of the test area.

Date Layer/cm Non-Saline Mildly Saline Moderately Saline Heavily Saline Saline Soil

15 March 2018

0~20 98.6 1.4 0 0 0
20~40 99.0 1.0 0 0 0
40~60 99.3 0.7 0 0 0
60~80 99.5 0.5 0 0 0
80~100 99.6 0.4 0 0 0

3 June 2018

0~20 30.9 41.0 27.0 1.1 0
20~40 41.6 45.9 12.4 0.2 0
40~60 56.3 36.5 7.1 0.2 0
60~80 69.3 25.3 5.3 0.2 0
80~100 78.1 17.6 4.3 0.1 0

7 July 2018

0~20 36.0 39.1 24.2 0.7 0
20~40 42.8 42.8 14.2 0.2 0
40~60 53.8 40.3 5.9 0 0
60~80 65.1 32.1 2.8 0 0
80~100 75.5 23.0 1.6 0 0

27 October 2018

0~20 7.8 62.3 29.7 0.2 0
20~40 18.6 72.8 8.5 0 0
40~60 35.1 61.4 3.6 0 0
60~80 56.0 41.3 2.7 0 0
80~100 69.1 28.5 2.4 0 0
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After the winter irrigation on 15 March, 99% of the area became non-salinized soil with only a
part as mildly saline soil. There is high probability of seasonal salinity in cotton fields in arid areas
from the winter irrigation on 15 March to the cotton ball period on 3 June. Under the combined
effects of evaporation and transpiration, deep groundwater carried soluble base ions with increased
capillary action and enriched surface soil layers with salt. The proportion of non-saline soil gradually
decreased at the surface layer. The proportion of salinized soil area (moderate, severe), exhibited an
increasing-decreasing-increasing trend from the effect of drip irrigation with repeated rainfall in the
surface soil (0–20 cm). The moderately and heavily saline soils were slightly reduced after leaching,
while the areas of mildly saline soil in different soil layers were gradually increased.

The performance of 3D-IDW model was evaluated using cross-validation and the parameters
are listed in Table 6. The ME ranged from −0.02 to 0.01, the RMSE from 0.21 to 0.56 dS m−1, and R2

from 0.76 to 0.77. All these parameters indicated an acceptable performance of the model in predicting
spatio-temporal changes of soil conductivity in three-dimensions.

Table 6. Independent cross-validated results of 3D-IDW interpolation at different dates.

Date R2 RMSE (dS m−1) ME

15 March 2018 0.77 0.21 −0.02
3 June 2018 0.76 0.27 −0.02
7 July 2020 0.76 0.40 −0.03

27 October 2018 0.77 0.56 0.01

4. Discussion

4.1. Model Performance

Developing prediction relationship between field-measured soil electrical conductivity and
the sensor-measured such as ground-based electromagnetic induction sensors or spectral index
based remote sensing sensors is not new. For example, Rhoades and Crowin (1981) and Slavich
(1990) successfully used multiple linear regression to correlate electromagnetic induction to ground
measurement of soil profile ECa which provided a good reference for subsequent researches [37,38].
Liu et al. (2013) comprehensively used soil profile data and spectral index calculated from remote
sensing imageries to analyze and evaluate spatial variability of three-dimensional salinity at regional
scale [39]. This provided a way to quantify and improved the accuracy of the three-dimensional
prediction of regional soil salinity. In this study, we used the electromagnetic induction-based sensor
to measure ECa and use that as prior knowledge to optimize soil sampling. Then the apparent
conductivity and the soil salt content at different depths were used to establish multivariate linear
model. The predictive models show improved performance (R2 ranged from 0.824 to 0.994) than
previous studies [25,40] and provided justification to use for further analysis.

Corwin and Lesch (2014) used covariance analysis to establish a regional-scale electromagnetic
induction-salt calibration model. The model was used in other research areas and significantly reduced
the number of soil samples required for modeling and greatly reduced the labor and economical
cost [41]. Unlike the covariance modeling method, in this study we used the multivariate linear model
for inversion of salinity from apparent conductivity at the farmland scale. The soil texture, bulk density,
and water content in the study field are relatively uniform. Therefore, further study required to explore
the extended application of our method at larger spatial scales. In this study, factors such as soil
water content, pH, soil texture were introduced as covariates in the multiple linear regression model.
However, the accuracy of the model did not exhibit any significant improvement over the model with
single covariate, the salt content. Thus, soil water content, pH, and soil texture were not included
in the final model. In addition, the inversion model of soil conductivity of different soil layers at
four different periods was established. The accuracy of the local model and the global model were
compared, and the local model with better performance was finally selected and applied in our study.
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However, as the local model development requires higher resources, future work should focus on
developing global model with high performance to reduce the labor and economical cost when survey
is conducted at large spatial scale. Similarly, different methods such as covariance modeling methods
as well as machine learning need to be tested at large spatial scale, which already showed improved
performance in soil management and precision agriculture.

Currently, obtaining three-dimensional discrete data of soil salinity through electromagnetic
induction inversion models is one of the main ways to map 3D spatial variability of soil salinity [25,40].
An interpolation method can be used to estimate the target variables at non sampling sites [25,42].
Presently, the commonly used three-dimensional interpolation methods are mostly extended from
the two-dimensional interpolation methods including IDW and Kriging. However, previous studies
mainly focused on modeling geological bodies, and few studies concentrated on soil properties.
Additionally, most of these spatial interpolation methods were developed with certain assumptions
and have related limitations. For example, Kriging methods need to satisfy the second-order stationary
hypothesis and the choice and fitness of semi-variance function has critical effects on the prediction
accuracy [43–47]. In addition, Kriging methods would smooth detailed information which is usually
what the end-users are concerned with especially in precision agriculture. IDW uses a simple reciprocal
distance as weights to estimate the target variable at unmeasured sites. The IDW method includes
a few parameters and is simple and easy to employ, which makes it one of the most widely used
method [43,47–49]. Therefore, in this study we used 3D-IDW [50] to map spatio-temporal variation of
soil salinity at three dimensions in the soil profile.

4.2. Controlled Factors of Soil Secondary Salinization

The spatio-temporal heterogeneity of soil salinization is caused by the interaction of natural
and anthropogenic factors. Natural factors mainly include soil parent material, soil permeability,
groundwater depth, topography and hydrogeology, rainfall, temperature, relative humidity, and wind
speed. Anthropogenic or human factors mainly include farmland irrigation, drainage, farming styles,
and planting systems [51–54]. In arid and semi-arid regions, when the amount of evaporation is greater
than the rainfall and the depth of the local water table is less than 1.5 m, the salt tends to accumulate
on the soil surface. The experimental area is in extreme arid area of southern Xinjiang in Northwest of
China, where the annual evaporation is 40 times of the annual rainfall [12]. The northern part of the
study area is less than 0.5 km away from the Tarim River. The depth of the groundwater level in the
test area varies with season and is affected by the flood season of the Tarim River. These anthropogenic
and natural factors contribute to the three-dimensional distribution of soil salinity in different periods.

The main reason of non-saline soil in March is that the winter irrigation washes the soil salt to
a depth of >1 m. Winter temperature also influences this as frozen soil layer prevents the upward
movement and accumulation of soil salt. The main reason for the highest degree of salinization in
June is the temperature. High temperature and strong evaporation draw water from salty and shallow
groundwater through capillaries. In addition, the study area adopts drip irrigation under the film.
The large area of exposed soil between the film is also affected by the temperature. These lead to the
accumulation of salt at the soil surface and form salt crust. Moreover, the soil texture in the study area is
mainly sandy loam, with poor water retention, resulting in the formation of secondary soil salinization.
The degree of salt accumulation also depends on the leaching ratio; proportion of irrigation water or
precipitation flowing outside the soil. As the leaching ratio decreases, soil salt gradually accumulates
in the soil [5].

The flood season in the Tarim River basin is from July to September. The groundwater level in the
study area is less than 1.5 m during this period. During this time, the study area only received one
drip irrigation, and the maximum wetting depth was only 40 cm. Affected by the uncovering of the
film (cotton was harvested in October) and high temperature, the salts moved upward and formed
secondary salinization in the surface soil.
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Soil salinity showed strong spatial and temporal heterogeneity. Within the root zone, the soil
salinity generally is the result of the complex interaction of meteorology, topography, human factors,
soil properties, soil genesis, and biological factors. The complex three-dimensional spatial distribution
pattern of salt within the root system often has a coefficient of variation greater than 60% [55]. In arid
areas, salt accumulations in the root zone can cause various problems for crops or plants development.
Soil salinization affects the normal growth and development of crops and can also lead to reduction of
crop yield. However, the harmful effects of soil salinity vary with crop types, climate, soil fertility,
soil physical conditions, and soil moisture status [56]. Therefore, there is a greater uncertainty on
the threshold of soil salinity that can pose negative effects on crop yield. Thus, the information on
three-dimensional spatial distribution of soil salinity in different periods can essentially contribute to
making more scientific field-management measures.

4.3. Impacts of Precision Agriculture on Crop Yields and the Environment

Traditional agricultural production inputs such as fertilizers, irrigation water, pesticides ignore the
inherent spatial heterogeneity that exist between and within the fields. Uniform agricultural production
inputs can lead to abuse of agricultural resources. In most of the cases, farmers would tend to increase the
input of fertilizer and irrigation water to improve the crop yields. However, overuse of crop inputs can
lead to decline in profitability and various environmental issues such as eutrophication [5]. The increase
in global population is demanding more food, posing great pressure to our agricultural production
systems. In this context, precision agriculture aims to make full use of the electronic information
technology to monitor spatio-temporal variation of soil properties for site-specific management [57–60].
It can optimize production capacity and profitability of crops, maximize the use of limited agricultural
inputs, and reduce the negative effects on the environment and humans [61]. Corwin and Plant (2005)
introduced the application of electromagnetic induction technology ECa in precision agriculture [62].
At the beginning of the 21st century, the electromagnetic induction technology was mainly applied to
crop management in specific locations [63,64].

Currently, the precision agriculture mainly relies on real-time monitoring of soil conditions using
information technology and GPS technology, and then analyzing and managing the spatio-temporal
variability of soil and field crops. These information help make decision on precision application
of crop inputs including water and fertilizer. It can improve the efficiency and reduce the losses of
water and fertilizer. Precision irrigation can timely, accurately, and quantitatively match crops’ water
demand, reduce unnecessary runoff, leakage, and evaporation losses, and reduce soil nitrogen losses
and groundwater salinity. Information on 3D variability of soil salinity at multiple times over the
growing season can help develop decisions and adopt precision agriculture. Results obtained in this
study could help us to get quantitative information about soil salt content and provide good foundation
for understanding the relationship between water and salt structure as well as underlying processes of
salt accumulation. Monitoring spatio-temporal variation of soil salinity at three dimensions in a timely
and cheap manner is of great significance for maintaining the sustainable development of agricultural
production mainly in the arid and semi-arid regions of the world and this study lays foundation of
such an important topic.

5. Conclusions

Soil salinity is the most critical soil degradation issues around the world, particularly in the arid
and semi-arid regions. Along with the natural factors, anthropogenic management of agricultural lands
such as irrigation contributes to secondary soil salinity. Thus, monitoring and management of this
salinity over the growing season are critical for sustainable management of these already vulnerable
lands. In this study, we collected apparent electrical conductivity data (using electromagnetic induction
sensing technology) and soil profile samples from a typical cotton field in arid areas for four times.
We constructed inversion models of different soil layers in different periods and developed 3D-IDW
interpolation model to quantify spatio-temporal variations of soil electrical conductivity.
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The main conclusions of this study can be summarized as:

(1) The inversion model showed very good performance for estimating the soil apparent conductivity
with R2 ranging between 0.824 and 0.994.

(2) The soil electrical conductivity showed strong spatio-temporal variations. because of strong root
activity and evaporation demand from environmental forcing, surface soil layer (0–20) exhibited
moderate variability while other soil layers exhibited strong variability. After the cotton was
harvested on 27 October, the variability in soil electrical conductivity became stable.

(3) After winter irrigation, the salt content was low, and the salts were uniformly distributed in the
soil profile. After cotton sowing, salts were mainly accumulated in soil within the surface 0–40 cm
depth. The main factors affecting the soil salt content and its distribution in different periods in
the study area were irrigation, groundwater depth, degree of groundwater salinity, temperature,
and the mulching plastic film.

(4) The 3D-IDW interpolation method showed good accuracy in predicting three-dimensional
spatio-temporal variability of soil conductivity multiple times, and the R2 varied between 0.76
and 0.77.

This study provides new dimension in implementing precision irrigation practices in cotton fields
in arid areas based on the three-dimensional variations of salts over the growing season.
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