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Abstract  19 

Hexoses and disaccharides are the key carbon sources for essentially all physiological 20 

processes across kingdoms. In plants, sucrose, and in some cases raffinose and stachyose, 21 

are transported from the site of synthesis in leaves, the sources, to all other organs that 22 

depend on import, the sinks. Sugars also play key roles in interactions with beneficial and 23 

pathogenic microbes. Sugar transport is mediated by transport proteins that fall into super-24 

families. Sugar transporter (ST) activity is tuned at different levels, including transcriptional 25 

and posttranslational levels. Understanding the ST interactome has a great potential to 26 

uncover important players in biologically and physiologically relevant processes, including, 27 

but not limited to Arabidopsis thaliana. Here, we combined ST interactions and co-28 

expression studies to identify potentially relevant interaction networks  29 
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Identifying an arabidopsis sugar transporter interaction network 33 

Plant sugar transport relies on hexose- and sucrose-transport proteins belonging to the 34 

major facilitator superfamily (MFS) [1], including SUTs/SUCs (SUCrose Transporters/Sucrose 35 

Carriers), and MSTs (Monosaccharide Transporters) and a new class of transporters, the 36 

SWEETs. The first SUTs were identified in the 1990’s from plant cDNA libraries (SoSUT1 from 37 

Spinacia oleracea and StSUT1 from Solanum tuberosum) using suppression cloning in a 38 

Saccharomyces cerevisiae mutant [2,3]. The SUT family is the smallest family of plant-based 39 

sugar transporters (STs) and its members are key players in long-distance transport of sugars 40 

from source to sink. The MST family is the largest family of plant STs; their locations and cell 41 

functions are quite diverse, but the role of the individual members is still poorly 42 

characterized [4,5]. SWEETs were recently identified in plants, animals and some fungi [6,7]; 43 

they derive from another ancient class of transport proteins already found in archaea 44 

named Semi-SWEETs [8]. SWEETs are uniporters that mediate in- or efflux of sugars 45 

(sucrose, glucose, fructose). SWEETs are involved in many physiological processes including 46 

phloem loading, seed filling, nectar secretion, pollen nutrition [9-13], and play crucial roles 47 

as susceptibility factors in plant-microbe interactions [14-17].  48 

ST activity is determined by the number of transporters located in the membrane and by 49 

their transport rate (number of substrates transported per second), and is tightly controlled 50 

at transcriptional, post-transcriptional, translational and post-translational levels [18,19]. 51 

Several reports address the regulation of ST activity at the RNA level (e.g., SWEETs) [20] and 52 

by post-translational protein modifications [21-25]. In addition, the activity of several STs 53 

seems to be regulated via direct protein-protein-interaction (PPI) [26-32]. A significant 54 

fraction of cellular proteins exists in oligomeric states. Oligomerization may serve a variety 55 

of purposes - oligomerization may be advantageous for clustering transporters, for 56 

transporter stability in the membrane, may play roles in their delivery to target membranes 57 

and endocytosis and may have regulatory roles. A prominent example is the 58 

phosphorylation-mediated allosteric regulation, triggered by ammonium in a time- and 59 

concentration-dependent manner, of AMT activity [33]. Concerning ST, the importance of 60 

oligomerization has previously been demonstrated for SUTs/SUCs [34] and SWEETs [28]. ST 61 

interactions could contribute to many biological functions as signaling, sugar homeostasis at 62 

the cellular and organism levels and nutrient transfer in plant microbe interactions. Only few 63 
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experimental reports about the role of PPI for physiological function have been published; 64 

e.g. the interaction between a Flowering Locus T-like protein (StSP6A) and a SWEET in 65 

potato, linking sugar transport to photoperiodic pathways in the context of the regulation of 66 

source-sink relations [35], the interaction of tomato SUT2 (SlSUT2) with proteins involved in 67 

brassinosteroid signaling or synthesis that affects arbuscular mycorrhiza formation [36-37]. 68 

While experimental techniques such as the two-hybrid system have provided a partial view 69 

of ST interactome maps [38-47], understanding the ST interactome has a great potential to 70 

provide new insights into plant development, plant physiology, plant interactions with their 71 

abiotic and biotic environments. To address these questions, we screened the Membrane-72 

based Interaction Network Database (MIND) for Arabidopsis thaliana protein interactions 73 

[48] to identify candidate ST-interactors potentially involved in the regulation of carbon 74 

allocation in a wide range of conditions including abiotic or biotic stress. These candidates 75 

are putative interactors, as the MIND is based on a heterologous system and requires in 76 

planta validation.  77 

 78 

The Membrane-based Interaction Network Database (MIND) 79 

Membrane proteins mediate fundamental roles in many biological processes. Membrane 80 

proteins allow for transport of ions and metabolites, and protein trafficking across 81 

subcellular membranes. Some of the transporters (called transceptors) detect 82 

environmental stimuli and transduce signals into the cells; some catalyze chemical reactions 83 

[49]. The regulation of transport activity and the transduction of environmental signals 84 

depend to a substantial extent on interactions of membrane proteins with themselves 85 

(homodimerization), with other membrane proteins and / or with soluble proteins [50]. The 86 

mating-based split-ubiquitin system (mbSUS) paved the way for major advances in the 87 

identification of membrane protein interactions [51]. mbSUS identified homo-, hetero-, and 88 

oligomeric interactions in Arabidopsis, e.g., among K+ channels [52], between the Acyl-CoA-89 

binding protein ACBP6 and the plasmodesmata-located protein PDLP8 [53], among subunits 90 

of glutamate-like receptors (GLRs) [54], among aquaporins and kinase receptors [55]. Using 91 

mbSUS in yeast, 12.102 high-confidence membrane/signaling protein interactions were 92 

identified and recorded in MIND 93 

(https://associomics.dpb.carnegiescience.edu/Associomics/Home.html) [50,56]. More than 94 
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99% of the putative PPIs identified were previously unknown [56]. MIND data were partially 95 

validated in orthogonal in planta split-green fluorescent protein interaction assays at a rate 96 

of 32%, similar as the confirmation rate obtained for published interactions (38%) [56]. 97 

MIND also predicted PPIs within the membrane proteome of Arabidopsis roots that were 98 

confirmed by Size Exclusion Chromatography - Mass Spectrometry (SEC-MS) [57]. Split GFP, 99 

antibody-pulldown assays and Förster resonance energy transfer (FRET) for PPI studies are 100 

orthologous assays that can be used to validate candidates present in the MIND database. 101 

MIND allowed the identification of several interactions that were further confirmed by 102 

orthogonal systems, as for example between the possible cargo-receptor Cornichon and a 103 

Golgi-located sodium transporter in rice [58], as well as Cornichon with GLRs in Arabidopsis 104 

pollen [59]. 105 

 106 

Identification of putative sugar transporter interactors  107 

The present analysis did not retrieve all of the known interactions among STs [34,60]. This is 108 

not surprising as MIND was generated with a subset of the Arabidopsis proteome, and 109 

focused on interactions between membrane proteins. MIND thus did not cover all possible 110 

interactions (not all STs included, also not all possible interactors included). The total 111 

interaction network must thus be substantially larger. Despite the importance of STs in 112 

carbon allocation and plant-microbe interactions [61-64], there is a knowledge gap 113 

regarding ST activity regulation. Therefore, we used MIND to perform an in silico search to 114 

identify potential interactors of the 79 Arabidopsis STs (9 AtSUCs, 17 AtSWEETs, and 53 115 

AtMSTs; Figure 1). We ranked STs based on the number of their potential predicted 116 

interactors with 2+, 3+ or 4+ Interaction confidence, respectively. “Interaction confidence”, Fi, 117 

corresponds to the number of repeats in which a particular interaction tested positively for 118 

all three reporter genes (HIS3, ADE2 and LACZ) in MIND [56]. For example, 4+ Interaction 119 

confidence corresponds to the activation of the three reporter genes in two independent 120 

biological replicates. A 1+ Interaction confidence corresponds to the activation of a single 121 

reporter gene; it was not included in our analysis as it can lead to many false positives.  122 

The resulting ST interactome is a complex scale-free network with a dense central hub 123 

where large interaction nodes group together (Figure 1). Nodes with fewer putative 124 

interactors are present in the periphery of the hub (Figure 1). Out of the 79 STs, 34 (43%) 125 
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had at least one interaction (see online Supplemental Table S1), revealing a total of 920 126 

interactors with proteins such as a nitrate transporter (AtNRT1;1), AtRBOHD (Respiratory 127 

Burst Oxidase Homolog protein D) and the QC-SNARE SFT12 (soluble N-ethylmaleimide-128 

sensitive factor attachment receptor SFT12) (see below) (see online Supplemental Table S2).  129 

In the SUT family, 4 out of the 9 STs (45%) tested had putative interactors, while in the 130 

SWEET family, 10 STs out of 17 (59%) had putative interactors. In the largest family, namely 131 

the MSTs, 33 STs out of 53 (38%) could interact with other proteins.  132 

Among the largest interaction nodes, we identified AtSWEET5 (112 putative interactors), 133 

AtSWEET7 (57 putative interactors), MST At1g54730 (56 putative interactors), AtSUC2 (31 134 

putative interactors) and AtSUC4 (30 putative interactors). We detected two new putative 135 

interactions between STs not proposed before: between MST At3g05160 and AtSTP4, and 136 

between At3g05160 and AtSUC4. At3g05160 is a member of the Early Responsive to 137 

Dehydration 6-Like (ERD6 like) sub-family of MSTs. Members of the ERD6-like had been 138 

characterized as tonoplastic glucose exporters [65]. The interaction of At3g05160 with the 139 

tonoplastic sucrose importer AtSUC4 and the monosaccharide plasma membrane STP4 may 140 

be involved in the control of cellular sugar homeostasis in response to different stimuli by 141 

these interactions. This hypothesis is reinforced by the induction of AtSTP4 during pathogen 142 

infection [66] in order to transport sugars into the host cells and to reduce availability of 143 

sugars to the pathogen. All these putative interactions await independent validation (Box 1).  144 

 145 

Identification of genes co-expressed with sugar transporters and coding for ST interactors  146 

Co-expression network analysis (ATTED-II; http://atted.jp) [67] allowed to capture patterns 147 

of transcriptome organization whereby gene clusters and co-expression across diverse 148 

conditions are identified. Co-expression can indicate that genes are controlled by the same 149 

transcriptional regulatory pathway, may be functionally related, or be members of the same 150 

pathway or protein complex [68]. Here, within the set of proteins interacting with STs 151 

defined with MIND, we identified a small subset of genes encoding proteins that are co-152 

expressed with a ST using the ATTED-II database (Table 1). Out of the 34 genes of interacting 153 

STs, two did not show co-expression. Eight genes (Table 1) were significantly co-expressed 154 

with at least one other gene represented in ATTED-II, and the encoded proteins interact as 155 

well (MIND). Functions of proteins encoded by genes with a significant correlation with an ST 156 
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expression indicated possible crosslinks to ammonium transport, cell trafficking and 157 

signaling, and hormone regulation related to sugar transport.  158 

mRNA levels of the transmembrane protein gene encoded by At1G27290 were found to 159 

correlate with three STs (AtSTP4, AtESL1 and AtSFP1). The mRNA levels of the sugar 160 

transporter gene At1G67300 correlated with an uncharacterized Xanthine/uracil permease 161 

family protein, highlighting a possible crosslink between sugar and nitrogen 162 

transport/metabolism. Interestingly, the previously mentioned transmembrane protein 163 

(AT1G27290) is predicted to be an interactor of the dual-affinity nitrate transceptor 164 

AtNRT1;1 [69] in MIND. In roots, AtNRT1;1 is involved in nitrate uptake from the soil and 165 

nitrate signaling, participating in the regulation of primary root growth [70]. In addition to 166 

nitrate uptake, AtNRT1;1 functions as a nitrate sensor, regulating the primary nitrate 167 

response. In addition, evidence has been provided that AtNRT1.1 is associated with a 168 

modification of auxin transport in roots depending on nitrate concentration, defining a 169 

mechanism connecting hormone and signaling without any competition. When comparing 170 

the root RNA levels of AtSTP4 (At3G19930) between wild type and the chl1-5 mutant of 171 

AtNRT1;1, no RNA was detected in the mutant, indicating a loss of the connection between 172 

NRT1;1 and sugar transporter regulation [71]. Beside its role in the acquisition and sensing 173 

of nitrate from the soil, AtNRT1;1 is also expressed in guard cells promoting stomatal 174 

opening in the presence of nitrate. Finally, the possible link between Xanthine/uracil 175 

permease and the At1G6730 ST, as well as the indirect link of AtNRT1;1 and key putative 176 

sugar transport-related genes such as AtSTP4, AtESL1 and AtSFP1 through interaction with 177 

the transmembrane protein At1G27290 may indicate close regulatory connections between 178 

C and N transport and signaling for potential fine-tuning of the C/N ratio [72,73].  179 

Transpiration and water movement are affected both by stomatal aperture and hydraulic 180 

conductance. Previous studies implicated sucrose/hexoses in the regulation of aquaporin 181 

genes, which encoded water channels, in plant hydraulic conductivity and stomatal closure 182 

[74]. For instance, glucose addition reduced the movement of water from the xylem into the 183 

mesophyll, coordinating transpirational water loss via the regulation of several aquaporins 184 

[75]. Among STs, At1G54730 mRNA levels were highly correlated with aquaporin AtPIP1;5 185 

transcript levels, consistent with a role of both plasma membrane (PM) transporters in the 186 

need for parallel transport of sugar and water according to the Münch hypothesis.  187 



 7

The uncharacterized Xanthine/uracil permease family protein (At1G27290) is also predicted 188 

to be an interactor of AtSFT12 (At1g29060) in MIND, which can interact directly with a large 189 

number of STs (see online Supplemental Table S2). SFT12 belongs to the SNARE family, 190 

proteins that play critical roles in the fusion of endomembranes. More specifically, SFT12 is a 191 

Qc-SNARE localized in the Golgi apparatus [76]. Trafficking-related proteins were found as 192 

high-degree hubs (proteins with many interactions) involved in a regulatory association with 193 

receptors [56]. SFT12 interacted directly with two AtSUCs (SUC2 and SUC4), eight AtSWEETs 194 

(SWEET1, 3, 5, 7, 9, 12, 15 and 16) and 9 AtMSTs (STP4, INT1, INT4, VGT2, GLT1, SGB1, ESL1, 195 

At3g05400 and At4g04750), with 4+, 3+ or 2+ interaction confidence. One may argue that STs 196 

need this Qc-SNARE at the beginning of the secretory pathway en route to their final location 197 

by membrane trafficking. For example, SUC2/SUT1 is targeted to the plasma membrane 198 

[77], while AtSWEET16 is addressed to the tonoplast membrane [78,79]. Thus, the SNARE 199 

may interact with the transporters to help them get to their correct destination. Qc-SNAREs 200 

are specifically involved in vesicular transport during salt and osmotic stress responses and 201 

influence Na+ accumulation in vacuoles [76]. Since mRNAs of several ST genes are increased 202 

in response to environmental cues, thereby possibly impacting carbohydrate allocation 203 

[80,81], one can hypothesize that PPI between Qc-SNARE and STs could contribute to 204 

effective vesicular targeting of STs, or to subcellular dynamics of STs and recycling e.g. at the 205 

plasma membrane [82-84] to adjust the composition of vacuolar and plasma membrane and 206 

sugar flux to adjust osmolality.  207 

Another interesting result was that the Phosphoinositide phospholipase C (PLC) -like 208 

phosphodiesterase superfamily protein (At4G38690), which was co-expressed and was an 209 

interactor of AtINT1/AtINT1, also interacted with AtRBOHD in MIND. AtRBOHD is a 210 

membrane NADPH oxidase producing reactive oxygen species, for example during pathogen 211 

infection [85]. AtRBOHD interacted with AtSWEET11 (3+ interaction confidence), as well as 212 

with several proteins involved in the regulation of intracellular trafficking that interact also 213 

with several STs (4+ interaction confidence). Interestingly, some of the STs interacted with 214 

proteins involved in the regulation of intracellular trafficking. For example, the early 215 

endosome marker (the small GTPase Rab5, gene accession At5g49540) appeared to directly 216 

interact with 16 STs, and the prenylated Rab acceptor PRA1.E (gene accession At1g08770) 217 

had two direct interactions with two STs. Rab5 and PRA1.E interacted with each other, and 218 
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also with AtSWEET7 (4+ interaction confidence). The calcium-binding Annexin 1 (gene 219 

accession At1g35720) interacted with AtRBOHD and AtSWEET7. Annexins are described as 220 

regulators of membrane trafficking [86], and Annexin 1 is also involved in the response to 221 

salt stress and plant immunity [87]. These examples of ST-interacting proteins, which are 222 

related to membrane trafficking, signaling and environmental constraints, provide possible 223 

clues about the regulation of STs by PPIs. Localization of ST in mutants for genes encoding 224 

these ST-interacting proteins, would be of interest as it could highlight failures in the 225 

assembly of ST complexes in the endoplasmic reticulum or in their help for trafficking 226 

toward membranes. 227 

 228 

Concluding remarks 229 

Our findings highlight the importance of combining interactome and co-expression studies 230 

to detect potential crossroads of biological functions. Some STs appear to be crucial nodes 231 

and their functional characterization (Box 1) could help to improve our knowledge of their 232 

cellular interactions. Understanding these interactions is crucial to follow the sugar trade 233 

from cells to organs for plant nutrition and plant-microbe interactions. Interactome and co-234 

expression studies also reveal many targets that have so far not been linked to sugars. Here, 235 

we observed that some STs form large nodes of putative interactions while others interact 236 

only with few membrane proteins and/or at the periphery of membranes. We identified a 237 

large set of 920 candidate proteins interacting with 34 STs with various biological functions. 238 

Although a large proportion of these proteins has no known biological function to date, 239 

several are involved either in transport or in cellular processes as trafficking or signaling. 240 

Since MIND represents only a subset of all possible interactions, the network must be 241 

substantially larger. The MIND database is based on a library of 3233 membrane proteins 242 

and soluble signaling proteins, whereas at least several thousands of other membrane 243 

proteins exist and that many membrane proteins will interact with soluble proteins. It thus 244 

seems pivotal to generate both a complete interactome of membrane proteins, with 245 

membrane proteins and soluble proteins, and to link it with soluble protein interactome as 246 

developed by Trig and collaborators [88]. Such studies could then be further expanded by 247 

large-scale interactomes integrating responses to multiple conditions, and in diverse 248 

arabidopsis genetic backgrounds to gain a deeper knowledge in functional relationships and 249 
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potential network differences in arabidopsis, and by extent or comparative phylogenomics, 250 

in crops (see also outstanding questions).  251 
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 520 

Glossary  521 

Fi: Confidence of the interaction according to MIND (2+, 3+ and 4+), with 4+ the strongest 522 

interaction between two partners [53]. The 1+ Interaction confidence was excluded from the 523 

present analysis. 524 

Interactant: defined as Boolean; “True” if the connected node is a ST, “False” if the 525 

connected node is an NonST-PROT. 526 

Interactome: biological networks/interactions formed by and between molecules within a 527 

cell. 528 

MST: MonoSaccharide Transporter. 529 
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Node: A connection point that participates in a network. Here, it could be ST-type and 530 

NonST-PROT. 531 

SUT: SUcrose Transporter. Also called SUC: SUcrose Carriers 532 

SWEET: Sugars Will Eventually be Exported Transporter. 533 

Membrane trafficking: Process by which proteins and other macromolecules are distributed 534 

throughout cell organelles, and released to or internalized from the extracellular space, 535 

using membrane-bound vesicles. 536 

 537 

Figure Legend 538 

Figure 1. Global Arabidopsis interactome of 34 sugar transporters and 296 interacting 539 

proteins. To identify a network of proteins interacting with sugar transporters (see online 540 

Supplemental Table S2), the protein sequences encoding 9 AtSUTs, 17 AtSWEETs and 53 541 

AtMSTs (see online Supplemental Table S1) were used to interrogate the MIND Database 542 

(https ://associomics.dpb.carnegiescience.edu/Associomics/Home.html).  543 

Building the sugar transporters – protein interaction network. The sugar transporters – 544 

membrane proteins (Interactant, INTPROT) interaction network was built from a list of 545 

interaction tuples (STi, INTPROTi, Fi). The interaction network is an unoriented graph that 546 

includes nodes and edges with attributes computed using the NetworkX Python package of 547 

Python 3 [89]. The attribute definitions have been summarized in the Glossary and examples 548 

of attributes of a network of interactions between sugar transporters and interacting 549 

proteins are presented in Figure 1. Visualization of the interaction network was carried out 550 

via the Gephi software [90] using the Fruchterman Reingold algorithm. The node sizes are 551 

proportional to their regular degree, and the color of the edges depends on their interaction 552 

confidence. 553 

Calculations and presentations. All calculations were performed with Jupyter Notebooks [91] 554 

and rendered with the Bokeh Python library [92]. SUT, SWEET and MST family members are 555 

respectively represented by blue, orange and green dots. The larger the size of the node, the 556 

higher the number of interactants with the sugar transporter. The 4+ interaction confidence 557 

is represented by red lines, the 3+ interaction confidence is represented by blue lines and the 558 

2+ interaction confidence by green lines.  559 

 560 

 561 
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Box 1. What is next? 562 

Investigating experimentally membrane protein—protein interactions is a challenge, not 563 

least because of the partial hydrophobicity of membrane proteins. This explains why only a 564 

small number of membrane protein interactions are known. After identifying protein—565 

protein interactions of high interest through the combined MIND-ATTED approach, several 566 

genetic, biochemical and in-silico techniques could be used and/or combined to study 567 

specific interactions in Eukaryotes, for example: Atomic Force Microscopy (AFM) [93], Blue 568 

Native/SDS PolyAcrylamide Gel Electrophoresis (BN/SDS PAGE) [94,95], Co-569 

immunoprecipitation (co-IP) [96], Developing further In-silico tools as for example large-570 

scale interactomes integrating responses to multiple conditions, and in diverse Arabidopsis 571 

genetic backgrounds, DiHydroFolate Reductase (DHFR) [97], Förster Resonance Energy 572 

Transfer (FRET) [98], Membrane Strep–Protein INtEraction experiment (SPINE) [99], Phage 573 

display [100], Protein chips [101], Protein Interaction Reporter (PIR) [102], PUPylation-based 574 

InTeraction tagging (PUP-IT) [103], Reconstitution of membrane proteins [104], Reverse Ras 575 

recruitment System (reverse RRS) [105], Site-directed chemical cross-linking [106], Site-576 

Directed Spin Labeling (SDSL) Electron Paramagnetic Resonance (EPR) spectroscopy [107], 577 

Split-ubiquitin yeast two-hybrid system [50,108], SPOT-analysis [109], Surface Plasmon 578 

Resonance (SPR) [110],Tandem affinity purification (TAP) [111-113], and X-ray 579 

crystallography of protein complexes [114]. 580 

 581 

  582 
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Table 1. Arabidopsis sugar transporters and candidates that are interactorsa of and co-583 

expressedb with a given sugar transporter.  584 

Sugar transporters Candidates that are interactors of and co-expressed with 

a given sugar transporter 

Name Accession 

numbers 

Protein identity Gene accession number 

AtSWEET1 At1G21460 Peptidase At1G34640 

AtSTP4 At3G19930 RING/U-box superfamily protein At3G13430 

At1G27290  Transmembrane protein 

AtINT1 At2G43330 PLC-like phosphodiesterases 

superfamily protein 

 

At4G38690 

Transmembrane protein At1G27290 

 

AtSGB1 At1G79820 IQD6 – IQ-domain 6 At2G26180 

Peptidase At1G47640  

At1G67300 At1G67300 Xanthine/uracil permease At5G49990  

AtESL1 At1G08920 Transmembrane protein 

 

At1G27290 

NHL3 – NDR1/HIN1-like 3 At5G06320  

AMP-dependent synthetase and 

ligase family protein 

At1G20490  

At1G54730 At1G54730 Plasma membrane intrinsic protein 

1;5 

At4G23400 

GPI transamidase subunit PIG-U At1G63110  

AtSFP1 At5G27350 Transmembrane protein At1G27290  

aaccording to MIND Database 585 

b according to ATTED-II Database 586 
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