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Abstract
Background Excess visceral obesity and ectopic organ fat is associated with increased risk of cardiometabolic disease.
However, circulating markers for early detection of ectopic fat, particularly pancreas and liver, are lacking.
Methods Lipid storage in pancreas, liver, abdominal subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT)
from 68 healthy or pre-diabetic Caucasian and Chinese women enroled in the TOFI_Asia study was assessed by magnetic
resonance imaging/spectroscopy (MRI/S). Plasma metabolites were measured with untargeted liquid chromatography–mass
spectroscopy (LC–MS). Multivariate partial least squares (PLS) regression identified metabolites predictive of VAT/SAT
and ectopic fat; univariate linear regression adjusting for potential covariates identified individual metabolites associated
with VAT/SAT and ectopic fat; linear regression adjusted for ethnicity identified clinical and anthropometric correlates for
each fat depot.
Results PLS identified 56, 64 and 31 metabolites which jointly predicted pancreatic fat (R2Y= 0.81, Q2= 0.69), liver fat
(RY2= 0.8, Q2= 0.66) and VAT/SAT ((R2Y= 0.7, Q2= 0.62)) respectively. Among the PLS-identified metabolites, none
of them remained significantly associated with pancreatic fat after adjusting for all covariates. Dihydrosphingomyelin (dhSM
(d36:0)), 3 phosphatidylethanolamines, 5 diacylglycerols (DG) and 40 triacylglycerols (TG) were associated with liver fat
independent of covariates. Three DGs and 12 TGs were associated with VAT/SAT independent of covariates. Notably,
comparison with clinical correlates showed better predictivity of ectopic fat by these PLS-identified plasma metabolite
markers.
Conclusions Untargeted metabolomics identified candidate markers of visceral and ectopic fat that improved fat level
prediction over clinical markers. Several plasma metabolites were associated with level of liver fat and VAT/SAT ratio
independent of age, total and visceral adiposity, whereas pancreatic fat deposition was only associated with increased
sulfolithocholic acid independent of adiposity-related parameters, but not age.

Introduction

Although obesity has been long recognised as a risk factor
for cardiometabolic disease and subsequent complications
[1], individuals within each body mass index (BMI)

category show considerable heterogeneity in their cardio-
metabolic manifestations and clinical risk profiles [2].
Notably specific populations, e.g., South and East Asians,
develop type 2 diabetes (T2D) at lower BMI and younger
age [3], with risk of T2D increased by even modest weight
gain compared to more resilient populations such as Cau-
casians [4]. One factor purported to drive these risks among
individuals with comparable BMI is deposition of visceral
and non-adipose ectopic organ fat [5], likely a contributor to
ethnicity differences in progression to T2D [6]. Asians have
been observed to have greater propensity for abdominal and
ectopic fat deposition, compared with other ethnicities
[7–9]. Visceral and ectopic fat are in turn implicated in
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insulin resistance (IR) and dyslipidaemia [10], and associated
with increased risk of metabolic syndrome, T2D and cardi-
ovascular disease (CVD), independent of BMI [11–13].

Despite the important role that it may play, current
assessment and accurate quantification of ectopic fat relies
on either advanced imaging techniques or histologic
examination of biopsied tissue, which are both time con-
suming and expensive, or invasive. Circulating biomarkers
for early detection of visceral adiposity and ectopic fat
deposition in key organs of liver and pancreas prior to the
onset of metabolic disease are lacking. Notably, the critical
importance of identifying such biomarkers has recently
been highlighted by Neeland and colleagues in a position
statement from the International Atherosclerosis Society
and International Chair on Cardiometabolic Risk Working
Group on Visceral Obesity [14].

With advanced metabolomics techniques, comprehensive
measurements of plasma small molecules in combination
with machine learning approaches may allow identification
of novel biomarkers to estimate VAT and organ fat content
from a single fasting blood sample. These markers may also
reflect perturbed metabolism and point to underpinning
mechanisms driving development of poor metabolic health.
Systemic metabolomic profiling of non-alcoholic fatty liver
disease (NAFLD) has identified candidate metabolite mar-
kers such as taurocholate, glutamyl dipeptides, mannose
and lactate, carnitine and several acylcarnitines, FFA,
lysophosphatidylcholine, glycerolipids (GL) as markers of
NAFLD progression [15]. However, most biomarkers were
identified in the context of diagnosed NAFLD cases,
whereas biomarkers for early detection of asymptomatic
liver fat deposition remain to be determined. Importantly,
no circulating biomarkers of pancreas fat have yet been
identified. To date only the targeted metabolomics study by
Jaghutriz et al., have reported this data, in a study which
was unable to identify plasma metabolites that characterised
high vs. low pancreatic fat, in a group of prediabetic Eur-
opean Caucasians with impaired glucose tolerance [16].
More studies are required to determine whether markers of
pancreatic fat deposition are detectable in circulation.

Our current cross-sectional study explored the relation-
ship between plasma metabolome and fat deposition in the
pancreas, liver and the ratio of visceral and subcutaneous
abdominal adipose tissue (VAT/SAT ratio), assessed by
magnetic resonance imaging (MRI) and spectroscopy
(MRS), in Caucasian and Chinese participants enroled in
the TOFI Asia study. The VAT/SAT ratio was of interest as
it is an estimate of the relative body fat distribution, and that
VAT is recognised as a more detrimental fat depot whereas
SAT is generally considered neutral or even protective. The
VAT/SAT ratio has been shown to be a key correlate of
cardiovascular risk and events [17–19]. The goals of this
study were firstly to identify candidate metabolite markers

that predict pancreas, liver and VAT/SAT ratio, and eluci-
date the associated metabolic changes; and secondly to
compare the predictive performance of these metabolite
markers with a range of clinical measurements associated
with each fat depot identified from the present cohort.

Methods

Study participants and protocol

This investigation is part of the cross-sectional TOFI_Asia
study described elsewhere and the demographic and bio-
chemical characterisation of the cohort is provided in Table
S1 [20]. Female participants aged 20–70 years, BMI
20–45 kg/m2, fasting plasma glucose (FPG) ≤ 6.9 mmol/L,
who self-reported both parents of same ethnicity (European
Caucasian or Asian Chinese) were eligible. Exclusions were
significant weight change (>10%) in prior 3 months, bariatric
surgery, glucose-related medications, current/prior history of
disease including T2D, pregnancy, breastfeeding. Sixty eight
female participants (34 Chinese, 34 Caucasian) were enroled
in the study. Fasting venous blood samples were collected in
clinic and stored at −80 °C for later batch analyses. Total
body fat (TBF) was determined by dual-energy X-ray
absorptiometry (DXA) (iDXA, GE Healthcare, WI, USA) at
the Body Composition Laboratory, University of Auckland.
Magnetic resonance imaging (MRI) for pancreas and spec-
troscopy (MRS) for liver was conducted fasted within
1 week of clinic visit using a 3 T Magnetom Skyra Siemens
scanner, VE 11A (Erlangen, Germany) at the Centre for
Advanced MRI (CAMRI), University of Auckland.

Anthropometric and clinical measurements

Height, weight, waist and hip circumferences, systolic
(SBP) and diastolic (DBP) blood pressure were recorded at
clinic. Fasting plasma glucose was analysed by hexokinase
method, HbA1c by capillary electrophoresis (Cap2FP, IDF,
France), liver function tests and lipid profile were analysed
using standard clinical methods. Glucoregulatory peptides
(insulin, C-peptide, glucagon, amylin, gastric inhibitory
peptide (GIP), total glucagon-like peptide-1 (GLP-1)) were
analysed using MILLIPLEX®MAP Human Metabolic
Hormone Magnetic Bead Panel (Merck, HE, Germany)
from BD P800 vautainers

Assessment and analysis of body composition for
visceral and organ fat

TBF and total body lean (TBL, fat-free soft tissue) mass
were obtained from full body DXA scan, measured supine.
TBF was expressed as % of total soft tissue mass:
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%TBF= TBF mass*100/(TBL mass + TBF mass)
Fat content of abdomen (VAT, SAT), pancreas and liver

were measured using MRI and MRS [21]. Briefly, the
abdominal cavity was scanned in the sagittal direction from
diaphragm to pelvis. A 2-point Dixon imaging technique
was used for fat-water separation. Three blocks of forty 5-
mm axial slices were acquired during an 11-s breath-hold.
Pancreas was located, and fourteen axial images of 5-mm
thickness acquired. For the MRS scan of liver, a 2*2*2 cm3

voxel was placed in the right lobe avoiding blood vessels
and biliary tree; spectra were obtained in transverse, coronal
and sagittal planes ± water suppression. Fat fraction (FF)
map corrected for noise bias at L4-L5 intervertebral disc
space was constructed using custom Matlab R2017a soft-
ware (The Mathworks, Inc., Massachusetts, US), and
abdominal adipose tissue from FF map segmented into
VAT and SAT compartments (Image J [22]), and VAT/SAT
ratio calculated. Pancreatic fat was estimated using the MR-
opsy method as mean of 2 candidate pancreas FF maps,
with 3 regions of interest (ROIs) head, body, tail [23]. For
MRS, area under the curve (AUC) of water and fat peaks
from spectra without water suppression were obtained
(SIVIC software [24]), and liver fat expressed as % calcu-
lated vol/vol of fat and water. Pancreas FF maps from 3
Caucasians contained artefact, and MRS from 1 Caucasian
could not be analysed due to inverse spectral signal; hence
65 pancreas, 67 liver fat, and 68 VAT/SAT ratios were
analysed.

Metabolomics analysis and data processing

Metabolite extraction, data acquisition and processing of
samples from TOFI_Asia cohort have been previously
described [25]. The processed metabolomic profile from
samples in this current MRI cohort were isolated to con-
struct a new dataset for statistical analyses. Briefly, meta-
bolites were extracted using a bi-phasic approach and the
aqueous and organic phases were analysed separately by
two LC–MS platforms using a method published elsewhere
[26]. Raw datafiles were converted to mzXML format with
the ProteoWizard tool MSconvert (v 3.0.1818 [27]). Data
preprocessing, cleaning, normalisation (by LOESS algo-
rithm in the W4M Galaxy environment [28]), feature fil-
tering (% coefficient of variation <30 in QC) and
metabolites annotation were carried out. Full details are
provided in SI.

Data analysis

The statistical workflow is summarised in Fig. S1 in the SI.
Biological outliers were removed based on partial least
squares (PLS) residual analysis, and normality of response
residuals re-assessed with the Kurtosis test (R v3.5.1) [29],

details available in SI (Table S2 and Fig. S2). Multivariate
methods with Unbiased Variable selection in R (MUVR)
[30] were performed on the full metabolome (polar meta-
bolites + lipids) to select important variables associated
with pancreatic fat, liver fat, or VAT/SAT (continuous Y
variable) in a PLS regression model (R v3.5.1). To ensure
the model was not over-fitted before or after variable
selection, 100 permutation tests were run on each PLS
model with repeated-double cross-validation (PLS-rdCV)
built on either full metabolome or MUVR-selected variables
(R v3.5.1). Variables selected by MUVR were annotated
and redundant chemometric features (e.g., isotopes, multi-
ple adducts) representing the same metabolites were
removed to constitute the post-selection data-matrix. Per-
formances of PLS models built on full metabolome vs
MUVR post-selection for each fat depot were compared,
and β-coefficients of variables obtained (SIMCA 16, Umeå,
Sweden). An optimal number of components were chosen
to minimise root the mean square error of cross-validation
(RMSEcv). The prediction accuracy was estimated by
Pearson’s correlation coefficients (r) calculated between
predicted vs measured Y values. To evaluate the predictive
power of the set of metabolite markers and for comparison
with potential clinical markers (including anthropometric
parameters), sigfinicantly associated clinical markers with
each fat depot were identified using linear regression
(adjusting for ethnicity) and then combined to construct a
panel for comparison of predictive power. Performance of
PLS models built on (a) the panel of clinical markers, (b)
the panel of metabolite markers, and (c) the panel of com-
bined clinical and metabolite markers, were assessed and
compared (SIMCA 16).To understand how individual
metabolite related to each of pancreas, liver and VAT/SAT,
linear regression with multiple testing correction (Benjamini
Hochberg procedure (BH) [31]) was applied. The associa-
tion between each metabolite and fat depot was corrected
for ethnicity (model (M)1), then further for total adiposity-
related parameters including BMI and %TBF (M2). For
pancreatic and liver fat, the model was further adjusted for
VAT/SAT (M3). Lastly, models for all three fat depots were
further adjusted for age (M4).

Results

Identifying candidate markers of visceral and organ
fat with a multivariate statistical approach

After metabolite selection by MUVR and removal of
redundant features, 56 (91% identified), 64 (95% identi-
fied), and 31 (100% identified) variables were associated
with pancreatic fat, liver fat, and VAT/SAT respectively.
Comparison of model performances before and after
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variable selection are summarised in Table 1. In all 3
models, variable selection improved goodness of model fit
(R2Y) and predictivity (Q2) whilst reducing the number of
variables in the model. The fitted Y values using the
selected variables were better correlated with the measured
Y values (correlation coefficient r) than using the full
metabolome. The number of components in each PLS
model was selected such that it achieved minimum pre-
diction error, determined by assessing model prediction
accuracy and average error (Q2 and RMSEcv) (Fig. S3).
Overfitting of models was avoided by assessing model
performances with rdCV as an alternative validation scheme
with 100 permutations (Table S3).

Pancreatic fat was associated with sulfolithocholic acid,
cholesteryl ester (CE(20:3)), fatty acid (FA(16:1)), LC-MS
measured glucose, urea, phosphorylcholine, kynurenic acid,
5 amino acids (AA) and lipid species encompassing 26
glycerolipids (GL), 9 glycerophospholipids (GP) and
3 sphingolipids (SP) (Fig. 1a). These metabolites jointly
explained 81% of the variance of pancreatic fat in a 3
component-PLS model and estimated levels of pancreatic
fat with a high correlation with measured levels (r= 0.90).
Liver fat was associated with homocitrulline, lactate, lac-
tosylceramide (LacCer(d34:1)), dihydrosphingomyelin
(dhSM(d36:0)), 5 FAs, 47 GLs and 5 GPs (Fig. 1b). These
metabolites jointly explained 80% of the variance of liver
fat in a 3 component-PLS model and estimated levels of
liver fat with a high correlation with measured levels (r=
0.89). Notably, the TG species associated with liver fat were
highly saturated (all containing ≤3 unsaturated bonds);
among the 27 MS2-annotated TGs, 75% contained at least
one C16:0 palmitic acid (PA), while 63% contained at least
one C18:1 oleic acid (OA). VAT/SAT was associated with
L-cystine, ceramide (Cer(d41:1)), ether linked phosphati-
dylcholine (PC(O-38:6)), 3 FAs and 25 GLs (Fig. 1c).
These metabolites jointly explained 70% of the variance of
VAT/SAT in a 2 component-PLS model and estimated
levels of VAT/SAT with a high correlation with measured
levels (r= 0.83). Among the 11 MS2-annotated TGs
associated with VAT/SAT, 82% contained at least one
C18:2 linoleic acid (LA), and 73% contained at least one
C18:1 OA.

Estimating visceral and organ fat deposition using
clinical and candidate metabolite markers

Pancreatic fat was associated with FPG, HbA1c, BMI, %
TBF, age, SBP, DBP, total cholesterol (TC), triglyceride
(TG) and LDL-C (Fig. 2a), which jointly produced a PLS
model with R2Y= 0.51, Q2= 0.46 (Table 2). Liver fat was
associated with BMI, % TBF, age, SBP, DBP, ALT, ALP,
GGT, TC and TG (Fig. 2b), yielding a PLS model with
R2Y= 0.48, Q2= 0.4 (Table 2). VAT/SAT was associated
with FPG, HbA1c, BMI, age, SBP, DBP, GGT, TC, TG and
LDL-C (Fig. 2c), producing a PLS model with R2Y= 0.56,
Q2= 0.44 (Table 2). Metabolite markers explained the
presence of pancreatic fat (R2Y= 0.81, Q2= 0.69), liver
fat (RY2= 0.8, Q2= 0.66) and VAT/SAT (R2Y= 0.7, Q2
= 0.62) better than clinical markers; while combining
clinical markers and metabolite markers yielded a similar
model performance compared to the use of metabolite
markers alone (Table 2).

Characterising the association of individual
metabolite markers with visceral and organ fat

Of the 56 metabolites associated with pancreatic fat, 44
were independent of ethnicity (BH-corrected p < 0.05).
Further adjustment for total adiposity yielded a list of
lipid species of PC, DG and TG, CE(20:3), methionyl-
methionine and sulfolithocholic acid as significantly
associated metabolites (BH-corrected p < 0.05); only the
bile acid sulfolithocholic acid remained significantly
associated after further adjustment for VAT/SAT (M3).
No metabolite remained significantly associated after
futher adjustment for age (M4) (Fig. 3a and Table S4).
Among the 64 metabolites associated with liver fat, 54
were independent of ethnicity and total adiposity (BH-
corrected p < 0.05). Only lactic acid, PC(16:0/18:2), TG
(16:0/18:1/18:1) and TG(58:2) became non-significant
after further adjustment for VAT/SAT; none of these
associations was influenced by futher adjustment for age
(Fig. 3b and Table S5). Among the 31 metabolite markers
for VAT/SAT, 27 were independent of ethnicity and
further adjustment for total adiposity did not alter these

Table 1 Comparison of model performances of PLS with sevenfold cross-validation between full metabolome vs post-selection.

Full metabolome Post-selection

nVar nComp R2Y Q2 PCV-ANOVA r nVar nComp R2Y Q2 PCV-ANOVA r

Pancreatic fat 910 1 0.39 0.25 2.43E–04 0.63 56 3 0.81 0.69 2.12E–12 0.90

Liver fat 910 1 0.52 0.33 6.86E–06 0.72 64 3 0.80 0.66 6.11E–12 0.89

VAT/SAT 910 1 0.47 0.30 1.32E–05 0.69 31 2 0.70 0.62 1.88E–12 0.83

nVar: number of variables; nComp: number of components; R2Y: goodness of model fit; Q2: predictivity; Pcv-anova: statistical significance of the
PLS model; r: Pearson correlation coefficient.
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associations (BH-corrected p < 0.05) except FA(18:0) and
TG(53:5), which became non-significant. Only 15 meta-
bolites including 3 DGs and 12 TGs remained sig-
nificantly associated with VAT/SAT when age was
further included in the regression model (Fig. 3c and
Table S6).

Discussion

In this study, we identified plasma metabolites associated
with visceral and ectopic fat deposition in a cohort of
European Caucasian and Asian Chinese females, in align-
ment with recent international position statements for the

Fig. 1 Partial least squares (PLS) regression analysis of ectopic fat deposition. Scatter plots of measured vs PLS-estimated value of (a)
pancreatic fat, (b) liver fat and (c) VAT/SAT ratio, and bar plots showing the coeffCS (centred and scaled coefficient) with error bars indicating
cross-validation confidence interval (95% CI) of variables in each corresponding PLS model used for estimation. The numbers in the bracket
beside YPred and CoeffCS denotes the number of components in the PLS model.
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need for identification of such biomarkers in clinical prac-
tice [14]. With a robust metabolite selection technique and
PLS modelling approach, novel metabolite markers that
jointly explain over 70% variance (i.e., R2Y) in pancreatic
fat, liver fat and VAT/SAT ratio have been identified. The
estimated levels of these fat depots by metabolite markers
were highly correlated with the measured values (r > 0.8).
We also assessed the associations of a range of commonly
used clinical and anthropometric measurements with these
fat depots. Several traditional CVD risk factors, including
age, BP (SBP, DBP) and dyslipidaemia (TC and TG), were
common correlates for all three fat depots. Despite this,
these CVD risk factors alone with other significant clinical
correlates for each fat depot, only moderately captured
levels of ectopic fat (R2Y at around 0.5) and did not add to
the metabolite prediction of ectopic fat. Our study high-
lighted the value of biomarker exploration using an untar-
geted metabolomics approach. These markers hold promise
for developing new means to predict levels of ectopic fat
which is otherwise expensive and time-consuming to
obtain, but also provide insight into metabolic alterations

that might be linked to dietary pattern and disease devel-
opment thus generating hypothesis for future intervention or
mechanistic studies. Furthermore, these metabolite markers
can be a fast and cheap substitute for the MRI/MRS-
assessed ectopic fat to be included for an improved pre-
diction of cardiometabolic disease outcomes, which will
need to be evaluated in future prospective studies.

To our best knowledge, this is the first study reporting
novel metabolite markers predictive of pancreatic fat con-
tent, among which the bile acid (BA), sulfolithocholic acid,
remained significantly associated with pancreatic fat inde-
pendent of total and visceral adiposity, though this asso-
ciation became non-significant after further adjustment for
age. Age is a factor impacts considerably on regional fat
distribution [32], and finding from our relatively small
cohort suggested the observed association between BA and
pancreatic fat deposition is likely to be confounded by the
effect of age. To elucidate the potential value of sulfo-
lithocholic acid as a marker for predicting pancreatic fat, the
interrelationship among age, sulfolithocholic acid and pan-
creatic fat needs to be clarified using another larger study

Table 2 Comparison of model
performances of PLS with
sevenfold cross-validation
among models built on
metabolites markers (M),
clinical markers (C) or
combination of metabolite and
clinical markers (C+M).

Dataset Biomarker panel nComp R2Y Q2 PCV-ANOVA RMSEE RMSEcv r

Pancreatic fat M 3 0.81 0.69 2.12E–12 0.72 0.89 0.90

C 1 0.51 0.46 1.15E–08 1.14 1.18 0.71

C+M 3 0.81 0.67 1.12E–11 0.72 0.92 0.90

Liver fat M 3 0.80 0.66 6.11E–12 3.84 4.65 0.89

C 1 0.48 0.40 3.51E–07 5.98 6.37 0.70

C+M 2 0.74 0.63 5.49E–12 4.25 4.94 0.86

VAT/SAT M 2 0.70 0.62 1.88E–12 0.13 0.14 0.83

C 2 0.56 0.44 1.42E–07 0.16 0.17 0.74

C+M 2 0.74 0.67 3.98E-14 0.12 0.13 0.86

nComp: number of components; RMSEE: roo mean square error of estimation; RMSEcv: root mean square
error of cross-validation; r: Pearson correlation coefficient.

Fig. 2 Association of clinical
measurements with ectopic fat
deposition. Adjusted
β-coefficient with 95% CI of
each individual clinical variable
regressed on level of (a)
pancreatic fat, (b) liver fat and
(c) VAT/SAT ratio in linear
regression models adjusting for
ethnicity. Significantly
associated clinical variables (p <
0.05) are displayed in solid filled
circle.
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cohort. Nonetheless, altered BA metabolism and signalling
are implicated in both T2D development and bariatric
surgery-induced metabolic improvements [33, 34]. Sulfo-
lithocholic acid is the sulphated product of lithocholic acid
(LCA), a secondary BA produced by microbiota [35].
Levels of secondary BAs were observed to increase after
bariatric sugery and associated with improved glycaemic
control [36, 37]. Since both adipocytes and pancreatic cells
expressed BA receptors [33], the profound association of
sulfolithocholic acid with pancreatic fat observed in the
present study sheds new light on potentially novel
mechanisms of fatty infiltration modulated by the enter-
ohepatic circulation and BA metabolism. A future targeted
metabolomics study is warranted to confirm this association

as well as to explore the relationship between other BAs
with pancreatic fat deposition.

Other markers predictive of pancreatic fat identified in
the present study included a number of metabolites pre-
viously reported as markers of obesity (palmitoleic acid,
monounsaturated PCs and SMs, asparagine, phosphor-
ylcholine and urea) [38–43]. Concordantly, depot-specific
investigation of these markers in our current study indicates
that their associations with pancreatic fat were, indeed,
largely due to increased total adiposity. Other markers
including CE(20:3), C20:3-containing PCs, DGs, TGs and
methionyl-methionine were independent of BMI and %
TBF, but explained by increased VAT/SAT. Since both
increased total adiposity and visceral adiposity are upstream

Fig. 3 Association of individual metabolite marker with ectopic fat
deposition. Association of individual metabolite markers with (a)
pancreatic fat, (b) liver fat, (c) VAT/SAT ratio assessed by linear
regression, with adjustment for ethnicity (M1), ethnicity + BMI+
TBF(%) (M2); pancreatic fat and liver fat were further adjusted for
VAT/SAT (M3); and additionally for age (M4). Significance tests
were after multiple testing correction (p < 0.05). For the (b) liver fat

age-adjusted model (M4, green) did not alter the β-coefficient therefore
dots were mostly overlapped with M3; details of the β-coefficient
values can be found in Table S5. Markers were categorised by classes
and within each class, ordered by β-coefficient in M1 from the highest
to the lowest. FA fatty acyls, GL glycerolipids, GP glyceropho-
spholipids, SP sphingolipids, ST sterol lipids, HILIC HILIC-measured
polar metabolites.
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factors predisposing individuals to an increased risk of
ectopic fat deposition, our results suggest that these markers
for pancreatic fat mainly reflect increased total and visceral
adiposity.

We observed a TG signature characterised by low double
bonds (≤3) and mainly lower carbon number (≤54 C) to be
associated with liver fat content. TG species with low
double bonds and carbon number were found to be mar-
kerdly increased in NAFLD patients and have the strongest
predictive value in the classification of incident CVD,
whilst monounsaturated TG was a significant predictor of
non-alcoholic steatohepatitis (NASH) [44–46]. Our findings
suggested that such a CVD risk- and NAFLD-related TG
signature to some degree captured an elevated liver fat
content and is already detectable even before NAFLD
diagnosis, again highlighting the potential of metabolomics
to facilitate risk screening.

Interestingly, several saturated TG species such as TG
(44:0), TG(46:0), TG(48:0) and TG(50:0) are markers
exclusively for liver fat but not visceral or pancreatic fat.
These markers may reflect consumption of a high saturated
fat diet [47]. Many liver fat-associated TG species contained
PA and/or OA, both are hallmarks of de novo lipogenesis
(DNL). Higher rate of DNL, fractional contribution to
VLDL-FA and VLDL-TG from DNL were previously
observed in patients with higher liver fat contents, and DNL
rate positively correlated with the amount of intrahepatic
TG [48]. In agreement, our data clearly indicated that
accumulation of liver fat can be manifested by an elevation
of a consortium of TG species in the circulation that likely
originated from DNL, independent of the total and visceral
adiposity. Our results support a tight link between increased
DNL and development of fatty liver, as well as potential
beneficial effects of dietary intervention targeting lipogen-
esis, possibly including restricted mono/disaccharide car-
bohydrate or elimination of fructose-containing diets
alongside restricted fat diets [49, 50].

Liver fat was also associated with dhSM(d36:0) and 3 PE
species (PE(34:1), PE(34:2) and PE(36:2)) independent of
total adiposity and visceral adiposity. Our findings are in
line with a previous study showing increased concentration
of circulating PE relative to progression of fatty liver dis-
ease [51]. On the other hand, dhSM has been associated
with obesity and dysglycaemia [52]. Our finding of a
positive correlation of dhSM(d36:0) with liver fat could be
due to an increased substrate availability leading to
increased synthesis of this lipid species, supporting the
aforementioned increased DNL associated with excess liver
fat deposition.

Two other markers, PC(34:2) and lactate, were also
strongly associated with and predictive of, but not site-
specific to, liver fat content. This is not unexpected as these
metabolites are localised in many tissues, abundant in

plasma and sensitive to several conditions and diseases.
Increased plasma lactate has been associated with impaired
oxidative capacity, obesity, IR and T2D, and its level pro-
gressively decreased in response to weight loss [53–56]. PC
(34:2) has been identified as a marker for metabolic syn-
drome [57]. It is also associated with vascular complications
in NAFLD patients [58]. Herein we provided evidence for
an association of these markers with increased liver fat and
in conjunction with other metabolites markers, predictive of
liver fat content.

VAT/SAT is associated with a number of GLs enriched in
LA. LA is an n-6 FA proposed to be obesogenic and may
contribute to a chronic inflammatory state due to competition
with the n-3 FA alpha-linolenic acid (ALA) for Δ-6 desa-
turase [59]. Whilst n-6 FAs are precursors for pro-
inflammatory mediators, the n-3 FAs products have lower
inflammatory or even anti-inflammatory properties. Interest-
ingly, 2 ALA-containing TG species were observed to be the
strongest negative estimators for the level of VAT/SAT in the
multivariate PLS model, as opposed to several LA-containing
TGs that are positively associated. Furthermore, LA along
with 2 saturated FAs appeared to be strong estimators for the
level of VAT/SAT in the PLS model as their β-coefficients
were high (ranked 3rd–5th). Since the plasma TG signature
may also reflect long-term dietary patterns, such associations
suggest a possible link between long-term consumption of
LA-rich diets and increased visceral adiposity.

Plasma levels of cystine taken as an indicator of oxida-
tive stress, has been previously shown to be associated with
android (visceral) fat at baseline in a cohort of patients with
a cardiometabolic disorders [60]. In agreement, our result
reported L-cystine as a significant predictor for and strongly
correlated with VAT/SAT independent of total adiposity.
However, this association became non-significant after age
adjustment. Since age is also tightly associated with VAT/
SAT ratio as shown by the present study, whether plasma L-
cystine could effectively capture VAT/SAT will need to be
investigated in a large, age-controlled cohort. Another fac-
tor that may affect plasma level of L-cystine but not taken
into account by the present study is dietary methionine
consumption [61, 62]. It would be necessary to investigate
through a randomised controlled trial (RCT) whether a
methionine-restricted diet can reduce circulating cystine
level and simultaneously reduce visceral adiposity and
improve metabolic health.

A strength of our present study is the use of a robust
variable selection technique MUVR to select candidate
markers, which has effectively reduced the risk of over-
fitting, biased selection and false positive discoveries [30].
Secondly, this study was conducted on a cohort free of
severe metabolic diseases or medications, thus maximally
eliminating potential confounding effects of metabolic dis-
eases on the blood metabolome, allowing the identification
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of candidate markers for early detection of increased risk of
poor metabolic health prior to disease onset. With both
DXA and MRI/MRS data available we were able to adjust
the association for TBF, enhancing the understanding of the
site-specificity of these markers. Limitations of this study
include the relatively small cohort size, a non-controlled
diet study design, and the lack of an external validation
cohort, which must be addressed in future studies. The lack
of dietary data and that participants were not on the same
diet before sample collection made it impossible to account
for the effect of diet on the observed associations. Last,
although the predicted Y value can be theoretically calcu-
lated using solely the β-coefficients provided in the PLS
model, these β-coefficients are not transferable across plat-
forms and laboratories. Thus, translation of these candidate
markers to potential clinical biomarkers will require accu-
rate quantification of absolute concentration by other tech-
niques e.g., targeted LC-MS/MS.

In conclusion, we have identified metabolites predictive
of ectopic fat deposition (pancreas and liver fat, and VAT/
SAT ratio) and shown these candidate metabolite markers to
outperform the use of anthropometric and clinical mea-
surements, including several CVD risk factors. Importantly,
sulfolithocholic acid is a novel marker for pancreatic fat
which requires validation in the future. Other markers are
consistent with findings from previous metabolomics stu-
dies in the context of obesity, fatty liver diseases, T2D and
CVD. Noteworthy, our cohort is devoid of cardiometabolic
diseases therefore these markers held promise for develop-
ing alternative approach for detection of increased ectopic
fat deposition and risk screnning prior to disease onset.
Moreover, the metabolite markers provide evidence at the
molecular level potentially linking ectopic fat to dietary
intake, generating hypotheses for future investigation.
These markers may also provide an alternative means to
measure the effectiveness of dietary interventions. Whether
these markers add value to the prediction of cardiovascular
risk will require further study and validation in separate
cohorts.
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