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Abstract

Human induced environmental change may require rapid adaptation of plant popula-
tions and crops, but the genomic basis of environmental adaptation remain poorly
understood. We analysed polymorphic loci from the perennial crop Medicago sativa
(alfalfa or lucerne) and the annual legume model species M. truncatula to search for a
common set of candidate genes that might contribute to adaptation to abiotic stress in
both annual and perennial Medicago species. We identified a set of candidate genes of
adaptation associated with environmental gradients along the distribution of the two
Medicago species. Candidate genes for each species were detected in homologous
genomic linkage blocks using genome-environment (GEA) and genome-phenotype as-
sociation analyses. Hundreds of GEA candidate genes were species-specific, of these,
13.4% (M. sativa) and 24% (M. truncatula) were also significantly associated with phe-
notypic traits. A set of 168 GEA candidates were shared by both species, which was
25.4% more than expected by chance. When combined, they explained a high pro-
portion of variance for certain phenotypic traits associated with adaptation. Genes
with highly conserved functions dominated among the shared candidates and were
enriched in gene ontology terms that have shown to play a central role in drought
avoidance and tolerance mechanisms by means of cellular shape modifications and
other functions associated with cell homeostasis. Our results point to the existence
of a molecular basis of adaptation to abiotic stress in Medicago determined by highly
conserved genes and gene functions. We discuss these results in light of the recently
proposed omnigenic model of complex traits.
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1 | INTRODUCTION

The predicted increasing evapotranspiration and decreasing soil
moisture levels in the context of climate change may result in un-
suitable areas for cropping and reduced yields across temperate
regions of the world (Boyer, 1982; Long & Ort, 2010; Tebaldi et al.,
2006). Most crops may need to adapt to environmental changes,
but their ability to do so depend on the genetic diversity at adap-
tive loci, which seems to be insufficient to cope with fast environ-
mental changes (Bansal et al., 2014; Hodgkin & Bordoni, 2012;
Khan et al., 2019).

Alfalfa is one of the world's most important fodder crops and the
most efficient source of protein yield per hectare (Hanson, 1988), a
key feature for a planet with greatly diminished arable land, but with
increasing protein requirements for livestock and people. Alfalfa
extracts also have tremendous potential for producing value-added
goods such as biodegradable plastics, improved textiles and biofuels
(Frame et al., 1998; Li et al., 2013; Samac et al., 2006), and its peren-
nial root system also serves to reduce erosion (Small, 2011). Alfalfa
is also of great interest because of the nitrogen-fixing abilities of the
symbiotic bacteria housed in its roots nodules. Alfalfa crops often
fix as much as 200-300 kg of nitrogen per hectare, making it a key
component of sustainable agricultural systems (Peterson & Russelle,
1991). Demand for alfalfa is growing, but its yield and cultivation
area is hampered by water deficits due to the need for irrigation
in arid and semi-arid regions (Small, 2011; Song et al., 2019; Zhang
et al., 2018). Compared to other crop species, little is known about
the mechanisms by which genetic, physiological and molecular fac-
tors contribute to abiotic stress tolerance in alfalfa. Recent efforts
have been made to identify potential candidate genes (Humphries
et al., 2021; Shu et al., 2017; Zhang et al., 2015), but such candidate
genes require further validation before their use in marker-assisted
breeding, which is time consuming in perennial cultivars.

A way of indirectly validating candidate genes for abiotic stress
is through the cross-association among allele frequencies, environ-
mental variables and phenotypic trait variations in natural popu-
lations (Blanco-Pastor et al., 2021). Mining adaptive genes from
natural populations is becoming an increasingly popular practice in
the context of adaptation to abiotic stress (Brozynska et al., 2016;
Dempewolf et al., 2014; Khan et al., 2019; Redden et al., 2015). Wild
lineages of crop species have survived repeated and extreme envi-
ronmental changes in the past (e.g., Blanco-Pastor et al., 2019), yet
their adaptive variation remain largely unknown and untapped for
crop improvement (Dempewolf et al., 2014; Ford-Lloyd et al., 2011),
but see Fustier et al. (2017) or Blanco-Pastor et al. (2021).

The identification of climate-adaptive loci is inherently diffi-
cult because the architecture of adaptation to climate is polygenic
(Blanco-Pastor et al., 2021; Exposito-Alonso et al., 2018; Josephs
et al., 2019). Additionally, genomes of crop varieties are typically
large and polyploid, often highly heterozygous, and usually com-
posed of large amounts of repetitive elements and multicopy genes
(Brozynska et al., 2016; Flagel & Wendel, 2009; Flavell et al., 1974).
Nevertheless, advancements in studies of model species with diploid

simpler genomes, such as Arabidopsis thaliana and Medicago trun-
catula, have shown that adaptation to environmental constraints
is usually driven by small-effect alleles that exhibit climate spe-
cialization across the species ranges (Exposito-Alonso et al., 2019;
Fournier-Level et al., 2011; Yoder et al., 2014). Generally, cultivated
species may show different patterns of adaptation compared with
well-known model species, which are often autogamous, short-lived
and weedy (Savolainen et al., 2013). However, regardless of their ap-
parent direct agronomic or horticultural value, it has been claimed
that model species have the potential to provide building blocks for
genetically enhancing adaptation of closely related modern cultivars
(Bordat et al., 2011; Humphries et al., 2021; Paterson et al., 2010).
Identifying adaptive functions in genes shared between model spe-
cies and their crop relatives could provide useful information for
enhancing adaptation to abiotic stress in crops and particularly in
forage legumes (Annicchiarico et al., 2015; Aradjo et al., 2015; Benny
et al., 2019; Humpbhries et al., 2021; Joly-Lopez et al., 2017; Lenser &
TheiBen, 2013). Furthermore, studying adaptation genomics in a rep-
licate context also provides an opportunity to gain statistical power
over shared candidates (Balti et al., 2020; Elmer & Meyer, 2011).

In legumes, large effect genes have been identified in the model
species Medicago truncatula or Lotus japonicus (Krusell et al., 2002;
Lévy et al., 2004; Limpens et al., 2003; Stracke et al., 2004) that
are potentially useful for legume crops. The genetic map of M. trun-
catula is largely syntenous with that of alfalfa (Choi et al., 2004; Li
et al., 2014) and has been previously used to identify a gene for bi-
otic stress resistance (i.e., to anthracnose fungal disease caused by
Colletotricum spp.) and genes associated with freezing tolerance that
could be useful for alfalfa improvement (Shu et al., 2017; Yang et al.,
2007, 2008). Association mapping analyses in the model legume M.
truncatula also identified genes involved in adaptation to climate
and soil conditions, which were linked to flowering phenology and
growth rate (Burgarella et al., 2016; Guerrero et al., 2018; Yoder
et al., 2014). However, it remains unknown if such a set of genes use-
ful for adaptation to the environment in an annual, self-compatible
model plant such as M. truncatula, can be associated with abiotic
stress resistance in a perennial, outcrossing crop such as alfalfa.

It is known that any type of stress in plants can trigger the same
genetic responses independently of the origin of its cause (Baena-
Gonzélez et al., 2007; Exposito-Alonso et al., 2018). Abiotic stress
can lead to similar conserved downstream responses with genetic
parallelism in closely related and far-related species (Rellstab et al.,
2020; Yeaman et al., 2016). Key genes involved in such downstream
responses may be so conserved that they can have orthologues with
similar functions in species as far-related as plants, yeast and mam-
malians (Baena-Gonzalez & Sheen, 2008). However, as we move to-
wards shallower evolutionary timescales it is more likely that genes
associated with abiotic stress resistance in closely-related species
share similar molecular pathways (Lenser & TheiBen, 2013).

The recently proposed omnigenic model posits that adaptive
genes can be categorized into “core” versus “peripheral” association
with a given trait, as a way to distinguish between those with larger
direct and interpretable mechanistic effects versus smaller indirect
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and unknown effects (Boyle et al., 2017). Those core genes are pre-
sumably more likely to be the target of genetic parallelism in differ-
ent species (Rellstab et al., 2020), thus the comparative approach in
genome-wide association studies offers the opportunity to identify
core genes of adaptation and to understand generalized molecular
and phenotypic responses. Here, we used genomic, environmental
and phenotypic data together with comparative association analyses
in M. sativa and M. truncatula to: (i) find loci involved in adaptation
to environmental gradients in wild populations of these two species;
and (ii) investigate whether we could find genomic signatures of par-
allel adaptation to abiotic stress, as well as the gene ontologies asso-
ciated with such parallel adaptive response.

2 | MATERIALS AND METHODS

2.1 | Sampling and genotyping

2.1.1 | Medicago sativa data set

Medicago sativa is a long-day perennial plant species native to
Eurasia. It is basically an outcrossing species with little to no self-
pollination. The species occurs in a variety of generally open habitats
with moderately fertile soil (Small, 2011). Essentially, all Medicago
sativa diploid individuals are wild. Polyploidization seems common
(Muller et al., 2003; Small & Bauchan, 1984) and gene flow can occur
from diploids to tetraploids via unreduced gametes but less com-
monly from tetraploid back to diploid plants (Petit et al., 1999; Small,
2011). We obtained 696 wild diploid Medicago sativa individuals
from 150 natural populations (1-9 individuals per population), most
of them conserved by the USDA National Plant Germplasm System.
We selected accessions that listed “wild material” as improvement
status in the Germplasm Resources Information Network (GRIN) da-
tabase, and filtered out the accessions known to contain tetraploid
individuals according to previous research (Brummer et al., 1999;
Sakiroglu et al., 2010). Only accessions with passport information
that pinpoints the collection location were used. In order to increase
the number of samples in European high elevation areas, we also
collected natural populations of alfalfa in the eastern Alps (Italy and
Austria). To further exclude tetraploid individuals, we analysed the
ploidy level on a bulk of five genotypes for each of the selected popu-
lations using flow cytometry. We performed flow cytometry follow-
ing the protocol described in Brummer et al. (1999) on a FACSCalibur
flow cytometry system (Becton Dickinson). Information on M. sativa
genotypes used are available in Table S1.

We extracted genomic DNA from each individual following a
CTAB-based DNA extraction protocol (Doyle & Doyle, 1987). We
constructed libraries for genotyping-by-sequencing (GBS). Libraries
were generated following the protocol of Elshire et al. (2011) with
minor modifications as described by Li et al. (2015). We used the
frequent cutting enzyme ApeKIl and sets of 384 barcodes (4-8-bp)
for multiplex sequencing. Sequences were obtained with an lllumina
HiSeq 2500 system that generated 100-bp single-end reads. This

protocol was chosen based on comparisons made among a few pro-
tocols and different enzymes, including the two-enzyme protocol by
Poland et al. (2012) and the 2b-RAD protocol by Wang et al. (2012).
Decision was made based on the number of sites genotyped that
were shared among representative individuals (see Annicchiarico
etal., 2017).

Alignments and SNP discovery described here are based on the
Mt4.0v1 version of the M. truncatula genome sequence as a refer-
ence. We followed the tasseL pipeline (Bradbury et al., 2007; Glaubitz
et al., 2014) to obtain SNP data, assuming a sequencing error rate of
0.01. Genotypes based on fewer than 5x reads were set to missing
data with snpsiFT toolbox (Cingolani et al., 2012).

2.1.2 | Medicago truncatula data set

Medicago truncatula is a Mediterranean annual selfing plant that
germinates and develops after the advent of the wet season, and
produces seeds before summer drought becomes severe. This model
species occurs in inland grasslands, meadows and shrublands (Small,
2011). We used the M. truncatula SNP data set from the Medicago
truncatula Hap-Map Project (www.medicagohapmap.org) for com-
parative analyses with our M. sativa data set. Details on the sequenc-
ing technology used and SNP calling pipeline can be found in Branca
et al. (2011) and Stanton-Geddes et al. (2013). Reads of 205 single-
selfed plant lines (individual samples) with available GPS information
were aligned to the M. truncatula reference genome (Young et al.,
2011). We used the updated SNP calls based on the Mt4.0v1 ref-
erence genome assembly. Information on M. truncatula genotypes
used are available in Table S2.

2.2 | Additional filters

For the M. sativa and M. truncatula data sets, rare alleles in triallelic
sites were set as missing, we considered only sites for which there
was sequence coverage in at least 100 individuals (Site Min Count fil-
ter in TasseL), and for which the less-common allele was present in at
least 10% of sampled individuals (minor allele frequency (MAF) filter
>0.10). To generate a pruned subset of SNPs that were in approxi-
mate linkage equilibrium with each other we ran the --indep-pairwise
command in Plink 1.9 (Chang et al., 2015) in the M. sativa data set.
We used a window size of 50 SNPs, window step of five SNPs and
an r? threshold of 0.5. Finally, we eliminated putative paralogous
SNPs using the approach of McKinney et al. (2017) (see Supporting
Information, Methods S1, Figure S1 and Figure S2). Then, we used an
R script to retain those SNPs in the M. truncatula data set (4,375,118
SNPs after previous filters) that were within a 1 Kbp distance of the
SNPs in the M. sativa data set. We only considered for subsequent
analyses those individuals with less than 50% of missing data. After
applying all filters, the M. sativa data set retained 14,160 SNPs in 675
individual genotypes (within 150 populations) and the M. truncatula
data set retained 10,478 SNPs (within 145 bp mean distance to the


http://www.medicagohapmap.org

BLANCO-PASTOR ET AL.

VYRS 01 ECULAR ECOLOGY

corresponding M. sativa SNP) in 202 individuals (single-selfed lines)
(see Methods S1, Figure S3, Data S1 and Data S2) (Blanco-Pastor
et al., 2021). For running analyses, we transformed the M. sativa ma-
trix of individual genotypes to population alternative allele frequen-
cies, where multiple individuals (independent genotypes) from the
same population/USDA accession were lumped together.

2.3 | Genetic structure

We analysed the genetic structure in diploid M. sativa and M. trunca-
tula using conStruct, a method for characterizing discrete population
structure in the presence of continuous patterns of genetic differ-
entiation (Bradburd et al., 2018). The conStruct method models ge-
netic data as a combination of discrete layers, within each of which
relatedness may decay continuously with geographic distance. We
ran alternative spatial and nonspatial conStruct models with vary-
ing values of K (K = 2 to K = 4) and selected the spatial models with
K = 2 as the best models for both M. sativa and M. truncatula based
on cross-validation (see Methods S1, Figure S4). To categorize in-
dividuals, each genotype was assigned to the cluster with highest

admixture proportion.

2.4 | Environmental variables

We obtained information on topoclimatic factors, including biocli-
matic variables, atmospheric variables, radiation data, soil nutrients
data, soil chemistry, soil granular material, soil depth, and soil water
storage capacity, from the following public databases: worldclim.
org (WC), The Climatic Research Unit (University of East Anglia)
(CRU), The Satellite Application Facility on Climate Monitoring and
The NASA Distributed Active Archive Centre for Biogeochemical
Dynamics (DAAC) (see Methods S1, Figure S5 and Data S3-S4). We
selected environmental factors that could potentially be linked to
plant adaptation covering the complete study area and having a min-
imum resolution of 0.5 x 0.5°. The environmental data matrices con-
tained 0.32% (M. sativa) and 2.79% (M. truncatula) of missing values.

2.5 | Genotype-environment associations

We first used redundancy analysis (RDA) to detect candidate genes
under environmental selection in M. sativa and M. truncatula. RDA
can be used as a genotype-environment association (GEA) method
to detect loci under selection based on multivariate ordination
(Forester et al., 2016). RDA determines how groups of loci covary in
response to the multivariate environment, and can detect processes
that result in weak, multilocus molecular signatures (Forester et al.,
2018; Rellstab et al., 2015). Compared to other methods, RDA has
shown a superior combination of low false-positive and high true-
positive rates across a variety of selection scenarios (Forester et al.,
2018). Another advantage of RDA is that it can be used to analyse

many loci and environmental predictors simultaneously. RDA is
a regression-based method, and so it is subject to problems when
using highly correlated predictors. Hence, we removed correlated
predictors with a correlation value of |r| > .7. Variable reduction
was guided by an ecological interpretation of the relevance of pos-
sible predictors. We implemented a variable reduction protocol as
follows: First, we performed cluster analyses of factors according
to a matrix of absolute correlation values |r|. For that we used the
complete linkage clustering method of the hclust function in R (R
Core Team, 2021). After subsequent cluster analyses, we retained
one variable in clusters with distance among variables lower than
0.3 (correlation higher than 0.7). We retained the same set of 20
variables for the M. truncatula and M. sativa data sets (see Methods
S1, Figure S6). We favoured temperature variables over precipita-
tion or radiation variables, monthly over quarterly climatic variables
and topsoil over subsoil variables. After a preliminary RDA analysis,
we also checked for multicollinearity using variance inflation factors
(VIF) and confirmed that VIF of selected variables was <10.

For an easier interpretation of the RDA results, we performed
independent RDAs using the bioclimatic data (WC and CRU) and
the soil data (DAAC) separately for both M. sativa and M. truncat-
ula (hereafter RDA-bioclim and RDA-soil). We used a test statistic
based on the RDA analysis to find outlier SNPs (Capblancq et al.,
2018). First, we recovered the locus loadings from the RDA analy-
sis. A Mahalanobis distance D was then computed for each locus to
identify SNPs showing extreme D values compared to the rest of the
SNPs. Mahalanobis distances are distributed as chi-squared distribu-
tion with K degrees of freedom after correcting with the genomic in-
flation factor (Capblancg et al., 2018; Luu et al., 2017). We used the
number of RDA axes (K) that provided the most uniform distribution
of p-values, considering that distribution of p-values should be flat
with enrichment only for low values (Francois et al., 2016). RDA tests
with K=7 and K = 13 for M. sativa (bioclim and soil, respectively) and
K = 7 for M. truncatula (both bioclim and soil) provided the most uni-
form distributions of p-values and were therefore selected for the
tests (see Methods S1, Figure S7). We ran the RDA analyses using
the R package vecan (Oksanen et al., 2020).

In addition to RDA analyses, we also ran latent factor mixed
models (LFMM), a univariate method with high power across alterna-
tive demographic scenarios that explicitly accounts for confounding
effects due to population structure (Frichot et al., 2013). For running
the analyses, we performed LFMM least-squares estimates with
ridge penalty as implemented in the package Lrmm (Caye et al., 2019).
For LFMM, we ran analyses using the constrained axes of indepen-
dent principal component analyses for bioclimatic and soil variables
using the first K = 3 axes (selected after observing little additional
variance explained by the fourth axis onwards, see Methods S1,
Figure S8) and setting K = 3 latent factors for both species, which
provided an appropriate lambda (genomic inflation factor) value
(close to 1) (Frichot & Francois, 2015a, 2015b).

For RDA and LFMM analyses, significance values were calibrated
using the genomic inflation factor and outlier SNPs were obtained
with a calibrated p-value <.01 cutoff. Outlier SNPs were considered
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for subsequent analyses if detected by any of the RDA and LFMM
methods. We used a liberal p-value <.01 cutoff under the assump-
tion that most climate and soil adaptive loci are of low effect. Only
those putatively adaptive genes that were found associated with at
least two different datasets, that is, that were either associated with
the climate in the two species (M. sativa and M. truncatula), or associ-
ated with climate and phenotype in a single species (see below) were
considered for the discussion.

Genomic location of outlier SNPs were identified using the M.
truncatula genome as reference. We used their genomic position to
identify candidate genes potentially under environmental selection
located <1 Kbp upstream or downstream from any given outlier SNP,
ignoring those genes at >1 Kbp from any given outlier SNP. Once
these genes were identified, we used the Phytomine tool of the plat-
form Phytozome (https://phytozome.jgi.doe.gov/phytomine/genom
icRegionSearch.do) to retrieve their functional annotation on the
M. truncatula Mt4.0v1l genome. Additionally, for the common set
of GEA candidate genes (hereafter “shared GEA candidates”), we
retrieved the homologues in Arabidopsis thaliana as determined by
inParanoid (Remm et al., 2001).

To test whether we found more shared candidate genes between
M. sativa and M. truncatula than expected by chance, we performed
the resampling analysis of Rellstab et al. (2020). This analysis creates
a random empirical distribution of expected overlap and compares
it to the observed overlap in candidate genes (here the shared GEA
candidates). In each of 100,000 iterations we picked a random gene
subset with a size equal to the species-specific number of observed
candidate genes (RDA + LFMM outliers at p-value < .01) from each
species-specific list of annotated genes. The resulting distribution
represented the random, empirical null distribution, and the pro-
portion of observations above the real observed value denoted the

empirical p-value.

2.6 | Genotype-phenotype associations

To identify candidate loci with a large effect on phenotypic traits,
we analysed all the candidate loci of each species (SNPs identified
by any of the RDA and LFMM analyses) through univariate SNP-
phenotype associations. For this, we used 13 measures of traits
related to growth, morphology and cell wall components in M. sa-
tiva from Sakiroglu et al. (2011) and 16 measures of traits related
to symbiosis, growth and phenology in M. truncatula from Stanton-
Geddes et al. (2013) and Burgarella et al. (2016). Significant univari-
ate genotype-phenotype associations were identified with LFMM
(at p-value <.01 threshold) using the same parameters as described
above.

Additionally, we also investigated if a proportion of variance in
phenotypic traits of M. sativa and M. truncatula could be explained
by an optimized subset of RDA + LFMM shared GEA candidate
genes. For that, we fit a Gaussian generalized linear model (GLM)
via penalized maximum likelihood with LASSO penalty (Tibshirani,
1996). LASSO shrinks the coefficient estimates towards zero as the

regularization parameter lambda (1) increases, allowing to efficiently
find the sparse model that involves a small subset of the parame-
ters. We identified the best value for the lambda parameter using
a 100th-fold cross-validation, which performs an automatic search
across the space of lambda to identify the optimal value. We per-
formed the GLM fit and cross-validation with the R package GLMNET
(Friedman et al., 2010, ; Simon et al., 2011). Univariate LFMM and
multivariate LASSO linear models were performed with data from
119 M. sativa populations (Sakiroglu et al., 2011) and two different
sets of M. truncatula lines: 176 (Stanton-Geddes et al., 2013) and 154
(Burgarella et al., 2016).

2.7 | Gene ontology analysis in shared
GEA candidates

We performed a gene ontology (GO) enrichment analysis of the
RDA + LFMM shared GEA candidate genes with agriGO 2.0 (Tian
et al.,, 2017). We used the singular enrichment analysis (SEA) tool
with the M. truncatula Mt4.0v1 genome as a reference and applied
the Fisher's exact test with a false discovery rate (FDR) correction
(g-value <.01) (Benjamini & Hochberg, 1995). Relevance of GO terms
for environmental adaptation was discussed in light of previous
studies in other organisms.

3 | RESULTS

3.1 | Genetic structure

Genetic clusters in the M. sativa data set represented the infraspe-
cific classification of M. sativa with the purple cluster denoting the
subspecies caerulea (caerulea cluster) and the yellow cluster denot-
ing the subspecies falcata (Figure 1a, c). Cluster contributions of the
hybrid subspecies x hemicycla individuals ranged from 38.16% to
74.22% for the caerulea cluster and from 25.78% to 61.83% for the
falcata cluster (see Table S1). Medicago truncatula showed a marked
geographic structure with populations assigned to the blue cluster
mostly located in the western side of the Mediterranean region
(west cluster), whereas the populations assigned to the red cluster
were located in the eastern side of Mediterranean region (east clus-
ter) (Figure 1b, d and Table S2).

3.2 | Genotype-environment associations

RDA bioclim explained 21.7% of the genetic variance in M. sativa and
10.5% of the variance in M. truncatula. RDA soil explained 22.4%
of the genetic variance in M. sativa and 12.7% of the variance in M.
truncatula. For both species and analyses, the scores of the popula-
tions in the first constrained axis showed a gradient of genetic vari-
ation in response to the multivariate environment represented by

RDA1, with genetic groups (falcata/caerulea for M. sativa and east/


https://phytozome.jgi.doe.gov/phytomine/genomicRegionSearch.do
https://phytozome.jgi.doe.gov/phytomine/genomicRegionSearch.do

* L wiLE -y

BLANCO-PASTOR ET AL.

(a) M. sativa

cluster
« caerulea
o falcata

RDA1 score

-3

-6

RDA1 bioclim RDA1 soil

(b) M. truncatula

cluster
o east
o west

RDA1 score

RDA1 bioclim RDA1 soil

FIGURE 1 Diploid Medicago sativa and M. truncatula population structure and redundancy analyses (RDA). Spatial distribution of
admixture proportions estimated for the M. sativa dataset (a) and the M. truncatula data set (b) using the spatial Bayesian model implemented
in conStruct with two clusters (K = 2). The analysis on the M. sativa data set contained a matrix of 14,160 SNPs in 675 individual genotypes
(within 150 populations) and the M. truncatula data set contained 10,478 SNPs (within 145 bp mean distance to the corresponding M. sativa
SNP) in 202 individuals (single-selfed lines). We show the scores of the populations in the first constrained axis (which represents from

43% to 67% of the total environmentally constrained genetic variance) of all four RDAs preformed on M. sativa (c) and M. truncatula (d) data
sets. Pie charts/coloured dots represent populations (M. sativa) and single-selfed lines (M. truncatula), in (c) and (d) colours represent the

assignment to the cluster with highest admixture proportion

west for M. truncatula) representing the two extremes of the adap-
tive genetic variation (Figure 1c,d). The set of significant environ-
mental variables of the RDA analyses and their scores in RDA1 axes
are displayed in Table 1. We found four bioclimatic variables and two
soil variables that were significant for both species (at p-value <.01):
Potential evapotranspiration (CRU_PET), precipitation (CRU_PRE),
precipitation of driest month (WC_BIO14), min. temperature of
coldest month (WC_BIO6), soil depth with plant-extractable water
(DAC_DUNNE) and subsoil pH (DAAC_S_PH_H20). Five additional
environmental variables (one bioclimatic and four soil variables)
were significant for M. sativa and four additional environmental vari-
ables (two bioclimatic and two soil variables) were significant for M.
truncatula (p-value <.01) (Table 1).

Using a p-value <.01 cutoff for the RDA tests, we detected 143
(bioclim) and 187 (soil) outlier SNPs for M. sativa, and 159 (bioclim)
and 181 (soil) outlier SNPs for M. truncatula. Using LFMM (at p-value
<.01), we detected 930 (bioclim + soil) outlier SNPs for M. sativa; and
884 (bioclim + soil) for M. truncatula (Figure 2). The joint list of outlier
SNPs included 1,149 GEA outliers in M. sativa and 1,057 GEA outli-
ers in M. truncatula. These outliers targeted 1,065 annotated genes
in M. sativa (Supporting Information, Data S5) and 972 genes in M.

truncatula (Supporting Information, Data Sé) at 1 Kbp window size.
Among these, we found 168 shared GEA candidates (Data S7), which
was significantly above the expected overlap (Figure 3). None of the
shared GEA candidate genes were linked to the same SNP position in
both species. The resampling analysis generated a number of shared
genes higher or equal to the observed number in only 70 out of the
100,000 random subsamples (empirical p-value = .0007) (Figure 3).
Among the set of 168 shared GEA candidates, 118 (70.23%) had ho-
mologues in the Arabidopsis thaliana genome.

3.3 | Genotype-phenotype associations

From the list of 1065 candidate genes (RDA + LFMM) in M. sa-
tiva, we identified 143 genes (13.4%) with significant univariate
phenotype-genotype associations (at p-value < .01) (Supporting
Information, Data S5). Strongest associations were found with a set
of 13 phenotypic traits (Figure 4a). From the list of 972 candidate
genes in M. truncatula, we identified 233 genes (24%) with signifi-
cant univariate phenotype-genotype associations (at p-value < .01)
(Supporting Information, Data Sé). Strongest associations were
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M. truncatula
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FIGURE 2 Venn diagrams displaying the number of outlier SNPs detected by the redundancy analyses (RDA) and latent factor mixed
models (LFMM) in (a) Medicago sativa and (b) M. truncatula. (c) Number of candidate genes located <1 Kbp upstream or downstream from any

given outlier SNP in each species and shared by both species

RDA + LFMM outliers
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r T T T 1
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found with a set of 16 phenotypic traits (Figure 4b). From the set
of 168 shared GEA candidate genes between the two species, 22
(13.1%) were significantly associated with a phenotypic trait in M.
sativa (see Supporting Information, Data S5) and 53 (31.5%) were
significantly associated with a phenotypic trait in M. truncatula
(see Data Sé). Only four of these were associated with a pheno-
typic trait in both species (Medtr4g048000, Medtr5g082560,
Medtr5g082570 and Medtr8g106950). In M. sativa, these genes

FIGURE 3 Shared signatures of
adaptation in redundancy analyses and
latent factor mixed model analyses

(RDA + LFMM) candidate genes. We
show the number of shared candidate
genes (genes located <1 Kbp upstream or
downstream from any given outlier SNP)
between Medicago sativa and M. truncatula
(dashed line, 168 genes) compared to
random subsamples, iterated 100,000
times using the complete gene lists. We
indicate the average expected number of
shared genes, the observed number of
shared genes and the empirical p-value

Expected = 134;
Observed = 168; p-value = 0.0007

were associated with arabinose content and regrowth vigor after
harvest, while in M. truncatula, they were associated with plant
height (Table 2).

Optimized subsets of shared GEA candidate genes obtained with
LASSO regressions explained 20%-79% of variance in phenotypic
traits in M. sativa and 0%-48% in M. truncatula. Traits with highest
variance explained in M. sativa and M. truncatula were also arabinose
content and plant height, respectively (Table 3).
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FIGURE 4 Number of candidate genes in (a) Medicago sativa and (b) M. truncatula — genes located <1 Kbp upstream or downstream
from any given outlier SNP derived from redundancy analyses (RDA) or latent factor mixed models (LFMM) — associated with a phenotypic
trait (phenotypic trait data from Burgarella et al., 2016; Sakiroglu et al., 2011; Stanton-Geddes et al., 2013). The bars display the number

of candidates genes showing the strongest significant association with the particular trait, as found by genotype-phenotype association

analyses. See Table 3 for description of phenotypic traits

3.4 | Gene ontology

The GO enrichment analysis showed 7 GO terms significantly en-
riched (g-value < .01) among the M. sativa and M. truncatula shared
GEA candidate genes (Table 4). Shared GO terms included three
biological processes: transport (GO:0006810), establishment of
localization (GO:0051234) and localization (GO:0051179); two cel-
lular components: cytoskeleton (GO:0005856) and cytoskeletal
part (GO:0044430); and two molecular functions: motor activity
(GO:0003774) and transporter activity (GO:0005215).

4 | DISCUSSION

Over the past few decades, evidence has been accumulating
for the conservation of key genes responsible for core molecu-
lar processes even across exceptionally distant groups of spe-
cies (Baena-Gonzalez & Sheen, 2008). Our study shows that
intraspecific variation in these highly conserved genes may
play a key role for adaptation to climate in species with a wide
range of variation in relatedness, habitat differences and life-
history traits (see also Rellstab et al., 2020; Yeaman et al., 2016).
Specifically, we show that certain genetic mechanisms of adap-
tation are, to some extent, genetically constrained in the genus
Medicago and regulate adaptation in species with different life
histories, mating systems and phenologies such as M. sativa and
M. truncatula.

4.1 | Isolation-by-environment in annual and
perennial Medicago

In the present study, we show that the species M. sativa and M. trun-
catula display a genetic structure pattern that follows the gradient
of genotype-environment interactions, with two presumably neutral
clusters placed at the extremes of the adaptive genetic variation
(Figure 1c,d). This reflects a genome-wide pattern of isolation-by-
environment (IBE) where clusters represent genetic groups with
different niche breadth. This occurs for both Medicago species but
less clearly in M. truncatula, where an IBE pattern cannot be clearly
discerned from an isolation-by-distance (IBD) pattern (see also
Burgarella et al., 2016; Sakiroglu et al., 2010; Small, 2011). One of
the major difficulties in analysing adaptive genetic diversity is to re-
move the confounding factors of genetic structure for which alter-
native correction approaches have been proposed (e.g., Caye et al.,
2019; Coop et al,, 2010; Yu et al., 2006). However in cases with a
strong IBE pattern, the typical correction for population structure
used in association analyses can mask true positive associations.
Using liberal thresholds and validation with two sources of data in
association analyses has proven useful for finding candidate genes of
local adaptation while reducing false positives in cases with strong
IBE patterns (Blanco-Pastor et al., 2021; Rellstab et al., 2020; Talbot
et al., 2017). Here, to maximize the chances of finding true signals
of local adaptation in the presence of IBE we performed association
analyses using liberal thresholds (p-value < .01) in complementary

environmental and phenotypic data sets.
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TABLE 3 Phenotypic variance explained by RDA + LFMM candidate genes shared by Medicago sativa and M. truncatula. Fraction of
variance (deviance) explained in phenotypic traits (phenotypic trait data from Burgarella et al., 2016; Sakiroglu et al., 2011; Stanton-Geddes
et al., 2013) and number of explanatory variables (number of shared candidate genes) used in the best cross-validated Gaussian generalized
linear model regularized with LASSO penalty

No. of shared candidate ~ Variance
Trait Description genes explained (R?)
M. sativa
ADF2007 Acid detergent fibre 11 45
ADL2007 Acid detergent lignin 24 .65
Arabinose2007 Arabinose content 37 79
Drymatteryield2007 Total dry biomass yield 24 44
Glucose2007 Glucose content 7 .20
NDF2007 Neutral detergent fibre measured in 2007 5 .33
NDF2008 Neutral detergent fibre measured in 2008 16 .52
Regrowth2007 Spring regrowth 11 .25
Stemtotalmassratio2007 Stem proportion of the total biomass 8 .37
Stemweight2007 Stem weight 36 .64
TNC2007 Total nonstructural carbohydrates measured in 2007 24 .64
TNC2008 Total nonstructural carbohydrates measured in 2008 17 43
Xylose2007 Xylose content 29 .58
M. truncatula
Branch_3 Number of branches 18 .30
Flowering_date Number of days to flowering starting from 1st of January 13 .27
Height_1 Height at t1 35 .38
Height_2 Height at t2 18 .32
Height_3 Height at t3 29 .48
Leaf_area Leaf area 0 .00
Leaf_weight Leaf weight .00
Leaves_1 Number of leaves 10 .16
Nodule_above Number of nodules in the top 5 cm of roots 18 24
Nodule_below Number of nodules below the top 5 cm of roots 23 .35
Petiole_area Petiole area 6 A1
Trichomes Trichome density visible at 10x magnification along a 2 mm 7 13
section of the petiole
Width_mm Petiole width 6 A1
Mean_ThF Mean thermal flowering time 10 .33
DF_a Mean number of days to flowering for autumn sowing 9 .35
DFO1_s Number of days from sowing to flowering measured in 2001 11 .27
TABLE 4 Significantly enriched gene co co EDR Number
ontology (GO) terms in RDA + LFMM . . .
candidate genes shared by Medicago sativa ID information category Description (q-value)  of genes
and M. truncatula 1 G0:0005856  CC Cytoskeleton 0.0022 6
2 G0:0044430 Cc Cytoskeletal part 0.0022 6
3 GO:0003774 MF Motor activity 0.0050 5
4 GO0:0006810 BP Transport 0.0066 19
5 GO0:0051234 BP Establishment of localization 0.0066 19
6 G0:0051179 BP Localization 0.0066 19
7 G0:0005215 MF Transporter activity 0.0080 14

Abbreviations: BP, biological process; CC, cellular component; FDR, false discovery rate; MF,
molecular function.



BLANCO-PASTOR ET AL.

2 | WiLE y- B
42 |

Species-specific signatures of adaptation

Our analyses showed that phenotypic trait variation in M. sativa and
M. truncatula, provide insights into their specific strategies of adap-
tation to abiotic stress. From the full list of GEA candidates, 13.4%
(M. sativa) and 24% (M. truncatula) were also associated with phe-
notypic traits (Figure 4). Traits with the highest number of strong-
est associations in M. sativa were: xylose (Xylose2007), arabinose
(Arabinose2007), neutral detergent fibre (NDF2008), and stem pro-
portion of the total biomass (Stemtotalmassratio2007), followed by
others (Figure 4). High concentration of arabinose is associated with
desiccation tolerance (Moore et al., 2006) and salt stress tolerance
in plants (Zhao et al., 2019). Pectin-associated arabinose polymers
maintain the flexibility of the cell wall during water deficit stress
(Moore et al., 2008, 2013; Ying et al., 2011). Polymerization of ara-
binose and xylose produce arabinoxylan, which contributes to cell-
wall flexibility, rehydration capacity and water use efficiency (Moore
et al., 2013; Zhang et al., 2010). Previous findings in alfalfa have
shown an impact of abiotic stress on cell wall remodeling (Song et al.,
2019). Neutral detergent fibre and stem fibre concentration are also
known to be associated with the environmental conditions in alfalfa
experimental gardens (Lamb et al.,, 2012). Additionally, high fibre
content, notably lignin, has been recently associated with adaptation
to heat stress in other species (Blanco-Pastor et al., 2021). In general
terms, our results suggest that the biochemistry of aerial biomass in
M. sativa play an important role in its abiotic stress resistance.

In M. truncatula, traits with the highest number of strongest as-
sociations were: number of leaves (leaves_1), number of days from
sowing to flowering (Df01_s), number of days to flowering starting
from 1 January (flowering_date), height (height_3) and mean thermal
flowering time (Mean_ThF), among others. These associations point
to a clear phenotypic response to climate associated with flowering
onset coupled with other mechanisms of abiotic stress adaptation
associated with plant growth in M. truncatula, which is in line with
the findings of Burgarella et al. (2016) and Yoder et al. (2014).

4.3 | Shared genomic signatures of adaptation

Adaptation to climate can be genetically constrained and genetic
parallelism can play an important role for adaptation even under the
highly polygenic architectures of environmental adaptation, deter-
mining the intraspecific variation in a group of genes among the full
set of adaptive loci (Rellstab et al., 2020; Yeaman et al., 2016, 2018).
Our study with M. sativa and M. truncatula suggests that the over-
all genetic mechanisms of adaptation appear to be largely dissimilar,
with multiple adaptive genes that are species-specific (Figure 2 and
Data S5-5S6). It was already known that adaptation to soil and cli-
mate features is driven by selection on polygenic traits in M. trun-
catula (Guerrero et al., 2018; Yoder et al., 2014). On this basis, here
we show that adaptation to environmental factors is also polygenic
in M. sativa and mostly nonredundant with M. truncatula. These spe-
cies have contrasting geographic distributions and life-history traits,

but share similar environmental (climatic and edaphic) pressures
as shown by the shared set of significant RDA terms (Table 1). But
despite their unique signatures of adaptation, we found an above-
expected number (168) of shared candidate genes between the two
species (Figure 3), which was 25.4% more than expected by chance
alone (134). Additionally, from the list of shared GEA candidate
genes we found four shared candidates that also showed significant
univariate associations with growth-related traits in both species.
These were associated either with spring regrowth or arabinose
in M. sativa and height in M. truncatula. The monosaccharide arab-
inose also participates in metabolic pathways associated with cell
wall extensibility, thereby controlling plant growth and development
(Kotake et al., 2016). Thus, our results suggest that this set of four
shared genes may be involved in growth response to environmental
signals in both species, although probably other genes are also in-
volved in these responses.

In addition, we also found that optimized sets of shared GEA can-
didates explained a high proportion of phenotypic variance for cer-
tain traits, especially arabinose content (M. sativa) and plant height
(M. truncatula) (Table 3), suggesting that they play an important role
in the genetic determinism of polygenic phenotypic traits in both
Medicago species. From the list of shared GEA candidates, another
four genes (Medtr1g050730, Medtr2g076670, Medtr2g076680 and
Medtr7g010650) were found associated with drought-related and
biomass traits in a previous study using the same M. truncatula ge-
nomic data set (Kang et al., 2015). Among these, Medtr2g076670
was also associated with M. sativa total dry biomass yield in our
study.

The set of shared GEA candidates showed enrichment in gene
ontologies associated with cell structure and transport, including
cytoskeleton, motor activity, transport or localization. These gene
ontologies embrace the cellular shape modifications and other cel-
lular functions associated with cell homeostasis, including cellular
movement, cell division, endocytosis, movement of organelles or
movement of substances by means of transporters, pores or motor
proteins (Moustakas et al., 1998). All these components and func-
tions have shown to play a central role in drought avoidance and
tolerance mechanisms through a diversity of molecular pathways in
avariety of plants (Jarzyniak & Jasinski, 2014), including alfalfa (Song
etal., 2019).

4.4 | Does adaptation to climate in Medicago
follow the omnigenic model?

The comparative approach allowed us to reveal the presence of 168
shared GEA candidate genes of adaptation to environmental condi-
tions in M. sativa and M. truncatula. Among these, 118 (70.41%) had
homologues in the Arabidopsis thaliana genome, which is exception-
ally high given that, out of the 62,319 genes of the M. truncatula
genome (Mt4.0v1), only 19,145 (30.72%) have their homologs identi-
fied in the A. thaliana (TAIR10) genome according to the Phytozome
database (https://phytozome.jgi.doe.gov/).
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The four shared GEA candidate genes, mentioned above,
that were significantly associated with growth-related traits in
both M. sativa and M. truncatula (Table 2) are Medtr4g048000,
Medtr5g082560, Medtr5g082570 and Medtr8g106950. The gene
Medtr4g048000 codes for a multidrug resistance-associated
protein. Molecular functions of genes belonging to the multi-
drug resistance-associated proteins are very conserved (Klein
et al., 2006). These genes were originally identified in drug-resistant
human cancer cell lines and have been identified later in many differ-
ent plant species, where they have been shown to play a key role in
the accumulation of substances in the vacuole and in the regulation
of guard cells (the pair of curved cells that surround a stoma) (Klein
et al., 2006; Kreuz et al., 1996). In this regard, some wild M. sativa.
subsp. falcata populations that occur in arid areas have been shown
to have lower stomatal conductance (Ray et al., 2004), which is an
indicator of delayed leaf senescence (Humphries et al., 2021). The
SWI/SNF (SWItch/Sucrose nonfermentable) chromatin remodelling
complex gene (Medtr5g082570) is also a highly conserved multi-
protein complex, with homologues in humans, Drosophila, yeast and
plants (Sarnowska et al., 2016). Stress induced transcriptional regu-
lation relies on these SWI/SNF genes to allow for the access of the
transcriptional machinery to a specific DNA sequence (Song et al.,
2021). Research on SWI/SNF genes in Arabidopsis suggest that it is
involved in numerous basic functions, including an effect on devel-
opmental control, cell differentiation, flowering time and growth, to-
gether with heat, drought and salt stress response and DNA damage
response caused by excess of UV radiation (Buszewicz et al., 2016;
Han et al., 2015; Jerzmanowski, 2007; Nguyen et al., 2019; Ojolo
et al., 2018; Shaked et al., 2006). Its function is very conserved with
a role in cellular response to UV damage also in mammalians (Gong
et al., 2008). The SWI/SNF genes have been shown to play a role
in the transcription of heat shock proteins (HSPs) genes, which in-
crease cell survival under high temperatures by maintaining proper
folding and preventing agglutination of denatured proteins (Qian
et al.,, 2014), and in the transcription of genes responsible for the
resource allocation decision between growth and drought tolerance
(Han et al., 2012). The gene Medtr8g106950 codes for a PPR (pen-
tatricopeptide repeat protein) deaminase with a DYW domain. This
type of proteins are present in all organisms that undergo C-to-U
editing of organelle RNA transcripts and play a critical role in the
RNA editing process. They have been associated with growth, de-
velopment and response to abiotic stresses in several plant families
(Chen et al., 2018; Su et al., 2019; Wagoner et al., 2015; Xing et al.,
2018), and with leaf relative water content (Zhang et al., 2015) and
salt tolerance (Yu et al., 2016) in alfalfa.

The presence of a set of shared GEA candidate genes, some of
them associated with growth-related traits in both species and with
highly conserved key molecular functions, together with a larger
set of species-specific candidate genes is in line with the omnigenic
model of heritability (Boyle et al., 2017). This model poses that com-
plex traits are ruled by both core, large-effect genes with conserved
adaptive functions and multiple small-effect peripheral genes in reg-
ulatory networks. Adaptive functions in such core genes may persist

longer in evolutionary time-scale than peripheral genes, the latter
being responsible for unique patterns of local adaptation indepen-
dent for each species (Vitti et al., 2013). While we do not know the
specific role of these candidate genes in the regulatory networks of
Medicago, M. truncatula gene models indicate that they are respon-
sible of basic biological functions and, as shown here and previous
studies, they also play a key role in abiotic stress tolerance.

Comparative genomics of plant and animal model organisms
has revealed that a reduced set of highly conserved genes and gene
networks present in distantly related organisms translate to a set
of proteins that make up much of the cellular machinery (Miklos &
Rubin, 1996) and are subject to adaptive evolution (Balti et al., 2020;
Talbert et al., 2004). Genes encoding essential functions can evolve
rapidly and can show parallel evolutionary trajectories, even when
they are retained over long evolutionary periods across distantly
related species (Chateigner et al., 2020; Kasinathan et al., 2020;
Malik & Henikoff, 2001; Rellstab et al., 2020; Talbert et al., 2002,
2004). Although the omnigenic model is gaining relevance for un-
derstanding adaptation, it has also been criticized on the basis of its
presumed oversimplification and the lack of additional evidence be-
yond genome-wide association studies (GWAS) (Wray et al., 2018).
Identifying the functions of shared candidate genes in different spe-
cies at the genome scale, as we did here, is an important complement
to intraspecific effect patterns derived from GWAS. This and other
recent studies (Rellstab et al., 2020; Yeaman et al., 2016, 2018) pro-
vide another perspective into the factors that constrain the diversity
of viable routes to adaptation and build in favour of the omnigenic
model to explain adaptation to climate.

SNP density across M. sativa and M. truncatula data sets used
in the present study included one or more SNPs within a 100 Kbp
window size for 88.8% and 89.1% of the M. truncatula genome,
respectively (Methods S1, Figure S3). Nevertheless, our final data
set provides a limited representation of the genomes of these two
species. Our M. sativa genotyping led to the identification of around
14,160 SNPs, in tags of 100-bp. Given that the M. truncatula genome
includes about 360 Mbp, only a maximum of 0.4% of the total M.
truncatula genome size was effectively represented by the M. sativa
SNP set, assuming no LD. Given this fairly low SNP density, most
adaptive loci not in LD with this set of SNPs may have gone unde-
tected. Whole genome resequencing of the M. sativa pangenome
would increase the possibility of detecting more adaptive diver-
sity with greater accuracy and facilitate the development of abiotic
stress resistant alfalfa varieties in the future.
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