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Abstract

The aim of the present work is to investigate the low rate/pressure gradient relationship for 

the low of yield stress luids through rectilinear capillaries of non-circular cross-sections. 

These capillaries very often serve as basic elements in the modeling of porous media as 

bundles of capillaries or pore-network models. Based on the notions of shape coeicient 

and critical Bingham number, empirical low rate/pressure gradient relationships have been 

proposed for both Bingham and Herschel–Bulkley luids. The reliability of these relation-

ships has been assessed by performing numerical simulations with the open-source Com-

putational Fluid Dynamics (CFD) package OpenFOAM. For the considered cross-sectional 

shapes (equilateral triangle and square), and for a wide range of Bingham numbers, the 

predictions of the proposed empirical relationships have shown to be in very good agree-

ment with the results of the current numerical simulations, as well as with previous results 

from the literature. An interesting feature of the proposed empirical relationships is the 

possibility to easily predict the total low rate under a given imposed pressure gradient in a 

bundle of non-circular capillaries having any random distribution of inscribed circle radii. 

Furthermore, in the context of the yield stress luid porosimetry method (YSM), experi-

mental data may now be processed based upon bundles of capillaries with non-circular 

cross-sections.
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coeicient · Critical Bingham number
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1 Introduction

Porous media are encountered almost everywhere in everyday life, but also in several 

industrial applications, including oil recovery processes, subsurface solute transport, soil 

remediation and  CO2 storage. In order to correctly describe the phenomena taking place in 

porous media (mass, momentum and heat transfer, particle trapping, etc.), an appropriate 

modeling of their internal structure is necessary. For this purpose, diferent characteriza-

tion methods are available, among which the three-dimensional imaging techniques such as 

tomography or X-ray micro-computed tomography are of special relevance (Burlion et al. 

2006; Wildenschild and Sheppard 2013; Houston et  al. 2017). These techniques present 

the advantage of being non-destructive, providing reconstructions of the actual pore geom-

etry with a resolution of ~ 1 μm, and allowing the assessment of the topology of porous 

media (e.g., pore-size distribution, pores shapes, connectivity and tortuosity). However, the 

required equipment is costly and only a small volume of the porous medium is analyzed, 

questioning its representativeness.

Mercury intrusion porosimetry (MIP) technique is still commonly used because of its 

simplicity and feasibility (Peng et al. 2017). In MIP, mercury is forced into a sample of a 

porous medium under controlled conditions by incrementally increasing the applied pres-

sure. The volume of mercury invading the sample is monitored, providing information on 

the microstructural features of the pore space by assuming a model geometry, due to the 

actual complexity of real pores. Frequently, the porous sample is idealized as a bundle of 

rectilinear capillaries of circular cross-section. Despite its rough simplicity, this capillary 

bundle model has proven to give a reasonably representative picture of the pore-size dis-

tributions (PSDs) of many real porous media. The major drawback of MIP is the toxicity 

of mercury vapors, the legally binding regulations and the legal prohibition in the coming 

years. Therefore, signiicant eforts have been made to ind an alternative to conventional 

MIP. In particular, an innovative method based on the use of yield stress luids was recently 

proposed, known as yield stress luid porosimetry method (YSM). Yield stress luids are 

viscoplastic materials which behave as solids under a critical shear stress and low like liq-

uids above this shear stress threshold. YSM was implemented by several authors (Malvault 

2013; Rodríguez de Castro et al., 2014), based on the early work of Ambari et al. (1990). 

These authors showed that the PSD of the investigated medium can be extracted from the 

inversion of the raw experimental measurements of pressure gradient ∇P versus low rate 

Q performed at the steady state, provided that the yield stress luid’s characteristics are 

conveniently selected. The critical aspects and robustness of YSM were also assessed in 

the literature (Rodríguez de Castro et al. 2016, 2018).

Rodríguez de Castro et  al. (2016) compared the PSD obtained by YSM with those 

obtained from MIP for a set of highly permeable sandstones and synthetic ilters. They 

observed that even if comparable PSDs are provided by both methods, the results do not 

rigorously coincide. In a recent article, Rodríguez de Castro et  al. (2018) discussed the 

impact of the shear rheology parameters of yield stress luids on the accuracy of the PSDs 

obtained with YSM. Also, in order to explore the inluence of the irregular form of pore 

cross-section and its spatial variation, Malvault et al. (2017) performed numerical simula-

tions of Bingham luids lowing in a bundle of straight capillaries of non-circular cross-

section shape with varying characteristic dimension along the capillary axis. They showed 

that the calculated Q(∇P) approached more closely the experimental data than the tradi-

tional model of circular capillaries with constant cross-section. However, the required com-

putational cost was high due to the 3D nature of the problem. In this respect, Kefayati and 
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Huilgol (2017) proposed a lattice Boltzmann method for the simulation of the steady low 

of Bingham luids in a pipe of square cross-section, leading to a considerable reduction of 

the computation time.

In order to avoid costly and/or complex numerical simulations, one may ask whether 

there exists a simple alternative to estimate low rate/pressure gradient relationships with-

out any loss of calculation accuracy. The goal of the present work is to contribute to this 

progress by focusing on the formulation of empirical low rate/pressure gradient relation-

ships for various types of yield stress luids lowing through straight capillaries of non-

circular cross-sections, particularly of square and equilateral triangular shapes. Prior to 

this and as a starting point, some basic literature results concerning the low of Newtonian 

and Bingham luids through rectilinear capillaries of circular and square cross-sections are 

recalled in the next section. On the basis of these results, empirical low rate/pressure gra-

dient relationships are subsequently presented for the general case of Herschel–Bulkley lu-

ids lowing in capillaries of diferent cross-sections. Furthermore, numerical simulations 

are also performed in order to assess the reliability of the proposed relationships. Finally, 

two examples of their application in the context of YSM are presented.

2  Literature Review

2.1  Newtonian Fluids Flow in Rectilinear Capillaries

Over the past, the low of Newtonian luids through rectilinear capillaries of various cross-

sections has been extensively studied. Patzek and Silin (2001) reconsidered such a low for 

capillaries with rectangular cross-section of height 2a and width 2b by solving the momen-

tum equation under creeping and non-slip conditions. These authors obtained the following 

analytical expression of the velocity proile

where aj =

(

�

2

)

(2j + 1) , � is the luid dynamic shear viscosity of the luid, and � =
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versus pressure gradient Q(∇P) relationship can then be easily obtained after the integra-
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( � = 1 ), the mean velocity is given by:
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When CS = 1, Eq.  (2) reduces to the Hagen–Poiseuille formula for a circular cross-
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this regard, Patzek and Silin (2001) have determined the shape coeicient for various 

cross-section geometries. For equilateral triangular cross-sections, the obtained shape 

coeicient is C
T
=

6

5
.

2.2  Yield Stress Fluids Flow in Straight Cylindrical Capillaries

The Herschel–Bulkley empirical relationship (Herschel and Bulkley 1926) is one of the 

most widely used viscoplastic models:

where �  and �̇ are, respectively, the shear stress and the strain rate tensors. �
0
 is the yield 

stress of the luid, k is consistency, and n is luidity index. The particular case n = 1 corre-

sponds to the ideal Bingham plastic model. In the preceding equation, the strain rate tensor 

is deined by �̇ =

[

∇U⃗ +

(

∇U⃗

)T
]

 , where U⃗ is the velocity vector and the superscript T 

denotes the transpose. The magnitudes of the two tensors �  and �̇ are denoted � and �̇ , 

respectively, and can be obtained as � =

√

1

2
II
�
=

√

(

1

2

)(

�∶�

)

 and 

� =

[
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�0[1−exp(−m�̇)]

�̇

]

�̇ , where the symbol II is the second invariant of the consid-

ered tensor.

2.2.1  Flow Structure in Capillaries of Arbitrary Cross‑Section

Mosolov and Miasnikov (1965, 1966, 1967) analyzed, from a theoretical point of 

view, the creeping steady-state low of yield stress luids through rectilinear capillaries 

of arbitrary cross-sections. By analytically solving an energy balance equation for an 

imposed pressure gradient, these authors proved that the curvature of the low region 

is everywhere greater than a threshold value l∗ , that only depends on the shape of the 

cross-section. Consequently, the low under a pressure gradient ∇P , of a luid with a 

yield stress �
0
 through a capillary of a given cross-section can take place only if the fol-

lowing condition is met:

In general, the low structure consists of a central plugged region where the luid is 

unsheared, surrounded by a sheared region. Also, when the cross-sectional shape pre-

sents angular corners, there exists a dead zone in contact with the solid walls where 

the luid is at rest. On the basis of these theoretical works, Huilgol (2006) analytically 

investigated the low of diferent types of yield stress luids (Bingham, Casson, Her-

schel–Bulkley), through rectilinear capillaries having at least one symmetry axis. This 
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author concluded that l∗ does not depend on the considered type of yield stress luid, but 

only on the cross-section shape of the capillary through which the luid is lowing.

2.2.2  Numerical Computation of Flow Rate for Bingham Fluids

The low of Bingham luids through rectilinear capillaries of square cross-section under 

creeping low conditions was numerically studied by Saramito and Roquet (2001). For such 

luids, the occurrence of the low and the relative extent of each zone is controlled by the 

value of the non-dimensional Bingham number, B
i
= �

0
∕�

0
 , which quantiies the impor-

tance of yield stress �
0
 as compared to the excess shear stress �

0
 produced in the constant 

plastic viscosity region. In their study, Saramito and Roquet (2001) used �
0
=

a∇P

2
 , where a 

is the radius of the circle inscribed in the square cross-section of the capillary. They found 

that the dimensionless mean velocity Ū∕U
∗ may be expressed as:

with U∗ being a characteristic velocity deined as:

Cs is the shape coeicient that equals unity for a circular cross-section. The shape coei-

cient accounts for the deviation of the actual cross-section shape from circularity and is the 

same as in Eq. (2), since it depends only on the shape of the considered cross-section. Bic is 

the critical Bingham number above which the luid cannot low. When Bi increases, the 

contour of the central plugged zone moves toward solid walls and the dead zones become 

larger, leading to a thinner sheared region in between. At B
i
= B

ic
 , the sheared zone 

between the central plugged zone and the dead ones disappears, and the low stops. There-

fore, the onset of low condition given by Eq. (4) may be rewritten as 
B

i

B
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=

2l
∗

a
 . 
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l
∗
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2+
√

�

 (Mosolov and Miasnikov 1965, 1966, 1967). Consequently, the critical Bingham 

number for the square cross-section can be expressed as:

On the basis of detailed numerical simulations of Bingham luids’ low using an adap-

tive inite element method, Saramito and Roquet (2001) obtained the value B
S

ic
= 1.07 , 

while the calculation of Damianou and Georgiou (Damianou and Georgiou 2014) gave a 

value of 1.06, which is closer to the theoretical value 1.06038 given by Eq. (7). Recently, 

Malvault et al. (2017) carried out numerical simulations under similar conditions inding 

Bic= 1.0416, which also agrees acceptably with the theoretical value (error less than 2%).
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3  Proposed Empirical Q(∇P) Relationships

It is recalled that the objective of the present work is to show that simple empirical relation-

ships may be used to quantitatively predict Q(∇P) for the low of yield stress luids in rectilin-

ear capillaries of various cross-section shapes, with only marginal loss of accuracy compared 

to numerical simulations. To do so, the empirically calculated Q(∇P) will systematically be 

compared to the simulation results already published in previous works and/or to the ones 

computed in the current study.

From the literature review presented in the previous sections, it seems that whatever the 

luid and the cross-section shape, the dimensionless mean velocity in steady-state creeping 

conditions may be factorized and expressed as a product of a shape coeicient and a low 

term involving Bi and Bic. In the case of Bingham luids, the starting point is Eq. (5) proposed 

by Saramito and Roquet (2001) for a square cross-section. In order to extend it to the case of 

equilateral triangular cross-sections, Bic will be rewritten as proposed by Mosolov and Mias-

nikov (Mosolov and Miasnikov 1965, 1966, 1967):

Then, based on a similar hydraulic analogy previously used by Saramito and Roquet 

(2001), it is proposed that the normalized mean velocity for Bingham luids lowing through 

rectilinear capillaries of equilateral triangular cross-section can be expressed as:

with U∗ being a characteristic velocity previously deined in Eq. (6) and Ū being the mean 

low velocity, i.e., Ū =
Q

Spipe

.

In order to obtain analogous expressions for the more complex case of Herschel–Bulkley 

luids, it is irst recalled that the characteristic curvature l∗ is independent of the type of yield 

stress luid (Huilgol 2006) and Eq. (4), which connects the pressure gradient and �
0
 , is insensi-

tive to the exact rheology of the considered yield stress. Therefore, the critical Bingham num-

ber B
ic
= 2l

∗∕a is also independent of the rheological model, and Eqs. (7) and (8) can be used 

for cross-sections of square and equilateral triangle shapes, respectively. Besides, based on 

the previous deinitions of Bi and U∗ , as well as the well-known Q(∇P) relationships of Her-

schel–Bulkley luids lowing through a straight capillary of circular cross-section, the normal-

ized velocity Ū∕U
∗ can be written as:

where the characteristic low velocity U∗ and the Bingham number are, respectively, given 

by:
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Then, as previously done by Saramito and Roquet (2001) for Bingham luids, Eq. (10) 

is now extended to the cases of Herschel–Bulkley luids for square and triangular cross-

sections as:

where C is the shape coeicient of the considered cross-section shape, i.e., C
T
= 6∕5 for an 

equilateral triangle and C
S
 for a square (Eq. 2). Bic is the corresponding critical Bingham 

number given by Eqs. (7) and (8) for square and triangular cross-sections, respectively. It 

is worth mentioning that Eqs. (13) and (10) are identical for a circular cross-section with 

C = 1 and Bic = 1. Moreover, for the case of a square cross-section, Eq.  (13) reduces to 

Eq. (5) earlier proposed by Saramito and Roquet (2001) for a Bingham luid (with luidity 

index n equal to 1).

4  Assessment of the Empirical Expressions by Means of Numerical 
Simulations

In order to assess the reliability of the proposed empirical low rate/pressure gradient rela-

tionships, the obtained predictions are hereafter compared with simulation results. These 

simulation results come from the literature (Malvault et al. 2017) in the case of Bingham 

luids or were speciically performed in the current work for Herschel–Bulkley luids.

4.1  Governing Equations and CFD Tool

The steady-state, isothermal, incompressible and creeping low of yield stress luids 

through rectilinear capillaries with a square or equilateral triangle cross-sectional shape 

is considered. For all the investigated geometries, a no-slip boundary condition ( ⃗U = 0⃗ ) is 

set at the solid wall of the capillary. A uniform and constant pressure gradient is imposed 

between the inlet and the outlet ( P
inlet

= P
i

and P
outlet

= 0 Pa ). Moreover, the zero gradi-

ent boundary condition is chosen for both the inlet and the outlet ( ∇U⃗.n⃗ ), where �⃗ is the 

unitary vector pointing outside of the domain. The low is governed by the momentum and 

the continuity equations, which reduce to the following expressions when body forces are 

neglected:

(11)
U
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a
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)
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where the stress tensor �  is given by Eq. (3), P is the absolute pressure at the local scale 

and U is the velocity vector. Moreover, the Reynolds number is here deined as:

where � is the density of the luid. Re must be signiicantly lower than unity to ensure 

creeping low conditions.

4.2  Case of Bingham Fluids

Before dealing with the case of Herschel–Bulkley luids, the case of a Bingham luids is 

irst considered. The low of such luids in rectilinear capillaries of square cross-section 

was extensively discussed in several previous works (Saramito and Roquet 2001; Roquet 

and Saramito 2008; Damianou et al. 2016). Therefore, to evaluate the results provided by 

the present empirical relationship (Eq. 10), only the case of the equilateral triangular cross-

section is considered in this study, using simulation data available in the literature for com-

parison purposes. Figure 1 shows the low rate normalized by the quantity qc = a3

(

�
0

k

)
1

n

 , 

versus dimensionless pressure gradient of Malvault et  al. (2017) together with those 

obtained by using Eq. (10). As it can be observed, there is a very good agreement between 

numerical results and predictions over a wide range of Bi values.

4.3  Case of Herschel–Bulkley Fluids

In the second assessment step, the low of Herschel–Bulkley luids through capillaries of 

square and equilateral triangular cross-sections is considered. For this case, the governing 

Eq.  (14) is solved using OpenFOAM, which is an open-source multi-physics code based 

on a inite volume discretization. With the SimpleFoam solver, the coupling between the 

(15)R
e
=

�Ū2−n(2a)
n

k

Fig. 1  Dimensionless low rate Q+ versus dimensionless pressure gradient for a Bingham luid 
( �0 = 1 Pa, n = 1, k = 1 Pa.s ) lowing through a capillary of equilateral triangular cross-section. Black 
dashed line: simulation results of Malvault et al. (2017). Orange points: prediction obtained by Eq. (9)
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velocity and pressure is ensured thanks to the iterative algorithm SIMPLE (Semi-Implicit 

Method for Pressure Linked Equations). The velocity system is solved using the “Smooth-

solver” linear solver, with the Gauss–Seidel smoother. The pressure is solved using the 

geometric algebraic multigrid (GAMG) linear solver, associated to the Gauss–Seidel 

smoother. In the present investigation, it is assumed that the shear rheology of yield stress 

luids is well described by the Herschel–Bulkley model (Eq.  3). However, a continuous 

model is required in numerical experiments to avoid singularities. In the present work, a 

regularized model similar to the one proposed by Papanastasiou (1987) is used, in which 

the stress tensor is expressed as:

where m is the regularization parameter. Moreover, max
(

�̇ , �̇min

)

 is used instead of �̇ , 

where �̇
min

 is a user-deined minimum value for the shear rate used to avoid any diver-

gence. For accuracy purposes, the value �̇
min

= 2 × 10
−14

s
−1 has been chosen in the present 

simulations.

The value of m determines the range of shear rates over which the Herschel–Bulkley 

model (Eq. 3) is accurately approximated by the regularized model (Eq. 16) and it depends 

on the set of parameters ( �0, k, n ). Therefore, depending on the range of low rates in the 

capillary (or the range of shear rates), diferent values of m can be adequate to mimic the 

rheological behavior of the luid.

It is worth noting that, inherently, the regularized model assumes that all luid regions 

are sheared, so no plugged regions exist strictly speaking (Zhu et  al. 2005). Instead, the 

luid exhibits a very high viscosity at very low shear rates and pseudoplastic behavior at 

high shear rates. Several authors (e.g., Damianou et al. 2014; Panaseti and Georgiou 2017) 

reported that the value of the parameter m plays an important role in the accuracy and the 

location of the yield surfaces deined by the set of points for which � = �
0
 . In addition, 

some authors pointed out that the greater the value of the Bingham number, the greater is 

the value of m that ensures high accuracy of the topography of the yield surfaces (Dami-

anou and Georgiou 2014).

In the present study, and for the case of a square cross-section, a systematic investi-

gation was carried out to determine the value of m that ensures suicient accuracy. That 

is, for each Bingham number, diferent simulations were conducted with increasing values 

of m until the criteria on the normalized residuals were met (less than  10−7 for both the 

velocity and pressure ields), and the relative variation of the low rate over the last 1000 

iterations was less than 0.004%. Then, at a given Bingham number, the last value of m was 

selected when the relative error on the converged volumetric low rate (compared to the 

one obtained with the previous value of m) was less than 0.004%. After this assessment, 

for each Bingham number, the retained value of m was subsequently used for the simula-

tions with equilateral triangular cross-sections. It should be highlighted that, the objective 

of this study being to numerically assess the validity of the empirical low rate/pressure 

gradient relationships, the selected value of m has been chosen so that it provides stabilized 

simulated low rates while keeping reasonable simulation time. It is well known that for a 

given pressure gradient and when Q approaches its asymptotic value a signiicant change 

of m has only a very small impact on velocity magnitude but can still afect the location of 

envelopes of unsheared luid (Damianou and Georgiou 2014).

(16)� =

[

k�̇n−1 +
�0

[

1 − exp (−m �̇)
]

�̇

]

�̇
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Concerning the meshing of the geometries, all the considered computational domains 

were 3D. Hence, in order to reduce the computational time, and for symmetry reasons, 

only a part of the whole domain was modeled. Moreover, since the solution of the problem 

does not change along the axial direction, only a limited number of cells are needed in that 

direction. Consequently, mesh reinement was made only in the transverse directions by 

increasing the number of cells. The reinement was such that the relative variation of the 

computed volumetric low rate between two successive mesh sizes were less than 0.5% for 

triangular cross-sections and less than 0.1% for square cross-sections. Furthermore, since 

for square and equilateral triangular cross-sections the values of the critical Bingham num-

bers are, respectively, 1.0603 (Eq. 7) and 1.1251 (Eq. 8), the highest value of Bi considered 

was 0.9.

The volumetric low rate values obtained through the numerical simulations were then 

compared with those predicted by the approximate low rate/pressure gradient relationship 

given by Eq. (13). For that purpose, all the volumetric low rates were normalized by the 

quantity qc = a3

(

�
0

k

)
1

n

 . Finally, independently of the cross-section shape, the chosen values 

of the Bingham numbers were so that the corresponding Reynolds numbers span the range 

0.1 > R
e
> 10

−7 , ensuring creeping low conditions.

4.3.1  Simulation Results

The low structure for the considered Herschel–Bulkley luid 

( �0 = 1 Pa, n = 0.6 and k = 1 Pa.s0.6 ) lowing through a capillary of square cross-section 

Fig. 2  Magnitude of the strain rate tensor (in  s−1) for the low of a Herschel–Bulkley luid 
( �0 = 1 Pa, n = 0.6 and k = 1 Pa.s0.6 ) in a capillary of square cross-section, for two values of Bi. Diferent 
colors correspond to diferent magnitudes of the strain rate tensor, with greenish colors corresponding to 
higher values and bluish colors corresponding to nearly stagnant luid

Table 1  Comparison between empirical and simulated dimensionless low rate of a Herschel–Bulkley luid 
through a capillary of square cross-section, for diferent values of Bi

Bi 0.25 0.4 0.6 0.725 0.825 0.9

m (s) 40 × 103 55 × 103 70 × 103 80 × 103 90 × 103 105

Q+

empirical
5.4072 1.5503 0.3353 0.1123 0.0371 0.012

Q+

simulated
5.415 1.5528 0.3358 0.1125 0.0372 0.01203

Relative errors (%) 0.144 0.161 0.149 0.17 0.296 0.25
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is displayed in Fig.  2 for two distinct values of Bi. The corresponding values of m that 

are determined following the procedure described in the preceding paragraph are also pro-

vided. It can be deduced that the change of the low structure is usual: an inner plugged 

zone (with very low shear rates) surrounded by a sheared zone and stagnant luid regions 

at the corners (Damianou et al. 2014; Damianou and Georgiou 2014). As Bi is increased 

(the pressure gradient decreased), the velocity decreases in the rigid zone that grow in 

size while simultaneously the stagnant zone expand and the sheared zone between the two 

become thinner. The rate of expansion of the central zone is greater than that of the dead 

zone and comes in contact at B
i
= B

ic
 when the capillary is fully plugged.

Concerning the variation of the non-dimensional low rate with respect to Bi, 

Tables 1 and 2 provide comparisons between the simulation results, Q+

simulated
 , and the 

predictions obtained from Eq.  (13), Q+

empirical
 , for the square and equilateral triangle 

cross-sections, respectively. The corresponding values of m are also listed. As it can be 

noticed, Q+

empirical
 and Q+

simulated
 are very close for all the considered Bingham numbers, 

with relative errors that are lower than ~ 1%. Therefore, it can be put forward that the 

proposed dependence of normalized mean velocity Ū∕U
∗ on the ratio B

i
∕B

ic
 provides 

acceptable predictions over the considered range of Bi values under creeping low con-

ditions. It is worth mentioning that the relative errors between the simulation and the 

empirical approaches depend on the value of Bi for all the considered cases. This is 

related to the accuracy of the simulated low structure due to somewhat coarse sampling 

when screening m values.

5  Application to YSM

As mentioned in the introduction, the yield stress luids porosimetry method (YSM) has 

been based until now on modeling the porous medium as being a bundle of capillaries of 

circular cross-sections. In this section, the empirical low rate/pressure gradient relation-

ships developed in the current study are used to investigate the low of yield stress luids in 

bundles of capillaries with either square or equilateral triangle cross-sectional shapes. This 

is expected to improve the representativeness of the PSDs obtained with YSM.

It is interesting to highlight the fact that modeling a porous sample of a given poros-

ity as a bundle of capillaries with circular, square or triangular cross-sections has a sig-

niicant impact on the speciic surface areas involved. Furthermore, the pore-surface-

to-pore-volume ratio, which is directly proportional to the speciic surface area for a 

given porosity, is diferent for rectilinear capillaries of equal cross-sectional surface 

Table 2  Comparison between empirical and simulated dimensionless low rate of a Herschel–Bulkley luid 
through a capillary of triangular cross-section, for diferent values of Bi

Bi 0.25 0.4 0.6 0.725 0.825 0.9

m (s) 40 × 103 55 × 103 70 × 103 80 × 103 90 × 103 105

Q+

empirical
7.7957 2.326 0.5535 0.2082 0.082 0.0342

Q+

simulated
7.852 2.342 0.5574 0.2097 0.08287 0.0346

Relative errors (%) 0.722 0.688 0.705 0.72 1.061 1.17
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but dissimilar in shape. In the particular cases of circular, square and triangular cross-

sections, the pore-surface-to-pore-volume ratios are 2
√

� , 4 and 6∕
4
√

3 , respectively. 

Therefore, given that it is well known that the speciic area is a key parameter in sur-

face-dependent phenomena such as adsorption, the relevance of the PSDs provided by 

YSM can be questioned when only circular capillaries are considered.

Hereafter, a hypothetical cylindrical porous sample of diameter 2R = 5 cm and arbi-

trary length, with porosity � = 0.4 , is considered. It is assumed that the pores can be 

represented as a bundle of rectilinear capillaries with alternatively circular, square, or 

equilateral triangular cross-sections. Moreover, the three types of model porous media 

are assumed to have a bimodal distribution p(a) of the radii of the inscribed circles in 

the considered cross-section (as displayed in Fig. 3) and given as follows:

where w1 =
2

3
, w2 =

1

3
, m1 = 12 μm, m2 = 24 μm, �1 = 3 μm and �2 = 6 μm.

By keeping the porosity constant, the number of capillaries forming each bundle is cal-

culated as follows:

with � = 1 for the circular cross-section, � =
�

4
 for the square one and � =

�

3

√

3

 for the trian-

gular one. The term in the numerator of Eq. (18) represents, apart from the constant � , the 

total sum of the cross-sectional areas of all capillaries composing the bundle.

First of all, a numerically designed experiment is considered. Our Herschel–Bulkley 

luid with �0 = 10 Pa, n = 0.6 and k = 1 Pa.s0.6 is injected through the three bundles of 

capillaries, by imposing 50 predetermined pressure gradients. We choose 50 equidistant 

pore radius classes a
i
 in the range between a

min
= m

1
− 3�

1
 and a

max
= m

2
+ 3�

2
 . These 

extreme values allow the calculation of ∇P
min

= 2�
0
∕a

max
 and ∇P

max
= 2�

0
∕a

min
 , thus 

deining the range of pressure gradients to be applied through the diferent model porous 

samples. The intermediate pressure gradients are given by ∇P
i
= 2�

0
∕a

i
 . Since the low 

rate pressure gradient relationship is known for a Herschel–Bulkley luid low through a 

single capillary, it is now possible to compute the total low rate through each bundle for 

any imposed pressure gradient as follows:

(17)p(a) =

�

w1

�1

√

2�
exp

�

−

�

a − m1

�2

2�2
1

�

+
w2

�2

√

2�
exp

�

−

�

a − m2

�2

2�2
2

��

(18)Ncap = �
��R2

∫ amax

amin
p(a)�a2 da

(19)
Q(∇P) = Ncap

amax

∫
2�0

Bic∇P

q(∇P, a)p(a) da

Fig. 3  Schematic representa-
tion of capillaries with various 
cross-sections having the same 
radius, a, of inscribed circle. For 
an arbitrary low magnitude, the 
central plug and dead regions are 
represented in blue
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where q(∇P, a) is the low rate through a single capillary with and inscribed circle of radius 

a.

The lower bound of the integral in Eq.  (19) corresponds to the critical value of the 

inscribed circle below which there is no low in the capillary for the considered ∇P . The 

resulting low rate/pressure gradient curves, also called “characteristic curves,” are pre-

sented in Fig. 4a. This igure shows that for identical porosity, the cross-section shape of 

the capillaries has a signiicant impact on the obtained characteristic curve.

The diference from one characteristic curve to another is due to the form of the 

cross-section of the capillaries composing the bundles that have the same distribution of 

inscribed circles (Fig.  4). Therefore, at a given pressure gradient, the low rate through 

capillaries of triangular cross-sections is greater than the one through capillaries of square 

cross-sections, which is greater, in turn, than the one through capillaries of circular cross-

sections. Moreover, Fig. 4 shows that the diferences between the three curves increase as 

the pressure gradient increases. This is due to the fact that both plugged and dead zones (in 

Fig. 4  a Characteristic curves for the low of a Herschel–Bulkley luid 
( �0 = 10 Pa, n = 0.6 and k = 1 Pa.s0.6 ). b Zoomed image showing the trend of the three charac-
teristic curves at high values of the imposed pressure gradients ( ∇P

A
= 6.66 × (10)

7
Pa m

−1 and 
∇P

A
= 6.66 × (10)

8
Pa m

−1)
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blue in Fig. 4) become smaller as the value of the pressure gradient is increased. There-

fore, not only more capillaries will participate in the low, but also the regions of the 

capillary where the luid actually lows for each pore size become larger for non-circular 

cross-sections (Fig. 4). In other respects, instead of comparing cross-sections that have the 

same inscribed circle one may compare cross-sections of same area and having diferent 

forms. In that case calculated low rates at a given pressure gradient are ordered as cir-

cular > square > triangular provided that each of them is conducting. Such a hierarchy is 

linked to the extent of dead zones that are absent in the circular case and larger in case of 

triangular cross-sections.

In addition, the trend of these characteristic curves at ∇P >>
2�

0

a
min

 also contains valuable 

information. Within this regime, and for a bundle of capillaries of circular cross-sections, it 

is known that the low rate Q(∇P) is expected to scale as ∇P
1

n (Rodríguez de Castro et al. 

2014). Figure  4(b) is a log–log plot illustrating the trend of the characteristic curves 

between ∇P
A
= 6.66 × 10

7
Pa/m and ∇P

B
= 6.66 × 10

8
Pa m

−1 , showing that Q(∇P) actu-

ally scales as ∇P
1

n for all the three bundles of capillaries. The slopes of the obtained straight 

lines are, respectively, 1.677 (equilateral triangular cross-sections), 1.678 (square cross-

sections) and 1.678 (circular cross-sections) and are very close to the expected value 
1

n

=
1

0.6
∼ 1.667.

Finally, when dealing with the measurements obtained during a real YSM experiment 

on an unknown porous sample, the bundle of capillaries model used for the inversion 

procedure is expected to impact the obtained PSD, as mentioned above. To illustrate this 

efect, the numerically generated Q(∇P) curve corresponding to the bundle of circular cap-

illaries (red curve in Fig. 4) is considered. Those data are processed using the inversion 

method presented by Rodríguez de Castro et al. (2016, 2018), successively with a bundle 

composed of capillaries with circular, square and triangular cross-sections. The key stages 

of PSD calculation algorithm used in YSM are summarized in the following lines. During 

a YSM test, a Herschel–Bulkley luid is injected through the investigated porous medium 

at N + 1 diferent low rates Qj (j = 1…N + 1), and the steady-state pressure gradient ∇Pj 

corresponding to each value of Qj is measured. Assuming a bundle of capillaries model 

with horizontal cylindrical pores, the pore-size class representing the radius of the newly 

incorporated pores contributing to the total low rate Qj under a given pressure gradient 

∇P
i
 is deined as:

The value of � in the preceding equation must be strictly greater than unity, because the 

contribution of the pores with r =
2�

0

∇P
i

 ( � = 1 ) is not noticeable at ∇P
i
 . Rodríguez de Castro 

et al. (2014, 2016, 2018) described the procedure used to determine the value of α. In the 

YSM inversion method, the number of pores n
i
 belonging to each pore radius class r

i
 is cal-

culated as being the maximum positive value respecting all the following conditions:

In the preceding equation, q
(

∇Ps, rg

)

 is the volumetric low rate of a Herschel–Bulkley 

luid through a cylindrical capillary of radius r
g
 under a pressure gradient ∇P

s
 (expression 

given by Skelland 1967 and Chhabra and Richardson 2008). The determination of n
i
 starts 

r
i
= �

2�
0

∇P
i

(i = 1…N)

Qs ≥

i
∑

g=1

ngq
(

∇Ps, rg

)

for s ≥ i + 1
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from n
1
 (the number of largest pores) and then continues with n

2
 , n

3
 , etc., until the number 

of smallest pores n
N

 is calculated.

It is important to keep in mind that for both square and triangular cross-sections, the 

inversion process is only made possible by using the empirical Eq.  (13) proposed in the 

current work for capillaries of non-circular section. The obtained PSDs are presented in 

Fig. 5. These PSDs correspond to the probability of each representative pore class in terms 

of its frequency, which is deined by p
�

ri

�

= ni∕
∑N

j=1
nj , where N is the total number of 

representative pore classes.

As can be observed, for all cross-sectional shapes, the global bimodal shape of the ini-

tial PSD is entirely reconstructed by the inversion procedure. Naturally, the inversion with 

the bundle of capillaries having a circular cross-section yields the initially imposed PSD 

and the model chosen to perform the inversion is seen to have a non-negligible impact on 

the obtained PSD. Indeed, it is observed that by using the modeled bundles of capillaries 

with square and triangular cross-sections, the PSD obtained with YSM presents pore sizes 

slightly smaller than the ones obtained by using the classical bundle of capillaries with cir-

cular cross-sections. This may be related to the fact that the low rate increases when going 

from the circular to square and inally to triangular cross-section for any given pressure 

gradient when considering capillaries with the same inscribed circle (Fig. 4), as mentioned 

above. Moreover, since the contribution of each representative pore class to low rate is 

taken as ni.q
(

∇Pi, ri

)

 in the YSM inversion method, smaller values of n
i
 are obtained for 

triangular and square cross-sections as compared to the traditional circular cross-section.

A criterion should be adopted for selecting the suitable pore shape to be used in the 

YSM inversion algorithm, based on the shape factor of the pores present in the analyzed 

porous sample. The shape factor of a single pore is deined as the ratio of cross-sectional 

area to the perimeter raised to the power of two (Øren and BakkE, 2002; López et al. 2003) 

and its value is 
1

4�
 for circular pores, 

1

16
 for square pores and is comprised between 0 and 

√

3

36
 

for triangular pores. The knowledge of the general form of the pore cross-section for a class 

of porous media can be a guide for the inversion process used in YSM. However, it should 

be noted that the distribution of shape factors in a porous sample is unknown unless some 

Fig. 5  Comparison of the PSD obtained by performing the YSM inversion based on bundles with capillar-
ies of circular, square and triangular cross-sections
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pore-network modeling is performed based on a digital image of the investigated material. 

In this regard, López et al. (2003) and López (2004) extracted the pore-network models of 

a Berea sandstone, a heterogeneous sandstone and a sand pack, showing that most pores 

were triangular. Therefore, on the basis of these results, triangular shape cross-sections can 

be assumed when applying YSM to these types of porous media.

6  Conclusions

In the present work, empirical low rate/pressure gradient relationships for the low of 

yield stress luids through rectilinear capillaries with an equilateral triangle or a square 

as the cross-sectional shape have been proposed. The development is based on the idea 

that the low rate of Herschel–Bulkley luids lowing through these types of rectilinear 

capillaries under an imposed pressure gradient can be written as the product of two 

independent terms. The irst one is the shape coeicient, based on the rigorous solution 

of the low of Newtonian luids through rectilinear capillaries. The second term, which 

contains the low features, is obtained by including a critical Bingham number in the 

usual analytical low rate/pressure gradient relationships of yield stress luids through 

cylindrical capillaries. Such Bingham number accounts for the characteristic threshold 

length l∗ marking the onset of the low. The current results also apply for the particular 

case of a Bingham luid (n = 1).

The reliability of the proposed formulas has been assessed by comparison with sim-

ulation data coming from the literature (Malvault et  al. 2017), as well as with the cur-

rent numerical simulations performed in the three geometries within a wide range of low 

rates. However, it must be noted that Reynolds numbers must be kept low enough to satisfy 

creeping low conditions, which is the main assumption for this study. This assumption is 

realistic in the case of typical yield stress luids such as polymer solutions or emulsions, 

which exhibit high values of shear viscosity leading to low values of Reynolds numbers in 

common applications.

Moreover, the interest of using these empirical low rate/pressure gradient relationships 

in the context of yield stress luid porosimetry (YSM) has been evinced. In this regard, 

the YSM inversion (Rodríguez de Castro 2014; Rodríguez de Castro et al. 2014) of a set 

of Q(∇P) data generated with a bundle of cylindrical capillaries following a bimodal PSD 

has been shown to be highly accurate when the circular cross-sections expression is used. 

Furthermore, the obtained PSD when assuming either square or triangular cross-sectional 

shapes in the inversion algorithm have proved to be consistent.

A criterion for the choice of the cross-sectional shape when performing the YSM inver-

sion still needs to be established. Indeed, studies in which porous samples are character-

ized by imaging techniques often reveal pores shapes with low circularity values (Gun-

dogar et al. 2016; Li et al. 2018; Lai et al. 2018). In those studies, real pores are commonly 

assimilated to rectilinear capillaries with circular, square, triangular (and even rectangular) 

cross-sections. Therefore, additional data coming from microscopic images of thin sec-

tions or from previous knowledge of the shape of the solid grains (especially for unconsoli-

dated porous media) can be used, when available, to guide the choice of the cross-section 

in YSM inversion. However, it can be anticipated from the present results that considering 

bundles of capillaries with square and equilateral triangle cross-section shapes will change 

the manner in which YSM experimental data are processed, afecting the obtained pore-

size distributions.
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Taking into account the non-circularity of the capillaries cross-sectional shape in the 

procedure of YSM inversion for the processing of experimental data is a irst perspective 

of this work. As another perspective, the representativeness of the model underlying the 

inversion may be further improved by incorporating the converging–diverging character 

of pores. In this respect, Malvault et al. (2017) showed that the abrupt change of the cross-

section size has a noticeable impact on the simulated low rate at a given pressure gradient 

for Bingham luids low, independently of the shape of the cross-section. This impact is a 

consequence of changes in both the location and the shape of the yield surface (Burgos and 

Alexandrou 1999; Jay et  al. 2002; Alexandrou et  al. 2001). Nevertheless, the derivation 

of relevant approximations of low rate/pressure gradient relationships in such geometries 

that are readily usable in YSM still remains an open research topic. Finally, the results of 

this work may also contribute to the study of the low of yield stress luids in pore-network 

models.
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