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Simple Summary: Correct identification of subjects at high risk is critical in the prevention and
early screening of prostate cancer (PCa). Analysis of metabolites in biofluids has shown to be a
promising method to identify novel PCa biomarkers. To identify potential biomarkers of PCa, we
conducted metabolic profiling of pre-diagnosis plasma metabolite profiles from a large prospective
male cohort (n = 418), which included 146 males who developed PCa during a 13-year follow-up and
272 matched controls to investigate the relationship with long-term PCa risk. We show metabolite
profiles discriminate males who subsequently developed PCa during the follow-up from matched
controls with a high degree of accuracy (AU-ROC 0.92) and highlight 10 metabolites associated with
a high risk of PCa. These results suggest that the dysregulation of amino acids and sphingolipid
metabolism is associated with future risk of PCa.

Abstract: Background: The prevention and early screening of PCa is highly dependent on the identi-
fication of new biomarkers. In this study, we investigated whether plasma metabolic profiles from
healthy males provide novel early biomarkers associated with future risk of PCa. Methods: Using the
Supplémentation en Vitamines et Minéraux Antioxydants (SU.VI.MAX) cohort, we identified plasma sam-
ples collected from 146 PCa cases up to 13 years prior to diagnosis and 272 matched controls. Plasma
metabolic profiles were characterized using ultra-high-performance liquid chromatography-high
resolution mass spectrometry (UHPLC-HRMS). Results: Orthogonal partial least squares discrim-
inant analysis (OPLS-DA) discriminated PCa cases from controls, with a median area under the
receiver operating characteristic curve (AU-ROC) of 0.92 using a 1000-time repeated random sub-
sampling validation. Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) identified the
top 10 most important metabolites (p < 0.001) discriminating PCa cases from controls. Among them,
phosphate, ethyl oleate, eicosadienoic acid were higher in individuals that developed PCa than in
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the controls during the follow-up. In contrast, 2-hydroxyadenine, sphinganine, L-glutamic acid,
serotonin, 7-keto cholesterol, tiglyl carnitine, and sphingosine were lower. Conclusion: Our results
support the dysregulation of amino acids and sphingolipid metabolism during the development of
PCa. After validation in an independent cohort, these signatures may promote the development of
new prevention and screening strategies to identify males at future risk of PCa.

Keywords: metabolomics; LC-MS; multivariate analysis; prostate cancer; biomarkers

1. Introduction

Prostate cancer (PCa) is the second most commonly diagnosed cancer and the second
leading cause of cancer death (7.1% for incidence) among males [1]. Currently, there is no
single definitive test to identify PCa in this particular population [2]. The Prostate-Specific
Antigen (PSA) test and digital rectal examination are the methods used for PCa screening;
for definitive diagnosis, prostate biopsy and supplementary imaging are required [3].

Measurement of the PSA is relatively easy in large-scale populations; however, the
usefulness of the PSA test is still under debate due to the poor specificity for detecting cancer
and for differentiating indolent cancers from high-risk ones [2]. The limited specificity of
the PSA test results in overdiagnosis (unnecessary prostate biopsies) and consequently, the
overtreatment of subjects with a low-potential malignant tumor, or with a low potential for
morbidity or death if left untreated [4,5].

The identification of novel biomarkers is crucial in the management process of the
disease. Although extensive efforts in biomarker discovery during the last few decades
have been undertaken, including screening for genetic risk factors and biomarkers [6,7],
sensitive and specific biomarkers are still urgently needed in the prevention, early screen-
ing, monitoring, and clinical management of subjects at risk of developing PCa [8–11].
Different approaches are now studied in this aim, for example, the description of the tumor
microenvironment [12]. Among these approaches, new omics-based biomarkers (genomics,
transcriptomics, proteomics, or metabolomics) have been validated and seem to enhance
the diagnosis or the prognostic of PCa (for a review, see [13]).

Among those, metabolomics methods that provide a high-dimensional characteriza-
tion of low molecular weight biochemicals (metabolites) have shown to be a promising and
powerful tool to identify novel PCa biomarkers in biofluids [14–23]. New advances have
been found to describe metabolic alterations that describe tumor growth [24]. The metabolic
landscape of tissue and urine was characterized in other studies (for a review, see [25]),
and new statistical approaches have been tested for the metabolic profiling of prostate
tissue and serum samples [20]. Untargeted metabolomics is a “hypothesis-generating dis-
covery strategy” that compares different groups of samples (e.g., cancer vs. controls) [26],
which is a promising approach to identify novel metabolic markers. This strategy has been
applied recently in PCa [19,27]. Thus, the combination of ultra-high-performance liquid
chromatography with high-resolution mass spectrometry (UHPLC-HRMS) and epidemio-
logical approaches may open new perspectives in PCa research, enabling the identification
of novel biomarkers for evaluating the future risk of PCa, and the investigation of the
etiology of PCa [28–30]. To the best of our knowledge, there is still a very limited number
of studies that have investigated the association between pre-diagnostic levels of plasma
metabolites and the risk of PCa incidence [31].

In the present study, a prospective nested case–control study was established using
the Supplémentation en Vitamines et Minéraux Antioxydants (SU.VI.MAX) cohort [32,33]. The
study design included identification of baseline plasma samples from 146 individuals who
developed PCa within a 13-year follow-up and 272 matched controls. Plasma samples
were analyzed using UHPLC-HRMS to investigate whether plasma untargeted metabolic
profiles could identify new early metabolic markers, if any, associated with the risk of
developing PCa within the following decade.
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2. Materials and Methods
2.1. Population Study

Participants in the present study were selected from the SU.VI.MAX (Supplémentation en
Vitamines et Minéraux Antioxydants) prospective cohort (clinicaltrials.gov; NCT00272428) [32,33],
which included 146 participants diagnosed with PCa during the 13-year follow-up, and
272 matched controls. The SU.VI.MAX cohort was initially designed as a double-blind
placebo-controlled trial; the aim was to investigate the influence of daily supplementation
with nutritional doses of antioxidants on the incidence of cardiovascular diseases and
cancers. Briefly, a total of 13 017 participants were enrolled between 1994 and 1995 for
an 8-year intervention trial and were followed for outcomes until September 2007. The
study was conducted according to the guidelines of the Declaration of Helsinki and ap-
proved by the Ethics Committee for Studies with Human Subjects of Paris-Cochin Hospital
(CCPPRB 706/2364) and the ‘Commission Nationale de l’Informatique et des Libertés’
(CNIL 334641/907094) [32,33].

2.1.1. Baseline Data Collection

At enrollment, all participants underwent a clinical examination that included anthro-
pometric measurements and a blood draw, occurring after a 12 h fasting period. Information
on socio-demographics, smoking habits, physical activity, medication use, and health status
were collected through self-administered questionnaires. A 35 mL venous blood sample
was collected in sodium heparin Vacutainer tubes (Becton Dickinson, Rungis, France) from
all fasting participants. After centrifugation at 4 ◦C, plasma aliquots were immediately
prepared and stored frozen at −20 ◦C for up to 2 days and then stored in liquid nitrogen.

2.1.2. Case Ascertainment

Health events were self-reported by the participants in regular follow-up question-
naires. All relevant medical information and pathological reports were gathered through
participants, physicians and/or hospitals and subsequently reviewed by an independent
physician expert committee. Validated cases were classified according to the International
Chronic Diseases Classification, 10th Revision (ICD-10) [34].

2.1.3. Nested Case–Control Study

All participants with a first incident invasive prostate cancer, diagnosed with 1 year
of their inclusion in the SU.VI.MAX cohort in 1994–1995 and September 2007 were in-
cluded in this nested case–control study (n = 146). Incident prostate cancers diagnosed
during the first year of follow-up were excluded to avoid reverse-causality bias and guar-
antee the prospective design. The method for control selection was density sampling,
i.e., every time a case was diagnosed, two controls were selected from other members of
the cohort who, at that time, were not diagnosed with PCa. In this study, for each case,
two controls (or one if sample is limited) were randomly selected and matched for baseline
age (45–49 years/50–54 years/55–59 years/>60 years), body mass index (BMI) (under-
weight, normal weight and overweight/obese), intervention group of the initial SU.VI.MAX
trial (placebo/supplemented), smoking status (current smokers and non-smokers), and
season of blood draw (a priori-defined periods: October–November/December–January–
February/March–April–May).

2.2. UHPLC-HRMS Metabolomic Analysis

Plasma samples were randomized, balanced based upon case and control, and thawed
on ice. Aliquots of the first 160 plasma samples were pooled as QC samples. For depro-
teinization and metabolites extraction, 150 µL of plasma was mixed with 600 µL ice-cold
methanol containing internal standards (ISs) (Supplemental Table S1), after vortexed for
2 min, centrifuged for 10 min, at 16,000× g, at 4 ◦C. Three aliquots with 50 µL supernatant
each were lyophilized (prepared for positive mode analysis, for negative mode analy-
sis, and for backup), then stored at −80 ◦C before analysis. For quality control during
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sample preparation, a QC sample was prepared with every 10 plasma samples. Before
analysis, the lyophilized supernatant was re-dissolved in 50 µL acetonitrile/water (1:3,
v/v) solvent, after being vortexed 2 min and centrifuged 10 min at 14,000 rpm, at 10 ◦C.
For metabolomic analysis, 5 µL of re-dissolved supernatant was injected, which was per-
formed on an ACQUITY Ultra Performance Liquid Chromatography (UHPLC, Waters
Corporation, Manchester, UK), coupled with a Q Exactive HF Orbitrap MS system (Thermo
Fisher Scientific, Rockford, IL, USA). UHPLC column temperature and automatic sampler
temperature were set at 60 ◦C and 10 ◦C, respectively.

Before run study samples, the Q-Exactive HF MS ion source, ion transfer tube were
cleaned, the MS was evaluated, and calibrated; several blank samples and 10 QC sam-
ples were tested to confirm system suitability. Metabolomic analysis was performed in
electrospray positive ion (ESI+) mode with reversed-phase ACQUITY UPLC BEH C8
(2.1 × 50 mm, 1.7 µm, Waters, Milford, MA, USA) column for separation of weakly po-
lar compounds such as carnitine and lipids. Mobile phases include water containing
0.1% formic acid (A) and acetonitrile containing 0.1% formic acid (B). The flow rate was
0.40 mL/min and the total run time was 12 min. The elution program started with 5% B
and was held for 0.5 min, then linearly increased to 40% B at 2 min and increased to 100%
B at 8 min, maintained 2 min, then went back to 5% B in 0.1 min and kept for 1.9 min for
post-equilibrium. The resolutions of full-scan MS and ddMS2 were set at 120,000 FWHM
(at m/z 200, at 3 Hz) and 60,000 FWHM (at m/z 200, at 7 Hz), respectively. The mass
accuracy is < 1 ppm RMS (root mean square) error using internal calibration, and < 3 ppm
RMS error using external calibration. The scan range was set from 70 to 1050 m/z; the
automatic gain control (AGC) target and maximum injection time in full-scan MS settings
were 3 × 106 and 100 ms, while their values were 1 × 105 and 50 ms in ddMS2 settings.
The TopN (N, the number of topmost abundant ions for fragmentation) was set to 10, and
collision energy (NCE) was set to 15, 30, and 45. A heated ESI source was used. The spray
voltage was set at 3.5 kV. The capillary temperature and aux gas heater temperature were
set at 300 and 350 ◦C, respectively. Sheath gas and aux gas flow rate were set at 45 and 10
(in arbitrary units), respectively. The S-lens rf level was 50. Additional technical details are
given in the Supplemental Data and Methods.

Metabolite detection and peak integration were first optimized using TraceFinder
(version 4.1, Thermo Fisher Scientific, Rockford, IL, USA); the full dataset was extracted
using Compound Discoverer (version 3.0, Thermo Fisher Scientific, Rockford, IL, USA) for
peak detection, integration, and identification. Metabolite identification was performed
by comparing high-resolution accurate m/z and retention time to the in-house standard
databases in the same laboratory; if the ddMS2 information is available for the precursor
in the QC samples, then MSMS data is compared with the help of Xcalibur software
(version 4.2, Thermo Fisher Scientific, Rockford, IL, USA), Compound Discoverer software
(version 3.0, Thermo Fisher Scientific, Rockford, IL, USA), or fragmentation information in
the Human Metabolome Database (HMDB) (version 4.0).

The missing values were estimated using the eigenvector method in a cross-validation
process [35,36]. Metabolomic data were normalized by using probabilistic quotient nor-
malization [37] to account for dilution of complex biological mixtures, centering, unit
variance scaling, and generalized logarithm transformed [38]. Following the logarithmic
transformation, a normality test was performed for each variable. Principal component
analysis (PCA) was used as a quality assessment tool to verify clustering of intra-study QC
samples before data analysis (Supplemental Figure S3). Before further statistical analysis,
a PCA was performed on QC samples as suggested by Chan et al. [39]. Variability in QC
samples is experimental and is uncorrelated with biological variability of interest. We
built a 2-component PCA model on QC samples to summarize the structured part of this
experimental variability. This variability was then removed from the others samples by
performing an orthogonal projection relatively to the PCA scores.
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2.3. Statistical Analysis

Comparison of participants’ baseline population characteristics, including clinical
factors for cases and controls, were first assessed using the conditional logistic regres-
sion models; p-values for clinical factors were calculated with the conditional logistic
regression model.

Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to identify
metabolic differences between cases and controls. OPLS-DA was performed using in-
house OPLS script based on Trygg and Wold method [40]; analyses were performed
with MATLAB® (R2016b for macOS; Mathworks, Natick, Massachusetts, USA). Quality
parameters of the models, the explained variance (R2Y), and the predictability of the model
(Q2Y) were determined. Q2Y was calculated by a 7-fold cross-validation and confirmed by
exploring the impact of permutations in the dataset rows [41].

To assess the OPLS-DA model accuracy, the AU-ROC [41,42] was determined using a
repeated random sub-sampling validation (also referred to as Monte Carlo cross-validation),
which splits the dataset randomly into discovery and validation sets. In our study, for each
random resampling, a discovery cohort (randomly selected 70% of all participants, with
prostate cancer cases: n = 102/controls: n = 190) was used to establish an OPLS-DA model;
the model fit was then evaluated by predicting case and control status classification in the
corresponding validation cohort (remaining of all participants, with prostate cancer cases:
n = 44/controls: n = 82), and an AU-ROC for each prediction was calculated. This process
was repeated 1000 times.

GraphPad Prism 8 (GraphPad Software, Inc., 2018, La Jolla, CA, USA) was used to plot
the ROC curve and the box-and-whisker plots (Tukey, 1977) [43]; ROC curve was computed
using DeLong et al. (1988) [44], and the Youden index J, is defined as: J = max (sensitivity
c + specificity c − 1), where c ranges over all possible criterion values [45]. Equal weight
was given to sensitivity and specificity. For the box-and-whisker plot, outside and far-out
values were identified according to the original definitions of Tukey [43].

For variable selection, sparse partial least squares discriminant analysis (sPLS-DA) [46]
was performed using MetaboAnalyst 4.0 [47]; the number of components was fixed at
5 in the model, and the number of variables in each component was fixed at 15, with
repeated random resampling. sPLS-DA allows the selection of the most predictive or
discriminative variables in the data that help classify the samples; the feature selection is
based on least absolute shrinkage and selection operator (LASSO) penalization on the pair
of loading vectors [46].

To show relative changes of selected metabolites between the cancer and control
groups, t-test with Bonferroni adjustment was carried out by using Multiple Experiment
Viewer (MeV_4_9_0_r2731_win) [48]. To investigate possible relationship between baseline
metabolite and risk of PCa during follow-up, binomial logistic regression analyses were per-
formed, the odds ratio (OR) and p-values for coefficients of logistic regression model were
computed with “glm” function [49] by using RStudio (version 1.3.1056, R version 4.0.2).

3. Results
3.1. Characteristics of PCa Cases and Matched Controls

The baseline characteristics of PCa cases (n = 146) and matched controls (n = 272) are
summarized in Table 1. The mean age at PCa diagnosis was 63 years old; the average time
between blood collection and diagnosis was 8.3 years. Compared to the matched controls,
participants who developed PCa during the follow-up had a higher baseline level of PSA
and were more likely to have a family history of PCa.

3.2. Discrimination of PCa Cases from Controls Using OPLS-DA Model

A total of 214 identified metabolites (MSI level 1) [50] were detected in the plasma
samples. In the discovery cohort (70% randomly selected participants, with PCa cases:
n = 102/controls: n = 190), an OPLS-DA model for the classification of PCa cases and
matched controls was investigated (Figure 1). The model had five components (1 predictive
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component and four orthogonal components), suggesting a good model fit (R2: 0.73) and
fairly good predictive power (Q2cum: 0.48). Supplemental Figure S1 includes the model
score plots and shows the projection and classification of samples in the OPLS-DA model.

Table 1. Characteristics of prostate cancer cases and matched controls.

Characteristics Controls (n = 272) Cases (n = 146)

Mean/N SD/% Mean/N SD/% p-Value *

Age at baseline (years) 54.3 4.6 54.7 4.8 0.09
Age at baseline (categories) /

<45 years 6 2.2 3 2.1
≥45–<50 years 53 19.5 27 18.5
≥50–<55 years 71 26.1 38 26.0
≥55–<60 years 113 41.5 62 42.5
≥60–<65 years 29 10.7 16 11.0

Age at diagnosis (years) 63.0 5.0 / / /

Time between blood collection and diagnosis (years) 8.3 3.0 / / /

Gleason ≥ 7 ** 62 42.5 / / /

BMI (kg/m2) 25.0 3.0 25.4 3.0 0.07

BMI (categories) /
Underweight (<18.5 kg/m2) 2 0.7 1 0.7
Normal weight (≥18.5–<25 kg/m2) 133 48.9 72 49.3
Overweight (>25 kg/m2) 137 50.4 73 50.0

Season of blood draw /
March–May (Spring) 102 37.5 56 38.4
October–November (Fall) 36 13.2 21 14.4
December–January (Winter) 134 49.3 69 47.3

Smoking status /
Non smokers 242 89.0 130 89.0
Smokers 30 11.0 16 11.0

SU.VI.MAX intervention group /
Supplementation 123 45.2 65 44.5
Placebo 149 54.8 81 55.5

Family history of prostate cancer 0.01
No 261 96.0 130 89.0
Yes 11 4.0 16 11.0

Prostate-specific antigen (ng/mL) 1.3 1.2 3.4 3.4 <0.0001
Prostate-specific antigen (categories) <0.0001

<3 ng/mL 256 94.1 97 66.4
≥3 ng/mL 16 5.9 49 33.6

Physical activity 0.7
Irregular 68 25.0 32 21.9
<1 h walk or equivalent 57 21.0 35 24.0
≥1 h walk or equivalent 147 54.0 79 54.1

Educational level 0.9
Primary school 63 23.2 31 21.2
Secondary school 101 37.1 56 38.4
≥High-school degree 108 39.7 59 40.4

Alcohol intake (g/day) 29.8 22.5 26.9 21.4 0.1

* p-value from conditional logistic regression models. ** missing for n = 10. Age (categories), BMI (categories), smoking status, season
of blood draw, and SU.VI.MAX intervention group were the matching factors between cases and controls. BMI, body mass index; SD,
standard deviation.

The OPLS-DA model was validated by the prediction of samples in the validation
cohort (remaining 30% of the cohort, with PCa cases: n = 44/controls: n = 82) (Figure 1).
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Figure 2 shows the projection of the validation cohort samples into the OPLS-DA model
from the discovery cohort. There is a clear discrimination of participants who devel-
oped PCa during the follow-up from controls, with an AU-ROC (Supplemental Figure S2):
0.92 (sensitivity: 86.36%; specificity: 86.59%), 95% confidence interval (0.87, 0.97),
p-value < 0.0001. Thus, our results suggest the OPLS-DA model provides high degrees of
accuracy for discriminating PCa cases from controls.
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Figure 1. Simplified scheme of the study, OPLS-DA model, and validation. First, plasma samples
from 418 male participants enrolled in the SU.VI.MAX cohort, which included prostate cancer cases
(n = 146) and matched control (n = 272) were randomly partitioned into a discovery cohort (randomly
selected 70% of all samples, with cases: n = 102/control: n = 190) and validation cohort (remaining
of the cohort, 30% of all samples, with PCa cases: n = 44/control: n = 82), with an equal proportion
of case/control. Then, an OPLS-DA model for classification of prostate cancer cases and matched
controls was fit using the discovery cohort, the OPLS-DA model was then validated by predicting
samples in the corresponding validation cohort, and an AU-ROC for prediction was calculated.

The OPLS-DA model was validated further by a 1000-fold repeated random sub-
sampling validation. Figure 3 shows the AU-ROC distribution for each prediction during a
1000-fold repeated random sub-sampling validation, with a median value: 0.92, minimum
value: 0.81, maximum value: 0.98. These results confirm the very good performance of our
OPLS-DA model in the discrimination of participants who subsequently developed PCa
during the follow-up from controls.

3.3. Identification of Metabolites Associated with Risk of Developing PCa

To highlight the metabolites which best discriminate PCa cases from controls, sPLS-DA
was performed. sPLS-DA is a LASSO penalization-based variable selection method, which
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allows the selection of the most predictive or discriminative variables in the data that con-
tributes to sample classification [46]. An error rate of 18% was finally obtained. Metabolites
were ranked based upon their contribution to the discrimination of participants who devel-
oped PCa, and the top 10 metabolites were characterized further (Supplemental Table S2).
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Figure 2. Projection of validation cohort samples using discovery cohort OPLS-DA model. Validation
cohort, PCa cases (n = 44; red circle), matched controls (n = 82; blue circle). Corresponding AUC: 0.92
(sensitivity: 86.36%; specificity: 86.59%), 95% confidence interval (0.87, 0.97), p value: < 0.0001.
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Figure 3. AU-ROC distribution for validation cohort during a 1000-time repeated random sub-
sampling validation (median: 0.92, min: 0.81, max: 0.98). For each resampling, a discovery cohort
(randomly selected 70% of all samples, with PCa cases: n = 102/controls: n = 190) was used to establish
an OPLS-DA model, the model was then validated by predicting samples in the corresponding
validation cohort (remainder of all samples, with PCa cases: n = 44/controls: n = 82), and an AU-ROC
for each prediction was calculated. AU-ROC, Area under the receiver operating characteristic curve.
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For these 10 metabolites, differences for the PCa and control groups are provided in
Figure 4. Among them, phosphate (OR = 4.19; 95% CI: 2.15–8.48; p = 4.02 × 10−5), ethyl
oleate (OR = 3.48; 95% CI: 1.99–6.33; p = 2.64 × 10−5), and eicosadienoic acid (OR = 2.61; 95%
CI: 1.67–4.18; p = 4.07 × 10−5) were positively associated with risk of developing PCa during
the follow-up period (Figure 5 and supplemental Table S2). In contrast, inverse associations
with risk of developing PCa during the follow-up were observed for 2-hydroxyadenine
(OR = 0.15; 95% CI: 0.08–0.27; p = 7.10 × 10−10), sphinganine (OR = 0.17; 95% CI: 0.10–0.26;
p = 1.95 × 10−13), L-glutamic acid (OR= 0.19; 95% CI: 0.10–0.32; p = 2.77 × 10−9), serotonin
(OR= 0.39; 95% CI: 0.28–0.54; p = 2.47 × 10−8), 7-keto cholesterol (OR = 0.45; 95% CI:
0.30–0.60; p = 3.03 × 10−5), tiglyl carnitine (OR = 0.49; 95% CI: 0.32–0.71; p = 3.65 × 10−4),
and sphingosine (OR = 0.49; 95% CI: 0.35–0.68; p = 3.11 × 10−5) (Figure 5).
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Figure 4. Box plots of peak areas for the 10 discriminants metabolites in participants who developed PCa during the
follow-up and matched controls. Eicosadienoic acid, ethyl oleate, and phosphate were relatively higher in PCa group than
in controls; on the contrary, L-glutamic acid, 2-hydroxyadenine, 7-keto cholesterol, tiglyl carnitine, serotonin, sphinganine,
and sphingosine were relatively lower in PCa group than in controls. Sparse partial least squares discriminant analysis
(sPLS-DA) was used to identify the top 10 most important metabolites discriminating PCa cases (n = 146) from controls
(n = 272). Significance was determined by p-value with Bonferroni adjustment (Supplemental Table S2.): * p < 0.05; ** p < 0.01;
*** p < 0.001; ns, not significant. The y-axis represents peak areas after removing variability in QC samples, probabilistic
quotient normalized, centering, unit variance scaling, and generalized logarithm transformed. a.u.: arbitrary unit.

Cancers 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 5. Relationship between baseline metabolites and risk of developing PCa during the follow-up. The x-axis repre-
sented log2 transformed scale. p-value from binomial logistic regression models, OR, odds ratio; CI, confidence interval. 

4. Discussion and Conclusions 
In the present study, we characterized plasma metabolic profiles collected from 

healthy males prior to PCa diagnosis and matched controls. Comparison of plasma sam-
ples from participants who developed PCa at follow-up identified 10 metabolites (Figures 
4 and 5, Supplemental Table S2) that may be useful to identify males at higher risk of 
developing PCa. It should be noted at the beginning that one limitation of our study is 
that the storage (less than 2 days for all the samples at −20°C) could influence the metab-
olite levels in the sample [51]. 

Among these 10 metabolites, the majority are related to amino acids and sphingolipid 
metabolism, including metabolites that contribute to energy metabolism, cell prolifera-
tion, oxidative stress, and inflammation (Figure 6). Our results suggest possible changes 
or perturbations in these physiological processes in males at risk for PCa. 

Decreased plasma glutamic acid levels were observed in participants who subse-
quently developed PCa during follow-up (Figure 6). Plasma glutamic acid is a compound 
derived from glutamine (Gln), an ammonia molecule NH3 linked to glutamate, which al-
lows the transport of the nitrogen produced at the periphery to the liver to be eliminated 
by the urea cycle. This result is in concordance with a previous study on PCa risk using 
NMR-based metabolomics performed by our group [52], which showed that plasma glu-
tamine level was negatively correlated with urea level. The results of these two studies 
(NMR and MS based studies) suggest a dysfunction of the urea cycle in males who sub-
sequently developed PCa during follow-up, leading to a decrease in urea production, an 
accumulation of glutamine upstream, and a drop in glutamic acid. Gln is also a regulator 
of many pathways, including the mTOR pathway, a major pathway for cell proliferation. 
The relation between nitrogen providing from Gln and the activation of the mTOR path-
way has previously been reported [53]. Instead, the dietary supplementation of alpha ke-
toglutarate activates mTOR signaling by improving energy metabolism [54]. The oxida-
tion of the carbon skeleton of Gln (glutamic acid) in the mitochondria is a major source of 
energy for proliferating cells, including tumor cell lines. Finally, glutamic acid participates 
in antioxidant defense as a constituent of glutathione (major cellular antioxidant) [55].  

Furthermore, in the NMR-based study [52], an increase in histidine level was re-
ported in men who developed PCa during the follow-up. This observation is consistent 
with the decrease in glutamate observed in our study, in view of the metabolic links be-
tween these two amino acids. The dysregulation of this pathway has been observed in 
another cohort study [22] and other types of cancers as well, such as in breast cancer [56] 
and in hepatocellular carcinoma (HCC) [57].  

2-Hydroxyadenine is a hydrogenated derivative of guanine. The observed decreased 
plasma levels of 2-hydroxyadenine could suggest a reduced DNA repair capacity. Thus, 
we could assume that the DNA of subjects who developed PCa would be more susceptible 

Figure 5. Relationship between baseline metabolites and risk of developing PCa during the follow-up. The x-axis represented
log2 transformed scale. p-value from binomial logistic regression models, OR, odds ratio; CI, confidence interval.



Cancers 2021, 13, 3140 10 of 16

4. Discussion and Conclusions

In the present study, we characterized plasma metabolic profiles collected from healthy
males prior to PCa diagnosis and matched controls. Comparison of plasma samples from
participants who developed PCa at follow-up identified 10 metabolites (Figures 4 and 5,
Supplemental Table S2) that may be useful to identify males at higher risk of developing
PCa. It should be noted at the beginning that one limitation of our study is that the storage
(less than 2 days for all the samples at −20 ◦C) could influence the metabolite levels in
the sample [51].

Among these 10 metabolites, the majority are related to amino acids and sphingolipid
metabolism, including metabolites that contribute to energy metabolism, cell proliferation,
oxidative stress, and inflammation (Figure 6). Our results suggest possible changes or
perturbations in these physiological processes in males at risk for PCa.
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Figure 6. A model for metabolic changes during development of prostate cancer. Among these 10 important metabolites
(p < 0.001) in the discrimination of PCa cases from controls, the majority are related to amino acids and sphingolipid
metabolism and participated in energy metabolism, cell proliferation, oxidative stress, and inflammation. Our results
suggest possible changes or perturbations in these physiological processes in males who subsequently developed PCa
during the follow-up. FC: fold change.

Decreased plasma glutamic acid levels were observed in participants who subse-
quently developed PCa during follow-up (Figure 6). Plasma glutamic acid is a compound
derived from glutamine (Gln), an ammonia molecule NH3 linked to glutamate, which
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allows the transport of the nitrogen produced at the periphery to the liver to be eliminated
by the urea cycle. This result is in concordance with a previous study on PCa risk using
NMR-based metabolomics performed by our group [52], which showed that plasma glu-
tamine level was negatively correlated with urea level. The results of these two studies
(NMR and MS based studies) suggest a dysfunction of the urea cycle in males who sub-
sequently developed PCa during follow-up, leading to a decrease in urea production, an
accumulation of glutamine upstream, and a drop in glutamic acid. Gln is also a regulator of
many pathways, including the mTOR pathway, a major pathway for cell proliferation. The
relation between nitrogen providing from Gln and the activation of the mTOR pathway has
previously been reported [53]. Instead, the dietary supplementation of alpha ketoglutarate
activates mTOR signaling by improving energy metabolism [54]. The oxidation of the
carbon skeleton of Gln (glutamic acid) in the mitochondria is a major source of energy
for proliferating cells, including tumor cell lines. Finally, glutamic acid participates in
antioxidant defense as a constituent of glutathione (major cellular antioxidant) [55].

Furthermore, in the NMR-based study [52], an increase in histidine level was reported
in men who developed PCa during the follow-up. This observation is consistent with
the decrease in glutamate observed in our study, in view of the metabolic links between
these two amino acids. The dysregulation of this pathway has been observed in another
cohort study [22] and other types of cancers as well, such as in breast cancer [56] and in
hepatocellular carcinoma (HCC) [57].

2-Hydroxyadenine is a hydrogenated derivative of guanine. The observed decreased
plasma levels of 2-hydroxyadenine could suggest a reduced DNA repair capacity. Thus, we
could assume that the DNA of subjects who developed PCa would be more susceptible to
oxidative stress (Figure 6) and would have more potential alterations [58]. This observation
corroborates the drop in glutamic acid, which is a component of glutathione involved in
antioxidant defense. In addition, just like glutamic acid, 2-hydroxyadenine serves as fuel for
the Krebs cycle (TCA). 7-keto cholesterol is metabolically linked to two other discriminating
metabolites: sphinganine and sphingosine, known to be related to lysosomal disease [59].
The levels of these three metabolites are lower in men who developed PCa during the
follow-up. These three metabolites are involved in the synthesis of sphingolipids and
are found more abundantly in healthy subjects. At this point, it can be hypothesized that
males who develop PCa will have increased synthesis of ceramides/sphingolipids. This
observation would be in agreement with the reported role of sphingolipids in prostatic
carcinogenesis [60–62], and also the previous work on the role of cholesterol and its
derivatives in the biogenesis of membranes in PCa [63]. A hypothesis is that sphingolipids
represent a potent class of apoptosis regulators in cancer cells [64]. Another hypothesis
is that these metabolites could be implicated in the inflammatory process as it has been
already observed in cancer [65]. This latter hypothesis could also explain the increased
plasma level of eicosadienoic acid (EPA) in males who develop PCa [66]. Knowing that
these three discriminating metabolites participate in the same metabolic pathway, we can
envisage a major role for ceramides/sphingolipids in cancer carcinogenesis. These results
are in agreement with the lipidomic disorders previously described in PCa patients [67].

Tiglyl carnitine belongs to the carnitine metabolic pathway. Carnitine is bio-synthesized
from lysine and methionine, comprising a quaternary ammonium function. The main
role of L-carnitine is to transport long-chain acyl groups of fatty acids in the mitochon-
drial matrix for the generation of ATP via beta-oxidation and TCA during the energetic
catabolism of lipids. Its role is well documented, even in healthy patients, and in patients
with metabolic disorders [68]. Previously, the NMR-based study had shown an increase
in lysine [52]. This was linked to an increase in the synthesis of carnitine to support beta-
oxidation. In addition, recent metabolomics studies show a protective effect of carnitines
in people without prostate cancer due to an increase in serum levels [69]. Several studies
have demonstrated the anti-inflammatory and antioxidant properties of acetyl-L-carnitine
by “stabilizing” effects on the mitochondrial membrane. In our study, the decrease in
plasma level of tiglyl carnitine was associated with PCa, which reinforces the idea of a
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“down-regulation” consumption of glutamic acid and 2-hydroxyadenine. This suggests an
increase in the speed of the enzymatic reactions constituting the TCA in males who will
develop PCa.

Serotonin activates the two interdependent MAP kinase and PI3K/Akt signaling
pathways to induce proliferation, migration, and differentiation in PCa cell lines [70]. The
PI3K pathway interferes with the activation of the mTOR pathway, which is activated
by the accumulation of glutamine. In our study, the drop-in serotonin plasma levels in
men who developed PCa during follow-up could indicate peripheral consumption or an
“appetite” of pre-neoplastic prostate cells for this metabolite.

Ethyl oleate is an ester of oleic acid, the main monounsaturated fatty acid in the
body. It is frequently associated with cholesterol esters and triglycerides. It is used for
the synthesis of phospholipids but can also be oxidized to provide energy. In this study,
the positive association between oleate and PCa risk as well as the negative association
between 7-keto cholesterol and PCa risk suggest a massive use of the cholesterol ester. This
results in the availability of oleate. In addition, operating in the “intense or increased”
mode of TCA (as we have previously suggested) can reduce the energy production from
fatty acids, allowing the accumulation of oleic acid in the plasma [67].

Phosphoric acid is also a majority anion in the intracellular compartment, and its
accumulation can be linked to the expenditure of cellular energy (ATP => ADP + Pi). We
have observed an increase in plasma orthophosphoric acid levels in men who developed
prostate cancer during the follow-up. A first hypothesis would be an increase in phosphate
as a consequence of the decreased levels of glutamic acid, carnitine, serotonin, aminopurine,
and the ability to garner sources of phosphate for cell proliferation [55]. A second hypothe-
sis would be that a disturbance in the calcium-phosphate balance could be involved. The
role of citrate (previously identified in the NMR-based study from our group) in relation to
calcium makes it possible to envisage the presence of “osteoblast-like” cells as described
in prostate cancer [71]. In addition, an excess of phosphate is reported during disorders
initiating carcinogenesis: gene instability, neovascularization, and cell toxicity [72].

To the best of our knowledge, this was the first study using a robust 12 min UHPLC-
HRMS-based metabolomic analysis [73] to investigate the relationship between baseline
plasma metabolites profiles and long-term prostate cancer risk in a large prospective
male cohort.

The strengths of our study include the combination of a robust 12 min UHPLC-HRMS-
based metabolomic assay with a large prospective cohort design and long follow-up, as well
as a powerful and comprehensive statistical analysis with rigorous validation. Nevertheless,
our study has several limitations. First, the age of males included in this study was mainly
between 45–60 years, which may not fully represent the whole male population. Second,
the metabolomic analysis was performed with a single blood draw, and, thus, the intra-
individual variability of metabolic profiles over time was not controlled in this study.
Despite that, several metabolomic studies showed good stability and reproducibility for
most metabolites [74,75]. Moreover, further validation of these selected metabolites will be
necessary by using a targeted quantitative analysis in an independent prospective cohort.

In conclusion, this prospective study revealed several early metabolic markers, identi-
fied by UHPLC-HRMS based plasma untargeted metabolomic profiles, that were associated
with the risk of developing PCa within the following decade. Our results support dysregu-
lation of amino acids and sphingolipid metabolism in males who subsequently developed
PCa. After validation in other independent prospective studies, our study may contribute
to (1) the development of new prevention and early screening strategies to identify males
with a high risk of PCa well before symptoms appear, and (2) a better understanding of the
etiology of this complex disease.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13133140/s1, Figure S1: Score plot of OPLS-DA model for the Discovery cohort,
Figure S2: AU-ROC for the OPLS-DA model validation, Figure S3: Score plot of PCA with QC
samples (highlighted), Table S1: Internal Standards (ISs) and concentration, Table S2: Important
metabolites in the discrimination of participants who developed PCa during the follow-up from
controls selected by sPLS-DA.
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42. Szymańska, E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-Check: Validation of Diagnostic Statistics for PLS-DA Models
in Metabolomics Studies. Metabolomics 2012, 8, 3–16. [CrossRef]

43. Tukey, J.W. Exploratory Data Analysis. In Reading, Mass; Addison-Wesley Pub. Co.: Boston, MA, USA, 1977; ISBN 978-0-201-07616-5.
44. DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating

Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837–845. [CrossRef]
45. Youden, W.J. Index for Rating Diagnostic Tests. Cancer 1950, 3, 32–35. [CrossRef]
46. Lê Cao, K.-A.; Boitard, S.; Besse, P. Sparse PLS Discriminant Analysis: Biologically Relevant Feature Selection and Graphical

Displays for Multiclass Problems. BMC Bioinform. 2011, 12, 253. [CrossRef] [PubMed]
47. Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr.

Protoc. Bioinform. 2019, 68, e86. [CrossRef]
48. Saeed, A.I.; Sharov, V.; White, J.; Li, J.; Liang, W.; Bhagabati, N.; Braisted, J.; Klapa, M.; Currier, T.; Thiagarajan, M.; et al. TM4: A

Free, Open-Source System for Microarray Data Management and Analysis. Biotechniques 2003, 34, 374–378. [CrossRef] [PubMed]
49. Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S-PLUS.; Statistics and Computing, 4th ed.; Springer: New York, NY,

USA, 2002; ISBN 978-0-387-95457-8.
50. Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The Role of Reporting Standards for Metabolite Annotation and

Identification in Metabolomic Studies. Gigascience 2013, 2, 13. [CrossRef]
51. Pawlik-Sobecka, L.; Sołkiewicz, K.; Kokot, I.; Kiraga, A.; Płaczkowska, S.; Schlichtinger, A.M.; Kratz, E.M. The Influence of Serum

Sample Storage Conditions on Selected Laboratory Parameters Related to Oxidative Stress: A Preliminary Study. Diagnostics
2020, 10, 51. [CrossRef]

52. Lécuyer, L.; Victor Bala, A.; Demidem, A.; Rossary, A.; Bouchemal, N.; Triba, M.N.; Galan, P.; Hercberg, S.; Partula, V.; Srour, B.;
et al. NMR Metabolomic Profiles Associated with Long-Term Risk of Prostate Cancer. Metabolomics 2021, 17, 32. [CrossRef]

53. Stracka, D.; Jozefczuk, S.; Rudroff, F.; Sauer, U.; Hall, M.N. Nitrogen Source Activates TOR (Target of Rapamycin) Complex 1 via
Glutamine and Independently of Gtr/Rag Proteins. J. Biol. Chem. 2014, 289, 25010–25020. [CrossRef]

http://doi.org/10.1002/ijc.29576
http://doi.org/10.1093/carcin/bgt176
http://doi.org/10.1186/s12894-015-0095-5
http://doi.org/10.1186/s12916-020-01655-1
http://doi.org/10.1001/archinte.164.21.2335
http://www.ncbi.nlm.nih.gov/pubmed/15557412
http://doi.org/10.1016/s0197-2456(98)00015-4
http://www.ncbi.nlm.nih.gov/pubmed/9683310
http://www.who.int/classifications/apps/icd/icd10online
http://doi.org/10.1021/ac051632c
http://www.ncbi.nlm.nih.gov/pubmed/16808434
http://doi.org/10.1186/1471-2105-8-234
http://www.ncbi.nlm.nih.gov/pubmed/17605789
http://doi.org/10.1038/nprot.2011.375
http://doi.org/10.1002/cem.695
http://doi.org/10.1039/C4MB00414K
http://doi.org/10.1007/s11306-011-0330-3
http://doi.org/10.2307/2531595
http://doi.org/10.1002/1097-0142(1950)3:1&lt;32::AID-CNCR2820030106&gt;3.0.CO;2-3
http://doi.org/10.1186/1471-2105-12-253
http://www.ncbi.nlm.nih.gov/pubmed/21693065
http://doi.org/10.1002/cpbi.86
http://doi.org/10.2144/03342mt01
http://www.ncbi.nlm.nih.gov/pubmed/12613259
http://doi.org/10.1186/2047-217X-2-13
http://doi.org/10.3390/diagnostics10010051
http://doi.org/10.1007/s11306-021-01780-9
http://doi.org/10.1074/jbc.M114.574335


Cancers 2021, 13, 3140 16 of 16

54. Wang, L.; Yi, D.; Hou, Y.; Ding, B.; Li, K.; Li, B.; Zhu, H.; Liu, Y.; Wu, G. Dietary Supplementation with α-Ketoglutarate Activates
MTOR Signaling and Enhances Energy Status in Skeletal Muscle of Lipopolysaccharide-Challenged Piglets. J. Nutr. 2016, 146,
1514–1520. [CrossRef]

55. Dang, C.V. Glutaminolysis: Supplying Carbon or Nitrogen or Both for Cancer Cells? Cell Cycle 2010, 9, 3884–3886. [CrossRef]
[PubMed]

56. Huang, S.; Chong, N.; Lewis, N.E.; Jia, W.; Xie, G.; Garmire, L.X. Novel Personalized Pathway-Based Metabolomics Models
Reveal Key Metabolic Pathways for Breast Cancer Diagnosis. Genome Med. 2016, 8, 34. [CrossRef] [PubMed]

57. Liang, K.-H.; Cheng, M.-L.; Lo, C.-J.; Lin, Y.-H.; Lai, M.-W.; Lin, W.-R.; Yeh, C.-T. Plasma Phenylalanine and Glutamine
Concentrations Correlate with Subsequent Hepatocellular Carcinoma Occurrence in Liver Cirrhosis Patients: An Exploratory
Study. Sci. Rep. 2020, 10, 10926. [CrossRef]

58. Kamiya, H. Mutagenicities of 8-Hydroxyguanine and 2-Hydroxyadenine Produced by Reactive Oxygen Species. Biol. Pharm. Bull.
2004, 27, 475–479. [CrossRef]

59. Anderson, A.; Campo, A.; Fulton, E.; Corwin, A.; Jerome, W.G.; O’Connor, M.S. 7-Ketocholesterol in Disease and Aging. Redox
Biol. 2020, 29, 101380. [CrossRef]
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