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Abstract: Ixodid ticks are hematophagous arthropods considered to be prominent ectoparasite
vectors that have a negative impact on cattle, either through direct injury or via the transmission
of several pathogens. In this study, we investigated the molecular infection rates of numerous
tick-borne pathogens in ticks sampled on cattle from the Kabylia region, northeastern Algeria, using
a high-throughput microfluidic real-time PCR system. A total of 235 ticks belonging to seven species
of the genera Rhipicephalus, Hyalomma, and Ixodes were sampled on cattle and then screened for
the presence of 36 different species of bacteria and protozoans. The most prevalent tick-borne
microorganisms were Rickettsia spp. at 79.1%, followed by Francisella-like endosymbionts (62.9%),
Theileria spp. (17.8%), Anaplasma spp. (14.4%), Bartonella spp. (6.8%), Borrelia spp. (6.8%), and Babesia
spp. (2.5%). Among the 80.4% of ticks bearing microorganisms, 20%, 36.6%, 21.7%, and 2.1% were
positive for one, two, three, and four different microorganisms, respectively. Rickettsia aeschlimannii
was detected in Hyalomma marginatum, Hyalomma detritum, and Rhipicephalus bursa ticks. Rickettsia
massiliae was found in Rhipicephalus sanguineus, and Rickettsia monacensis and Rickettsia helvetica were
detected in Ixodes ricinus. Anaplasma marginale was found in all identified tick genera, but Anaplasma
centrale was detected exclusively in Rhipicephalus spp. ticks. The DNA of Borrelia spp. and Bartonella
spp. was identified in several tick species. Theileria orientalis was found in R. bursa, R. sanguineus,
H. detritum, H. marginatum, and I. ricinus and Babesia bigemina was found in Rhipicephalus annulatus
and R. sanguineus. Our study highlights the importance of tick-borne pathogens in cattle in Algeria.

Keywords: Algeria; ixodid ticks; tick-borne pathogens; co-infection; cattle; high-throughput mi-
crofluidic real time PCR

1. Introduction

Ixodid ticks are blood-sucking arthropods, and are considered to be prominent vectors
of pathogens for humans as well as domestic and wild animals. They are known to
transmit a wide variety of causative agents such as bacteria, protozoa, and viruses that
may subsequently infect the mammal host. Globally, the incidence of tick-borne diseases is
growing, mostly due to increased interactions between pathogens, vectors, and hosts [1,2].
Furthermore, climate change, including the prolongation of seasons, global warming, and
changing precipitation patterns, extends the geographic range of a number of tick species
and the pathogens they carry [3].

Ticks are regarded as the primary vectors of pathogens affecting livestock [4] and up
to 80% of cattle worldwide are at risk of coming into contact with ticks and contracting
diseases caused by transmitted tick-borne pathogens (TBPs) [5]. An individual animal can
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be infested with hundreds or even thousands of ticks, which clearly magnifies their effect
on the host, either by direct injury or by the transmission of pathogens [4]. In addition, the
co-transmission of several pathogens may lead to co-infection in animals, which aggravates
their vital prognosis or, in some cases, gives rise to atypical forms, thereby complicating
diagnosis [6]. Thus, it is very important to detect and identify TBPs, so that veterinarians
can predict the risk of infection and subsequently implement appropriate control measures.

Hard ticks belonging to the genera Hyalomma, Rhipicephalus, Ixodes, and Haemaphysalis
have been identified feeding on grazing cattle in Algeria [7]. In addition, various studies
using classical molecular techniques have detected multiple pathogens in these ticks, e.g.,
the genera Rickettsia, Anaplasma, Coxiella, and Theileria, in cattle ticks from Algeria [8–11].
All of these studies used classical molecular methods that can only detect a few pathogens
simultaneously, are time-consuming, and require large volumes of DNA for the detection
of multiple pathogens. Moreover, evidence of non-pathogenic commensal microorganisms
called endosymbionts is poorly documented in Algeria but provides useful information
because they may influence the transmission of other tick-borne microorganisms or become
pathogenic for humans and/or animals [6,12,13].

To do so, microfluidic-based high-throughput PCR systems have been described by
various studies as the most sensitive approach to detect TBPs [6,14,15]. These systems allow
the rapid and simultaneous detection of numerous microorganisms using a small volume
of DNA, thereby making it possible to carry out large-scale epidemiological investigations
on TBPs in ticks [14]. Here, we successfully employed this approach to investigate the
distribution of TBPs in bovine ticks from the Kabylia region of Algeria for the first time.

2. Results
2.1. Taxonomical Identification of Collected Tick Species

A total of 518 male and 537 female hard ticks were manually detached from bovines.
The females varied in size due to different feeding durations. We did not find any im-
mature tick stages in the collected samples. Three common tick genera were identified:
Rhipicephalus (646/1055, 61.2%), Hyalomma (390/1055, 36.9%), and Ixodes (19/1055, 1.8%).
Among these genera, seven different hard tick species were recognized. R. bursa and
H. detritum were the two most common species, followed by H. marginatum and H. lusitan-
icum and finally I. ricinus, R. sanguineus, and R. annulatus. For morphologically deformed
Hyalomma and Rhipicephalus ticks, specimens were determined to the genus level only. The
difference in frequencies among identified species is described in Figure 1. In addition,
co-infestation with different species of ticks was observed on the sampled bovines.
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2.2. Infection Rates of Microorganisms and Their Co-Infection Rates in Ticks

Among all investigated ticks (Table 1), six pathogen genera were identified as follows:
Rickettsia (79.1%, 186/235), Theileria (17.8%, 42/235), Anaplasma (14.4%, 34/235), Bartonella
(6.8%, 16/235), Borrelia (6.8%, 16/235), and Babesia (2.5%, 6/235). The overall rate of
Francisella-like endosymbionts (FLE) was 62.9% (148/235), with a positivity rate of 88.5%
(100/113) for Hyalomma spp., followed by 81.3% (11/13) for Ixodes and finally 33.9% (37/109)
for the genus Rhipicephalus. Neither Coxiella spp. nor Hepatozoon spp. were detected in
any ticks.

Among the Rickettsia-tested ticks, 11.5% (27/235) were positive for R. aeschlimannii
and 4.8% (11/235) for R. massiliae, and a total of 26.3% (62/235) of ticks were positive
for undetermined Rickettsia spp.; 10 Rickettsia specimens were chosen randomly and se-
quenced. The BLAST search on these 10 specimens (confirmed by gltA gene amplification)
revealed that five showed 100% identity with R. monacensis (Accession nos. JX040640.1 and
KJ663735.1), two showed 100% identity with R. helvetica (Accession no. KY231199.1), two
showed 100% identity with uncultured Rickettsia sp. (Accession no. KU596570.1) and one
showed 81.8% identity with another uncultured Rickettsia sp. (Accession no. AP019865.1).
For the 36.5% (86/235) of positive samples harboring multiple Rickettsia species at the same
time, we sequenced 10 specimens and the BLAST results indicated 100% identity with an
uncultured Rickettsia sp. (Accession no. KU596570.1).

R. aeschlimannii was detected in H. marginatum, H. detritum and R. bursa ticks. Four out
of six R. sanguineus ticks were positive for R. massiliae. R. massiliae was also amplified in
Hyalomma ticks. R. monacensis and R. helvetica were detected only in I. ricinus ticks (Table 1).

DNA of Theileria spp. was detected in 17.8% (42/235) of samples, and nested PCRs
followed by sequencing showed an identity of 100% with T. orientalis (Accession no.
MH208641.1). This species was detected in H. detritum, H. marginatum, R. bursa, R. san-
guineus, and I. ricinus ticks (Table 1)

Anaplasma marginale was the most prevalent species of the genus Anaplasma (16/235,
6.80%), followed by A. centrale detected in 0.4% (1/235) of samples. The remaining 50%
(17/34) of samples were confirmed by nested PCR, with the sequencing of nine positive
samples revealing identity with unidentified Anaplasma spp. BLAST searches using the 16S
rRNA gene sequence showed 99.6% identity with uncultured Anaplasma sp. clone AMCRO1
(Accession no. MN187218.1) in five samples, 98% with uncultured Anaplasma sp. clone
AR2-1 (Accession no. MH250195.1) in two samples and 98% with uncultured Anaplasma
sp. Oriente CuBov140 clone (Accession no. MK804764.1) in two samples. A. marginale
was found in all three identified tick genera (Rhipicephalus, Hyalomma, and Ixodes), and A.
centrale was detected only in Rhipicephalus (Table 1).

The genus Borrelia was detected in 6.8% (16/235) of the investigated ticks. None of
the eight species-specific primer/probe sets used for high-throughput microfluidic PCR
gave a positive signal; therefore, these samples were confirmed by nested PCR followed by
sequencing. All PCR-positive samples (16/235) were confirmed by nested PCR: 10/16 were
positive on gel and 4/10 were sequenced, from which only two sequences were obtained.
The BLAST analysis on the fla gene sequence showed 92.37% identity with an unidentified
Borrelia species (Accession no. KR677091.1).

Pathogens belonging to the genus Bartonella were detected in 6.8% (16/235) of the
sampled ticks using the high-throughput microfluidic PCR system. Species identification
was attempted on all positive samples with conventional PCR target ftsZ gene, but no
results were obtained by sequencing.

DNA of Babesia bigemina was found in 6/235 (2.55%). The positive specimens of B.
bigemina detected in R. annulatus and R. sanguineus ticks were confirmed by nested PCR
and sequencing with an identity of 97.32% (Accession no. MH257721.1).
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Table 1. Rates of infection with tick-borne pathogens in tick species with 95% confidence intervals (CI).

Species Borrelia spp. A. marginale A. centrale R. aeschlimannii R. massiliae R. monacensis R. helvetica Bartonella spp. T. orientalis B. bigemina FLE

R. bursa
(n = 51)

4 2
0

11
0 0 0

3 8
0

15
(7.8%) (3.9%) (21.5%) (5.8%) (15.6%) (29.4%)

(0.4–15.2%) (0–9.2%) (10.2–32.5%) (0–12.2%) (5.7–25.6%) (16.8–41.9%)

R. sanguineus
(n = 07)

1
0 0 0

4
0 0

2
0

5 1
(14.2%) (57.1%) (28.5%) (71.4%) (14.2%)
(0–40%) (20.4–93.8%) (0–61.9%) (37.9–100%) (0–40.2%)

R. annulatus
(n = 01) 0 0 0 0 0 0 0 0 0

1
0(100%)

(0–100%)

Rhipicephalus spp.
(n = 50)

1 6 1 5
0 0 0

3 11
0

21
(2%) (12%) (2%) (10%) (6%) (22%) (42%)

(0–5.8%) (3–21%) (0–5.8%) (1.6–18.3%) (0–12.5%) (10.5–33.4%) (28.3–55.6%)

H. detritum
(n = 41)

3 2
0

2 2
0 0

3 6
0

37
(7.3%) (4.8%) (4.8%) (4.8%) (7.3%) (14.3%) (90.2%)

(0–15.2%) (0–11.3%) (0–11.3%) (0–11.3%) (0–15.2%) (3.5–25%) (81.1–99.3%)

H. marginatum
(n = 15) 0 0 0

1
0 0 0 0

1
0

12
(6.6%) (6.6%) (80%)

(0–19.1%) (0–19.1%) (59.7–100%)

H. lusitanicum
(n = 04) 0 0 0 0 0 0 0

1
0 0

4
(25%) (100%)

(0–67.4%) (25–100%)

Hyalomma spp.
(n = 53)

6 1 0 8 5
0

0 4 10 0 47
(11.3%) (1.8%) (15.1%) (9.4%) (7.5%) (18.8%) (88.6%)

(2.7–19.8%) (0–5.3%) (5.9–25.6%) (1.5–17.2%) (0.2–14.1%) (8.2–29.3%) (80–97.1%)

I. ricinus
(n = 13)

1 5 0 0 0 5 2 0 6 0 11
(7.6%) (38.4%) (38.4%) (15.3%) (46.1%) (84.6%)

(0–22%) (12–64.8%) (12–64.8%) (0–34.8%) (19–73.1%) (64.9–100%)

Total
(n = 235)

16 16 1 27 11 5 2 16 42 6 148
6.8% 6.8% 0.4% 11.5% 4.6% 2.1% 0.8% 6.8% 17.8% 2.5% 62.9%

(3.5–10%) (3.5–10%) (0–1.2%) (7.4–15.5%) (1.9–7.2%) (0.2–3.9%) (0–1.9%) (3.5–10%) (13–22.6%) (0.5–4.4%) (56.7–69%)

FLE: Francisella-like endosymbiont.
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Among all the ticks analyzed, 80.4% (189/235) were positive for at least one microor-
ganism. The level of single infection was 20% (47/235) with one microorganism; the level
of co-infection was 36.6% (86/235) with two, 21.7% (51/235) with three, and 2.1% (5/235)
with four microorganisms. Ticks of the genus Ixodes showed the highest rate of co-infection
(12/13, 92.3%), followed by ticks of the genus Hyalomma (91/113, 80.5%) and the genus
Rhipicephalus with a rate of co-infection of 35.7% (39/109). Double co-infection between
FLE and Rickettsia spp. was most common in three tick’s genera identified with the re-
spective frequencies of 48.6% (55/113), 46.2% (6/13), and 14.6% (16/109) in Hyalomma,
Ixodes, and Rhipicephalus. Triple co-infections with FLE, Rickettsia spp. and Theileria spp.
were identified with a high frequency in ticks of the genus Ixodes 2/13 (15.3%) followed
by ticks of the genus Hyalomma (13/113, 11.5%) and the genus Rhipicephalus (3/109, 2.7%).
Likewise, the highest rate of co-infection with FLE, Rickettsia spp. and Anaplasma spp. was
detected in the Ixodes genus (3/13, 23.1%), followed by the genus Rhipicephalus (5/109,
4.5%) and the genus Hyalomma (5/113, 4.4%). Triple co-infections with FLE, and Rickettsia
spp. either with Borrelia spp. or Bartonella spp., were observed primarily in the genus
Hyalomma with frequencies of 5.3% (6/113). Finally, quadruple infections were found
mostly in the genus Ixodes (1/13, 7.6%), followed by the genus Hyalomma (3/113, 2.6%) and
the genus Rhipicephalus (1/109, 0.9%) (details of co-infections between different species of
microorganisms are given in Table S1).

3. Discussion

In this study, we identified three tick genera: Rhipicephalus, Hyalomma, and Ixodes.
Among these, the thermophilic species R. bursa, H. detritum, and H. marginatum predom-
inated, and the mesophilic species I. ricinus was less abundant (Figure 1). These results
corroborate the previous reports from northern Algeria [7,11,16]. In future studies, a com-
bination of morphological and molecular identification of ticks should be performed to
identify ticks at the genus level. In North Africa, TBP detection is usually carried out using
classic methods, such as PCR or real-time PCRs, which are based on the use of specific
primers and/or probes [11,17,18]. This approach is limited by the characterization of a
single pathogen. However, recent studies have described the importance of co-infections
in the transmission of pathogens and the expression of disease severity. In this study, a
new approach, based on high-throughput microfluidic technology, was used to detect
36 different microorganisms (pathogens and symbionts), and to monitor TBP circulation in
hard ticks infesting cattle in northeastern Algeria.

It is important to notice that some of the ticks collected on bovines were engorged.
Therefore, we cannot conclude that these ticks are vectors for the detected pathogens. The
latter may have become infected with the microorganism while feeding on previously
infected animals, and/or through co-feeding. Moreover, detection of DNA does not
indicate that the pathogen is alive; it simply corresponds to potentially inert traces of
the microorganism in the engorged tick. Here, we identified four different genera of
bacteria (Rickettsia, Anaplasma, Borrelia, Bartonella) and two genera of protozoans (Theileria
and Babesia) with an overall frequency of 80.4% of ticks infected with at least one of
these TBPs. For example, Rickettsia spp. had the highest infection rate and four different
species (i.e., R. aeschlimannii, R. massiliae, R. monacensis, and R. helvetica) were identified.
Belonging to the pathogenic spotted fever group, R. aeschlimannii and R. massiliae cause
infections in animals and humans worldwide [19]. The presence of R. aeschlimannii in H.
marginatum ticks confirmed previous studies on the association of this vector with this
bacteria species [19,20]. Surprisingly, we detected R. aeschlimannii DNA in H. detritum and
R. bursa ticks also (Table 1). This species was first isolated from H. marginatum in Morocco
and then in other African and Mediterranean countries [10,15,19,21–23]. Ticks of the genus
Hyalomma have been reported as vectors of R. aeschlimannii, including H. marginatum,
H. marginatum rufipes, H. aegyptium, and H. truncatum [19,23]. In addition, this bacteria
species has been found in R. appendiculatus in South Africa and Haemaphysalis ticks in
Spain [24], and R. turanicus in Greece and China [25,26]. Nevertheless, Rickettsia spp.
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is considered as an endosymbiont of Hyalomma ticks, and several other tick genera. R.
aeschlimannii has been identified in a large percentage of Hyalomma ticks, with unknown
clinical relevance [27]. According to this finding and our results, we suggest that tick
species other than Hyalomma can also be a suitable carrier for this bacterial species.

In addition, we detected R. massiliae in R. sanguineus. This tick has been described as a
vector of this species in the Mediterranean region [8], but we also amplified the DNA of
this species for the first time in Hyalomma ticks from Algeria. A similar study in Pakistan
also using the microfluidic technique amplified R. massiliae in Hyalomma hussaini and H.
anatolicum ticks [28]. The implication of Hyalomma species in the transmission cycle of
this pathogen needs to be clarified. In our study, I. ricinus harbored R. monacensis and R.
helvetica that were not detected in the other tick species examined (Table 1). This confirms
the previous results observed in North Africa as well as Europe [19,20,29–32].

Regarding the protozoan Theileria and Babesia species, we detected T. orientalis and B.
bigemina. Although the primary vectors of T. orientalis are Haemaphysalis spp. ticks [33], in
our study, R. bursa, H. detritum, H. marginatum, and I. ricinus ticks were found to be positive
for this pathogen. The association of this pathogen with R. bursa and R. annulatus ticks
have also been confirmed in Romania and Algeria, respectively [11,34]. Moreover, a strain
closely related to T. buffeli has been detected in R. sanguineus, R. bursa, R. annulatus, H.
marginatum, Dermacentor marginatum, and Haemaphysalis punctata ticks in Sardinia, Italy [35].
Taking these results together, the transmission of this TBP does not appear to be limited
exclusively to Haemaphysalis spp., suggesting that other tick species may be involved in
the transmission cycle worldwide. In the present study, we confirmed the presence of
B. bigemina in Algerian R. annulatus, which is its principal vector [36]. Furthermore, we
also found this protozoan species in R. sanguineus, lending support to previous reports
from Sardinia and Iran [35,37]. The biological transmission of A. marginale involves at least
20 species of ticks mainly of the genera Dermacentor and Rhipicephalus [38]. Here, we report
the presence of A. marginale in R. bursa, H. detritum, and I. ricinus. Similarly, A. marginale has
been reported in R. bursa in Corsica and Portugal [39,40], and in I. ricinus in Hungary [41].
A. centrale, which is transmitted by Rhipicephalus simus [38], was confirmed individually
on one Rhipicephalus sp. tick. Bartonella spp. was identified in multiple species of the tick
genera Hyalomma and Rhipicephalus. There is little information on Bartonella transmission in
cattle, but based on our recent study reporting B. bovis in ticks from Algeria, these ticks may
play a critical role in the transmission of this pathogen in this area [42]. We also amplified
DNA from Borrelia sp. in 16 specimens of different tick species. Usually, ticks from the
genus Ixodes are the vectors of the zoonotic bacteria species B. burgdorferi s.l. from the
Lyme disease group, whereas B. theileri, from the relapsing fever group that causes bovine
borreliosis, is transmitted by Rhipicephalus ticks [43,44]. In previous research conducted in
Algeria, DNA from these bacteria has been amplified in different tick genera in Algeria
using quantitative PCR [31].

Coxiella, Francisella, and Rickettsia are the three major endosymbionts reported in
ticks [6,45]. In addition to TBPs, we reported for the first time in Algeria a high rate of
infection with Francisella-like endosymbionts in all tick species tested except R. annulatus.
Furthermore, 60% of investigated ticks harbored unidentified Rickettsia spp., whereas
all the specimens were negative for Coxiella-like endosymbionts. It has been reported
that symbionts previously considered non-pathogenic may turn out to be pathogenic, as
demonstrated for R. helvetica, R. slovaca, and R. monacensis [20,46]. However, the reasons
that make one bacterial species become pathogenic while others remain non-pathogenic
are still unclear [45]. In future studies, phylogenetic analysis targeting several genes
for pathogenic and non-pathogenic microorganisms will allow us to better answer this
question. Our study showed co-infection of cattle ticks with a large variety of pathogenic
and non-pathogenic microorganisms. High co-infection rates of TBPs in livestock ticks has
been reported in other countries [15,23,28,47]. Co-infections represent a significant risk of
the cumulative effect of pathogen transfer and subsequent development of the associated
diseases [48]. In addition, co-infections can cause severe complications in the treatment of



Pathogens 2021, 10, 362 7 of 14

tick-borne illnesses. Therefore, the study of the associations of multiple microorganisms
within the same tick is of high importance, and can help better identify potential clinical
co-infections to improve the epidemiological knowledge and control of TBPs [6].

4. Materials and Methods
4.1. Ethical Statement

Sample collection for this study was authorized by the National Veterinary School of
Algiers, Algeria and by the Veterinary Services Department of the Tizi-Ouzou province,
Algeria. All bovines were sampled according to Algerian regulations.

4.2. Tick Collection and Morphological Identification

A total of 1055 ticks were randomly collected from 112 bovines (with an average of
nine ticks/bovine) between May 2015 and November 2017 in eight locations in the Kabylia
region located in northeastern Algeria. The samples collected from each individual bovine
were stored in 70% ethanol. Tick species (or genera) were determined using taxonomic
keys developed by Walker et al. [49] and based on morphological characteristics observed
under a stereomicroscope.

4.3. DNA Extraction

A random selection of one to three ticks (males and females) from each individual
bovine (235 total ticks) were used for genomic DNA extraction. Prior to extraction, ticks
were washed three times in sterile distilled water, dried and crushed individually using a
sterile scalpel. DNA was then extracted from whole ticks using the NucleoSpin ® Tissue
DNA extraction kit (Macherey–Nagel, Düren, Germany) following the manufacturer’s
instructions and stored at −20 °C until use.

4.4. DNA Pre-Amplification

The Perfecta PreAmp SuperMix (Quanta Biosciences, Beverly, Massachusetts, USA)
was used for DNA pre-amplification according to the manufacturer’s instructions. First, all
primers pair targeting TBPs were pooled, combining equal volumes with a final concentra-
tion of 0.2 µM each.

Then, reactions were carried out in a final volume of 5 µL containing 1 µL of 5×
Perfecta Preamp, 1.25 µL of the pooled primer mixture, 1.5 µL of distilled water and 1.25 µL
of tick DNA.

The PCR run conditions consisted of a first cycle of 95 °C (2 min), followed by 14 cycles
of amplification at 95 °C (10 s) and 60 °C (3 min). The pre-amplified products were diluted
in ultra-pure water at 1:10 and kept at −20 °C until use.

4.5. High-Throughput Microfluidic Real-Time PCR

The BioMark™ real-time PCR system (Fluidigm, San Francisco, USA) was used for
the high-throughput microfluidic system, which can handle 48 real-time PCR reactions
simultaneously in one single chip [6,14]. Real-time PCR reactions were performed using
6-carboxyfluorescein (FAM)- and black hole quencher (BHQ1)-labeled TaqMan probes with
TaqMan Gene expression master mix in accordance with the manufacturer’s instructions
(Applied Biosystems, France). Amplification consisted of 2 min at 50 °C, 10 min at 95 °C,
followed by 40 cycles of two-step amplification of 15 s at 95 °C, and 1 min at 60 °C.

We carried out the high-throughput microfluidic real-time PCR to screen the bacte-
rial and parasitic species known to circulate in ticks. We thus simultaneously targeted
36 different microorganisms belonging to 10 genera (the list of pathogens is shown in
Table 2 and the list of each primer set and probes used is given in Table 3). Moreover, two
primer/probe sets targeting I. ricinus and R. sanguineus tick species were used as a positive
control of tick species identification and one primer/probe set targeting tick species was
used to control DNA extractions (primers/probes for other tick species were not available
at that time). One negative control (ultra-pure water) and one positive control DNA of
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Escherichia coli were included in each chip. The results were acquired on the BioMarkTM
real-time PCR system and analyzed using the Fluidigm real-time PCR analysis software to
obtain crossing point (Cp) values.

Table 2. Bacteria and parasites targeted in our study.

Genus Species Numbers

Bacteria

Borrelia B. burgdorferi senso stricto, B. garinii, B. afzelii, B. valaisiana, B. lusitaniae, B. spielmanii, B. bissettii,
B. miyamotoi. 8

Anaplasma A. marginale, A. platys, A. phagocytophilum, A.ovis, A. centrale, A. bovis. 6
Ehrlichia E. ruminantium, Neoehrlichia mikurensis. 2
Rickettsia R. conorii, R. slovaca, R. massiliae, R. prowazekii, R. aeschlimannii, R. andeanae, R. typhi, R. akari 8
Bartonella B. henselae 1
Francisella F. tularensis, Francisella-like endosymbionts. 2

Coxiella C. burnettii. 1

Parasites
Babesia B. microti, B. ovis, B. bigemina, B. bovis, B. caballi, B. divergens. 6

Theileria T. mutans, T. velifera. 2
Hepatozoon Hepatozoon spp.

Total 10 36

Table 3. List of primers and probes used in this study for microfluidic real-time PCR [6,14,47].

Pathogen Target Gene Primers (F, R; 5′-3′) and Probe (P) Length (bp)

Borrelia burgdorferi s.s. rpoB
F-GCTTACTCACAAAAGGCGTCTT

83R-GCACATCTCTTACTTCAAATCCT
P-AATGCTCTTGGACCAGGAGGACTTTCA

Borrelia garinii rpoB
F-TGGCCGAACTTACCCACAAAA

88R-ACATCTCTTACTTCAAATCCTGC
P-TCTATCTCTTGAAAGTCCCCCTGGTCC

Borrelia afzelii fla
F-GGAGCAAATCAAGATGAAGCAAT

116R-TGAGCACCCTCTTGAACAGG
P-TGCAGCCTGAGCAGCTTGAGCTCC

Borrelia valaisiana ospA
F-ACTCACAAATGACAGATGCTGAA

135R-GCTTGCTTAAAGTAACAGTACCT
P-TCCGCCTACAAGATTTCCTGGAAGCTT

Borrelia lusitaniae rpoB
F-CGAACTTACTCATAAAAGGCGTC

87R-TGGACGTCTCTTACTTCAAATCC
P-TTAATGCTCTCGGGCCTGGGGGACT

Borrelia spielmanii fla
F-ATCTATTTTCTGGTGAGGGAGC

71R-TCCTTCTTGTTGAGCACCTTC
P-TTGAACAGGCGCAGTCTGAGCAGCTT

Borrelia bissettii rpoB
F-GCAACCAGTCAGCTTTCACAG

118R-CAAATCCTGCCCTATCCCTTG
P-AAAGTCCTCCCGGCCCAAGAGCATTAA

Borrelia miyamotoi glpQ
F-CACGACCCAGAAATTGACACA

94R-GTGTGAAGTCAGTGGCGTAAT
P-TCGTCCGTTTTCTCTAGCTCGATTGGG

Borrelia spp. 23S rRNA
F-GAGTCTTAAAAGGGCGATTTAGT

73R-CTTCAGCCTGGCCATAAATAG
P-AGATGTGGTAGACCCGAAGCCGAGT

Anaplasma marginale msp1
F-CAGGCTTCAAGCGTACAGTG

85R-GATATCTGTGCCTGGCCTTC
P-ATGAAAGCCTGGAGATGTTAGACCGAG

Anaplasma platys groEL
F-TTCTGCCGATCCTTGAAAACG

75R-CTTCTCCTTCTACATCCTCAG
P-TTGCTAGATCCGGCAGGCCTCTGC

Anaplasma phagocytophilum msp2
F-GCTATGGAAGGCAGTGTTGG

77R-GTCTTGAAGCGCTCGTAACC
P-AATCTCAAGCTCAACCCTGGCACCAC
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Table 3. Cont.

Pathogen Target Gene Primers (F, R; 5′-3′) and Probe (P) Length (bp)

Anaplasma ovis msp4
F-TCATTCGACATGCGTGAGTCA

92R-TTTGCTGGCGCACTCACATC
P-AGCAGAGAGACCTCGTATGTTAGAGGC

Anaplasma centrale groEL
F-AGCTGCCCTGCTATACACG

79R-GATGTTGATGCCCAATTGCTC
P-CTTGCATCTCTAGACGAGGTAAAGGGG

Anaplasma bovis groEL
F-GGGAGATAGTACACATCCTTG

73R-CTGATAGCTACAGTTAAGCCC
P-AGGTGCTGTTGGATGTACTGCTGGACC

Anaplasma spp. 16S rRNA
F-CTTAGGGTTGTAAAACTCTTTCAG

160R-CTTTAACTTACCAAACCGCCTAC
P-ATGCCCTTTACGCCCAATAATTCCGAACA

Ehrlichia spp. 16S rRNA
F-GCAACGCGAAAAACCTTACCA

98R-AGCCATGCAGCACCTGTGT
P-AAGGTCCAGCCAAACTGACTCTTCCG

Ehrlichia ruminantium gltA
F-CCAGAAAACTGATGGTGAGTTAG

116R-AGCCTACATCAGCTTGAATGAAG
P-AGTGTAAACTTGCTGTTGCTAAGGTAGCATG

Neoehrlichia mikurensis groEL
F-AGAGACATCATTCGCATTTTGGA

96R-TTCCGGTGTACCATAAGGCTT
P-AGATGCTGTTGGATGTACTGCTGGACC

Rickettsia conorii 23S-5S ITS
F-CTCACAAAGTTATCAGGTTAAATAG

118R-CGATACTCAGCAAAATAATTCTCG
P-CTGGATATCGTGGCAGGGCTACAGTAT

Rickettsia slovaca 23S-5S ITS
F-GTATCTACTCACAAAGTTATCAGG

138R-CTTAACTTTTACTACAATACTCAGC
P-TAATTTTCGCTGGATATCGTGGCAGGG

Rickettsia massiliae 23S-5S ITS
F-GTTATTGCATCACTAATGTTATACTG

128R-GTTAATGTTGTTGCACGACTCAA
P-TAGCCCCGCCACGATATCTAGCAAAAA

Rickettsia prowazekii gltA
F-CAAGTATCGGTAAAGATGTAATCG

151R-TATCCTCGATACCATAATATGCC
P-ATATAAGTAGGGTATCTGCGGAAGCCGAT

Rickettsia aeschlimannii ITS
F-CTCACAAAGTTATCAGGTTAAATAG

134R-CTTAACTTTTACTACGATACTTAGCA
P-TAATTTTTGCTGGATATCGTGGCGGGG

Rickettsiaandeanae OmpB
F-GGCGGACAGGTAACTTTTGG

165R-AAGGATCATAGTATCAGGAACTG
P- ACACATAGTTGACGTTGGTACAGACGGTAC

Rickettsiatyphi OmpB
F-CAGGTCATGGTATTACTGCTCA

133R-GCAGCAGTAAAGTCTATTGATCC
P-

ACAAGCTGCTACTACAAAAAGTGCTCAAAATG

Rickettsiaakari OmpB
F-GTGCTGTTGCAGGTGGTAC

101R-TAAAGTAATACCGTGTAATGCAGC
P-ATTACCAGCACCGTTACCTATATCACCGG

Rickettsia spp. gltA
F-GTCGCAAATGTTCACGGTACTT

78R-TCTTCGTGCATTTCTTTCCATTG
P-TGCAATAGCAAGAACCGTAGGCTGGATG

Bartonella henselae pap31
F-CCGCTGATCGCATTATGCCT

107R-AGCGATTTCTGCATCATCTGCT
P-ATGTTGCTGGTGGTGTTTCCTATGCAC

Bartonella spp. ssrA
F-CGTTATCGGGCTAAATGAGTAG

118R-ACCCCGCTTAAACCTGCGA
P-TTGCAAATGACAACTATGCGGAAGCACGTC

Francisella tularensis tul4
F-ACCCACAAGGAAGTGTAAGATTA

76R-GTAATTGGGAAGCTTGTATCATG
P-AATGGCAGGCTCCAGAAGGTTCTAAGT
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Table 3. Cont.

Pathogen Target Gene Primers (F, R; 5′-3′) and Probe (P) Length (bp)

Francisella-like endosymbionts fopA
F-GGCAAATCTAGCAGGTCAAGC

91R-CAACACTTGCTTGAACATTTCTAG
P-AACAGGTGCTTGGGATGTGGGTGGTG

Coxiella burnettii IS1111
F-TGGAGGAGCGAACCATTGGT

86R-CATACGGTTTGACGTGCTGC
P-ATCGGACGTTTATGGGGATGGGTATCC

Coxiella burnettii idc
F-AGGCCCGTCCGTTATTTTACG

74R-CGGAAAATCACCATATTCACCTT
P-TTCAGGCGTTTTGACCGGGCTTGGC

Babesia microti CCTeta
F-ACAATGGATTTTCCCCAGCAAAA

145R-GCGACATTTCGGCAACTTATATA
P-TACTCTGGTGCAATGAGCGTATGGGTA

Babesia ovis 18SrRNA
F-TCTGTGATGCCCTTAGATGTC

92R-GCTGGTTACCCGCGCCTT
P-TCGGAGCGGGGTCAACTCGATGCAT

Babesia bigemina 18SrRNA
F-ATTCCGTTAACGAACGAGACC

99R-TTCCCCCACGCTTGAAGCA
P-CAGGAGTCCCTCTAAGAAGCAAACGAG

Babesia bovis CCTeta
F-GCCAAGTAGTGGTAGACTGTA

100R-GCTCCGTCATTGGTTATGGTA
P-TAAAGACAACACTGGGTCCGCGTGG

Babesia caballi Rap1
F-GTTGTTCGGCTGGGGCATC

94R-CAGGCGACTGACGCTGTGT
P-TCTGTCCCGATGTCAAGGGGCAGGT

Babesia divergens hsp70
F-CTCATTGGTGACGCCGCTA

83R-CTCCTCCCGATAAGCCTCTT
P-AGAACCAGGAGGCCCGTAACCCAGA

Theileria mutans ITS
F-CCTTATTAGGGGCTACCGTG

119R-GTTTCAAATTTGAAGTAACCAAGTG
P-ATCCGTGAAAAACGTGCCAAACTGGTTAC

Theileria velifera 18S rRNA
F-TGTGGCTTATCTGGGTTCGC

151R-CCATTACTTTGGTACCTAAAACC
P-TTGCGTTCCCGGTGTTTTACTTTGAGAAAG

Theileria spp. 18S
F-TGAACGAGGAATGCCTAGTATG

104R-CACCGGATCACTCGATCGG
P-TAGGAGCGACGGGCGGTGTGTAC

Hepatozoon spp. 18S rRNA
F-ATTGGCTTACCGTGGCAGTG

175R-AAAGCATTTTAACTGCCTTGTATTG
P-ACGGTTAACGGGGGATTAGGGTTCGAT

Tick species 16SrRNA
F-AAATACTCTAGGGATAACAGCGT

99R-TCTTCATCAAACAAGTATCCTAATC
P-CAACATCGAGGTCGCAAACCATTTTGTCTA

Rhipicephalussanguineus ITS2
F-TTGAACGCTACGGCAAAGCG

110R-CCATCACCTCGGTGCAGTC
P-ACAAGGGCCGCTCGAAAGGCGAGA

Ixodes ricinus ITS2
F-CGAAACTCGATGGAGACCTG

77R-ATCTCCAACGCACCGACGT
P-TTGTGGAAATCCCGTCGCACGTTGAAC

Escherichia coli eae
F-CATTGATCAGGATTTTTCTGGTGATA

102R-CTCATGCGGAAATAGCCGTTA
P-ATAGTCTCGCCAGTATTCGCCACCAATACC

F: forward; R: reverse; P: probe; bp: base pairs.

4.6. Standard/Nested PCR and Sequencing

Samples were considered positive for a given microorganism if the Cp value was <30,
and if they were positive for a given pathogen species and its corresponding genus and
negative for all other species belonging to the same genus. Other positive samples were
confirmed using nested PCR or conventional PCR with primers targeting genes or regions



Pathogens 2021, 10, 362 11 of 14

different from those of the BioMark™ system (for the primers used, see Table 4). The PCR
products were sequenced by Eurofins Genomics (https://Cochin.eurofins.com (accessed
on 1 October 2020)) then assembled using BioEdit software (Ibis Biosciences, Carlsbad, CA,
USA). Our results were compared in online BLAST (http://www.ncbi.nlm.nih.gov/blast
(accessed on 1 October 2020)). searches against sequences publicly available in GenBank
(https://www.ncbi.nlm.nih.gov/ (accessed on 1 October 2020)).

Table 4. List of primers used in this study for confirmation using nested and conventional PCR.

Pathogen Target Gene Primer Name Sequence (5′-3′) Amplicon Size (bp) T Reference

Borrelia spp. FlaB

FlaB280 F GCAGTTCARTCAGGTAACGG 645

55 [50]FlaL R GCAATCATAGCCATTGCAGATTGT
FlaB_737F GCATCAACTGTRGTTGTAACATTAACAGG

FlaLL R ACATATTCAGATGCAGACAGAGGT 407

Anaplasma spp. 16S rRNA

EHR1 F GAACGAACGCTGGCGGCAAGC 693 60

[51]EHR2 R AGTA(T/C)CG(A/G)ACCAGATAGCCGC
EHR3 F TGCATAGGAATCTACCTAGTAG
EHR2 R AGTA(T/C)CG(A/G)ACCAGATAGCCGC 629 55

Rickettsia spp. gltA Rsfg877 GGG GGC CTG CTC ACG GCG G
381 56 [52]Rsfg1258 ATT GCA AAA AGT ACA GTG AAC A

Bartonella spp. ftsZ 257 F GCCTTCAAGGAGTTGATTTTGTTGTTGCCA
580 55 [53]258 R ACGACCCATTTCATGCATAACAGAAC

Babesia/
Theileria

/Hepatozoon spp.
18S rRNA

BTH 18S 1st F GTGAAACTGCGAATGGCTCATTAC

1500 58 [54]BTH 18S 1st R AAGTGATAAGGTTCACAAAACTTCCC
BTH 18S 2nd F GGCTCATTACAACAGTTATAGTTTATTTG
BTH 18S 2nd R CGGTCCGAATAATTCACCGGAT

F: forward; R: reverse; bp: base pairs; T: hybridization temperature.

5. Conclusions

We used high-throughput microfluidic real-time PCR to detect TBPs in cattle ticks
in Algeria. We confirmed the presence of several bacteria and protozoan species in tick-
infested cattle with a fast and highly sensitive molecular method. We detected pathogenic
and non-pathogenic (e.g., Francisella-like endosymbionts) microorganisms in ticks feeding
on cattle, with a high frequency of co-infections. Further studies on endosymbionts and
their possible interactions with pathogens transmitted by ticks are now needed, particularly
with regard to the highly predominant ticks Rhipicephalus and Hyalomma in Algeria. Finally,
our results highlight the possible involvement of tick species other than those typically
reported in the transmission of some pathogens of interest in Algeria; these atypical
associations deserve to be investigated further.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-081
7/10/3/362/s1; Table S1: Mono and mixed infection between microorganisms detected in cattle ticks.
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