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Abstract 26 

 27 

Identifying animals that are superior in terms of feed efficiency may improve the 28 

profitability and sustainability of the beef cattle sector. However, measuring feed 29 

efficiency is costly and time-consuming. Biomarkers should thus be explored and 30 

validated to predict between-animal variation of feed efficiency for both genetic 31 

selection and precision feeding. In this work, we aimed to assess and validate two 32 

previously identified biomarkers of nitrogen (N) use efficiency in ruminants, plasma 33 

urea concentrations and the 15N natural abundance in plasma proteins (plasma 34 

δ15N), to predict the between-animal variation in feed efficiency when animals were 35 

fed two contrasted diets (high-starch vs high-fibre diets). We used an experimental 36 

network design with a total of 588 young bulls tested for feed efficiency through two 37 

different traits (feed conversion efficiency [FCE] and residual feed intake [RFI]) during 38 

at least 6 months in 12 cohorts (farm × period combination). Animals reared in the 39 

same cohort, receiving the same diet and housed in the same pen were considered 40 

as a contemporary group (CG). To analyse between-animal variations and explore 41 

relationships between biomarkers and feed efficiency two statistical approaches, 42 

based either on mixed-effect models or regressions from residuals, were conducted 43 

to remove the between-CG variability. Between-animal variation of plasma δ15N was 44 

significantly correlated with feed efficiency measured through the two criteria traits 45 

and regardless of the statistical approach. Conversely, plasma urea was not 46 

correlated to FCE and showed only a weak, although significant, correlation with RFI. 47 

The response of plasma δ15N to FCE variations was higher when animals were fed a 48 

high-starch compared to a high-fibre diet. In addition, we identified two dietary 49 

factors, the metabolisable protein to net energy ratio and the rumen protein balance, 50 



3 

 

that influenced the relation between plasma δ15N and FCE variations. Concerning the 51 

genetic evaluation, and despite the moderate heritability of the two biomarkers (0.28), 52 

the size of our experimental setup was insufficient to detect significant genetic 53 

correlations between feed efficiency and the biomarkers. However, we validated the 54 

potential of plasma δ15N to phenotypically discriminate two animals reared in identical 55 

conditions in terms of feed efficiency as long as they differ by at least 0.049 g/g for 56 

FCE and 1.67 kg/d for RFI. Altogether, the study showed phenotypic, but non-57 

genetic, relationships between plasma proteins δ15N and feed efficiency, that varied 58 

according to the efficiency index and the diet utilised. 59 

 60 

Keywords: feed conversion efficiency, biomarkers, individual variability, 15N natural 61 

abundance, ruminants  62 

 63 

Implications 64 

 65 

Beef fattening cattle fed the same diet in the same contemporary group show 66 

individual variability in their ability to transform the feed into gain. We validated the 67 

potential of a new biomarker, the 15N natural abundance in plasma, to identify most 68 

efficient cattle within contemporary groups. The use of such a biomarker may help 69 

farmers and producers to make decisions in the context of precision feeding and thus 70 

improve the profitability and sustainability of the beef cattle industry. 71 
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Introduction  72 

 73 

Feed efficiency (FE) is defined as the animal ability to transform feed resources into 74 

animal products. In a context of increasing demand for protein resources, of 75 

necessities for the industry to lower production costs and to improve the sustainability 76 

of livestock systems, FE should be improved (Cantalapiedra-Hijar., 2018a). Feed 77 

efficiency is usually characterised through different traits, described as ratios 78 

between animal inputs and outputs (feed conversion efficiency [FCE]), or as residual 79 

regression traits (residual feed intake [RFI]) (Berry and Crowley, 2013).  In the case 80 

of ruminants, especially beef cattle, feed efficiency is low compared to other livestock 81 

species (Tolkamp, 2010), but also highly variable between animals raised in the 82 

same conditions (17% CV, Arthur et al., 2001). In addition, feed efficiency evaluated 83 

by either FCE or RFI is moderately heritable (Taussat et al., 2019), which gives rise 84 

to the possibility of improving this animal trait by genetic selection (Archer et al., 85 

1999). However, a major limit for the genetic selection remains the phenotypic 86 

measurement of feed efficiency itself, which requires at least 70 days of individual 87 

DM intake (DMI) and BW gain recording and which, as a result, is expensive, 88 

laborious and not always feasible on a large number of animals or in extensive 89 

conditions. It is thus necessary to find alternative tools that are accurate, 90 

phenotypically and genetically related to feed efficiency traits and that can be used to 91 

predict feed efficiency in field conditions and to select animals for this trait. 92 

In this regard, biomarkers of between-animal variation of feed efficiency constitute 93 

interesting alternative tools. In animals fed the same diet, feed efficiency is by 94 

definition mathematically associated to the nitrogen (N) use efficiency, which reflects 95 

the partition of N intake between N excretion and N accretion. Nitrogen use efficiency 96 
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(NUE) depends on both dietary conditions and individual animal protein metabolism 97 

(Dijkstra et al., 2013). Therefore, biomarkers of feed efficiency could be searched 98 

among proxies related to NUE (Jonker et al., 1998; Cantalapiedra-Hijar et al., 2018b). 99 

A classical biomarker of N partitioning and NUE in ruminants is the urea 100 

concentration in milk or blood (Kohn et al., 2005b). Although its ability to discriminate 101 

dietary treatments in terms of N utilization is unquestionable (McNamara et al., 2003), 102 

no conclusive results have been obtained about its potential to reflect between-103 

animal variations in NUE (Hof et al., 1997; Huhtanen et al., 2015). An alternative 104 

potential biomarker to predict NUE is based on the difference in 15N natural 105 

abundance between the diet and the animal proteins, the called isotopic N 106 

fractionation (Δ15Nanimal-diet), which has the potential to reflect both dietary and 107 

individual effects on NUE (Cantalapiedra-Hijar et al., 2018b). Nitrogen naturally exists 108 

as two stable isotopes, 15N and 14N, and δ15N notation reflects the relative 109 

abundance of the heaviest isotope. The δ15N in animal proteins results from the δ15N 110 

in the diet and the N isotopic fractionation occurring between N ingestion and N 111 

retention in animal tissues. The Δ
15Nanimal-diet represents thus the difference between 112 

the isotopic signature of the product (animal proteins) and the substrate (feed 113 

consumed), and arises from rumen microbial and hepatic enzymatic activity (Silfer et 114 

al., 1992). Microbial and hepatic enzymes prefer substrates (ammonia and amino 115 

acids) containing the lighter N isotope (Macko et al., 1986; Wattiaux and Reed, 116 

1995), which results in a greater excretion of 14N in urine and greater retention of 15N 117 

in animal proteins (Ganes et al., 1998). It is expected thus that efficient ruminants 118 

have  lower Δ
15Nanimal-diet values as a result of a lower amino acid catabolism 119 

(Cantalapiedra-Hijar et al., 2015) and higher ammonia uptake by rumen bacteria 120 

(Wattiaux and Reed, 1995). In this regard, Δ15Nanimal-diet was shown to be significantly 121 
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related to FCE (Wheadon et al., 2014; Cantalapiedra-Hijar et al., 2015) but not to RFI 122 

(Wheadon et al., 2014; Meale et al., 2017) in beef cattle. It is noteworthy that if this 123 

isotopic biomarker is used for discriminating individuals fed the same diet there is no 124 

need to know the δ15N of diets (Wheadon et al., 2014) since all compared individuals 125 

share the same dietary δ15N values. This may represent a considerable gain in the 126 

applicability of this biomarker in field conditions, since only δ15N of animal proteins 127 

(as plasma proteins) rather than Δ
15Nanimal-diet could capture between-animal 128 

differences in feed efficiency provided that animals are fed with identical diets.  129 

Recent studies in beef cattle suggested that the relationships at the individual level 130 

between FE and isotopic N signatures could be diet-dependent (Nasrollahi et al., 131 

2020), but this have not been evaluated experimentally on a large number of 132 

animals. We assumed that the relationships at the individual level between δ15N in 133 

plasma proteins (plasma δ15N) or plasma urea concentration and FE traits (FCE, 134 

RFI) differ and that each relationship is affected by the diet fed to animals. Moreover, 135 

to be used for genetic selection, genetic correlation between biomarkers and animal 136 

traits should also be confirmed. Thus, the objectives of this study were to evaluate i) 137 

the phenotypic and genetic relationships between plasma δ15N or plasma urea 138 

concentration and the most common traits of feed efficiency (FCE and RFI), ii) to 139 

which extent these relationships are diet-dependent, and iii) the applicability of these 140 

candidate biomarkers in field conditions. 141 

Material and methods 142 

 143 

Experimental network design 144 

 145 
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This study was conceived as an experimental network, defined as a set of 146 

experiments sharing the same experimental protocol but conducted in a set of 147 

different environments (Makowski et al., 2019). The experimental network (Fig. 1) 148 

was constituted of 12 cohorts defined by the combination of four experimental farms 149 

located at different places in France (F.1, F.2, F.3, F.4) and several experimental 150 

periods within each experimental farm (2, 3 or 4 depending on the farm). The study 151 

started in 2015 and finished in 2019. Within each cohort, the same two contrasted 152 

diets (a grass silage-based diet rich in fibre vs a corn silage-based diet rich in starch) 153 

were tested. For each cohort, each animal (on average 55 individuals per cohort) was 154 

assigned to one of the two experimental diets (on average 27 animals per diet within 155 

a cohort). Within each cohort and diet, animals were grouped in pens (5 to 10 156 

individuals/pen) according to their initial BW. As a result, half of the pens (n = 3-4) in 157 

each cohort was assigned to the grass silage diet while the other half (n = 3-4) was 158 

assigned to the corn silage diet. Only two cohorts out of 12 used only one pen per 159 

diet with a greater number of animals per pen. Therefore, each of the 72 individual 160 

pens represented a contemporary group (CG), defined as those animals that were 161 

reared in the same cohort, that had a similar initial body weight, and that were fed the 162 

same diet and housed in the same pen (Pereira et al., 2018). The experimental unit is 163 

the individual animal because treatments and measurements were applied at the 164 

animal level. The environmental factors contributing to the between-CG variability 165 

were therefore i) the cohort (n = 12), ii) the diet within each cohort (n = 2) and iii) the 166 

pen within diet and within cohort (1≤ n ≤4 depending on the cohort).  167 

 168 

Animals and experimental diets 169 

 170 
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A total of 588 Charolais bulls (303 ± 25 days old and 393 ± 58 kg of BW at the onset 171 

of the experiment) were recorded for feed efficiency during a 200 ± 27 day test. The 172 

experimental animals were offspring of 70 known sires and were homogenously 173 

distributed across cohorts and diets according to their sire origin. The two 174 

experimental diets had a forage to concentrate ratio close to 60:40, were distributed 175 

as total-mixed rations and based on either corn or grass silage. The grass silage was 176 

mainly composed from grasses such as English ray grass or dactyl and legumes as 177 

violet clover. The concentrate was always composed of wheat grain and soybean 178 

meal, and beet pulp was added in the grass silage diet (Table 1). Both diets were iso-179 

CP but differed slightly in their net energy levels (1.50 [grass silage diet] vs 1.63 [corn 180 

silage diet] Mcal/kg of DM; INRA, 2018). Diets differed by the nature of the 181 

carbohydrate, showing very contrasted NDF (48% vs 34%) and starch concentrations 182 

(6% vs 32%), for grass and corn silage diets, respectively, on a DM basis. Because 183 

of the different geographical locations and climatic conditions of farms, the chemical 184 

composition of silages changed slightly across cohorts. Therefore, in order to keep 185 

feed values as similar as possible for each type of diet, the proportions of feed 186 

ingredients varied slightly among cohorts (Table 1). Animals were fed ad libitum once 187 

a day between 0900 and 1030 and had free access to water throughout the 188 

experiment.  189 

 190 

Measurements for feed efficiency 191 

 192 

Animals underwent an adaptation period of 4 weeks before the FE test to allow them 193 

to adapt to facilities and diets. Their age during the FE test varied slightly across 194 

cohorts, it ranged from 10 (minimum) to 17 (maximum) at the start of the test, but all 195 
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FE tests always covered the period between 12 and 15 months of age. Animals were 196 

weighed on two consecutive days at the beginning and at the end of the test, and 197 

every 28 days in between, always at 1400h. Individual DMI was recorded daily with 198 

an automatic intake recording system based on mangers placed on weighing cells 199 

(Biocontrol, Rakkestad, Norway). Representative samples from each silo were 200 

collected between one and three times per cohort.    201 

 202 

Chemical analyses of feeds and calculation of feed values 203 

 204 

Chemical composition of silages (n=24) was determined by four different laboratories 205 

in France (Départemental d’Analyses du Morbihan [www.morbihan.fr/Ida/laboratoire-206 

departemental], CESAR laboratory [http://www.labo-cesar.com], Inovalys 207 

[www.inovalys.fr] and INRAE Site de Theix [www6.ara.inrae.fr]) using similar 208 

laboratory protocols. Dry matter and organic matter concentration were determined 209 

by oven-drying (103°C and 72h) and subsequent incineration in a muffle furnace at 210 

550°C (NF V 18-101), respectively. CP concentration was analysed by the Dumas 211 

method (Ebeling, 1968), NDF according to Van Soest et al. (1991) and cellulose 212 

according to the Weende method (Nehring, 1966). In vitro organic matter digestibility 213 

was determined according to Aufrère et al. (2007) and starch was analysed by an 214 

enzymatic method (ISO 15914:2004).  Feed values of silages, as defined by INRA 215 

(2018), were calculated from their chemical composition using the Prevalim® 216 

software (https://wwwdev.okteo.fr/). 217 

The chemical composition and feed values of concentrate ingredients were obtained 218 

from tabulated values (INRA, 2018). Thereafter, the feed values of the complete 219 

diets, integrating the digestive interactions, were estimated through the Inration V5® 220 
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software (https://wwwdev.okteo.fr/) from the measured (silages) or estimated 221 

(concentrates) chemical composition of ingredients, the ingredient composition of 222 

diets, and the observed average feeding level (DMI as %BW). Estimated dietary feed 223 

values included net energy (Mcal/kg DM), metabolisable protein (g/kg DM), rumen 224 

protein balance (g/kg DM), microbial protein synthesis (g/kg DM) and the rumen 225 

degradable protein (% CP). Finally, we estimated for each animal the fecal 226 

endogenous protein losses (FEPL) from the observed DMI and the non-digestible 227 

organic matter of the diet (INRA, 2018) as follows: 228 

FEPL (g/d) = DMI (kg/d) x (0.5 x (5.7+0.074 x non-digestible organic matter (g/kg 229 

DM)) 230 

 231 

Blood sampling and analyses  232 

 233 

Blood samples were obtained from each animal one month before the end of test at 234 

an animal age of 477±27 days. Sampling was done before meal distribution between 235 

0800 and 1100 h. Blood was obtained by coccygeal venipuncture and collected into 236 

two tubes of 9 ml each (BD vacutainer, Playmouth, UK) containing either lithium 237 

heparin or ethylenediaminetetraacetic acid. Tubes were centrifuged at 2 500 × g 238 

during 10 min at room temperature. The tube containing lithium heparin was used for 239 

the determination δ15N in plasma proteins, while the other containing EDTA was used 240 

for plasma urea analysis. Plasma was stored at -80° C until laboratory analyses. 241 

Urea concentration was analysed in duplicate for each plasma sample (1.5 ml) by 242 

spectrophotometry with an automated analyser (Arene 20XT, Thermo Scientific, 243 

Vaanta, Finland). The accuracy profile (NF V03-110: 2010) of the method determined 244 
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for concentrations ranging between 0.05 and 0.90 g/l  yielded an average accuracy of 245 

101% and an average CV for replicates of 8%.  246 

The δ15N was determined in plasma proteins isolated by precipitation by adding 15 247 

µL of a sulfosalicylic acid solution (1g/mL) into 300 µL of plasma. Supernatant and 248 

pellet were separated after 15 min of centrifugation (5 000 g at 4°C) followed by 1 h 249 

of storage at 4°C. The pellet was rinsed three times with MilliQ water and freeze-250 

dried. The δ15N values were determined using an isotope-ratio mass spectrometer 251 

(Isoprime Vision; Elementar France) coupled to an elemental analyser (Vario cube; 252 

Elementar France) as described in Cantalapiedra-Hijar et al. (2020a). International 253 

standards (glutamic acid) were included in each run every 10 samples to correct for 254 

possible time-variations in the analysis. Results were expressed using the delta 255 

notation according to the following equation:  256 

δ15N = [(Rsample / Rstandard) – 1] x 1 000, 257 

where Rsample is the N isotope ratio between the heavier isotope and the lighter 258 

isotope (15N/14N) for the sample being analysed, Rstandard the N isotope ratio between 259 

the heavier isotope and the internationally defined standard (atmospheric N2, Rstandard 260 

= 0.0036765), and δ is the delta notation in parts per 1 000 (‰) relative to the 261 

standard. Samples were analysed in duplicates and measurements errors for the 262 

analysed internal standard were lower than 1.1%CV. Through the manuscript, the 263 

δ15N of plasma proteins will be referred to as plasma δ15N. 264 

 265 

Feed efficiency calculations 266 

 267 
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The average daily gain (ADG) was calculated for each animal by regressing its BW 268 

over the time on test. Mid-test BW was calculated from the intercept and slope of the 269 

regression equation and using the mean time between the start and the end of the 270 

FE test. Mid-test BW was then expressed as mid-test metabolic BW by raising the 271 

former to the power of 0.75 (BW0.75). The individual daily DMI was calculated as the 272 

average daily DMI throughout the test period. The FCE was calculated as the ratio 273 

between ADG and average DMI. 274 

RFI was determined as the difference between observed DMI and the DMI expected 275 

for a given mid-test metabolic BW (BW0.75) and ADG. To adjust RFI for the effect of 276 

CG, the RFI model included it as a fixed effect (Arthur et al., 2001) as follows:  277 

Y= β0 + CG + β1 (BW0.75) + β2 (ADG) + e  (Eq. 1) 278 

where Y is the observed individual daily DMI, β0 is the intercept, CG is the CG effect, 279 

β1 is the regression coefficient for BW0.75, β2 is the regression coefficient for ADG, 280 

and e is the residual of the model or RFI. 281 

 282 

Statistical analyses 283 

 284 

Statistical analyses were performed in R (RStudio Core Team, version 1.1.463, 285 

2018). All variables were tested for normality with the Lillie test and homoscedasticity 286 

within each environmental factor included in the CG effect (cohort, diet and pen) with 287 

the Levene test (Nortest package in R). Differences between treatments (diets) were 288 

tested through parametric (variables with normal distribution) or non-parametric 289 

(variables with non-normal distribution; Kruskal-Wallis test) analysis and declared 290 

significant when P ≤ 0.05.  291 

 292 
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Analysis of sources of variation  293 

First, the between-animal variability expressed as CV (%) was calculated dividing the 294 

SD observed within-CG (SDr) by the average values of recorded traits (Bender et al., 295 

1989). In the case of RFI, with an average value equal to 0, we divided SDr by the 296 

average value of DMI.  297 

We also determined the influence of each environmental factor (cohort, diet nested 298 

within cohort, and pen nested within diet and cohort) on animal performances and 299 

candidate plasma biomarkers values. For this, variance-estimates component 300 

analyses were conducted with mixed-effect models to obtain the contribution of each 301 

random environmental factor: 302 

Y = β1 + Ec + Ed + Ep + ε   (Eq.2) 303 

β1 is the mean value of the parameters in the population of individuals. The 304 

deviations from the mean values are represented by the random effects of the cohort 305 

(Ec), the diet within cohort (Ed) and the pen within diet within cohort (Ep). Finally, ε 306 

represents the residual error of the model, which includes the between-animal 307 

variation and the experimental error (Fisher et al., 2017).  308 

The Intra-class correlation coefficient, which represents the percentage of variance 309 

explained by each random environmental factor, was calculated as follows: 310 

Intra-class correlation coefficient = σ2
i / (σ2

c+ σ2
d + σ2

p + σ2
r)  (Eq.3) 311 

where, σ2
i  refers to the between-class variability (i.e. variance ascribed to each 312 

random experimental factor) and σ2
c+ σ2

d + σ2
p + σ2

r represents the total variance 313 

including the within-CG variability (σ2r).  314 

 315 
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Relationships between feed efficiency traits and candidate plasma biomarkers  316 

To evaluate the relationships between FE traits and candidate plasma biomarkers at 317 

individual level, it was necessary to remove all environmental factors contributing to 318 

the observed variability across-CG and only keep the observed variability within each 319 

CG group (i.e between-animal variability). For this, two different statistical 320 

approaches were applied. 321 

i) Removing the between-contemporary group variability before linear regression 322 

analysis  323 

The random effect of the CG was removed from raw values of each variable (Phuong 324 

et al., 2013; Cantalapiedra-Hijar et al., 2018b) by running the same model as shown 325 

in Eq. 2 and storing the obtained residuals (ε). Eq. 3 was applied to both candidate 326 

biomarkers and FCE. However, because RFI was already adjusted for the CG effect, 327 

this initial step was not applied to this FE trait. Residuals of FE traits (FCE or RFI) 328 

were then linearly regressed (as dependent Y variable) against the residuals of the 329 

candidate plasma biomarkers (X) with the lm function in the R software.   330 

In addition, we evaluated whether combining both candidate plasma biomarkers 331 

(plasma δ15N and urea concentrations) improved the explanation of the FE variance. 332 

For this, we first  checked absence of multicolinearity through a variance inflation 333 

factor test by the Car package, where values below 5 were indicative of non-334 

correlated variables (Vatcheva et al., 2016). Then, we tested the multivariable linear 335 

model as follows: 336 

Y = (β1 × X) + (β2 × Z) + ε (Eq. 4) 337 

where Y, X, Z are FE values (one equation for each FE trait), plasma δ15N values 338 

and plasma urea values respectively, with β1 and β2 being the slopes of plasma δ15N 339 
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and plasma urea, respectively. Comparisons between models were conducted 340 

through Anova analysis.  341 

ii) Accounting for the between-contemporary group variability through mixed effect 342 

models  343 

The mixed-effect model analysis aimed to determine if biomarkers were significantly 344 

correlated to FE traits at individual level (within-CG) and to evaluate to what extent 345 

the two contrasted dietary conditions influenced this relationship. For this, we first 346 

attempted to consider the diet as a fixed effect. However, given the complex nested 347 

structure of our experimental network (Fig. 1), where the pen is nested within the diet, 348 

we decided to separate the database into two sub-databases, one for each diet (n = 349 

294 for each one). This allowed the effect of pen to be considered as a random effect 350 

nested to the cohort. The plasma δ15N values were zero-centered by subtracting the 351 

overall mean to each individual value to avoid the expected correlation between 352 

intercept and slope occurring when values from the independent variable are far from 353 

zero  (Pinheiro and Bates, 2002). 354 

Different structures of random effect, from simple (with only the cohort effect) to 355 

nested factors (including the pen effect within the cohort) were tested on both 356 

intercept and slope as here detailed: 357 

Y = (β0 + B0) + (β1 + B1) × X + ε (Eq.5) 358 

where Y and X are FCE and δ15N values, respectively, β0 and β1 are the fixed 359 

coefficients for the intercept and the slope respectively; B0 and B1 are the random 360 

coefficients of environmental factors (cohort and pen within cohort) and ε are the 361 

distributed within-groups errors, assumed to be independent of random effects. The 362 

best random structure was identified from AIC and BIC criteria and using the 363 

restricted maximum likehood method in the nlme package.  364 
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To evaluate the diet effect on the potential of the candidate biomarker to reflect FE 365 

variations we compared the slope (β1) of both models through a t-test. For this, we 366 

took into account the coefficient of slopes and their associated errors as well as the 367 

degrees of freedom of both sub-databases (Andrade and Estévez-Pérez, 2014). We 368 

also extracted the proportion of model’s variance explained by random and fixed 369 

effect through the package r.squaredGLMM in the library MuMin. 370 

 371 

Animal performances of individuals presenting extreme high-vs-low plasma proteins 372 

δ15N values  373 

We ranked animals within-CG according to their plasma δ15N values and then 374 

selected those above the 90th percentile (High plasma δ15N values) and those below 375 

the 10th percentile (Low plasma δ15N values). Differences in animal performances 376 

and plasma biomarkers between these two groups (High vs Low) were conducted by 377 

Anova by including the effect of diet, group and its interaction. 378 

 379 

Influence of dietary characteristics on the relationships at cohort level 380 

We aimed to evaluate whether some characteristics of the experimental diets could 381 

influence the ability of candidate plasma biomarkers to reflect the between-animal 382 

variation in FE. Therefore, we first obtained the 24 individual slopes (responses) from 383 

the FE trait - biomarker relationships determined for each combination of diet and 384 

cohort (i.e. 24 unique conditions sharing exactly the same diet x cohort). Half of these 385 

individual slopes (12) were obtained with grass-diets and the other half with corn-386 

diets. The 24 slopes coefficients were regressed against their 24 corresponding feed 387 

values and diet chemical composition. An ANCOVA model was used to evaluate 388 
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these regressions, where the FE-biomarker slope represented the dependent 389 

variable (Y), the type of diet (n=2) was the categorical variable (X1) and feed values 390 

or chemical composition were the quantitative variable (X2). The P-values were 391 

obtained for both independent variables and their interaction. When significant 392 

relationships were obtained, the relevant feed characteristic was considered as 393 

having an impact on the response of the candidate plasma biomarker to FE 394 

variations. 395 

 396 

Model’s evaluation and cross-validation 397 

We first compared the quality of the different FE trait - biomarker relationships. The 398 

simple linear models based on residuals were compared based on their P value, R², 399 

AIC and RMSE to SD ratio (RSR), which allows comparing residual variables as RFI 400 

with mean intercept values equals to 0. The mixed effects models were compared 401 

based on their RSR and CV, calculated as the RMSE divided by the average of the 402 

variable Y. Fit was considered good when R² > 0.50 and RSR < 0.70 as 403 

recommended by Moriasi et al. (2007). Finally, normality of residuals was tested with 404 

the Shapiro Wilk’s test (function shapiro.test in R) for every model. 405 

We then evaluated the conditions of use of the δ15N biomarker relative to each FE 406 

trait using a Kfold cross-validation (James et al., 2013) performed from simple linear 407 

models based on residuals. The database was randomly split in 10 sub-database 408 

(package Caret) and each individual sub-database was treated as a validation set. 409 

The performance of the FE trait-δ15N relationships obtained from the whole database 410 

was defined as the average performance of the FE trait-δ15N relationships derived 411 

after the 10 random iterations from each sub-database for each diet, as in Benaouda 412 

et al. (2019). Parameters used to evaluate the FE trait - biomarker relationships were 413 
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the RMSE of predicted vs observed values, the correlation between observed and 414 

predicted values, the concordance correlation coefficient, as a parameter indicating 415 

precision and accuracy of obtained models (Tedeschi, 2006) and the percentage of 416 

error in central tendency, or mean bias as the average tendency to under or 417 

overestimate the predicted values according to the observed values (Gupta et al., 418 

1999). Finally, we calculated the interval of model’s prediction at 95% confidence, 419 

which reflects the prediction uncertainty around a single value, as ± 1.96 x RMSE of 420 

the model (Bruce and Bruce, 2017).  421 

 422 

Genetic parameters estimations 423 

Heritability coefficients, environmental and genetic correlations were estimated for FE 424 

traits and candidate plasma biomarkers using the restricted estimation of maximum 425 

likelihood method of the Wombat software (Meyer, 2007). In addition to the random 426 

additive genetic effect, the model included the contemporary group (72 CG) as fixed 427 

effect, age at the start of the test as covariate and a farm origins × year random 428 

effect. The relationship matrix among the additive genetic effects included up to the 429 

5th generation from bulls included in the study. 430 

 431 

Results 432 

 433 

All variables followed a non-normal distribution, except DMI and RFI (P > 0.05). Also, 434 

these two variables together with plasma urea concentrations did not fulfill 435 

homoscedasticity within CG (P < 0.05) (Supplementary Table S1).  436 

 437 
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Animal performances, candidate biomarkers and their sources of variations 438 

 439 

The between-animal variability of DMI, ADG, FCE and RFI, expressed as CV, was 440 

always below 12% (Table 2). The between-animal variability of the candidate 441 

biomarkers however contrasted, 5.33% for plasma δ15N and 20.3% for plasma urea 442 

concentrations. Concerning the effect of diets (Table 2), animals fed the corn-based 443 

diets had higher ADG (+16%; P < 0.05), DMI (+4%; P < 0.05), FCE (+6%; P <0 .05) 444 

and plasma urea concentrations (+35%, P < 0.05) than animals fed the grass-based 445 

diets. On the other hand, animals fed corn-based diets had lower (-13%, P < 0.05) 446 

plasma δ15N values than animals fed grass-based diets.  447 

The cohort factor explained 29%, 19%, 13% and 7% of the total variance of FCE, 448 

plasma urea, ADG and DMI, respectively, but had only a minor contribution to the 449 

variability of plasma δ15N (Table 2). The diet effect (within cohort) strongly 450 

contributed to the variability of all variables explaining 70%, 46%, 45%, 33% and 451 

21% of the total variance observed in plasma δ15N, plasma urea, ADG, FCE and 452 

DMI, respectively. Finally, the pen effect (within diet and within cohort) only explained 453 

less than 10% of the total variance of the variables except for DMI (16%). The 454 

residual part of the variance, i.e. the between-animal variation, represented a large 455 

and significant part of the total variance of DMI (55%), ADG (40%), FCE (33%), 456 

plasma δ15N (25%) and plasma urea (29%).  457 

 458 

Relationships between candidate plasma biomarkers and feed efficiency traits 459 

at the individual level  460 

 461 
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All the simple linear models on residuals (P > 0.58) and the mixed effect models (P > 462 

0.37) showed normal residuals. Models obtained for FCE were consistent, whatever 463 

the statistical methodology considered [removal (Table 3 and Fig. 2) or inclusion 464 

(Table 4 and Fig. 3) of the factors that significantly contributed to the GC in the 465 

model]. Plasma δ15N was negatively correlated to the between-animal variability of 466 

FCE with both approaches (P < 0.001; Table 3 [Eq. 1] and Table 4 [Eq. 10 and 11]). 467 

The negative slope of the FCE-plasma δ15N relationship was however greater (+35%, 468 

P < 0.05) with the corn than with the grass based diets in the mixed effects models 469 

analysis. Concerning plasma urea concentrations, they were non-significantly related 470 

to FCE whatever the approach (Table 3 [Eq. 2]; Supplementary Figure S1). In the 471 

case of RFI, the simple linear regression showed significant positive correlations with 472 

both plasma δ15N (P < 0.001; Table 3) and plasma urea concentrations (P = 0.04), 473 

despite the poor fitting (R² = 0.00) obtained with the latter biomarker. 474 

When the variability due to contemporary group was removed before linear 475 

regression, the best models (based on R², AIC and RSR) were obtained for plasma 476 

δ15N whatever the FE trait. Combining both candidate biomarkers in the same model 477 

(Eq. 3 and 6 in Table 3) did not further improve the fit (P > 0.20). It had first been 478 

verified that plasma δ15N and urea presented no-multicolinearity (Variance inflation 479 

factor =1.02). The FCE- δ15N mixed-effect model (Table 4) was better in terms of 480 

RSR and error (CV) when animals were fed the corn as compared to the grass-based 481 

diets. In addition, the biomarker explained a higher percentage (17% vs 12%) of 482 

model’s variance with the corn vs grass-based diets.  483 

 484 

Performances and candidate plasma biomarkers of extreme animals 485 

 486 
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Animals identified as having the 10% highest and lowest plasma δ15N values were 487 

selected as extreme individuals (Table 5), and showed differences in δ15N  averaging 488 

1.02‰ (18%CV). Compared to animals with the highest plasma δ15N values, those 489 

showing lowest values had lower DMI, FEPL and plasma urea concentrations (P < 490 

0.001), but greater feed efficiency (P < 0.001). No interactions were observed 491 

between extreme δ15N groups (highest vs lowest) and diet (P > 0.05) on these 492 

analyzed parameters.  493 

Influence of feed characteristics on the relationship between plasma proteins 494 

δ15N and feed efficiency  495 

 496 

For this analysis, we removed two grass-based diets out of the 12 from our database 497 

because of 1) they were considered as outliers in most of the relationships (> 2.5 SD) 498 

and 2) biologically, the net energy concentrations of silages were low resulting in a 499 

lower average net energy intake (-10%) per average BW0.75. Therefore, the number 500 

of observations used in this analysis was 22 rather than 24. In addition, because in 501 

the plasma urea-FCE relationship the diet effect was not significant (P > 0.05), the 502 

influence of diet characteristics was only analysed for the plasma δ15N-FE trait 503 

relationships. Graphs showing relationships at cohort level between plasma δ15N and 504 

FE traits are shown in Supplementary Figure S2 (FCE in panel A and RFI in panel B). 505 

We found that the higher the metabolisable protein to net energy ratio of the diet the 506 

greater the slope of the plasma δ15N - FCE relationship (P = 0.002; Fig. 4, panel 1) 507 

and a similar trend for the rumen protein balance (P = 0.10; Fig. 4, panel 2). 508 

Concerning RFI, the higher the rumen N degradability of diets the greater the slope of 509 

the plasma δ15N –RFI relationship (P= 0.004; Supplementary table S2). Details of the 510 
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influence of the other dietary characteristics on the slope of plasma δ15N-FCE and 511 

RFI relationships are presented in Supplementary Table S2. 512 

 513 

Ability of plasma proteins δ15N to discriminate between-animal variation of feed 514 

efficiency 515 

The cross-validation was only carried out for the best-fitted plasma δ15N models (Eq: 516 

1 and 4 from table 3). The plasma δ15N was found to capture the difference in FE 517 

between two individuals sharing the same diet as long as the difference in FE is 518 

higher than 0.049 g/g for FCE and 1.67 kg/d for RFI (interval of prediction in Table 6). 519 

However, the concordance correlation coefficient of both models was low to 520 

moderate, accounting 0.16 and 0.33 for RFI and FCE, respectively. In addition the 521 

two FE traits- δ15N models presented a slightly under (4%) and overestimation (-3%), 522 

for FCE and RFI respectively, and the accuracy (r and concordance correlation 523 

coefficient) to predict FCE was better than to predict RFI from δ15N.  524 

 525 

Genetic and environmental correlations 526 

 527 

We determined if phenotypic relationships between FE traits and candidate 528 

biomarkers involved genetic or environmental factors (Table 7). First, the heritability 529 

values were moderate for FE traits (h2 = 0.18 for FCE and h2 = 0.22 for RFI) and 530 

plasma biomarkers (h2 = 0.27 for plasma urea and 0.28 for δ15N).  531 

Concerning genetic correlations, RFI showed no-correlation with FCE (rg < 0.05). 532 

Both candidate plasma biomarkers showed no genetic correlations with FCE 533 

(rg<0.20) and moderate genetic correlation with RFI (rg =0.38 and 0.27 for plasma 534 
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δ15N and urea concentration, respectively), however the associated errors were large 535 

to consider significant these relationships. Concerning the environmental 536 

correlations, they were high between FCE and RFI (re = -0.61) and between plasma 537 

δ15N and FCE (re = -0.55), but moderate between δ15N and RFI (re = 0.26), and low 538 

between plasma urea concentrations and both FE traits (re < 0.15). Also, moderate 539 

genetic correlations (re= 0.28) and low environmental correlations (re=0.14) were 540 

found between both biomarkers. 541 

 542 

Discussion 543 

 544 

Moderate between-animal variability exists for FE (Berry and Crowley, 2012). Genetic 545 

selection programs may exploit this moderate between-animal variability by selecting 546 

the FE superior animals for breeding, and biomarker-assisted genetic selection may 547 

contribute to accelerate the genetic progress through rapid identification of superior 548 

animals. Today, however, no validated biomarker, genetically linked to FE, has been 549 

proposed for beef cattle. Part of the difficulty to identify biomarkers of the between-550 

animal variability of FE is due to a methodological limitation. Indeed, a non-negligible 551 

proportion of the measured between-animal variation, within a pen, is not ascribed to 552 

the true between-animal variability but to the experimental error, which can be as 553 

high as 50% (Fischer et al., 2018).  554 

In this study, we tested two NUE biomarkers in ruminants (i.e plasma urea 555 

concentration [Kohn et al., 2005] and plasma proteins δ15N [Cantalapiedra-Hijar et 556 

al., 2018b]) and their ability to reflect FCE and RFI, using a large experimental setup 557 

of young bulls (n = 588) raised under similar conditions. As further discussed in the 558 

following sections our results highlight that plasma δ15N is significantly and 559 
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phenotypically correlated to the between-animal variations of FE, regardless of the 560 

FE trait used, but with diet-dependent responses. Also these significant phenotypic 561 

correlations might be mostly due to non-identified environmental factors rather than 562 

to genetic ones. In contrast, plasma urea concentrations were only weakly, though 563 

significantly, correlated with RFI and not significantly with FCE.  564 

 565 

Plasma proteins δ15N vs plasma urea as candidate biomarkers  566 

 567 

Both the plasma δ15N and plasma urea concentration are recognised biomarkers of 568 

NUE. They are both strongly impacted by the balance between ammonia release 569 

from dietary CP degradation and ammonia uptake by rumen bacteria (i.e. rumen 570 

protein balance) and the hepatic amino acid catabolism (Wattiaux and Reed, 1995; 571 

Cantalapiedra-Hijar et al., 2015; INRA, 2018). These two mechanisms determine 572 

most of the variations in NUE in ruminants (INRA, 2018) and explain the relationship 573 

between both candidate biomarkers and NUE in ruminants (Huhtanen et al., 2015; 574 

Cantalapiedra-Hijar et al., 2018b). Also given the biological link that exists between 575 

NUE and FE (Nasrollahi et al., 2020; Liu and VandeHaar, 2020), we anticipated 576 

significant relationships between both candidate biomarkers and FE traits. 577 

Our results confirm that both biomarkers are significantly related to between-animal 578 

variations in FE, but not to the same extent. Plasma δ15N is a better biomarker than 579 

plasma urea concentration. If the potential of blood or milk urea concentration to 580 

predict the mean NUE is well established for groups of ruminants (Kohn et al., 2005), 581 

reports highlighted its inability to phenotypically (Hof et al., 1997; Dechow et al., 582 

2017; Huhtanen et al., 2015) or genetically (Sebek et al., 2007; Vallimont et al., 2011; 583 

Beatson et al., 2019) reflect the between-animal variation in NUE. In the present 584 
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study, both plasma biomarkers were significantly and positively correlated, but only 585 

weakly (r = 0.21; P < 0.001). This suggests that their contrasted potential as 586 

biomarkers may originate from some specific metabolic features differing between 587 

them. We argue that the different ability of plasma δ15N and plasma urea 588 

concentration to reflect between-animal variations in FE is probably due to 589 

mechanisms such as post-absorptive kinetics, urea recycling and endogenous N as 590 

discussed below.  591 

First, the most likely and prominent factor that explains the within-CG variability of 592 

plasma urea concentration, is related to its postprandial variation. A considerable 593 

diurnal variation in plasma urea concentration has been widely reported in the 594 

literature associated to the daily pattern and frequency of feed intake (Gustafsson 595 

and Palmquist, 1993; Hwang et al., 2001). Because blood sampling lasted 3-4h per 596 

cohort, and because strictly speaking animals were not completely fasted (leftovers 597 

remained in the automatic feeder before sampling), we could argue that plasma urea 598 

was not determined exactly at the same postprandial moment for all animals. In 599 

contrast, isotopic signatures remain much more stable in plasma proteins because 600 

the short-term fluctuations of plasma δ15N values depend on the slow turnover of this 601 

protein pool (4.3%/d; Cantalapiedra-Hijar et al., 2019). This may explain why the 602 

within-CG variation was much higher for plasma urea vs plasma δ15N in our study 603 

(20% vs 5% of CV) and elsewhere (25-29% CV for urea [Jonker et al., 1998; Krogh et 604 

al., 2020] vs 13% CV for δ15N [Cantalapiedra-Hijar et al., 2018b]).  605 

Second, we considered whether renal urea reabsorption and clearance rate, 606 

hydration status and animal BW (reviewed by Spek et al. 2013) could explain why the 607 

between-animal variation are greater for plasma urea concentration than for NUE or 608 

δ15N values, but we had no data to support it. Instead and although somehow 609 
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speculative and counter-intuitive, we hypothesise that urea-N recycling and 610 

endogenous urinary N excretion (INRA, 2018) might have a greater impact on 611 

plasma δ15N than on plasma urea concentration, and thus may further explain the 612 

better ability of the plasma δ15N  to detect the between-animal variability of FE. Urea 613 

recycling in beef cattle can be high and may contribute to increase the digestible N 614 

inflow from 43% to 85% (Lapierre and Lobley, 2001). But plasma urea is depleted in 615 

15N relative to the diet (Sutoh et al., 1993), and thus, this extra N entering the rumen 616 

could, once degraded into ammonia and assimilated, decrease the naturally enriched 617 

rumen bacteria (Cantalapiedra-Hijar et al., 2016). This N conservation mechanism in 618 

ruminants would further deplete animal proteins in 15N and thus strengthen the 619 

negative relationship between NUE and plasma δ15N usually found in ruminants 620 

(Cantalapiedra-Hijar et al., 2018b). Conversely, plasma urea concentration is only 621 

weakly correlated to urea transfer into the rumen through the epithelium (i.e. portal 622 

drained viscera net flux) according to the review by Lapierre and Lobley (2001), 623 

which may partly explain the weak relationship between plasma urea concentration 624 

and FE.  625 

Finally we speculate that animal variation in endogenous urinary N losses, which 626 

represent on average 20-30% of total urinary N excretion (INRA, 2018) and an 627 

estimated 13% of the total N intake in our database (INRA, 2018; data not shown), 628 

would mostly affect plasma δ15N and FE but not plasma urea concentration. While 629 

the urinary urea excretion is highly related to the hepatic urea synthesis and plasma 630 

urea concentration (Kohn et al., 2005), other non-ureic N compounds (e.g. creatine, 631 

creatinine, endogenous purine derivatives, methylhistidine and other free amino 632 

acids) are rather related to the endogenous protein renewal (Da Silva Braga et al., 633 

2012). Because protein mobilization in ruminants highly affect both NUE and δ15N 634 
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values of animal proteins (Chen et al., 2020), it can be hypothesized that FE 635 

variations associated to protein turnover and metabolism would affect plasma δ15N in 636 

a higher extent than plasma urea concentration.  637 

Taken together we consider that animal factors affecting NUE and thus FE variation 638 

are better signed by plasma δ15N than by plasma urea because the former is more 639 

stable in time and likely reflects some specific metabolic pathways related to N 640 

partitioning. Therefore, the following sections will only discuss the limits and potential 641 

of plasma δ15N to reflect the between-animal variation of FE.  642 

 643 

The potential of plasma proteins δ15N depends on the feed efficiency trait 644 

 645 

This is the first study showing by regression a significant relationship between 646 

plasma δ15N and RFI in contrast to previous studies (Wheadon et al., 2014; Meale et 647 

al., 2017). This relationship was however much weaker than that obtained between 648 

plasma δ15N and FCE. Although FCE and RFI were statistically related in this work (r 649 

= -0.29; P < 0.001) and share common biological processes related to FE, their 650 

biological determinants are not exactly the same (Taussat et al., 2020). While FCE 651 

favors the selection of growth traits with inconsistent intake responses (Arthur and 652 

Herd, 2012), selection based on RFI will downward feed intake without any impact on 653 

animal performances (Arthur et al., 2004). This would have implications in the way 654 

the energy and protein are allocated with both criteria (Rauw, 2012), and may explain 655 

why plasma δ15N correlated better with FCE than with RFI. Here, we discuss some 656 

statistical and biological reasons that may explain why the correlation between 657 

plasma δ15N and RFI found in the present study or previously reported is weak or null 658 

(Wheadon et al., 2014; Meale et al., 2017).   659 
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First, from a statistical point of view, it can be expected that biomarkers correlate 660 

better with phenotypes presenting higher variability. In the present study, the within-661 

CG variance was twofold higher for FCE (9.37% CV) than for RFI (4.54% CV) in 662 

agreement with previous studies (Wheadon et al., 2014; Meale et al., 2017). Thus, 663 

the difficulty of plasma δ15N to detect RFI variations could stem in part from the lower 664 

between-animal variability observed with RFI compared to FCE. Moreover, RFI being 665 

a residual it includes measurement errors (Fischer et al., 2018), which likely hampers 666 

the ability of plasma δ15N to detect the true between-animal variability in FE when 667 

measured as RFI. 668 

Second, while from a biological point of view plasma δ15N is primarily a biomarker of 669 

NUE (Cantalapiedra-Hijar et al. 2018b), it can be simply argued that FCE and RFI 670 

just differ in the way they are related to NUE. At the individual level, FCE and NUE 671 

share a similar calculation principle based on the ratio between performances and 672 

intake, and thus correlations between both of them is mathematically expected and 673 

have been experimentally proven (Cantalapiedra-Hijar et al., 2015; Nasrollahi et al., 674 

2020). Conversely, the relationship between NUE and RFI has not been 675 

experimentally observed (Lines et al., 2014; Carmona et al., 2020; Da Silva et al., 676 

2020) despite the fact that efficient RFI animals are supposed to eat less CP while 677 

retaining an equal (or a greater) amount of body protein. More work is warranted to 678 

confirm that efficient RFI cattle upregulate N conservation mechanisms 679 

(Cantalapiedra-Hijar et al., 2020b) to the same extent as efficient FCE animals do 680 

(Arndt et al., 2015).  681 

Third, because RFI is highly and consistently related to feed intake (Taussat et al., 682 

2019), efficient RFI animals usually present higher rumen retention time and DM 683 

digestibility than inefficient RFI animals (Fitzsimons et al., 2014; Bonilha et al., 2017). 684 
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This would lead to a proportionally greater availability of substrates for rumen 685 

bacteria in efficient RFI animals, with the consequently greater N isotope fractionation 686 

occurring in the rumen (Wattiaux and Reeds, 1995) by unit intake. This can 687 

counterbalance the expected positive relationship between FE and plasma δ15N. We 688 

termed this phenomenon a “rumen interference” in the ability of plasma δ15N to 689 

detect FE variations. In this regard, a high contribution of the rumen efficiency to the 690 

overall FE was suggested as the reason for the weak relationship observed  between 691 

milk δ15N and NUE in dairy cows (Cabrita et al., 2014). Likewise, Nasrollahi et al. 692 

(2020) identified in some conditions a yet unknown rumen effect lowering the ability 693 

of isotopic N discrimination to reflect between-animal variation in FE. Finally, FEPL 694 

could also contribute to the low correlation of plasma δ15N with RFI. Because the 695 

higher the DMI the greater the FEPL (INRA, 2018), the positive correlation between 696 

RFI and DMI found in our study (r = 0.57; P < 0.001) may suggest differences in 697 

FEPL between RFI efficient and non-efficient animals. Although FEPL represent a 698 

net N loss from the animal, and so may impact FE, these losses does not involve 699 

enzymatic reactions (i.e. desquamated epithelium and intestinal secretions) nor 700 

isotopic fractionation. Therefore, the estimated FEPL were positively correlated to 701 

RFI (r = 0.28; P < 0.001), which could have lowered FE of high RFI phenotypes 702 

without increasing plasma δ15N values. Because FCE, in contrast to RFI, presented 703 

no correlations with DMI in our study (r = -0.06; P > 0.05) no changes at the rumen or 704 

digestive level were expected across the FCE extreme cattle.  705 

 706 

The potential of plasma proteins δ15N to capture variations in feed conversion 707 

efficiency also depends on the type of diet 708 

 709 
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The present study confirmed preliminary results obtained from a sub-set of animals of 710 

the present experimental setup (Nasrollahi et al., 2020), where the slope of the FCE-711 

plasma δ15N relationship was significantly higher with diets high in starch vs high in 712 

fibre (Eq. 10 vs 11 in Table 4). It also supported our previous meta-analysis, which 713 

suggested that the relationship between the isotopic N discrimination and N use 714 

efficiency could be diet-dependent (Cantalapiedra-Hijar et al., 2018b). More 715 

specifically, the slope of the FCE-plasma δ15N relationship was affected by the farm-716 

to-farm and year-to-year variations in feed composition (Supplementary Figure S2). 717 

To precisely assess which variables could explain the diet-to-diet variability, we 718 

characterised the experimental diets according to INRA (2018) (Supplementary Table 719 

S2). 720 

The rumen protein balance, representing the difference between the protein intake 721 

and the protein flowing at duodenum (INRA, 2018), was an important dietary factor 722 

that explained the influence of dietary conditions on the ability of plasma δ15N to 723 

reflect FCE variations (Fig. 4B). The higher the rumen protein balance (i.e. higher 724 

rumen ammonia absorption compared to the urea recycled into the rumen), the 725 

smaller the slope of the FCE-plasma δ15N relationship. In other words, when rumen 726 

protein balance was above requirements (between 0 and -12 for 300 - 600 kg BW; 727 

INRA, 2018), the ability of plasma δ15N to reflect FCE variations decreased. This 728 

analysis reinforces our hypothesis about a “rumen interference” in the relationship 729 

between plasma δ15N and FE variation. In this sense, diets with high rumen 730 

degradable N concentration and leading to high rumen protein balance showed low 731 

or no correlations between δ15N and FE or NUE in several previous studies in 732 

ruminants (Cheng et al., 2013; Cabrita et al., 2014; Nasrollahi et al., 2020). 733 

Furthermore, in the present study, high-fibre diets presented a higher proportion of 734 
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metabolisable protein coming from microbial vs dietary origin (+7%; P = 0.02), which 735 

may increase the N isotopic fractionation at rumen level (Wattiaux and Reed, 1995) 736 

and consequently interfering in a greater extent on the expected relationship between 737 

plasma δ15N and FE.  738 

The metabolisable protein to net energy ratio, which represents the amount of 739 

metabolisable protein for a given net energy level, was also identified as a dietary 740 

factor explaining differences in the slope of the plasma δ15N - FCE relationship (Fig. 741 

4A). Indeed, when this ratio was above requirements (between 48 and 53, 742 

irrespective of the diet for 300 - 600 kg BW; INRA, 2018) the slope approached zero 743 

and reflected the inability of plasma δ15N to catch FCE variations at high 744 

metabolisable protein to net energy levels. It is known that amino acid catabolism 745 

increases when the metabolisable protein to net energy ratio increases (Hanigan et 746 

al., 1998), and thus our results may suggest that between-animal variability would be 747 

lower when diets promoted greater amino acid catabolism. 748 

 749 

Potential and limits of plasma proteins δ15N to predict feed efficiency   750 

 751 

Unfortunately, the size of our experimental setup although important (n = 588) was 752 

too restricted to detect any significant genetic correlations between plasma δ15N and 753 

FE (FCE and RFI). This implies that the significant phenotypic relationships found 754 

between the plasma δ15N and FE were mostly due to non-identified environmental 755 

factors. Because diet conditions were controlled in our study, we speculate that other 756 

uncontrolled environmental factors could be involved such as the previous 757 

background of animals (pre-weaning and cow-calf period), feeding behavior 758 

(preferential ingestion of specific low δ15N ingredients from the total-mixed ration 759 
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promoting higher FE) and mild subacute diseases not detected during fattening 760 

(lameness, rumen acidosis, liver abscess). We are aware that the size of our 761 

experimental setup may be a limitation for concluding about genetic correlation. In 762 

this regard, Lozano-Jaramillo et al. (2020) established that a population of 2 000 763 

individuals minimum per environment was necessary to minimize the SE of genetic 764 

correlations and obtain robust genetic correlations. To the best of our knowledge, 765 

studies reporting genetic correlations between biomarkers and FE in beef cattle are 766 

very scarce in the literature and none has demonstrated a significant correlation. 767 

Nkrumah et al. (2007) reported a genetic correlation of -0.44 and -0.24 between 768 

serum leptin concentration and feed conversion ratio (the inverse of FCE) and RFI, 769 

respectively, from 813 steers. However, the large SE associated with their 770 

estimations (± 0.24 and ± 0.38 for feed conversion ratio and RFI, respectively) made 771 

it difficult to conclude to a true genetic association. Similarly, IGF-1 was shown to be 772 

genetically correlated to RFI but also with a large associated error (Johnston et al., 773 

2002; Moore et al., 2005). Thus, more studies are warranted to establish genetic 774 

relations between FE and plasma δ15N with a greater population size.  775 

 Concerning the potential of this biomarker for phenotyping animals, our cross-776 

validation model confirmed that plasma δ15N could be used as a biomarker to 777 

discriminate the FE of two animals from the same CG providing they differ by at least 778 

0.049 g/g in FCE and 1.67 kg/d in RFI (Interval of model’s prediction in Table 6). The 779 

number of animals within the same CG showing at least that difference was 780 

calculated to be 30% (198 out of 588) and 6% (35 out of 588) for FCE and RFI, 781 

respectively, highlighting once more the better ability of plasma δ15N to stablish 782 

between-animal difference in FCE than in RFI. These are the percentages of animals 783 

that can be discriminated in terms of FE when comparisons are done from two 784 
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animals randomly selected from the same CG. Logically, when comparisons are 785 

done from a group of animals rather than from two randomly selected individuals the 786 

statistical power increases. Indeed, animals with the 10% lowest plasma δ15N values 787 

within-CG had on average significantly higher feed efficiency (+0.021 FCE and -0.47 788 

RFI) than their counterparts having 10% highest plasma δ15N values (Table 5). 789 

Because of the size of our experimental setup, the biomarker may still significantly 790 

discriminate feed efficiency when all experimental animals (n = 588) were assigned 791 

to either low or high plasma δ15N group (P < 0.001; data not shown).  792 

Overall, we showed that plasma δ15N is capable of capture the between-animal 793 

variations of FE in animals fed two contrasting diets. Nevertheless, better results may 794 

be expected when using FCE than RFI, and when animals are fed with high-starch vs 795 

high-fibre diets. 796 

 797 

Conclusion 798 

 799 

We demonstrated through an experimental network design and two different 800 

statistical approaches, significant phenotypic correlations between plasma proteins 801 

δ15N and the between-animal variation of FE (FCE and RFI) in fattening cattle. In our 802 

conditions, we validated the capability of the isotopic biomarker to discriminate 803 

animals in terms of FE when they differed by at least 0.049 g/g in FCE or 1.67 kg/d in 804 

RFI.  However, the size of our experimental setup (n = 588) was insufficient to show 805 

significant genetic correlations between δ15N and FE. In addition, because δ15N is a 806 

well stablished biomarker of N use efficiency in ruminants, we suggest that efficient 807 

FCE and RFI animals may present better N utilization that their less efficient 808 

counterparts. Finally, relationships between FE and biomarkers of N use efficiency 809 
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may depend on the diet and the feed efficiency trait since better statistical 810 

correlations were obtained with high-energy diets and when using FCE over RFI.  811 
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Tables 1074 

 1075 

Table 1. Ingredients, chemical composition and feed values 1076 

of the corn and grass based diets fed to Charolais bulls 1077 

(1078 

a1079 

v1080 

e1081 

r1082 

a1083 

g1084 

e1085 

 1086 

v1087 

a1088 

l1089 

u1090 

e1091 

s1092 

 1093 

±1094 

 1095 

S1096 

D of the 12 experimental cohorts) 1097 

Abbreviations: MP, metabolisable protein; RPB, rumen 1098 

protein balance calculated as CP intake minus non-ammonia 1099 

N at the duodenum (INRA, 2018).  1100 

1 The whole ration was complemented (approximately 1% of 1101 

total DM) with a vitamin-mineral supplement, non-reflected in 1102 

the table 1103 

2 Feed values of diets calculated from the measured 1104 

chemical composition of diets and taking into account 1105 

digestive interactions (INRA, 2018) 1106 

 

Diet 

Corn Grass 

Ingredients1 (% DM) 

 Forages 

   Corn  silage 61.4 ± 2.2 - 

   Grass silage  - 60.2 ± 6.0 

   Wheat straw          5.8 ± 1.6          5.5 ± 1.2 

 Concentrate 

   Wheat grain 20.4 ± 5.5 8.05 ± 1.2 

   Beet pulp - 20.9 ± 2.4 

   Soybean meal 12.4 ± 2.0 5.25 ± 1.4 
 
Chemical composition (g/kg DM)  

  Organic matter 958 ± 3.88 909 ± 13.4 

  CP 144 ± 9.69 142 ± 6.25 

  NDF  338 ± 25.3 479 ± 21.7 

  Starch  319 ± 36.2 56.4 ± 31.0 

  Starch/NDF (g/g) 0.95 ± 0.18 0.11 ± 0.07 
 
Feed Values2   

  Net Energy (Mcal/kg DM) 1.63 ± 0.04 1.50 ± 0.06 
  MP (g/kg DM) 85.6 ± 2.53 81.4 ± 3.72 

  MP/Net energy (g/Mcal) 52.5 ± 1.12 53.4 ± 1.88 

  RPB (g/kg DM) 7.75 ± 7.22 6.51 ± 6.81  
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Table 2. Animal performances and candidate plasma biomarkers for Charolais bulls fed a corn or a grass based diet and their variance-

component analysis  

 

Diet   Variance-component analysis 

Corn Grass 

 
Cohort1 

 
Diet within cohort 

 Pen within diet and 
within cohort 

 
Residuals 

 SDc  ICC (%)  SDd  ICC (%)  SDp  ICC (%)  SDr   ICC (%)  CV2 (%) 

Animal performances      

  DMI (kg/d) 9.82 ± 1.02a    9.44 ± 1.19b  0.30 7.19  0.52 21.6  0.45 16.2  0.83 55.1 8.64 

  ADG (kg/d) 1.62 ± 0.21a    1.39 ± 0.30b  0.10 12.5  0.19 45.1  0.04 2.00  0.18 40.4 11.8 

  FCE (g/g)   0.166 ± 0.02a    0.147 ± 0.02b  0.01 28.7  0.02 33.0  0.01 5.28  15.0 33 9.37 

  RFI (kg/d)   0.00 ± 0.44    0.00 ± 0.47  - -  - -  - -  0.45 100 4.54 

Biomarkers      

  Plasma proteins δ15N (‰)  5.13 ± 0.40b    5.82 ± 0.52a  0.01 0.03  0.49 70.4  0.13 4.95  0.29 24.6 5.33 

  Plasma urea (g/l)   0.195 ± 0.06a    0.145 ± 0.05b  0.03 18.7  0.04 46.1  0.016 6.09  0.04 29.2 20.3 

Abbreviations: DMI, DM intake; ADG, average daily gain; FCE, feed conversion efficiency; ICC, intra-class correlation coefficient (calculated as the 

percentage of total variance explained by each environmental factor; RFI, residual feed intake; SDc, SDd, SDp and SDr, square root values of the cohort, 

diet, pen and residual variances respectively 

a,b Averages with different letters within the same row are significantly different (P < 0.05) 

1 Cohort refers to the farm x period combination 

2 Coefficient of variation calculated as within-contemporary group SD divided by the average value of each variable (except for RFI where the DM intake was 

used as its average)
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Table 3: Linear regression models between feed efficiency traits and candidate plasma biomarkers for 

Charolais bulls when variability across contemporary groups was previously removed. 

FE traits (Y) N° Eq Plasma biomarker (X)     Slope δ15N     Slope Urea P-value R² AIC RSR 

FCE   1 Plasma proteins δ15Na -0.021 ±0.001*** - <0.001 0.20 -3280 0.47 

FCE   2 Plasma ureab - -0.037 ± 0.018* 0.053 0.00 -3044 0.55 

FCE   3 Botha -0.023 ±0.002***    0.006 ± 0.017ns
  <0.001 0.20 -3031 0.47 

RFI  4 Plasma protein δ15Na 0.468 ±0.064*** - <0.001 0.10 501 0.95 

RFI  5 Plasma ureab - 1.330 ± 0.588* 0.04 0.00 669 1.00 

RFI  6 Botha 0.489 ±0.069***  0.419 ± 0.577ns <0.001 0.09 584 0.94 

Abbreviations: FE, feed efficiency; FCE, feed conversion efficiency; RFI, residual feed intake; AIC, akaike 

information criterion; Eq, N° of equation; RSR, RMSE-observations standard deviation ratio, calculated as 

the ratio of the RMSE and the SD of the efficiency trait. 

Statistics: *** P < 0.001, * P < 0.05, ns = non-significant (P > 0.05). 

a,b For a given feed efficiency trait, models with different letters are significantly different (P < 0.05).
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Table 4: Mixed effect regression models between feed conversion efficiency (Y) and plasma 

proteins δ15N for Charolais bulls fed a corn or a grass based diet when the random 

variability across contemporary groups was accounted  

 

Abbreviations: FCE, feed conversion efficiency; CV, coefficient of variation calculated as the 

ratio between RMSE and the average value of FCE by diet; Eq, N° of equation; RSR, RMSE-

observations standard deviation ratio calculated as the ratio of the RMSE and the SD of FCE by 

diet. 

Statistics: *** P<0.001, ab Slopes with different letters are significantly different (P<0.05) 

1 Total variance (across-contemporary group variability) was partitioned into random (Ran), biomarker 

(Biom) and residual (Res).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Diet N° Eq Intercept δ15N  Slope δ15N (X) P-value  CV%  RSR 

Explained 
variance1

 (%)  

Ran  Biom  Res 

Corn  
based diets 

10 0.159*** ± 0.008 -0.024*** ± 0.002a  <0.001  7.95 0.66 0.55 0.17 0.28 

Grass 
based diets 

11 0.153*** ± 0.009 -0.018*** ± 0.002b  <0.001 15.2 0.77 0.63 0.12 0.25 
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Table 5: Animal performances and candidate plasma biomarkers from high and low extreme 

Charolais bulls in terms of plasma proteins δ15N values (90th and 10th percentile) and fed a corn 

or a grass based diet 

Diet Grass-based diets 
 

Corn-based diets 
 

SEM 

P-value 
 

Extreme animals   
High  
δ15N 

Low  
δ15N 

High  
δ15N 

Low  
δ15N Diet δ15N INT 

Observed animal performances   

  DMI (kg/d)  9.90 9.13 10.3 9.31 0.105 0.14 <0.001 0.55 

  ADG (kg/d) 1.38 1.45 1.63 1.68 0.022 <0.001 0.22 0.83 

  FCE (g/g)   0.139   0.160   0.159   0.181 0.0020 <0.001 <0.001 0.80 

  RFI (kg/d   0.26    -0.19 0.27    -0.21 0.040 0.97 <0.001 0.87 

Candidate biomarkers 

  Plasm urea (g/L)   0.140   0.121   0.217   0.158 0.0058 <0.001 0.001 0.12 

  Plasma proteins δ15N (‰) 6.38 5.40 5.65 4.60 0.042 <0.001 <0.001 0.71 

FEPL (g/d) 171 162 182  165 1.6 0.03 <0.001 0.26 

Abbreviations: DMI, DM intake; ADG, average daily gain; FCE, feed conversion efficiency; RFI, 

residual feed intake; FEPL, Fecal endogenous protein losses; INT, effect of the interaction (Diet × 

δ15N) 
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Table 6: Statistical parameters from the K-fold cross validation with the 

best-fitted models for feed conversion efficiency (FCE) and residual 

feed intake (RFI) in Charolais bulls evaluated in the Table 3. 

Model1 
N° 
Eq 

RMSE r CCC ECT IP 

 FCE ~ plasma proteins δ15N 1 0.012 0.44 0.33 4% 0.049 g/g 

RFI ~ plasma proteins δ15N 4 0.422 0.29 0.16 -3% 1.67 kg/d 

Abbreviations: CCC, concordance correlation coefficient; ECT, percentage of 

error in central tendency; IP, interval of model’s prediction at 95%; Eq, N° of 

equation; r, correlation coefficient between observed and predicted values; 

RMSE, root mean squared error of predicted vs observed values (expressed 

in g/g for FCE and kg/d for RFI). 

1All statistical parameters presented are the average results of the 10 random 

iterations between observed and predicted values. 
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Table 7: Heritability (Diagonal, ±SE), genetic (Above diagonal ±SE), and 

environmental (Below diagonal ±SE) correlations between animal performance 

t

r

a

i

t

s

 and candidate plasma biomarkers in Charolais bulls. 

Abbreviations: FCE, Feed conversion efficiency; RFI, residual feed intake. 

 

 

 

 

 

 

 

 

 

 

 

 

Traits 
FCE  
(g/g) 

RFI  
(kg/d) 

Plasma proteins 
δ15N (‰) 

Plasma 
urea (g/L) 

FCE (g/g)  0.18 ± 0.10 -0.05 ± 0.36 0.00 ± 0.39 0.19 ± 0.37 

RFI (kg/d) -0.61 ± 0.09 0.22 ± 0.10 0.38 ± 0.32 0.27 ± 0.33 

Plasma proteins δ15N (‰) -0.55 ± 0.11 0.26 ± 0.12 0.28 ± 0.14 0.28 ± 0.33 

Plasma urea (g/L) -0.13 ± 0.11 0.07 ± 0.11 0.14 ± 0.13 0.27 ± 0.12 
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Figures 

Figure 1. Experimental network design. Squares and circles below periods represent 

the experimental pens; half assigned to a corn-based diet (□) and half to a grass-

based diet (○). Charolais bulls within each pen were considered the contemporary 

group (CG) unit. The number of cohorts (farm × period combination) and animals 

within cohort are shown at the bottom. 

 

Figure 2. Relationships between the within-contemporary group (CG) variability of 

feed efficiency traits (feed conversion efficiency [FCE; Panels 1], residual feed intake 

[RFI; Panels 2]) and δ15N of plasma proteins (Panels A) or plasma urea concentration 

(Panels B) for Charolais bulls fed a corn or a grass based diet. Symbols represent 

individual values adjusted for the CG effect while lines represent the linear regression 

from models shown in Table 3. 

 

Figure 3. Relationships between feed conversion efficiency (FCE) and plasma 

proteins δ15N (zero-centered values) in Charolais bulls. Panel A) Within-

contemporary group regressions (n = 78) of FCE against plasma proteins δ15N 

obtained by simple linear model. Dotted grey lines represent corn-based diets and 

thick black line grass-based diets. Panel B) Overall within-diet regressions (n = 2) of 

FCE against plasma proteins δ15N obtained through mixed-effect model. Symbols are 

individual raw values for FCE and zero-centered values for plasma δ15N. Dotted grey 
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line and triangles represented animals fed corn-based diets whereas the thick 

continuous line and black points represent animals fed grass-based diets.  

 

Figure 4. Relationships between within-cohort slopes of plasma proteins δ15N vs. 

feed conversion efficiency (FCE) in Charolais bulls and significant feed 

characteristics. Panel 1; Metabolisable protein to Net energy ratio, Panel 2; Rumen 

protein balance. Dotted grey lines and continuous black lines represent relationship 

for corn and grass-based diets, respectively. Each observation within-diet correspond 

to one of the 12 cohorts.  

Abbreviations: FC, feed characteristic; INT, interaction. 

(Δ) Represent corn-based diets, while (  ) represents grass-based diets. 

 

 












