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Abstract: The effects of low doses of toxicants are often subtle and information extracted from
metabolomic data alone may not always be sufficient. As end products of enzymatic reactions,
metabolites represent the final phenotypic expression of an organism and can also reflect gene expres-
sion changes caused by this exposure. Therefore, the integration of metabolomic and transcriptomic
data could improve the extracted biological knowledge on these toxicants induced disruptions. In
the present study, we applied statistical integration tools to metabolomic and transcriptomic data
obtained from jejunal explants of pigs exposed to the food contaminant, deoxynivalenol (DON).
Canonical correlation analysis (CCA) and self-organizing map (SOM) were compared for the identifi-
cation of correlated transcriptomic and metabolomic features, and O2-PLS was used to model the
relationship between exposure and selected features. The integration of both ‘omics data increased
the number of discriminant metabolites discovered (39) by about 10 times compared to the analysis of
the metabolomic dataset alone (3). Besides the disturbance of energy metabolism previously reported,
assessing correlations between both functional levels revealed several other types of damage linked
to the intestinal exposure to DON, including the alteration of protein synthesis, oxidative stress,
and inflammasome activation. This confirms the added value of integration to enrich the biological
knowledge extracted from metabolomics.

Keywords: mycotoxin exposure 1; transcriptomics 2; metabolomics 3; statistical integration 4

1. Introduction

Mycotoxins are toxic fungal secondary metabolites frequently found as contaminants
of food and feed. Among them, deoxynivalenol (DON) is very a prevalent mycotoxin in
cereals and cereal products [1,2]. It is one of the most frequently occurring contaminants in
human and animal diets. The intestine constitutes the first biological barrier to ingested
toxics, and is therefore the first target of DON [3]. Several studies have demonstrated the
adverse effects of DON on the intestine, such as impaired immune function, the inhibition
of intestinal nutrient absorption, and altered intestinal cell and barrier functions [3–5]. Due
to their cereal-rich diet, pigs are particularly exposed to DON. In addition, they can be
considered good models for extrapolating to humans, with a digestive physiology very
similar to that of humans [3]. Pigs therefore constitute a well-suited model to assess the
effects of DON on intestinal health.

Since the metabolome responds to stress long before standard biomarkers do, metabolic
fingerprinting was previously used to address the subacute exposure to DON at a con-
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centration that is likely to occur in food or feed [6,7]. The effects of low doses of DON,
like those of many other toxicants, are often subtle, and confounding variability (due to
experimentation, analytics, or physiology) can hamper variations caused by the toxico-
logical exposure. It is therefore difficult to adjust models discriminating control from
exposed individuals using the metabolomic data matrix alone [8]. Consequently, only a
few metabolites were found to be discriminant in the above-mentioned study, and the
extracted biological knowledge was quite limited.

Taking advantage of recent advances in high-throughput analytical techniques, many
studies integrate the use of different ‘omics platforms on the same samples, which makes it
possible to have a set of data at the genome scale, while being able to measure biomolecules
at the different functional levels of the studied organisms [9,10]. This ‘omics data fusion
allows us to handle a biological system as a whole to gain insight into its complex func-
tioning through the identification of more informative models [11]. The main statistical
methods used to integrate several ‘omics datasets are the penalized canonical correlation
analysis (CCA) [12,13] and self-organizing map (SOM) [14,15], used to compute correla-
tions between blocks, and the multi-block generalizations of partial least squares (PLS) to
fit a model between a biological factor and ‘omics profiles [16–23].

This study aimed to assess whether the NMR-based metabolomic modeling of DON
exposure can be enriched by integrating complementary information contained in tran-
scriptomic data, based on a combination of sparse CCA and SOM analysis, to select within-
and between-blocks-correlated features, and the O2-PLS to model the selected features.
Furthermore, we aimed at assessing the correlations between these two functional levels to
identify genes and metabolites as markers of exposure to the mycotoxin. To this end, we
generated transcriptomic and metabolomic datasets from pig intestinal explants exposed
to a similar and low dose of DON.

2. Results

In the present study, metabolomic and transcriptomic data were generated from
16 jejunal explants treated (n = 8) or not (n = 8) with 10 µM DON for 4 h to assess the effect
of this toxin at the intestinal level.

2.1. Individual PLS-DA Modeling of ‘Omics Data
2.1.1. Metabolomic Effect of DON on Intestinal Explants

We first analyzed effect of DON on the metabolome. Noisy NMR features were
removed prior to analysis because the noise-related variability hampered us from seeing
the biological variability and prevented us from fitting the models (NMR data used in this
study are presented in file S1).

A valid and robust PLS-DA model (A = 2 latent components, percentage of explained
variance: R2 = 95%; predictive capacity: Q2 = 0.91; permutation test: p = 0.005) was fitted
on the Pareto-scaled metabolomic data. Figure 1 presents the projection of individuals
onto the first latent plane. This score plot showed a clear separation between control
and exposed individuals. Sixteen NMR features had a VIP (variable importance in the
projection) value > 1.0 and were statistically different at the 5% threshold (false discovery
rate-corrected p-value from the Wilcoxon test). These corresponded to three metabolites:
alanine, lactic acid, and phosphocholine (see Figure 2).
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Figure 1. Two-dimensional PLS-DA (R2 = 95% and Q2 = 0.91) score plot of the integrated 1H NMR 
spectra of jejunum explant extracts (control, n = 8, light blue dot; DON-exposed, n = 8, dark blue 
dot). Each dot corresponds to an individual. 

 
Figure 2. Comparison of metabolites found to be discriminant by PLS-DA (upper line), Robust sparse CCA+O2-PLS-DA 
(middle line), or SOM+O2-PLS-DA (lower line). 

2.1.2. Transcriptomic Effect of DON on Intestinal Explant 
We next analyzed the transcriptomic response of the intestinal explants treated or not 

with 10 µM of DON for 4 h. Due to computational limitations, the number of tran-
scriptomic features had to be limited and was set to 15,000, based on the highest standard 
deviation. 

The analysis of Pareto-scaled transcriptomic data also generated a valid and robust 
PLS-DA model (A = 2 latent components, R2 = 97.3% and Q2 = 0.81, permutation test: p = 
0.005). The score plot of the PLS-DA model showed a clear separation between the control 
and exposed individuals (Figure 3). A total of 1468 probes had a VIP value > 1.0 and were 
significantly different at the 5% threshold (false discovery rate-corrected p-value from the 
Wilcoxon test), corresponding to 1094 upregulated and 374 downregulated genes. The 

Figure 1. Two-dimensional PLS-DA (R2 = 95% and Q2 = 0.91) score plot of the integrated 1H NMR
spectra of jejunum explant extracts (control, n = 8, light blue dot; DON-exposed, n = 8, dark blue dot).
Each dot corresponds to an individual.
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Figure 2. Comparison of metabolites found to be discriminant by PLS-DA (upper line), Robust sparse CCA+O2-PLS-DA
(middle line), or SOM+O2-PLS-DA (lower line).

2.1.2. Transcriptomic Effect of DON on Intestinal Explant

We next analyzed the transcriptomic response of the intestinal explants treated or not
with 10 µM of DON for 4 h. Due to computational limitations, the number of transcriptomic
features had to be limited and was set to 15,000, based on the highest standard deviation.

The analysis of Pareto-scaled transcriptomic data also generated a valid and robust
PLS-DA model (A = 2 latent components, R2 = 97.3% and Q2 = 0.81, permutation test:
p = 0.005). The score plot of the PLS-DA model showed a clear separation between the
control and exposed individuals (Figure 3). A total of 1468 probes had a VIP value > 1.0
and were significantly different at the 5% threshold (false discovery rate-corrected p-value
from the Wilcoxon test), corresponding to 1094 upregulated and 374 downregulated genes.
The cytokine genes CSF2, TNF, IL-17A, and IL-22, the genes encoding the interleukins
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1 alpha and beta (IL-1α and IL-1β), chemokine ligand 20 (CCL20), and the Nuclear Factor
Kappa B Subunit 1 (NF-κB1) were the most upregulated genes, as well as the prostaglandin-
endoperoxide synthase (PTGS).
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Figure 3. Two-dimensional PLS-DA (R2 = 95% and Q2 = 0.91) score plot of transcriptomic data
generated from jejunum explant extracts (control, n = 8, light blue dot; DON-exposed, n = 8, dark
blue dot). Each dot corresponds to an individual.

2.2. Fusion of Transcriptomic and Metabolomic Data

In order to extract more information from metabolomics, a statistical fusion of both
‘omics datasets was performed. Robust sparse CCA (rsCCA) and dissimilarity-based
SOM were first applied to select correlated features and O2-PLS was then performed
using each set of selected features to model the relationship between DON exposure and
‘omics profiles.

2.2.1. Combination of Robust Sparse CCA and O2-PLS

Twelve transcriptomic and 12 metabolomic features were selected by rsCCA. An O2-
PLS model was then fitted using this set of features. The constructed model explained 60.4%
of the total variability and showed a very low error of prediction (0.01). Figure 4 presents
the projection of individuals along the first latent variable of the fitted O2-PLS-DA model
for the transcriptomic (a) and metabolomic (b) datasets, respectively. Both figures showed
that the observations were not well discriminated according to the exposure to DON.
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All the correlated transcriptomic (12) and metabolomic (12) features were found to be
discriminant in the O2-PLS model. Metabolomic features corresponded to six identified
metabolites (see Figure 2); the aspartate, methanol, and phosphocholine concentrations
were lower in the control group, whereas glucose, glutamine, and tyrosine concentrations
were higher in the control group.

2.2.2. Combination of Self Organizing Map and O2-PLS

A total of 11,069 transcriptomics and 154 metabolomics features were selected by
the dissimilarity kernel-based SOM. The adjusted O2-PLS model based on these selected
features explained half of the total variability and showed a very low error of prediction
(0.01). Figure 5 presents the projection of individuals along the first latent variable of the
fitted O2-PLS model for the transcriptomic (a) and metabolomic (b) datasets, respectively.
In the case of the model based on features selected by dissimilarity kernel-based SOM, the
observations were well discriminated according to the exposure.

The analysis revealed that 1443 transcriptomic features and 39 metabolites (among
which 21 have been identified) were discriminant (see Figure 2, last line for metabolites).
The concentrations of AMP, creatine, fumarate, glucose, glutamate, glutamine, glutathione,
histidine, inosine, isoleucine, lactate, lysine, nicotinuric acid, phenylalanine, tryptophan,
tyrosine, uracil, and uridine were higher in the control group, whereas the concentrations
of asparagine, serine, and valine were lower in the control group. The use of the MetEx-
plore metabolic network analysis tool (right-tailed Fisher test with Bonferroni’s multiple
test correction) showed that the metabolic pathways significantly enriched in this set of
discriminant metabolites are primarily linked to the aminoacyl-tRNA biosynthesis and the
metabolism of amino acids and 2-oxocarboxylic acids (Table 1).
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Table 1. Metabolic pathways significantly enriched in DON-exposed intestinal explants.

Pathway Name Number of Mapped
Metabolites Coverage (%) BH-Corrected

p-Value

Aminoacyl-tRNA biosynthesis 10 21.3 1.73 × 10−9

Biosynthesis of amino acids 8 12.7 9.48 × 10−6

Alanine, aspartate and glutamate
metabolism 5 15.2 5.79 × 10−4

Arginine biosynthesis 3 21.4 5.18 × 10−3

Phenylalanine, tyrosine and
tryptophan biosynthesis 2 50.0 6.48 × 10−3

D-Glutamine and D-glutamate
metabolism 2 40.0 9.18 × 10−3

Nitrogen metabolism 2 33.3 0.01
2-Oxocarboxylic acid metabolism 3 14.3 0.01
Valine, leucine and isoleucine
biosynthesis 2 25.0 0.018

Figure 6 presents a heatmap of the correlations between the metabolomic and tran-
scriptomic features, as selected by the SOM-based method and filtered by O2-PLS-DA.
One particular interesting highlight of this figure includes the fact that the level of the
discriminant metabolite glutathione correlates positively with the gene expression of SOD2
and negatively with the gene expression of TXNIP.

3. Discussion

Several studies have demonstrated the adverse effects of DON, which can be observed
at different ‘omics levels [24–26]. To the best of our knowledge, no study has combined two
or more ‘omics datasets to give a more global view of disruptions due to DON exposure.

3.1. Individual PLS-DA Modeling of ‘Omics Data

Firstly, each ‘omics dataset was individually analyzed using PLS-DA. PLS-DA is well
adapted for ‘omics data (high dimension and collinearities) because linear combinations of
spectral features are constructed and few of these are used in the model.
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Three metabolites (alanine, lactic acid, and phosphocholine) participated in the dis-
crimination of DON-exposed explants from control explants. This low number of metabo-
lites indicated that, despite a clear separation of observations, little information can be
extracted from the metabolomic data. This could result from variables containing con-
founding variability (experimental or instrumental variability for example), which masks
biological variability [8].
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To date, very few discriminant metabolites including those detected here have been
reported in NMR-based metabolomics investigations of the alterations induced by DON
in pigs [6,27,28]. Phosphocholine is a downstream metabolite in the catabolism of phos-
phatidylcholine. Cellular lactate predominantly stems from alanine and glucose through
their conversion into pyruvate, and lactate homeostasis is primarily related to glucose
metabolism [29]. Likewise, a crosstalk between glycolysis and the catabolism of phospho-
choline has been shown for energy supply to the cell under specific situations [30]. These
findings suggest that the DON exposure shifts the main energy source in the intestinal
tissue from amino acids in physiological conditions [31] to glucose, and confirm the previ-
ously reported disturbance of energy metabolism as a prominent metabolic effect of the
mycotoxin in pigs [28].

When looking at discriminant features of transcriptomic data, the top upregulated
genes in the intestinal explants were mainly related to inflammation and immunity (cy-
tokine genes CSF2, TNF, IL-17A, and IL-22; genes encoding the interleukins 1 alpha and
beta chemokine ligand 20; and the Nuclear Factor Kappa B Subunit 1 were the most up-
regulated genes). Other inflammatory genes in the top upregulated category included the
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prostaglandin-endoperoxide synthase, also known as cyclooxygenase; the NR3C1 gene
encoding a nuclear glucocorticoid receptor involved in inflammatory responses and cellular
proliferation; and CXCL2 and CXCR4, which encode the C-X-C motif chemokine Ligand 2
and Receptor 4 expressed at sites of inflammation and involved in immunoregulatory and
inflammatory processes. These observations are in line with previous publications pointing
at inflammation as the main endpoint for the molecular toxicity of type B trichothecenes in
the intestine [24,26,32,33].

3.2. Fusion of Transcriptomic and Metabolomic Data

Methodological issues encountered with the analysis of one single ‘omics dataset are
worsened by ‘omics fusion. Some of these problems are related to the high dimensionality
of matrices and biological noise. This latter can hinder the effects of the biological factor
and may prevent evidencing the effects of the factor of interest. It is therefore essential
to consider these problems when choosing the statistical method to apply for ‘omics
integration. CCA is designed to select correlated features. However, CCA fails due to ill-, or
even un-, conditioned matrices in high dimensions. A regularized method may be applied
to solve this issue. Another issue is with selecting relevant and meaningful correlated
features from the many thousands of features present in the original datasets, among which
many may be noisy. In this study, we firstly selected correlated features using robust
sparse CCA or SOM methods prior to multi-block modeling. This selection step enabled
us to decrease the number of features included in the O2-PLS-DA model. By clustering
objects into a bidimensional grid, the SOM algorithm takes into account possible nonlinear
relations between objects, which is a great advantage over other clustering algorithms.
The SOM algorithm also enables us to preserve the topology of the original data, such as
the correlation structure of features in this study [34]. Moreover, the orthogonal step of
O2-PLS-DA allowed us to remove variation in noisy features, if selected by sparse CCA or
SOM methods.

3.2.1. Combination of Robust Sparse CCA and O2-PLS

Twelve transcriptomic and 12 metabolomic features were selected by rsCCA. This low
number of selected features agreed with the simulation results (simulation study is detailed
in file S2). rsCCA demonstrated very high values of specificity (Figure S1), meaning that
only correlated features were selected by this method. This low number of selected features
could explain the fact that DON-exposed explants were not well discriminated from control
explants in the O2-PLS-DA modeling in the sense that not only correlated features were
markers of exposure in this study. Although the number of identified metabolites was
greater than in the individual analysis of metabolomic block, this number was still very
low and not sufficient to gain insight into dysregulations due to mycotoxin exposure at the
organism level.

3.2.2. Combination of Kernel Dissimilarity-Based SOM and O2-PLS

The heterogeneity of measurements is another issue encountered when integrating
‘omics data. To deal with this issue, we applied the SOM method to two kernel matrices—
namely, dissimilarity and Gaussian kernels. A kernel matrix provides pairwise information
between objects. Kernels are a widely used and flexible method to deal with com-plex data
of various types [35]

We only applied a dissimilarity kernel-based SOM to the biological data because this
method showed higher values for sensitivity and specificity than Gaussian kernel-based or
raw data-based SOM (Figures S1 and S2).

A total of 11,069 transcriptomic and 154 metabolomic features were selected by the
dissimilarity kernel-based SOM. The kernel based-SOM method selected many more
features than rsCCA. This result was expected from the results of the simulation study (see
Figures S2 and S3): SOM methods showed a high number of selected features, very high
values of sensitivity, and very low values of specificity, meaning that these methods were
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able to identify correlated features but did not select only the correlated features. By not
selecting only the correlated features, the SOM method enabled us to catch some features
that seemed to be markers of biological effect. This could explain the best discrimination
obtained using the SOM-based model. On the other hand, the “orthogonal step” of the O2-
PLS modeling enables us to remove noisy variability, reducing the influence of correlated
features with a low biological relevance in the modeling step.

Metabolites found to be discriminant in the O2-PLS-DA modeling corroborate previ-
ous in vivo findings in the plasma and liver of piglets exposed to DON in our lab [6]. The
synthesis of aminoacyl-tRNA and the metabolism of amino acids and 2-oxocarboxylic acids
contribute to the global process of protein synthesis, which inhibition is a well-characterized
molecular effect of trichothecene mycotoxins including DON on eukaryotic cells [36].

The fusion of transcriptomic and metabolomic data showed that the discriminant
metabolite glutathione correlates positively with the gene expression of SOD2 and nega-
tively with the gene expression of TXNIP. Gluthatione is an endogenous tripeptide that
shields cellular macromolecules from oxidative stress by directly scavenging endogenous
and exogenous oxidants or by recycling the antioxidant vitamins C and E [37]. The pro-
tein encoded by SOD2 is one of two isozymes responsible for destroying free superoxide
radicals in the body. TXNIP encodes the thioredoxin-binding protein that inhibits the
antioxidative function of thioredoxin. Oxidative stress holds an important place in the
mechanisms of the toxicity described for DON in eukaryotic cells, with two reported effects
for this mycotoxin being the generation of reactive oxygen species and the alteration of
antioxidant status [33]. TXNIP also participates in the activation of the NLRP3 inflamma-
some, bridging oxidative stress to inflammation [38]. The connection between oxidative
stress and inflammation is delineated in Figure 6 by the strong correlation between the
expression of genes encoding pro-inflammatory and Th17 cytokines (IL-1α, IL-1β, IL17A,
IL22, IL23A) and a chemokine (IL8), and the levels of amino acid metabolites asparagine
and valine on the one hand and these metabolites and TXNIP expression on the other
hand. The sensing of some amino acids including asparagine and valine has been shown
to control intestinal inflammation via the integrated stress response mechanism [39,40]. We
and others previously reported that DON triggers the transcription of IL1-b in the intestinal
tissue [24,41]. This cytokine is produced in a proprotein form that needs to be processed to
its active form by caspase 1. The activation of the NRLFP3 inflammasome by DON and the
subsequent processing and secretion of cytokines belonging to the IL-1 family was later
demonstrated [32]. The strong positive correlation between the expression of TXNIP and
the level of asparagine—and valine, to a lesser extent—is consistent with the involvement
of oxidative stress in the DON induced-activation of the NRLFP3 inflammasome.

4. Materials and Methods
4.1. Experimentation
4.1.1. Chemicals

William’s Medium E, glucose and DON, were purchased from Sigma (Saint Quentin
Fallavier, France). Penicillin/streptomycin, gentamycin, FBS, and amino acids (Ala/Glu)
came from Eurobio (Courtaboeuf, France).

4.1.2. Animals

All the experimental procedures were conducted under the approval of the French
Ministry of Higher Education and Research (decision n◦ #6303_2016080314392462) and
the Ethics committee of Pharmacology-Toxicology, Toulouse-Midi-Pyrénées in animal
experimentation Toxcométhique (decision n◦ TOXCOM/0163/PP, 2 February 2017). Three
authors (I.A.K., I.P.O., and P.P.) have an official agreement with the French Veterinary
Services authorizing animal experimentation.
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4.1.3. Treatment of Jejunum Explants

Eight 5-week-old piglets were used to generate jejunal explants. The piglets were
weaned at 4 weeks and fed ad libitum prior to the experiment. Explants were prepared as
already described [33]. Briefly, 5 cm middle jejunum segments were collected and flushed
with William’s Medium containing 4.5 g/L of glucose, 1% of penicillin/streptomycin, 0.5%
of gentamycin, 10% FBS, and 30 mM of amino acids (Ala/Glu). Each segment was opened
longitudinally, and multiple pieces of 6 mm diameter were obtained using biopsy punches
(Centravet, Lapalisse, France).

DON was dissolved in dimethylsulfoxide (DMSO) at 60 mM, before dilution in com-
plete culture media. Control samples were treated with equivalent concentrations of DMSO
previously tested to be nontoxic for intestinal explants (data not shown). Each of two ex-
plant samples from each of eight piglets were deposited villi upward on biopsy sponges
per well in 6-well plates (Cellstar, Greiner Bio-One, Frickenhausen, Germany) containing
control or DON-contaminated (10 µM) medium. The explants were cultured at 39 ◦C
under a CO2-controlled atmosphere with orbital shaking for 4 h. After treatment, the
explants were frozen in liquid nitrogen and stored at −80 ◦C before transcriptional and
metabolomics analysis. N = 8 control samples and n = 8 DON-contaminated were used for
both transcriptomic and metabolomic analysis.

4.2. ‘Omics Analysis
4.2.1. Transcriptomics

For gene expression analysis, total RNA was extracted using lysing matrix D tubes (MP
Biomedicals, Illkirch, France) containing 1 mL of Extract-All reagent (Eurobio), following
the manufacturer’s instructions. The RNA concentration and purity were determined
using a NanoDrop spectrophotometer (Labtech International, Paris, France). RNA quality
was assessed using an Agilent Bioanalyzer (Agilent, Les Ulis, France), and the mean (±SD)
RNA integrity number (RIN) was 7.23 ± 0.55.

Gene expression profiles were analyzed at the GeT-TRiX facility (GénoToul, Génopole
Toulouse Midi-Pyrénées) using Agilent Sureprint G3 Porcinet 60K_DEC2011 microarrays
(8 × 60 K, design 037880) following the manufacturer’s instructions. For each sample,
Cyanine-3 (Cy3)-labeled cRNA was prepared as described in Alassane-Kpembi et al. [33].
Microarray data and experimental details are available in NCBI’s Gene Expression Om-
nibus [42] and are accessible through GEO Series accession number GSE165968. All the
data analyses were performed using R (R Core Team, 2018 [43]) and the Bioconductor
package [44], as described in GEO accession GSE165968. Raw data (median signal inten-
sity) were filtered, log2-transformed, and normalized using the quantile method [45]. The
transcriptomic matrix includes n = 16 observations and p = 41,436 features.

4.2.2. 1H-NMR-Based Metabolomics

Tissue samples (100 mg of tissue) were extracted in methanol/dichloromethane/water
(2:2:1.4, v/v/v) as described by Beckonert et al. [46].

All the 1H NMR spectra were generated using a Bruker Avance III HD spectrometer
(Bruker Biospin, Rheinstetten, Germany) operating at 600.13 MHz for proton resonance
frequency using an inverse detection 5 mm 1H-13C-15N-31P cryoprobe. 1H NMR spectra
of aqueous explant extracts were acquired and processed as previously described [47]
using 512 transients, a spectral width of 20 ppm, and a relaxation delay of 2 s.

NMR spectra were phase- and baseline-corrected and then calibrated (TSP, 0.0 ppm)
using the Topspin software (version 3.5, Bruker). Then, the NMR data were reduced using
the AMIX software (version 3.9, Bruker) to integrate 0.01 ppm-wide regions corresponding
to the δ 10.0–0.5 ppm. The 5.1–4.5 ppm region, which includes the water resonance, was
excluded in the NMR spectra of aqueous extracts. A total of q = 753 NMR buckets were
included in the data matrix. Normalization to the total spectral area was applied to each
integration region to account for differences in the sample amount. The metabolomic
matrix includes n = 16 observations and p = 753 features. To confirm the chemical struc-
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tures of the metabolites of interest, 2D 1H-1H COSY (correlation spectroscopy) and 2D
1H-13C HSQC (heteronuclear single quantum coherence spectroscopy) NMR spectra were
also generated for selected samples. Spectra assignment was based on matching the
1D and 2D data to reference spectra in a homemade reference database, as well as with
another database (https://www.hmdb.ca/, release 3.0, accessed on 11 May 2021) and re-
ports in the literature.

Genome-scale metabolic network (GSMN) analysis was performed on the dataset of
discriminant metabolites, as previously described [48]. To this end, the Sus scrofa GSMN
was imported in MetExplore web server from KEGG database (network 4105, downloaded
from KEGG database 24 August 2020) [49,50]. The network contains 1807 meta-bolic
reactions and 1520 metabolites.

4.3. Statistical Analysis

All the statistical analyses were conducted under R [43] with in-house scripts devel-
oped for this study.

4.3.1. Sparse CCA Analyses

Canonical correlation analysis [51] is a method that studies the correlation relation-
ships between two sets (or blocks) of features measured on the same individuals. Briefly,
CCA maximizes the correlation between two linear combinations from the two blocks
of features. The coefficients estimated for the definition of the linear combinations are
used to explore the relationships between features. In this study, we used Robust Sparse
CCA [13] for its ability to select relevant correlated features also in presence of outlier
observations. Features with non-null loading values in the first pair of linear combinations
(transcriptomic and metabolomic datasets) were selected. We adapted scripts from Wilms
and Croux [13] to perform Robust Sparse CCA.

4.3.2. SOM Analyses

A self-organizing map [52] is an artificial neural network learned using an unsuper-
vised algorithm aiming at projecting and classifying objects (individuals or features) into a
lower dimensional space (e.g., two-dimensional). Prototype vectors are associated with
each unit of the map: these are weight vectors, used to classify objects in map units. In this
study, prototypes were randomly initialized. Two steps were iteratively performed in the
stochastic version of SOM algorithm. In the first step, a randomly drawn single feature was
assigned to the unit whose prototype was closest to it (according to the chosen distance).
The second step was an update step: prototypes of the closest unit and its neighbors were
moved towards the drawn object.

In this study, SOM was used to classify features. Features clustered in the same unit
were considered to be correlated. A raw matrix or kernel matrix, based on a dissimilarity
matrix or Gaussian kernel, were used to learn SOM. Examples of commonly used distance
metrics include Euclidean distance and correlation for relative abundance data [35].

The mixKernel [35] (https://CRAN.R-project.org/package=mixKernel, v0.3, accessed
on 11 May 2021) package was used to compute the kernel matrix from the original data. The
SOMbrero [53] (https://CRAN.R-project.org/package=SOMbrero, v1.2-4, accessed on 11
May 2021) package was used to perform SOM analyses on raw matrixes or kernel matrixes.

4.3.3. PLS-DA Analyses

Partial least squares [54] (PLS) regression seeks a mathematical relationship between
a quantitative biological factor of interest—drug doses, for example—and several features,
such as spectral data. PLS-DA is an extension of PLS regression for categorical factors,
DON exposure in this study.

PLS-DA analyses were conducted using the ropls package [55] (v1.16.0).
O2-PLS [54] is a generalization of the OPLS [56] regression method and can be used

for combining two ‘omics datasets. It models both predictive and systematic variation.

https://www.hmdb.ca/
https://CRAN.R-project.org/package=mixKernel
https://CRAN.R-project.org/package=SOMbrero
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The variation present in each of the two matrices is split up into three parts. The first part
corresponds to the joint—i.e., predictive (useful for the prediction of the studied biological
factor)—variation. For example, in the transcriptomic data matrix, the joint variation
describes expression profiles that are useful for predicting metabolite profiles. The second
part is the orthogonal part (confounding variability—e.g., physiological, experimental, or
technical variations). It corresponds to the unique systematic variation in the transcriptomic
data matrix, for example. This part is not useful in predicting the metabolomic data. The
final part corresponds to unexplained variance (noise).

The OmicsPLS package [57] (https://CRAN.R-project.org/package=OmicsPLS, v1.1.0,
accessed on 11 May 2021) was used to build O2-PLS models.

5. Conclusions

This study had two objectives. The statistical methods sparse CCA and SOM were
compared regarding their ability to select correlated features and, thus, to be used as in
noise pre-filtering before O2-PLS modeling. Biologically, the information extracted from
the metabolomic data could be prevented from technical variability and noise. We aimed at
combining metabolomic data with transcriptomic data to enhance the information extracted
from metabolomics and gain insight into effects of DON exposure on the intestine.

To apply sparse CCA, sparsity parameters have to be tuned. Moreover, due to compu-
tational limitations, not all the transcriptomic features could be included, and thus features
have to be selected before applying CCA. We chose to include features displaying the
highest standard deviation, even if this choice could discard discriminant features. Even
with a limited number of features, this method is very time-consuming. Although some
parameters (map dimensions, distance measures) also have to be set before applying SOM,
this method is less time-consuming.

In this study, we showed that the integration of metabolomic data with transcriptomic
data enables us to extract more information from metabolomics by combining feature
selection based on SOM and an orthogonal step in PLS-DA modeling.

Indeed, we increased the number of discriminant metabolites from seven, as detected
by the individual metabolomic block analysis, to 39, as selected by the dissimilarity kernel-
based SOM. Both steps enabled us to remove noisy features. At the end of the process, it
was possible to gain a better insight into metabolic pathways disrupted by exposure to
DON. On top of the clues of the disturbance of energy metabolism previously reported
in metabolomics studies, the integration of the metabolomics data and transcriptomics
features simultaneously generated on jejunal explants remarkably brought out several
other types of damage caused by the intestinal exposure to DON, including the alteration
of protein synthesis, oxidative stress, and inflammasome trigger. In future work, we think
that applying this integration to a panel of biological samples (e.g., plasma, lung, brain)
could help us extend the extracted information to the whole-organism scale.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11060407/s1, Supplementary file S1: Excel file including preprocessed NMR data.
Supplementary file S2: Details of simulation study run to compare rsCCA and SOM, combined with
O2-PLS, on artificial data. Figure S1: Average specificity of SOM (dissimilarity kernel-based and raw)
and Robust Sparse CCA methods calculated for transcriptomic (middle blue bars) and metabolomic
(light blue bars) blocks. In total, 100 Monte Carlo simulations. Figure S2: Average sensitivity of SOM
(dissimilarity kernel-based and raw) and Robust Sparse CCA methods calculated for transcriptomic
(middle blue bars) and metabolomic (light blue bars) blocks. In total, 100 Monte Carlo simulations.
Figure S3: Average percentage of selected features by SOM (dissimilarity kernel-based and raw) and
Robust Sparse CCA methods for transcriptomic (middle blue bars) and metabolomic (light blue bars)
blocks. In total, 100 Monte Carlo simulations.
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