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A B S T R A C T   

Despite growing evidence that diverse forests play an important role in ecosystem functioning, ensuring the 
provision of different ecosystem services, whether such diversity improves their response to drought events 
remains unclear. In this study, we use a large tree-ring database from thirty case studies across nine European 
countries and eleven species, covering from Mediterranean to hemiboreal forests, to test if the growth response to 
site specific drought events that occurred between 1975 and 2015 varied between mixed and monospecific 
stands. In particular, we quantify how stands resist those specific drought events and recover after them, thus 
analyzing their resilience. For each drought event and forest stand we calculated resistance, recovery, resilience 
and relative resilience and we related the variation in these indices between monospecific and mixed stands with 
type of admixture, tree species identity, site aridity gradient, stand basal area and stand age. We found a large 
variability among case studies, even for those that share similar species composition and have similar climates. 
On average, mixed stands showed higher resistance, resilience and relative resilience to drought events than 
monospecific stands. However, the beneficial effect of mixtures could not be generalized, being greatly modu
lated by the type of admixture and tree species identity, and depending on site water supply and stand char
acteristics, such as basal area and age. The increase in resilience in mixtures compared with monocultures was 
greater on the conifer-broadleaved admixtures, and to a lesser extent in the broadleaved-broadleaved combi
nations. The observed response patterns to drought largely varied among the eleven studied species, thus 
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revealing the importance of functional traits for understanding a species’ response to drought across its distri
bution range. Along the site aridity gradient, resilience and relative resilience to drought increased in drier sites 
for both monospecific and mixed stands, with an observed trend towards higher resilience in mixed stands in the 
drier and hotter sites. Our results confirm the complexity of the relationships found of resistance, recovery, 
resilience and relative resilience with drought when comparing pure vs mixed stands.   

1. Introduction 

Mixed forests, characterized by the coexistence of at least two tree 
species, represent more than two thirds of the total forested areas on 
Earth (FAO, 2016). A similar figure was reported for European forests, 
where the area of monospecific forests decreased in the last years (Forest 
Europe, 2015, pp 28). Over the last decades there has been a widespread 
agreement that tree species biodiversity plays an important role in forest 
ecosystem functioning (Baeten et al. 2013; Grossiord et al. 2014; Gros
siord 2019), ensuring the provision of a multitude of ecosystem services 
(Hooper et al. 2012. Gamfeldt et al. 2013; van der Plas et al. 2016, 
Pretzsch et al. 2019). Moreover, mixed forests can be more stable to 
different disturbances, both biotic (Jactel et al. 2017) and abiotic 
(Anderegg et al., 2018; Pretzsch et al. 2019), while they can increase the 
temporal stability of community productivity (Jucker et al. 2014; del Rio 
et al., 2017) or even increase such productivity (Jucker et al. 2014; 
Zhang et al. 2012; Forrester 2014; Pretzsch 2017; Jactel et al. 2018). 
This will result in higher amounts of carbon stored above- and below- 
ground in mixed forests (Forrester et al. 2006; Epron et al 2013). 

Projected climate during the twenty first century will affect forest 
ecosystem functioning and associated ecosystem services (Pardos et al. 
2015; Ammer 2019). In particular, more intense and long-lasting 
drought events are expected to strongly impact forests (Bonal et al. 
2017, McDowell et al. 2020). In recent decades, a sharp decline in forest 
growth and survival, induced by more frequent and intense droughts, 
has already been observed in different types of forests and tree species 
(Aubin et al. 2016). The functional processes that contribute to drought 
resistance have been widely studied: alterations in tree allometry par
titioning, rooting strategies, photosynthesis depletion, stomatal closure 
(McDowell et al., 2008; Calama et al. 2013; Pardos et al. 2010). These 
processes are both dependent on species-specific traits and on environ
mental conditions (Mitchell et al. 2008; Mayoral et al. 2016). In 
particular, tree species coexisting in a mixed forest can adopt different 
strategies (tolerance, avoidance and recovery) to cope with drought 
(Mayoral et al. 2015; Anderegg and HilleRisLambers, 2015, Aubin et al. 
2016). Drought tolerance traits include higher xylem resistance to em
bolism, lower intrinsic water use efficiency, lower leaf water potential 
and higher wood density, which correspond to the anisohydric strategy. 
Avoidance traits are deep roots, rapid stomatal control and regulation of 
transpiration (to maintain a relatively constant midday leaf water po
tential as soil water potential and predawn leaf water potential 
decrease), characterizing the isohydric strategy. Species resistance to 
drought can be classified along a continuum between anisohydric and 
isohydric strategies (Martínez-Vilalta and García-Forner 2017; Fu and 
Meinzer, 2019). Recovery traits, which include abundant carbohydrates 
reserves, resprouting ability and reproductive effort, enable trees to 
recover following drought-induced decline. Those differential responses 
to drought are supposed to allow complementarity among species, 
therefore facilitating the co-existence of species under stressful envi
ronmental conditions (Mayoral et al. 2015). 

The role of mixed forests in the improvement of individual tree 
resistance to and recovery from drought (Lebourgeois et al. 2013) has 
been widely studied in the last years. Results from different authors 
showed that the benefits of mixture cannot be generalized for all forest 
types and tree species, noting that the species’ identity could be more 
important than the number of species in the mixture (Grossiord et al. 
2014; Merlin et al. 2015; Pretzsch et al. 2019; Jourdan et al. 2019; 
Steckel et al. 2020). Furthermore, the benefits of mixtures may also 

depend on the climatic differences between sites and biomes (Leb
ourgeois et al. 2013). Although there is evidence that tree diversity 
regulates drought impacts in forests, it is difficult to draw general con
clusions on how such diversity affects the directionality (positive vs 
negative effects) of forest responses to drought (Grossiord 2019). 

At the community level, the beneficial interactions between species 
in a mixed forest that result in reduced vulnerability to drought can be 
explained by three different mechanisms, namely resource partitioning 
(e.g. root stratification or differential stomatal regulation strategies), 
facilitation (e.g. active hydraulic redistribution, improved soil water and 
reduced biotic damages during drought) and selection effects (e.g. 
presence of particularly drought-tolerant species) (Grossiord 2019). 
According to Forrester and Bauhus (2016), what seems more important 
to better cope with drought in mixed stands compared to monospecific 
stands is the coexistence of species with complementary traits that 
improve water availability, water uptake or water use efficiency and a 
compatibility with the climatic and edaphic conditions of the site. 
However, the complementary traits that cause the effect at one site could 
be different to those that cause the same effect at another site (Baeten 
et al. 2013). Mixing tree species might on the contrary decrease drought 
resistance when enhanced tree growth leads to higher evapotranspira
tion demand (Kunert et al. 2012; Forrester et al. 2016; Grossiord 2019). 
To this respect, the stress gradient hypothesis postulates that facilitation 
is more frequent under more unfavourable conditions (Bertness and 
Callaway 1994; Callaway and Walker 1997). This may result in a shift 
from negative to positive interactions between tree species across a 
benign to harsh environmental gradient and interannual variations in 
species interactions (del Río et al 2014). However, when analysing tree 
growth facilitation and competition reduction cannot be well distin
guished, and only the net effect of species interactions can be observed. 
Thus, the broader framework proposed by Forrester (2014), which 
consider simultaneous occurrence of competition reduction and facili
tation and different variation patterns with environmental conditions 
depending on the main limiting factor, is more suitable for interpreting 
spatio-temporal variation in tree species interactions. 

Another issue to consider is whether all the species will benefit from 
the mixture, or one of them benefits at the expense of the other species. It 
has been shown that different tree species in mixed stands differ 
considerably in their response to drought (Pretzsch et al. 2016). While 
some species show a positive response to drought (i.e., less stressed in 
mixed stands), others show a negative response (i.e., they are affected by 
drought even in mixed stands) or even a neutral one, but with poten
tially different responses along the geographical range of the species 
(Aubin et al. 2016). Vulnerability to water stress for a given species may 
also depend on stand basal area (Forrester et al. 2016), stand density 
(Bottero et al. 2017) and stand age (Sohn et al. 2016). These are 
important issues to consider when conducting studies across large 
geographical scales, where local site characteristics, climate conditions, 
forest management, forest type, tree species assemblages (and their 
related functional traits) are likely to interact, making the identification 
of species mixture effects more complex (Grossiord, 2019; Bello et al., 
2019). 

In this study, we used tree ring data from thirty case studies covering 
from Mediterranean to hemiboreal forests and eleven tree species to test 
whether the response of mixed stands to drought events differed to that 
of monospecific stands. Furthermore, we investigated whether such 
differential response to drought varied with the type of admixture, tree 
species identity, site aridity gradient, stand basal area and stand age. For 
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assessing tree responses to drought, we used the three components 
proposed by Lloret et al. (2011): resistance (Rt), recovery (Rc), resilience 
(Rs) and relative resilience (RRs). More specifically we tested the 
following hypotheses: 

Hypothesis I: tree growth response to drought events differs between 
mixed and monospecific stands. 

Hypothesis II: The benefits of mixture to cope with drought events 
cannot be generalized to the three types of admixtures found (conifer- 
conifer, conifer-broadleaved, broadleaved-broadleaved) 

Hypothesis III: Tree growth response to drought events in mono
specific and mixed stands is mediated by the identity of tree species 

Hypothesis IV: Tree growth response to drought events in mono
specific and mixed stands vary along an aridity gradient 

Hypothesis V: Tree growth response to drought events in mono
specific and mixed stands depends on stand characteristics (basal area 
and age) 

2. Material and methods 

2.1. Experimental sites 

This study was performed using data from 30 case studies spread 
over 9 countries that represent different European forest stands, 
including both natural forests and plantations. Stands were located 
along a gradient from hemiboreal to Mediterranean forests, spanning 
from central Spain to northern Latvia (Table A1, Fig. 1). Altogether, the 
case studies cover the main admixtures found across Europe, including 
conifer and conifer (Pinus-Juniperus; Pinus-Pinus; Pinus-Picea; Picea-Abies; 
Larix-Pinus; Larix-Picea), conifer and broadleaved (Pinus-Quercus; Pinus- 
Fagus; Picea-Fagus; Larix-Quercus, Larix-Alnus, Larix-Tilia) and broad
leaved and broadleaved (oak-beech). We considered many important 
tree species for the bioeconomy of European forests such as Fagus syl
vatica, Quercus pyrenaica, Quercus petraea, Quercus robur, Quercus 
pubescens, Pinus sylvestris, Pinus pinaster, Pinus pinea, Pinus nigra, Picea 
abies, Abies alba and Larix decidua, with most tree species occurring in 
several case studies. The studied species showed different functional 
traits that are described in Table 1. 

In twenty-five case studies out of the total of thirty, plots were 
organized in triplets. A triplet consisted of a set of three plots that 
included a two-species mixed stand and the two monospecific stands of 
the component species of the mixed stand. In the other five case studies 

(SP1, LI1, LI2, LI3, and LI4), plots were divided between monospecific 
and mixed stands. In these five case studies, only trees for the main 
species (Pinus pinea for SP1 and Larix decidua for LI1, LI2, LI3, and LI4) 
were cored. Mixed stands in case study SP1 are formed by Pinus pinea, 
Quercus ilex and Juniperus thurifera. Larix decidua plots shared the space 
with different conifers (Pinus sylvestris, Picea abies) and broadleaves 
(Alnus glutinosa, Betula pendula, Tilia cordata, Quercus robur). A total of 
587 plots were sampled in closed even-aged, well or fully stocked stands 
according to local silvicultural guidelines that had not been thinned or at 
least not thinned within the last 10 years. In the mixed stands, the trees 
of the two species were usually arranged in small groups. Plots were 
located at elevations between 20 and 1400 m a.s.l. (mean = 460 m), 
with mean annual precipitation ranging from 435 to 1200 mm (mean =
812 mm) and mean annual temperature from 5.6 to 13.5 ◦C (mean =
8.6 ◦C) (Table A1). 

2.2. Data collection and dendrochronological analyses 

Two perpendicular increment cores at breast height were taken per 
tree. The total number of trees cored was 3,298 trees (Table A2). Annual 
ring widths were measured from each increment core using standardised 
dendrochronological techniques (Speer 2010). At the end of the growing 
season, when cores were taken, different dendrometric variables were 
measured on each plot, both at tree (diameter at breast height of all trees 
in each plot) and stand level (mean diameter, mean height, basal area 
and tree density). 

To analyze the effect of drought on tree growth we calculated the 
tree basal area increment (BAI, cm2), using mean annual ring width of 
both increment cores: 

BAI = π/4
(
d2

t − d2
t− 1

)
(1)  

where dt and dt− 1 are the tree diameter at breast height at the end (dt) 
and the beginning (dt-1) of a given annual ring increment corresponding 
to rings formed in year t and year t-1, respectively. 

To eliminate the biological growth trends and to produce stationary 
and residual tree ring width chronologies (Fritts et al., 1990) we used a 
detrending procedure and an autocorrelation removal with the Fried
man supersmoother spline (Friedman, 1984) and autocorrelation 
modeling. Through this procedure we obtained chronologies of dimen
sionless indices (CDI), preserving a common variance with interannual 
time scales. To assess the reliability of the chronologies, we calculated 
descriptive statistics using “dplR” R package (Bunn 2010) for each 
species and plot, including Rbar (mean interseries correlation) and EPS 
(expressed population signal of detrended BAI series) (Table A2). Rbar 
has been used to measure the strength of the common growth signal 
within each chronology (Wigley et al 1984), while EPS is used to mea
sure the reliability of chronologies (Lindholm et al. 1999). In our study, 
mean Rbar was 0.37, indicating a medium common signal for each 
species and plot. Mean EPS was 0.88, a value above the threshold of 0.85 
indicating that chronologies were reliable and well replicated. 

2.3. Climate data 

We used climate data on a monthly basis (precipitation, mean, 
maximum and minimum temperature) for each case study. Climate data 
were obtained from meteorological stations nearby each case study site. 
When data were not available, they were obtained from the CGMS 
database (AGRI4CAST, http://mars.jrc.ec.europa.eu/mars). Monthly 
data were used to calculate mean annual temperature (T, ◦C) and annual 
precipitation (P, mm) from 1975 to 2015 (see Figure A1 for the rela
tionship between mean annual temperature and total annual precipita
tion). For characterizing the climatic water supply for each case study, 
we used the annual De Martonne aridity index (DMI, mm ◦C− 1) (Eq. (2)) 
and De Martonne aridity index for the summer months (June, July and 
August) (DMIsummer, mm◦C− 1) (Eq. (3)), for the period 1975–2015. 

Fig. 1. Location of the 30 case studies across Europe. Species studied in each 
case study are shown in parenthesis. Aa: Abies alba; Fs: Fagus sylvatica; Pa: Picea 
abies; Pn: Pinus nigra; Pp: Pinus pinea; Pt: Pinus pinaster; Ps: Pinus sylvestris; Qp: 
Quercus petraea; Qpb: Quercus pubescens; Qpy: Quercus pyrenaica; Ld: 
Larix decidua. 
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Table 1 
Environmental and functional characteristics of the studied species.   

Fagus sylvatica Quercus petraea Quercus 
pubescens 

Quercus 
pyrenaica 

Pinus nigra Pinus pinaster Pinus sylvestris Pinus pinea Abies alba Picea abies Larix decidua 

Environmental 
preferences 

shade tolerant 
(Pretzsch et al. 
2015) 

prefers more 
shaded 
environments 
(del Río et al. 
2013;Pretzsch 
et al. 2019) 

more light-demanding 
(Jourdan et al. 2019) 

Light demanding 
(Trasobares et al. 
2004)  

It can grow on a 
variety of soils 
and is well- 
adapted to rocky 
soils (López- 
Tirado and 
Hidalgo, 2014) 

Grows preferably in 
sandy, stony and well 
drained soils 
(Prieto-Recio et al. 
2015)  

Shade-intolerant 
(Andivia et al. 2020)  

More light 
deman-ding 
(Ceballos and 
Ruiz de la 
Torre, 1979) 

Grows 
mainly in 
sandy soils 
with low 
water 
retention 
(Pardos et al. 
2010)  

Prefers mid- 
shade 
exposition 
(Calama 
et al. 2013) 

grows better in 
humid 
conditions 
(Jourdan et al. 
2019)    

water 
uptake in 
the upper 
soil layers 
(Pretzsch, 
Schütze and 
Uhl 2013) 

Light deman-ding 
(Gradeckasand 
Malinauska2005) 

Tolerate 
shallow soils 
and dry 
atmospheric 
conditions 
(Jourdan et al. 
2019)  

capable of persisting for long 
periods in the forest understory 
without appreciable growth, 
responding positively to a 
gradual increase in light 
(Grassi and Bagnaresi, 2001) 

Root system  Resprouting ability: capacity to recovery after 
drought (Mayoral et al. 2015) 

shallower root 
system 
It does not 
possess a well- 
developed 
taproot 
(López-Tirado 
and Hidalgo, 
2014) 

preserve its taproot 
until maturity  

root architecture 
adapted to the soil 
profile 
(Corcuera et al. 2012) 

deep root 
system with 
taproot (Köstler 
et al. 1968) 

Multistra- 
tified root 
system 
(de-Dios- 
García et al. 
2018) 

Deep root 
system with 
taproot 
(Köstler et al. 
1968) 

Rather shallow root system 
(Puhe 2003; Filipiak, 1992) 

strong taproot that reaches deeper soil layers (Canadell et al. 1996) 

Sensitivity to 
drought 

sensitive to 
drought, but 
recovers easily 
after a drought 
(Jourdan et al. 
2019) 

less sensitive to 
drought  

recovers more 
rapidly in drier 
sites 
(Nothdurft and 
Engel 2020) 

lower 
sensitivity to 
high tempera- 
tures during 
drought 
(Sperlich et al. 
2019) 

moderate 
drought 
tolerance 

relatively 
tolerant to 
drought although 
cumulative water 
deficit constrains 
their growth in 
the long term 
(Herguido et al. 
2016) 

dependent on access 
to a variable 
groundwater  

belowground 
competition 
is limiting 
for growth 
(Rozas et al. 2011 
tree mortality & 
decline in pure stands 
(Prieto-Recio et al. 
2015) 

especially 
sensible to 
drought  

stops growth in 
harsh 
conditions 
(Merlin et al. 
2015)  

can profit 
from 
sporadic rain 
events 
during 
drought 
(Mutke et al. 
2012) 

relatively 
tolerant to 
drought for an 
alpine 
coniferous 
(Jourdan et al. 
2020)  

growth 
decline, forest 
dieback & 
widespread 
mortality 
(Gazol and 
Camarero 
2016) 

falls back 
after 
drought, but 
recovers 
quickly 
(Pretzsch, 
Schütze and 
Uhl 2013) 

more sensitive to 
drought than other 
conifers 
(Nothdurft and 
Engel 2020) 

Physiological and 
morphological 
traits to cope with 
drought      

morphological 
traits to cope with 
drought 

Stomata opening extended much further into drought: anysohydric 
behaviour 

Early stomata closure during drought: isohydric behaviour 

Maintenance of low osmotic potentials during drought 
(Aranda et al. 2020) 

lower transpira- 
tion rates and 
water potential 
gradients 
compared to 
other pines 
(Martínez-Vilalta 
and Piñol, 2002) 
High plasticity in 
water use 
efficiency 
(Forner et al., 
2018) 

Under dry soil 
conditions, a high 
degree of stomatal 
control maintains 
needle water potential 
well above the 
cavitation threshold 
of the species 
(Corcuera et al. 2012 

low hydraulic 
conducti-vity, 
limiting 
transpire-tion 
when soil 
moisture deficit 
reaches a 
threshold 
(Martín-Gómez 
et al. 2017)  

structural 
plasticity 
according to 
environ-mental 
conditions 
(Sabaté et al. 
2002) 

Dramatic 
decrease in 
photosyn- 
thesis 
(Calama 
et al. 2013) 

High 
evapotrans- 
piration rates 
(Gazol and 
Camarero 
2016) 

Reduced 
photosyn- 
thesis under 
mild 
drought 
condition 
(Marozas 
et al. 2019) 

stomatal-limited 
photo-synthesis, 
reduced assimila- 
tion 
(Voltás et al. 2020) 

genetic 
variability and a 
high degree of 
phenotypic 
plasticity to 
water availabili- 
ty  
(Aranda et al. 

2014) 

Higher SLA and 
lower leaf 
thickness  

early 
phenology 
(Ramírez- 
Valiente et al., 
2020) 

osmotic adjustment to increase 
tolerance to drought  
(Aranda et al. 2020)  
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Because of its minimal data requirement but high explanatory strength, 
this index has been widely used to describe drought conditions or aridity 
of a region (Bielak et al. 2014). The higher the index, more water supply 
is available for tree growth. 

DMI =
P

T + 10
(2)  

DMIsummer =
Psummer

Tsummer + 10
(3) 

In our study, DMI ranged between 19.9 and 66.1 mm ◦C− 1 (mean =
45.9 mm◦C− 1), and DMIsummer from 1.5 to 16.2 mm◦C− 1 (mean = 8.4 
mm ◦C− 1). According to the De Martonne index climatic classification 
(Baltas 2007), the case studies ranged from semi-dry (in central Spain) to 
very humid categories (in south-eastern Germany) (Table A1). 

2.4. Selection of site specific drought events 

To study the effect of drought events on tree growth, we selected for 
each case study those years with drought conditions that have nega
tively affected tree growth (namely, site-specific drought events). These 
site specific drought events had to meet two conditions (see Steckel et al. 
(2020) for more details): (1) they must be considered as drought years, 
based on climatic conditions; and (2) they must have significantly 
reduced tree growth (namely, pointer years). 

For this purpose, we first selected drought years using the climate 
data. Drought years were identified by means of the Standardized Pre
cipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 
2010) that was calculated using the SPEI R package. This procedure 
ensures that the observed meteorological anomaly is reflected by 
drought stress suffered by the individual trees (Steckel et al., 2020). The 
SPEI is a multi-scalar drought index based on a monthly balance of 
precipitation and potential evapotranspiration (PET) that estimates the 
drought intensity, according to its strength and duration. In our study, 
PET was calculated for a time span of six months using the Thornthwaite 
equation (Thornthwaite, 1948). An SPEI value below (-1) corresponded 
to a dry period and SPEI values above (+1) corresponded to wet periods. 
Following Steckel et al. (2020), we considered drought years those that 
displayed at least one month with an SPEI ≤ -1 during the growing 
season. The growing season corresponded to those months with mean 
minimum temperature above 10 ◦C. 

Secondly, we identified negative pointer years, that is, years that 
showed a remarkable reduction in tree growth at the individual level. 
We used the pointerRES R package (Van der Maaten-Theunissen et al., 
2015) that uses the normalization in a moving window, relating tree 
growth in a year to the average growth of a fixed number of preceding 
years. In our study, we used a window width of four years. Years were 
considered as pointer when at least 60% of the de-trended BAI series of 
at least one of the two species in the monospecific plots of each study site 
showed an episode that indicated a growth decrease of 75% compared to 
the mean value. 

Lastly, in order to confirm that these periods of growth reduction 
corresponded to drought conditions rather than to other biotic (e.g. 
pests and diseases) or abiotic (e.g. frosts) factors, we chose years that 
were both drought years and pointer years. Site specific drought events 
were then used to evaluate the relationship between the reduction in 
tree growth and drought in monospecific and mixed stands. 

The effect of drought events on tree growth was assessed for the 
period 1975–2015. As mentioned before, drought events were specific to 
each case study. The final number of drought events for each case study 
ranged from one to five (Table A1). 

2.5. Growth responses to specific drought events 

For each specific drought event and sampled tree, we calculated the 
tree drought response indices proposed by Lloret et al. (2011): resistance 

(Rt) (Eq. (4)), recovery (Rc) (Eq. (5)) and resilience (Rs) (Eq. (6)). The 
resistance index Rt quantifies the ratio between tree growth during the 
drought event (GD) and the mean growth during some previous years 
(GPreDr). Thus, it quantifies the capacity of trees to cope with drought 
stress, being able to continue to grow during drought. A value of Rt =
100 indicates complete resistance. The recovery index Rc quantifies the 
ratio in growth between the period after (GPostDr) and during the drought 
event (GD). It describes the ability of trees to resume growth after the 
drought event. A value of Rc = 100 indicates the persistence of the 
growth level during the drought event, Rc < 100 indicates further 
decline and Rc > 100 indicates a recovery from the growth level during 
the drought event. The resilience index Rs quantifies the ratio in tree 
growth after (GPostDr) and before (GPreDr) the drought event. Thus, it 
measures the capacity of trees to recover the growth rates observed 
before the drought event. Values of Rs = 100 indicate a full recovery, Rs 
> 100 an increased growth after the drought event, while Rs < 100 
indicates growth decline. 

Rt =
GDr

GPreDr
*100 (4)  

Rc =
GPostDr

GDr
*100 (5)  

Rs =
GPostDr

GPreDr
*100 (6) 

The Lloret indices have been used for a large variety of research 
topics, across a large number of species, which cover different growth 
characteristics, forest types and climatic regions. Although widely used, 
there has been some critique regarding the interpretation of the results 
using these indices due to the hypothesized trade-off between recovery 
and resistance, not being clear which of these two indices is more 
important to overall resilience (Schwarz et al. 2020). Complementing 
these three indices with the relative resilience index (RRs) (Eq. (7)) 
could mitigate these effects, as this index accounts for the damage 
experienced during disturbance (LLoret el al. 2011). The rationale of 
RRs is that the ability to achieve the levels of pre-disturbance perfor
mance depends on the impact (ie., tree growth reduction) during 
disturbance. Values of RRs < 100 indicates that the effect of the event 
persists after disturbance, with lower values indicating decreasing 
resilience. High resistance to the disturbance reduces to relative resil
ience, while low resistance increases RRs. 

RRs =
GPostDr − GDr

GPreDr
*100 (7) 

All four indices were obtained from de-trended BAI series for all 
individual trees. Tree growth for the periods before (GPreDr) and after 
(GPostDr) the drought event were calculated as the average growth during 
the four years before or after the drought event. We used a period of four 
years because it was assumed to be more robust than results obtained for 
2 or 3 years. 

2.6. Data analysis 

To test our hypotheses we studied how the four components of the 
growth response to drought varied as a function of stand composition. 
Models were fitted separately using Rt, Rc, Rs and RRs response vari
ables. We constructed linear mixed-effect models including case study 
and drought event as random effects, in order to cope with the lack of 
independence associated with observations at that level. All fitted 
models were visually checked for homoscedasticity and normal distri
bution of the residuals (Zuur et al. 2009, 2010). All statistical analysis 
were performed using SAS® PROC MIXED. 

The different hypotheses were tested by including and checking the 
level of significance of different continuous or categorical explanatory 
covariates (see Table A3). 
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Hypothesis I: Tree growth response to specific drought events dif
fers between mixed and monospecific stands 

To test whether there was a general effect of stand composition 
(mixed vs monospecific) on the response components of tree growth to 
specific drought events we fitted Eq. (8) to the whole database. 

Yijkl = μ+ SCMjk +CSk +Dkl + εijkl (8) 

where Y refers to the response variable (Rc, Rt, Rs or RRs); SCM 
represents the fixed effect for stand composition (Mixed or Mono
specific); CS and D are random effects of case study and drought event, 
respectively, D being nested into the case study. Finally, μ is the inter
cept of the model and εijklrepresents the independent and identically 
distributed residual error. Subscripts i, j, k and l refers to the ith tree 
within the jth plot of the kth case study, for the lth drought event. 

Hypotheses II: The benefits of mixture to cope with drought events 
cannot be generalized to the three types of admixtures found (conifer-conifer, 
conifer-broadleaved and broadleaved-broadleaved) 

To check whether the effect of stand composition (mixed vs mono
specific) on tree growth response to drought events were dependent on 
the three types of admixtures found (TM, Table A3), we fitted Eq. (9). 

Yijkl = μ+TMk + SCMjk + [TMxSCM]jk + CSk +Dkl + εijkl (9) 

Hypotheses III: Tree growth response to drought events in mono
specific and mixed stands is mediated by the identity of tree species 

To test this hypothesis we first fitted Eq. (10). 

Yijkl = μ+ Speciesi + SCMjk + [SpeciesxSCM]jk + CSk +Dkl + εijkl (10) 

If a significant effect of the species was detected, we refitted Eq. (8) 
separately for each species in order to analyze their response in mono
specific and mixed stands 

In addition, in order to check the differences in growth response for a 
given tree species between monospecific and mixed stands, we fitted Eq. 
(9) separately, for those species that were present in more than one case 
study (Pinus pinaster, P. sylvestris, Fagus sylvatica, Picea abies, Abies alba, 
Quercus petraea). 

Hypothesis IV: Tree growth response to drought events in mono
specific and mixed stands varied along an aridity gradient. 

To test this hypothesis we expanded Eq. (8) by adding as explanatory 
covariate the general De Martonne aridity index during the studied 
period (1975–2015) at each case study (Eq. (11)): 

Yijkl = μ+ SCMjk + DMIjkl + [SCMxDMI]jkl + CSk +Dkl + εijkl (11) 

Hypothesis V: Tree growth response to drought events in mono
specific and mixed stands depends on stand characteristics (basal area 
and age) 

To analyze the influence of stand characteristics (basal area and age) 
at plot level on tree growth response to drought events in mixed vs 
monospecific stands, we expanded Eq. (8) by adding as explanatory 
covariates the basal area (BA) and the age (Age) of the plot at the time of 
the drought event (Eq. (12) and Eq. (13)): 

Yijkl = μ+ SCMjk + BAjkl + [SCMxBA]jkl + CSk +Dkl + εijkl (12)  

Yijkl = μ+ SCMjk + Agejkl + [SCMxAge]jkl + CSk +Dkl + εijkl (13) 

The full methodology is summarized in Figure A2. 

3. Results 

3.1. Influence of stand composition (monospecific vs mixed stands) on 
tree growth response to specific drought events 

When considering the whole database with 30 case studies (Hy
pothesis I) we observed that overall mixed stands showed greater 
resistance (P-value = 0.0564), resilience (P-value < 0.0001) and relative 
resilience (P-value = 0.0283) compared to monospecific stands, while 

no significant differences were detected for recovery (Fig. 2). Interest
ingly, monospecific stands showed a slight growth decline after the 
drought event (Rs = 99%), while growth slightly increased in mixed 
stands after the drought event (Rs = 102%). Despite these general 
trends, we detected a large variability among case studies, even for those 
case studies that share the same species composition and have similar 
climates (Figure A3). 

3.2. Influence of the type of admixture (conifer-conifer, conifer- 
broadleaved and broadleaved-broadleaved) on tree drought response in 
monospecific and mixed stands 

The effect of species mixing on drought responses varied with the 
type of admixture (Hypothesis II), as stated by the significant interaction 
effect of stand composition × type of admixture for Rc (P-value =
0.0250), Rt (P-value = 0.0458) and Rs (P-value = 0.0499) (Table A4, 
Fig. 3). Mixed stands in broadleaved-broadleaved (P-value = 0.0458) 
and conifer-broadleaved (P-value = 0.0045) admixtures were more 
resistant to drought than monospecific stands. Resilience in mixed 
stands was also greater than in monospecific stands for these two types 
of admixtures (P-value = 0.0696 in broadleaved-broadleaved and P- 
value < 0.0001 in conifer-broadleaved admixtures). Trees in the three 
types of admixtures resumed growth after the drought event, but only in 
the conifer-conifer admixtures did mixed stands show higher recovery 
(P-value = 0.0289). Mixed stands in the conifer-conifer admixtures 
showed greater relative resilience compared to monospecific stands (P- 
value = 0.0510). 

3.3. Influence of tree species identity on tree drought response in 
monospecific and mixed stands 

The effect of drought on tree growth (Hypothesis III) differed be
tween tree species (Table A5). As we detected a large significant effect of 
the species on the indices, and on the interaction between stand 
composition and tree species in recovery, resistance and relative resil
ience, we analyzed the response of each species separately in mono
specific and mixed stands (Fig. 4). While recovery, resistance and 
relative resistance differed between species, both in monospecific (P- 
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Fig. 2. Estimated growth responses to drought (GDr), and growth levels before 
(GPreDr) and after (GPostDr) drought for pure (black line) and mixed stands 
(dashed lines) according to Eq.(7). Due to the relation to growth before 
drought, GDr represents Resistance (Rt) and GPostDr represents Resilience (Rs). 
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value < 0.0001) and mixed stands (P-value < 0.0001), resilience 
differed between species only in monospecific stands (P-value =
0.0053). The greatest recovery was shown in Pinus pinea for mono
specific and mixed stands, while the lowest values were observed in 
Abies alba for monospecific stands and for Quercus pubescens in mixed 
stands. The greatest resistance was shown for Pinus nigra in monospecific 
stands and for Quercus pubescens in mixed stands, while the lowest values 
were shown for Quercus pyrenaica in monospecific stands and for Pinus 
pinea in mixed stands. Greater resilience was shown for Quercus pubes
cens in monospecific stands and Pinus pinea in mixed stands, while the 
lowest values were shown for Quercus pyrenaica for monospecific and 
mixed stands. Greatest relative resilience was shown in Pinus pinea, both 
in monospecific and mixed stands, while the lowest values were shown 
for Pinus nigra in monospecific stands and for Abies alba in mixed stands. 

When focusing on the tree species that were present in different 
admixtures, we found that the species differed in their response patterns 
to drought (Table A5). Pinus pinaster (P-value < 0.0001), Fagus sylvatica 
(P-value = 0.0020) and Abies alba (P-value = 0.0579) showed a greater 
resistance in mixed stands compared to monospecific stands, although 
Pinus pinaster and Fagus sylvatica in mixed stands showed lower recovery 
(P-value = 0.0003 for Pinus pinaster, P-value < 0.0001 for Fagus syl
vatica) and relative resilience (P-value = 0.0262 for Pinus pinaster, P- 
value = 0.0035 for Fagus sylvatica). Pinus sylvestris (P-value = 0.0357) 
showed higher resistance in monospecific stands, but lower recovery (P- 
value = 0.0011). Pinus pinaster (P-value = 0.0662), Picea abies (P-value 
= 0.0389), Pinus sylvestris (P-value = 0.0148), Quercus petraea (P-value 
= 0.0004) and Larix decidua (P-value = 0.0407) showed a significantly 
higher resilience in mixed stands compared to monospecific stands. 
Larix decidua (P-value = 0.0465), Picea abies (P-value = 0.0269) and 
Pinus sylvestris (P-value < 0.0001) showed a significantly higher relative 
resilience in mixed stands compared to monospecific stands. 

If we analyzed in more detail the response to drought of the species 
according to whether it is accompanied by a conifer or a broadleaved 
species (Table 2), we found that Fagus sylvatica was more resistant in 
mixed stands, both when mixed with a conifer (P-value = 0.0173) and a 
broadleaved species (P-value = 0.0261), while the recovery was greater 
in monospecific stands (P-value = 0.0004 when mixed with a conifer, P- 
value = 0.0798 when mixed with a broadleaved species). Relative 
resilience in Fagus sylvatica was greater in monospecific stands when 
mixed with a conifer (P-value = 0.0086). Pinus sylvestris resilience (P- 
value < 0.0001), relative resilience (P-value < 0.0001) and recovery 
from drought (P-value = 0.0027) only increased when mixed with a 
broadleaved species, but not with a conifer. Abies alba and Pinus pinaster 
resistance to drought increased when mixed with a broadleaved species 
(P-value = 0.0068, P-value < 0.0001, respectively), but not with a 
conifer, and the recovery was greater in monospecific stands (P-value =
0.058, P-value < 0.0001, respectively). Relative Resilience of Pinus 
pinaster was greater in pure stands when mixed with a broadleaved 
species (P-value = 0.0275). Resilience of Quercus petraea was greater 
both when mixed with a conifer (P-value = 0.0075) and a broadleaved 
species (P-value = 0.0161). 

3.4. Influence of the site aridity gradient (De Martonne index) and stand 
characteristics (basal area and age) on tree growth response to specific 
drought events in monospecific and mixed stands 

Resilience to specific drought events was not constant along the site 
aridity gradient (Hypothesis IV). Thus, resilience increased under drier 
site conditions (P-value = 0.0311) (Table A6, Fig. 5). The increase in 
resilience in drier sites was not significantly different in monospecific 
compared to mixed stands (non-significant interaction between stand 
composition and DMI), although a trend to higher resilience was 
observed in mixed stands in the drier sites (Fig. 5). This effect was found 
for relative resilience, i.e., higher relative resilience in mixed stands in 
the drier sites (P-value interaction = 0.0854). 

Stand basal area and stand age (Hypothesis V) had also a significant 
effect on the growth response to drought, both in monospecific and 
mixed stands (Table A6, Fig. 6). Stands with older trees were more 

Fig. 3. Resistance (Rt), Recovery (Rc), Resilience (Rs) and Relative resilience 
(RRs) to drought events in pure (dashed) vs mixed (white) stands according to 
the type of admixture (Hypothesis II, Eq. (9)) Bars show standard errors. As
terisks indicate significant differences between pure and mixed stands within an 
admixture type (*P < 0.1; **P < 0.05; ***P < 0.001; ****P < 0.0001). 
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Fig. 4. Amoeba diagrams for pure and mixed stands representing Resistance (Rt), Recovery (Rc), Resilience (Rs) and Relative Resilience (RRs) for the eleven species 
studied. The value 1 represents the maximum value observed for Rt, Rc or Rs in pure or mixed stands. 
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resistant (P-value < 0.0001) to drought, as well as more resilient (P- 
value = 0.0658) and with greater relative resilience (P-value = 0.0014). 
Stands with higher stand basal area were also more resistant (P-value <
0.0001) and resilient (P-value < 0.0001) to drought events. The signif
icant interaction between stand age and stand composition for resistance 
(Rt) (P-value = 0.0545) indicated a greater effect of stand age in mixed 
stands than in monospecific stands. Regarding recovery (P-value =
0.0135) and relative resilience (P-value = 0.0024), mixed stand showed 
lower recovery and lower relative resilience with increasing age, while 
monospecific stands recovery and relative resilience remained relatively 
constant with age. The significant interaction between stand basal area 
and stand composition for resilience Rs (P-value = 0.0045) indicated 
that mixed stands with greater basal area recovered better from drought 
than monospecific stands. 

4. Discussion 

In line with a number of recent studies (e.g. Pretzsch et al. 2013; 
Metz et al. 2016; Jucker et al. 2016; Steckel et al., 2020), our results 
using a large database from thirty case studies covering a wide climatic 
gradient and including eleven common tree species in Europe indicated, 
on average, a positive effect of mixing on tree growth response to 
drought, especially on resilience and relative resilience and to a lesser 
extent on resistance. However, we found a large species-specific vari
ability in growth response to drought in monospecific and mixed stands, 
being mediated by the type of admixture and more particularly the as
sociation of conifers and broadleaves. Moreover, the general positive 
effect of mixing on resilience to drought was influenced by stand age and 
basal area, while relative resilience was influenced by stand age. 
Meanwhile, the resilience along an aridity gradient decreased both in 
monospecific and mixed stands, although higher resilience to drought 
was observed in the Mediterranean case study (SP1) characterized by 

the driest and hottest environment. Additionally, this case study showed 
higher relative resilience. These findings confirm the general trend to
wards improved resilience of mixed forests. It is important to note that 
while these correlative studies are important, they have not proven to be 
adequate for predicting which mixtures and on which sites certain 
species will be appropriate (Grossiord 2019). Meanwhile, process-based 
approaches, including models and carefully designed experiments, can 
be of great help to predict the growth limitations to climate and species 
interactions, and therefore these could be used as well (e.g. Pretzsch 
et al., 2015). 

The indices studied displayed different patterns across the case 
studies. The negative correlation observed between resistance to 
drought and recovery from drought has been previously reported 
(Galiano et al., 2010; Thurm et al. 2016; Gazol et al. 2017). According to 
Steckel et al. (2020) the negative relationship suggests a trade-off be
tween both indices, and could be attributed to more nutrients available 
following low growth episodes in monospecific stands than in mixed 
stands. Thus, under the improving belowground resources that follow a 
drought event, the relationship between species may change from pos
itive to negative, which is in line with the stress gradient hypothesis 
(Maestre et al. 2009) and Forrester’s framework (Forrester, 2014). 

4.1. Monospecific and mixed stands respond differently to drought events 

Our results show that tree species mixing can have a significantly 
positive effect on forest response to drought, which means that trees 
have greater resistance, resilience and relative resilience when growing 
with heterospecific neighbours than when growing with conspecifics 
(Fig. 2). Favourable interactions between heterospecific neighbours in 
mixed stands generally increase forest resistance to natural disturbances 
and environmental fluctuations (Pretzsch et al. 2013; Jactel et al. 2017), 
which suggests that trees might be able to sustain growth even under 

Table 2 
Results of the linear mixed models for hypothesis III (Eq. (9)), for those species that are found both mixed with conifers and broadleaves (ns: non-significant at P > 0.1). 
Highest value of each mixed/pure pair is in bold when differences are significant.  

Species Type of companion species Stand composition 
(SCM) 

Resistance  

Rt (%) 

Recovery  

Rc (%) 

Resilience  

Rs (%) 

Relative resilience 
RRs (%) 

Fagus sylvatica conifer Mixed 
Pure 

88.65 
82.19 

130.52 
156.34 

100.58 
101.43 

12.8 
20.1   

P-value 0.0137 0.0004 ns 0.0086  
broadleaved Mixed 

Pure 
72.23 
68.03 

153.17 
165.62 

95.04 
93.78 

27.3 
30.2   

P-value 0.0345 0.0668 ns 0.2083 
Pinus sylvestris conifer Mixed 

Pure 
85.35 
89.00 

134.64 
130.20 

105.42 
107.24 

21.0 
19.6    

0.0245 ns ns 0.4669  
broadleaved Mixed 

Pure 
76.91 
78.44 

152.54 
141.77 

103.58 
98.63 

26.2 
19.9   

P-value ns 0.0027 <0.0001 <0.0001 
Abies alba conifer Mixed 

Pure 
67.50 
60.76 

201.85 
167.64 

101.31 
89.92 

33.8 
29.2   

P-value ns ns ns 0.5623  
broadleaved Mixed 

Pure 
97.06 
83.81 

118.04 
150.7  

101.10 
101.92 

15.7 
18.1   

P-value 0.0068 0.0158 ns 0.1478 
Pinus pinaster conifer Mixed 

Pure 
72.89 
74.26 

160.39 
161.35 

107.52 
107.59 

34.6 
33.3   

P-value ns ns ns 0.4403  
broadleaved Mixed 

Pure 
58.40 
49.09 

165.11 
197.29 

92.63 
89.18 

34.3 
40.1   

P-value <0.0001 <0.0001 ns 0.0275 
Quercus petraea conifer Mixed 

Pure 
80.36 
77.61 

151.77 
153.92 

101.50 
97.76 

21.0 
20.0   

P-value ns ns 0.0075 0.6769  
broadleaved Mixed 

Pure 
78.85 
76.66 

127.92 
125.97 

96.44 
92.60 

17.6 
16.0   

P-value ns ns 0.0161 0.3697  
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suboptimal growing conditions (e.g. del Río et al. 2014; Pretzsch et al. 
2013; Forrester 2014). Greater resistance and resilience in mixed stands 
are mainly explained by two interconnected processes, which are 
reduced competition through niche partitioning (Jucker et al. 2014) and 
facilitation (Vandermeer, 1989; Steckel et al., 2020). In terms of niche 
partitioning, the development of multi-layered canopies in mixed 
stands, with different crown architecture and phenology, where shade 
tolerant species can establish below taller, light demanding species, may 
enable an efficient complementary light use (Binkley et al., 2003; 
Sapijanskas et al., 2014 and Forrester et al., 2018). This can allow mixed 
forests to exploit canopy space more efficiently (Morin et al. 2011, 
Pretzsch 2014; Toïgo et al. 2018), thereby maximizing light interception 
(Ammer 2019), even under drought conditions. Similar belowground 
complementarity may occur when there is a partitioning in the use of 
water resources in the soil. Thus, some species that extend their root 
systems towards deeper soil layers can coexist with others that occupy 
superficial layers. Underlying facilitation processes such as hydraulic lift 
and higher functional diversity of the fungal community can also 
improve water access and use in mixed stands (Grossiord et al. 2014). 
Higher relative resilience can be interpreted in two ways, as it can reflect 
either higher buffer capacity to recover or compensating positive effects 
of the impact via increased neighbour mortality and resource avail
ability to surviving trees (Lloret et al. 2011). 

4.2. The benefits of tree mixing to cope with drought events depend on the 
type of admixture (conifer-conifer, conifer-broadleaved and broadleaved- 
broadleaved) 

The strength of the positive effect of mixed stands on drought 
response varied considerably with the type of admixture, being mainly 
observed in conifer-broadleaved admixtures, and to a lesser extent in 
broadleaved-broadleaved admixtures (Table A4, Fig. 3). Mixed stands 
formed only by conifers likely exhibit higher competition and niche 
overlapping due to more similar species traits, whereas in conifer- 
broadleaved admixtures, belowground partitioning and spatiotemporal 
niche separation between species may drive complementary or asyn
chronic response to drought (de Dios García et al. 2018). The trait 
complementarity between conifer and broadleaved species can result in 
improved exploitation of underground water resources, as their root 
morphology and architecture differs considerably (Ammer 2019). Co
nifers and broadleaves in mixed stands are known to utilize deep water 
resources more efficiently than in monospecific stands and even exhibit 
complementarity for limited water resources (Bello et al. 2019). In this 
type of admixtures, broadleaves (mainly Quercus species) play an 
important facilitating role. They drive a hydraulic lift under drought 
conditions, thereby increasing the water available in the upper soil 
layers (Steckel et al. 2020) that could be more easily used by the shallow 
root system of the conifers, thus, increasing resistance to drought. 
Furthermore, different growth dynamics such as the date of budburst, 
radial growth onset and contrasting patterns of carbon allocation (e.g. 
Michelot et al. 2012; Zweifel et al. 2006), together with differences in 
optimum temperature for photosynthesis in broadleaves compared to 
conifers, may also favour complementarity effects (de Dios García et al. 
2018). Conifer-conifer mixtures did not differ in terms of resistance and 
resilience with monospecific conifer stands, which could be linked to 
their more similar traits and mainly isohydric behaviour (Table 1). 
However, these mixtures showed a better recovery than the respective 
monospecific stands. We can hypothesize that as conifers show in gen
eral a drought avoidance strategy (see Table 1 for references), niche 
complementarity between them may help during the recovery phase. 

In our study, we found that the type of mixture matters not only at 
the functional or phylogenetic level (i.e. conifer vs broadleaved) but also 
at the tree species composition level (Table A5, Fig. 4), pointing out to a 
species identity effect (Forrester et al. 2016). According to Anderreg 
et al. (2018) and Fichtner et al. (2020), positive effects of mixing in
crease with increasing taxonomic diversity of neighbours, mainly, with 

Fig. 5. Relationships between the De Martonne aridity index and Resistance 
(Rt), Recovery (Rc), Resilience (Rs) and Relative Resilience (RRs) to drought 
events in mixed (blue line) and pure stands (red line) Hypothesis IV, Eq. (10)). 
Confidence intervals are shown. Points represent mean values per case study for 
mixed (blue points) and pure stands (red points). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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species hydraulic traits. Let us focus on the two species (Pinus sylvestris 
and Fagus sylvatica) that are most commonly found in the different case 
studies (Table 2). The positive effect of mixing could be explained by a 
complementarity effect that arises from facilitation (one species im
proves the environmental conditions for another species) or reduced 
competition (niche differentiation), although both types can be present 
at the same time (Forrester and Bauhus 2016). Thus, the isohydric, 
drought sensitive Pinus sylvestris would benefit from species mixture 
when growing with anisohydric broadleaved species such as Fagus 

sylvatica or Quercus petraea. Furthermore, the differences in the demands 
for light between the species (e.g. shade tolerance, crown architecture 
and leaf phenology) could favour their complementarity (e.g. pioneer, 
shade intolerant Pinus sylvestris vs late-successional, shade tolerant Fagus 
sylvatica) (Pretzsch et al. 2015; Pretzsch et al. 2019), although this was 
not clearly observed in our study. Fagus sylvatica was found to exhibit 
higher resistance to drought when mixed with both conifers (Picea abies, 
Abies alba, Pinus sylvestris or Pinus nigra) and broadleaves (Quercus pet
raea or Quercus pubescens), while the recovery and relative resilience was 

Fig. 6. Relationships of stand basal area (A) and stand age (B) with Resistance (Rt), Recovery (Rc), Resilience (Rs) and Relative Resilience (RRs) to drought events in 
mixed (blue line) and pure stands (red line) (Hypothesis V, Eqs. (11) and (12)). Confidence intervals are shown. Points represent mean values per case study for mixed 
(blue points) and pure stands (red points). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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greater in monospecific stands compared to mixed stands. Thus, it seems 
that Fagus sylvatica can benefit from the mixture in terms of resistance to 
drought, irrespective of the type of admixture. It has been shown that 
Fagus sylvatica strongly determines the microclimate when mixed with 
other species (Heinrichs et al. 2019), usually benefiting more from the 
mixture than its neighbours. 

4.3. Drought responses in monospecific and mixed stands along the site 
aridity gradient 

Resilience and relative resilience to specific drought events were not 
constant along the site aridity gradient (Table A6, Fig. 5). Thus, we 
observed how both indices increased in those sites with drier conditions, 
ie, with lower De Martonne index. Several studies have reported drier 
forests to be more adaptable to the future drought events than the wetter 
forests (Zang et al. 2014). However, there is not a general consensus, 
when comparing monospecific vs mixed stands located along an aridity 
gradient, if the facilitative processes among coexisting species in a 
mixture will be more beneficial in drought-prone environments (Ruhk 
et al. 2020). In our study, the increase in resilience to drought events 
along the site aridity gradient was not significantly different in mono
specific compared to mixed stands, although a trend towards higher 
resilience was observed in mixed stands in the drier sites along the 
gradient. In particular, higher resilience and relative resilience to 
drought was observed in mixed stands in the most drought-prone case 
study, which corresponded to the Mediterranean continental case study 
SP1 (Table A1), characterized by a high acclimation to high drought 
stress intensity (de-Dios-García et al., 2015). However, based on our 
results, the overall pattern we found along the studied site aridity 
gradient was not consistent with the stress-gradient hypothesis, which 
suggests that facilitation occur more frequently and are more important 
under drier sites (Grossiord et al. 2014). 

4.4. Stand basal area and age affect growth response to drought in mixed 
and monospecific stands 

Based on our observations, both basal area and stand age signifi
cantly affected the growth response to drought in the studied stands 
(Table A6, Fig. 6). Stands with greater basal area were more resistant 
and resilient to drought than stands with lower basal area. This result 
may suggest that trees in denser plots tend to grow more than expected 
in drier years, a result that has been previously found in drought-prone 
sites, resulting in an attenuated effect of competition (Calama et al. 
2019). 

Older stands were more resistant and resilient to drought, this effect 
being greater in mixed stands than in monospecific stands. The lower 
sensitivity to drought with age has been observed in other tree species 
(Thurm et al. 2016; Carrer and Urbinati 2006). Drought stress may 
decrease with increasing age as trees get better access to water in deeper 
soil layers by their extended root systems (Pretzsch et al. 2018). How
ever, it has been also hypothesized that hydraulic constraints increase 
with tree age, which would lead to an increase in drought stress sensi
tivity in some tree species (Carrer and Urbinati 2004). The lack of uni
formity in trees responses of different ages to drought reflects the 
complexity of climate-growth relationships. 

5. Conclusions 

Overall, tree species mixing seems to provide forests with greater 
resistance and resilience to drought events, but these average effects 
cannot be generalized to all types of admixtures. The more resilient 
mixed-species forests combines conifer and broadleaved species, and to 
a lesser extent broadleaved and broadleaved species, suggesting the 
importance of functional traits diversity and complementarity and the 
general observation that diversity – ecosystem functioning relationships 
are context dependent (Ratcliffe et al. 2017). In addition, we found that 

the benefit of mixing species was similar to monospecific stands along 
the studied site aridity gradient, although a greater resilience and rela
tive resilience to drought was observed in the driest environmental 
conditions. Last, the observed response patterns to drought largely 
varied among the eleven studied species. Such complex interactions 
between species composition and site conditions makes it difficult to 
predict how tree mixing may improve the resistance and resilience of 
mixed-species forests to drought. As mentioned before, process-based 
approaches could be useful for such predictions. Long-term studies are 
now needed to understand how monospecific and mixed forests can 
adapt to the more frequent and intense droughts they will experience 
under climate change. 
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Pardos, M., 2019. Linking climate, annual growth and competition in a 
Mediterranean forest: Pinus pinea in the Spanish Northern Plateau. Agric. For. 
Meteor. 264, 309-321. 
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