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Abstract: Ticks and tick-borne diseases (TBDs) represent a burden for human and animal health
worldwide. Currently, vaccines constitute the safest and most effective approach to control ticks and
TBDs. Subolesin (SUB) has been identified as a vaccine antigen for the control of tick infestations
and pathogen infection and transmission. The characterization of the molecular function of SUB
and the identification of tick proteins interacting with SUB may provide the basis for the discovery
of novel antigens and for the rational design of novel anti-tick vaccines. In the present study, we
used the yeast two-hybrid system (Y2H) as an unbiased approach to identify tick SUB-interacting
proteins in an Ixodes ricinus cDNA library, and studied the possible role of SUB as a chromatin
remodeler through direct interaction with histones. The Y2H screening identified Importin-α as a
potential SUB-interacting protein, which was confirmed in vitro in a protein pull-down assay. The
sub gene expression levels in tick midgut and fat body were significantly higher in unfed than fed
female ticks, however, the importin-α expression levels did not vary between unfed and fed ticks but
tended to be higher in the ovary when compared to those in other organs. The effect of importin-α
RNAi was characterized in I. ricinus under artificial feeding conditions. Both sub and importin-α
gene knockdown was observed in all tick tissues and, while tick weight was significantly lower in
sub RNAi-treated ticks than in controls, importin-α RNAi did not affect tick feeding or oviposition,
suggesting that SUB is able to exert its function in the absence of Importin-α. Furthermore, SUB
was shown to physically interact with histone 4, which was corroborated by protein pull-down and
western blot analysis. These results confirm that by interacting with numerous tick proteins, SUB is a
key cofactor of the tick interactome and regulome. Further studies are needed to elucidate the nature
of the SUB-Importin-α interaction and the biological processes and functional implications that this
interaction may have.
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1. Introduction

Ticks are obligate blood-feeding arthropod vectors of pathogenic viruses, bacteria,
protozoa and helminths, and are responsible for highly prevalent tick-borne diseases
(TBDs) worldwide [1]. Ticks are the second most common arthropod, after mosquitos,
that transmit pathogens to humans and the most important vector in domestic animals [2].
This situation imposes a real burden for human and animal health, which is increasing
day by day [1]. Nowadays, different strategies have been developed to control ticks and
TBDs by reducing tick infestations and pathogen transmission. Some examples of these
methods are the traditional use of chemical acaricides, which are generally environmental
contaminants and can lead to acaricide-resistant ticks. Botanical acaricides, management of
habitat and personal preventive control measures, among others, are more environmentally
friendly methods but with a low success rate in the control of TBDs [3–9]. Vaccines
constitute the safest and more effective approach to control ticks and TBDs [10], but new
antigens or improved vaccine formulations are required to advance development of control
interventions. Although vaccine efficacy against arthropods has been described [11–16],
the combination of different protective antigens such as interacting proteins (involved in
interactome or functional and physical protein–protein interactions) may advance research
in this area [17,18].

Subolesin (SUB) is a tick protein that was first reported in 2003 as the protective antigen
derived from the 4D8 clone in Ixodes scapularis [19]. Subolesin and its functional ortholog
in vertebrates, Akirin (AKR), are regulatory cofactors conserved throughout metazoan
evolution without catalytic or DNA-binding capability [20,21]. SUB/AKR acts in concert
with Relish/Toll-like receptor (TLR)-nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-kB) inducing immune deficiency (IMD) and tumor necrosis factor (TNF)/TLR
signaling pathways that are involved in the immune response to pathogen infection in
ticks and in vertebrate organisms [21–26]. Furthermore, SUB is highly conserved at gene
and protein levels in the Ixodidae with a protective capacity as a vaccine antigen for the
control of tick infestations and pathogen infection/transmission [2,21].

Study of the tick interactome contributes to the understanding of cellular processes
and biological functions and can lead to the discovery of drug and vaccine targets for
disease prevention and treatment [17,21,27]. Thus, understanding the interactome of a
protein such as the transcription cofactor SUB is important to unravel its implications in
gene regulation and host–pathogen interactions. In a previous study, two SUB-interacting
proteins were identified, GI and GII, through which SUB may exert its function in the
regulation of gene expression, showing that the effect of gene knockdown was similar
for GII and SUB [22]. However, how SUB functions in the tick regulome (transcription
factors/cofactors targeting genes interactions) is still unknown. Recently, human AKR2
was suggested to function as a chromatin remodeler interacting physically with histone
H3.1, thus providing new information on the interactome and regulome of this protein
with a novel role in epigenetic regulation [28].

To provide deeper understanding of the SUB interactome and regulome, in the present
study we focused on the identification of tick SUB-interacting proteins and studied the
possible role of SUB as a chromatin remodeler through direct interaction with histones.
The results identified Importin-α as a SUB-interacting protein with possible implications
for signal transduction and gene regulation.

2. Results and Discussion
2.1. Importin-α Is Part of the SUB Interactome with a Putative Function in Translocation to the
Cell Nucleus

The SUB/AKR proteins have been described as protective antigens of ticks and other
arthropods, making them interesting candidates for the vaccines targeting arthropods [21].
Furthermore, SUB and its vertebrate ortholog, AKR2, act as cofactor regulatory proteins
that do not directly interact with DNA, and thus exert their function through interactions
with other proteins [21]. To characterize the tick SUB interactome, the identification of
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SUB-interacting proteins was performed, and four proteins were identified with different
confidence scores (depending on the number of identified clones for each protein) [18]
(Figure 1A). Three of them were identified with a confidence B score (two clones each); that
is, B7PA99 (uncharacterized protein), B7PAA1 (transforming acidic coiled-coil containing
protein) and B7P1Q6 (TRAF-type domain-containing protein). The fourth protein, B7P1M7
(Importin-α, also known as Karyopherin-α), was identified with a confidence score of A
(three clones). B7PA99 is an uncharacterized protein with 76% sequence identity to an Ixodes
scapularis transforming acidic coiled-coil-containing protein 3 isoform X4] (XP_029836069.1)
and there is little information related to the role of this protein in the tick interactome. How-
ever, the B7PAA1 transforming acidic coiled-coil containing protein has been implicated in
mitotic spindle organization (https://www.uniprot.org/uniprot/B7PAA1, accessed on 12
October 2020) and it is linked to different types of cancers in humans [29–32]. The B7P1Q6
TRAF-type domain-containing protein has been shown to be involved in innate immunity
of Haemaphysalis longicornis ticks against bacterial infection [33], suggesting a functional
interaction with SUB due to its role in the innate immune response [34,35].
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Figure 1. Characterization of the tick SUB interactome. (A) Graphical representation of the results of the Y2H screening
in tick cells by which Importin-α (B7P1M7; green) together with other tick proteins (B7PA99, B7PAA1 and B7P1Q6) were
identified as interacting with SUB (pink and red). (B) Graphical representation of the components of the protein pull-down
experiment using a resin with a high level of tetradentate-chelated nickel, which captures polyhistidine-tagged proteins.
(C) Western blot analysis of the SUB-Importin-α interaction. SUB was incubated with Importin-α and recovered using
the HisLink resin through the SUB His-tag (I). Importin-α was incubated only with the resin as negative control (C-) and
recombinant importin-α was included as a positive control (C+). Specific primary and secondary antibodies were used to
detect the presence of Importin-α (84 kDa; red arrow). The molecular weight of Importin-α is 57 kDa, but the recombinant
protein used in this experiment contains a GST tag used for its purification.

Due to its highest confidence score in SUB–protein interactions and the possible
role in SUB transport into the nucleus, we then focused on Importin-α, a protein family
conserved in all metazoans. The SUB-Importin-α interactions were corroborated by in vitro
protein pull-down and Western blot analysis with Importin α-specific primary antibodies
(Figure 1B,C). Importin-α family members act as a linker between the nuclear localization
sequence (NLS) cargo proteins, while members of the Importin-β family facilitate protein
translocation into the nucleus through nuclear pores [36,37]. SUB bears two distinct NLS
domains, thus representing a good candidate for Importin-α-mediated transport into the
nucleus [21]. Although only a single Importin-α is encoded in ticks, the importin-α gene
family has undergone broad expansion during eukaryotic evolution. In humans, the
genome contains several genes coding for Importin-α [36].

https://www.uniprot.org/uniprot/B7PAA1
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The I. scapularis Importin-α is a protein composed of 521 amino acids and it shares
the typical protein domain architecture with Importin-α family members in other species
(Figure 2A,B) [37]. It is composed of one Importin-β binding domain (IBB) in the N-
terminal region that is involved in the interaction with Importin-β and the formation of
the Importin-α/Importin-β-cargo protein ternary complexes (Figure 2C). The Importin-α
IBB domain is followed by eight Armadillo/beta-catenin-like repeats (ARM 1-8), which
contain approximately 40 amino acids per ARM domain (Figure 2A,B). These ARM repeats
constitute the NLS-binding pocket of the Importin [36,37]. In the C-terminal region, an
atypical ARM repeat (ARMC) is found, as in other eukaryotic proteins (https://pfam.
xfam.org/family/Arm_3, accessed on 12 October 2020) (Figure 2A,B). This region can be
targeted by proteins involved in the release of the NLS-cargo protein, which is essential
for the regulation of the classical transport mechanism (Figure 2C) [38]. Importin-α family
members have a key role in entering the nucleus through the nuclear pores with different
NLS cargo proteins such as SUB. Importin-α directly interacts with NLS-proteins thought
the ARM repeats in its structure. The N-terminal IBB domain binds to Importin-β and
forms a ternary complex as the first step in nuclear transport. However, this IBB domain
may also mimic an NLS-protein, thereby autoinhibiting interaction with the NLS-binding
region when Importin-α is not bound to Importin-β. This autoinhibitory function is not
very strong and NLS-proteins can still interact with Importin-α in the absence of Importin-
β [36]. The Importin-α /Importin-β-NLS protein ternary complex is targeted to the nuclear
pore complexes (NPCs). This pathway consists of NPCs, nuclear transport receptors (NTRs)
and the small GTPase RAN system. NPCs are composed of multiple copies of different
proteins called nucleoporins (Nups), grouped according to their sequence motifs, structural
folds and functions. Importin-β achieves NPC permeability via binding to the flexible gate
(FG) repeats of FG-Nups. Once the Importin-α/Importin-β-NLS protein ternary complex
targets the NPC, it is translocated into the nucleus via Importin β activity. Then, the
ternary complex is dissolved, and cargo proteins are released through the interaction of
nuclear Ras-related nuclear protein (Ran) GTP with Importin-β. Both Importins are then
recycled back to the cytoplasm by interaction with other proteins such as RanGTP and
CAS/CSE1L [37,39] (Figure 2C). In ticks, this recycler protein or exportin is also present (i.e.,
I. scapularis exportin-2 A0A4D5RQ98) (Figure 2C). It has been described that the C-terminal
region of Importin-α can interact directly with the nucleoporin Nup153, involved in
the NPCs, thereby promoting the translocation of Importin-α/Importin-β-cargo protein
ternary complexes, thus suggesting that beyond its adaptor function Importin-α can act as
an active translocation mediator [38].

https://pfam.xfam.org/family/Arm_3
https://pfam.xfam.org/family/Arm_3
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Figure 2. Protein domain architecture analysis and transport cycle of Importin-α. (A) Graphical representation of the
predicted protein domains of tick Importin-α. These include an Importin-β binding domain (IBB), eight Armadillo/beta-
catenin-like repeats (ARM 1-8) and an atypical ARM repeat in the C-terminal region (ARMC). (B) Confidence (E-value) of
the predicted tick Importin-α domains and repeats. The analysis and the prediction were carried out using the SMART
tool (http://smart.embl-heidelberg.de/, accessed on 12 October 2020). (C) Importin-α binds to NLS-cargo proteins such as
SUB and also to Importin-β. Importin-β/α-SUB could be translocated into the nucleus by the interaction with the nuclear
pore complexes. Then, proteins such as Exportin-2 and Ran-GTP trigger the dissociation of the Importin-β/α-SUB complex
through binding to Importin-α. Finally, Importin-α is recycled to the cytoplasm.

2.2. The SUB-Importin-α Interaction Is Not Essential for SUB Function

Tick SUB can be found either in the cytoplasm or in the nucleus, in relation to its two
NLS domains involved in protein transport into the nucleus [21]. While identification of a
physical interaction between SUB and Importin-α strongly suggested that SUB might enter
the nucleus by the Importin-α pathway, other nuclear entry pathways might come into play.
To address this issue, we studied sub and importin-α gene expression in vivo in I. ricinus
ticks to gain information on the SUB-Importin-α interaction and its functional implications.

First, we studied by qRT-PCR the expression profile of sub and importin-α in various
I. ricinus organs including midgut, fat body, ovary, salivary glands and Malpighian tubules
of unfed and fed female ticks (Figure 3A,B). The sub gene expression levels in midgut and
fat body were significantly higher in unfed than in fed female ticks (Figure 3A), which
supports a role for this protein in tick feeding [21]. Although without significant differences,
sub mRNA levels were, as previously reported in Haemaphysalis flava [40], higher in the
ovaries and salivary glands of fed ticks compared to unfed ticks (Figure 3A). However, the
importin-α expression levels did not vary between unfed and fed ticks but tended to be
higher in the ovaries when compared to those in other organs (Figure 3B). These results

http://smart.embl-heidelberg.de/
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concur with the reported role of Importin-α in gametogenesis in Drosophila melanogaster
and in germ cell development and somatic cell growth in Caenorhabditis elegans [36,41].
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Figure 3. Expression profile of sub and importin-α in Ixodes ricinus organs. The mRNA levels of (A) sub and (B) importin-α
were determined by qRT-PCR in unfed and fed female I. ricinus midgut (MG), fat body (FB), ovary (OV), salivary glands
(SG) and Malpighian tubules (MAL). The Ct values were normalized against tick elongation factor (average + S.D.) and
compared between fed and unfed ticks by Student’s t-Test (p < 0.05; 3 biological replicates with 7–10 ticks per replicate).

Then, the effect of importin-α RNAi was characterized in vivo in I. ricinus ticks
(Figure 4A,D). Ticks were fed under artificial feeding conditions (Figure 4A,B). Both
sub (23–78%) and importin-α (41–87%) gene knockdown was observed in all tick tissues
(Figure 4C). As expected from previous results [2,42], tick weight was significantly lower
in sub RNAi-treated ticks than in controls (Figure 4D). However, importin-α RNAi did
not affect tick feeding or oviposition (Figure 4D), suggesting that SUB is able to enter the
nucleus and exert its function in the absence of Importin-α. This finding suggests that SUB,
like AKR, evolved to exert its function through different mechanisms and interaction with
other proteins/molecules with functional complementarity.

To further address the hypothesis that SUB enters the nucleus and exerts its function
independently of the presence of Importin-α, the sub and importin-α mRNA levels were
assessed after gene knockdown in different tick tissues (Figure 5A,B). The results did
not show significant differences between sub/importin-α and control groups, suggesting
that these proteins are not co-regulated (Figure 5A,B). These results further support the
hypothesis that SUB may enter the nucleus not only by interaction with Importin-α but
also through other unknown mechanisms.

Previously, other functions of Importin-α besides nuclear transport have been de-
scribed [38]. Among them, Importin-α may be involved in gene regulation in the nucleus
under particular stress conditions. It may, moreover, act as a cofactor for transcription
factors, conferring enhanced capacity to bind to DNA-specific sequences in yeast [38,43].
In addition, Importin-α has been reported to have a chromatin-related function in the
regulation of p21 gene expression in humans [38,44] and in chromatin formation and
DNA methylation in Neurospora crassa [38,45]. These multiple Importin-α functions in
gene regulation and epigenetic mechanisms suggest a novel key role of this protein within
the SUB interactome and regulome by both participating in the transport of SUB into the
nucleus and acting as a SUB cofactor in the regulation of gene expression.
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Figure 4. Effect of sub and importin-α gene knockdown by RNAi in female Ixodes ricinus ticks. (A) Pictures taken on the
inside of the feeding units from the different groups (control GFP, SUB and Importin-α). Differences in tick engorgement,
morphology and survival could be observed during feeding. (B) Representative pictures of the feeding units with attached
ticks on the membrane (left) and during blood feeding (right). (C) The sub and importin-α mRNA levels (Ct-values) were
determined by qRT-PCR after RNAi in midgut (MG), fat body (FB), ovary (OV), salivary glands (SG) and Malpighian
tubules (MAL) in comparison with control samples. Normalized Ct values were used to calculate knockdown percentages.
(D) Duration of the feeding period, weight of engorged female ticks and egg batch masses were recorded for each of the
treatment groups. Values of sub and importin-α RNAi groups were compared to controls by one-way ANOVA test with
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n = 80 ticks per group).
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Figure 5. Co-regulation assessment of SUB and Importin-α. (A) The sub mRNA levels were determined in control and
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compared between fed and unfed ticks by Student’s t-Test (p < 0.05; 3 biological replicates with 7–10 ticks per replicate). No
significant differences were obtained.

2.3. SUB Interaction with Histone H4

The functional ortholog of SUB in humans, AKR2, has been suggested to physically
interact with the histone H3.1 for chromatin remodeling and regulation of gene expres-
sion [28]. This finding raised the question of whether SUB is also involved in chromatin
remodeling in ticks. To address this question, we performed a histone peptide array analy-
sis with histone peptides (Data S1). The results identified an H4but peptide (H4 K5,8,12but;
amino acids 1–23; Ac-SGRGK(but) 5GGK(but) 8GLGK(but) 12GGAKRHRKVLR-Peg(Biot);
butyrylated at lysines 5, 8 and 12) as being involved in a putative SUB-histone interaction
(Figure 6A,B).

Although the identified histone peptide was derived from human sequences, the
I. scapularis histone 4 (Q4PM69) is 100% homologous to the human ortholog [46]. In fact,
although I. scapularis H1, H2A, H2B and H3 are more closely related to other tick histones,
H4 is closely related to mammalian H4 [47]. This interaction was corroborated by protein
pull-down and Western blot analysis (Figure 6C). These results documented for the first
time the physical interaction of SUB with H4but and suggested a novel mechanism for
post-translational modification of tick H4 with new functional implications of SUB in
chromatin remodeling and the regulation of gene expression. As described above, in the
absence of SUB, Importin-α is unaffected but the tick life cycle is compromised. On the
other hand, in the absence of Importin-α, SUB is unaffected, and the tick life cycle is normal.
Could SUB be exerting Importin-α’s function related to regulation of gene expression?
Further studies are needed to elucidate the nature of this interaction and the biological
processes and functional implications that this interaction could have.
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3. Materials and Methods
3.1. SUB Cloning

The SUB-encoding open reading frame (ORF) was amplified by standard PCR (Plat-
inum taq; Invitrogen, Carlsbad, CA, USA) using sub-specific primers flanked with the Gate-
way cloning sites 5′-GGGGACAACTTTGTACAAAAAAGTTGGC and 5′-GGGGACAACTT
TGTACAAGAAAGTTGG. PCR products were cloned by in vitro recombination (Gateway
System BP cloning reaction; Invitrogen) into pDONR207 (Invitrogen). The sub ORF was
then transferred from pDONR207 into the Gal4-BD yeast two-hybrid vector pDEST32
according to the manufacturer’s recommendations (LR cloning reaction; Invitrogen).

3.2. Yeast Two-Hybrid Screening Procedure

Our yeast two-hybrid (Y2H) protocol was described in detail by Caignard et al. [48].
Briefly, the Y2H gold yeast strain (Clontech Laboratories, Mountain View, CA, USA) was
transformed with the pDEST32 plasmid encoding Gal4-DB fused to SUB. After confirming
that the sub ORF did not induce autonomous transactivation of the HIS3 reporter gene,
screening was performed on synthetic medium lacking histidine ([His-] medium) and
supplemented with only 5 mM of 3-amino-1,2,4-triazole (3-AT; Sigma-Aldrich, St. Louis,
MI, USA). A mating strategy was used for screening an Ixodes ricinus tick cDNA library
cloned into the Gal4-AD pDEST22 vector (Invitrogen) and previously established in Y187
yeast strain (Clontech Laboratories) [49]. Yeast cells were plated on a selective medium
lacking histidine and supplemented with 5 mM 3-AT to select for interaction-dependent
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transactivation of the HIS3 reporter gene. AD-cDNAs from [His+] colonies were amplified
by PCR and sequenced to identify the proteins interacting with SUB.

3.3. Expression Profile of Sub and Importin-α in I. ricinus Organs

Unfed and fed adult female I. ricinus ticks from a laboratory colony (Freie Universität
Berlin, Berlin, Germany) were used for this experiment. For fed female organ dissection,
female ticks were fed in vivo for 4 days using rabbits as host until they were partially-
fed. The five principal organs (salivary glands, fat body, Malpighian tubules, ovary and
midgut) from unfed and fed female I. ricinus (3 biological replicates with 7–10 ticks per
replicate) were dissected and put into TRIzol Reagent (Invitrogen) for RNA extraction.
RNA was extracted using Direct-Zol RNA Miniprep Plus Kit (Zymo Research Europe
GmbH, Freiburg im Breisgau, Germany). RNAs were cleared of gDNA and retrotran-
scribed using iScript gDNA clear cDNA synthesis kit (BioRad, Hercules, CA, USA). cDNAs
were used to characterize the expression profile of SUB and Importin-α within different
organs of unfed and fed I. ricinus females by qPCR using gene-specific oligonucleotide
forward (F) and reverse (R) primers (sub, F: 5′ CCAAACGGTAGATCGCCCAA 3′, R: 5′

GTCGCATTTCCTCCCGAATG 3′; Importin-α, F: 5′ TGGGCGCTCTCCAATCTTTG 3′, R: 5′

TCACTGCCTGGATCTTGTCG 3′), SsoAdvanced Universal SYBR Green Supermix (Bio-
Rad) and the CFX96 Touch Real-Time PCR Detection System (BioRad). A dissociation
curve was run at the end of the reaction to ensure that only one amplicon was formed,
and that the amplicons were denatured consistently in the same temperature range for
every sample. The cDNA levels were normalized against tick elongation factor (elf, F: 5′

CAAGATTGGTGGTATCGGCA 3′, R: 5′ GACCTCAGTGGTGATGTTGGC 3′) using the
genNorm Delta-Delta-Ct (ddCt) method as previously described [50]. Normalized Ct
values were compared between fed and unfed ticks by Student’s t-Test (p < 0.05).

3.4. Corroboration of SUB-Importin-α Interaction by Protein Pull-Down

The synthetic I. scapularis histidine-tag recombinant SUB (Genbank accession number
AY652654.1) with optimized codon usage for Escherichia coli was produced in E. coli BL21
and purified to >95% purity by Ni affinity chromatography using 1 mL HisTrap FF columns
mounted on an AKTA–FPLC system (GE Healthcare, Piscataway, NJ, USA) in the presence
of 7 M urea lysis buffer as previously described [51]. Recombinant SUB and I. scapularis
recombinant Importin-α fused to glutathione-S-transferase (GST), also produced in E. coli
(commercially synthesized by GenScript, Piscataway, NJ, USA), were incubated in 100 mM
HEPES (pH 7.5) and 10 mM imidazole (binding and wash buffer) for 1 h with shaking,
at a concentration ratio of 2:1. HisLink Protein Purification Resin (Promega Corporation,
Madison, WI, USA) was washed following the manufacturer’s recommendations and
blocked with 1% BSA (Thermo Fisher Scientific, Waltham, MA, USA) for 30 min with
shaking. Then, the resin was washed with binding/wash buffer and incubated with SUB-
Importin-α interaction (2:1) for 1 h with shaking. For the negative control, the same resin
was incubated only with Importin-α to verify that only his-tag SUB was able to link to the
resin. After the 1 h incubation, the supernatant was removed, and the resin was washed
twice with binding/wash buffer. SUB-Importin-α complexes were eluted from the resin
using elution buffer (100 mM HEPES, pH 7.5, 500 mM imidazole). The eluted fractions were
recovered and Laemmli sample buffer with β-mercaptoethanol was added for Western blot
analysis. Recombinant Importin-α (6 µg) was used as a positive control. Samples were
separated by electrophoresis in a 12% sodium dodecyl sulfate (SDS) polyacrylamide precast
gel (ClearPage, Cole-Parmer, Vermon Hills, IL, USA) and transferred to a nitrocellulose
blotting membrane (GE Healthcare Life Sciences, Pittsburgh, PA, USA). The membrane
was blocked with 3% BSA in Tris-buffered saline (TBS; 150 mM NaCl, 50 mM Tris-HCl, pH
7.5) for 2 h at room temperature (RT) and washed four times with TBS-0.05% Tween 20.
Human KPNA6-specific primary antibodies (Biorbyt Ltd., Cambridge, UK) were used for
Importin-α detection. Antibodies were diluted in TBS and incubated with the membrane
overnight at 4 ◦C. Goat anti-rabbit IgG (whole molecule) peroxidase antibodies (dilution
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1:1000; Sigma-Aldrich, St. Louis, MI, USA) diluted in TBS with 3% BSA were used as
secondary antibodies and incubated with the membrane for 2 h at RT. The membrane was
finally washed five times with TBS-0.05% Tween 20, and immunoreactive proteins were
visualized with chemiluminescence by incubating the membrane for 1 min with Pierce
ECL Western blotting substrate (Thermo Fisher Scientific).

3.5. RNA Extraction and Synthesis of Tick cDNA for dsRNA Preparations

Total RNA was extracted from I. ricinus nymphs (n = 3–5 nymphs) partially fed using
an in vitro feeding procedure with bovine blood [52]. Whole nymph bodies were immersed
in TRIzol Reagent (Invitrogen) for RNA extraction. RNA was extracted using Direct-Zol
RNA Miniprep Plus Kit (Zymo Research Europe GmbH). RNAs were cleared of genomic
DNA and retrotranscribed using a Superscript IV First-Strand Synthesis Kit (Invitrogen).
The cDNAs were then used as template for dsRNA synthesis.

3.6. Gene Knockdown by RNA Interference in Ticks

Oligonucleotide forward (F) and reverse (R) primers containing T7 promoter sequences
(underlined) at the 5′-end to support in vitro transcription and synthesis of dsRNA were syn-
thesized for I. ricinus sub and importin-α (sub, F: 5′-TAATACGACTCACTATAGGCCCAAACG
AGCCAGATGTATG-3′, R: 5′-TAATACGACTCACTATAGGGAAGGTGAAGAGGGGCTGG
T-3′; importin-α, F: 5′-TAATACGACTCACTATAGGCCGGCTGCGCTACAAGAAT-3′, R: 5′-
TAATACGACTCACTATAGGTTCCGGTCTCGATCACCTC-3′) and used for sub and importin-
α dsRNA synthesis from I. ricinus nymph cDNA using the Phusion™ High-Fidelity DNA
Polymerase (Thermo Fisher Scientific) and the T7 RiboMAX Express RNAi System (Promega).
The unrelated gene coding for green fluorescent protein (GFP) dsRNA was synthesized from
the L3790 plasmid following the same protocol and used as a negative control. L3790 was a
gift from Andrew Fire (Addgene plasmid # 1596; http://n2t.net/addgene:1596, accessed on
12 October 2020; RRID: Addgene1596). The SUB dsRNA was used as a positive control as pre-
viously described [2,42]. The dsRNA was quantified by spectrophotometry and maintained
at −80 ◦C. Unfed I. ricinus adult female ticks (n = 80 per group) were injected with approx-
imately 0.5 µL of dsRNA (7 × 1011–8 × 1011 molecules/µL) in the lower right quadrant of
the ventral surface of the exoskeleton [53]. The injections were made using a 10 µL syringe
with a 20 mm, 34-gauge needle (Hamilton, Bonaduz, Switzerland). After dsRNA injection,
female ticks were placed in different feeding units with the same number of I. ricinus males
(20 females and 20 males per feeding unit) for artificial feeding. Feeding units were made and
set up as previously described by Krull et al. [52]. Bovine blood used was collected from cattle
and directly supplemented with heparin (20 IU/mL) (Ratiopharm, Ulm, Germany). Blood
was immediately refrigerated and stored at 4 ◦C for up to one week. The phagostimulant
adenosine triphosphate (ATP, Carl Roth) (51 mg/mL), glucose (20.5%), Vitamin B prepared
following the recipe of Duron et al. [54] and the broad-spectrum antibiotic gentamycin (Roth;
5 µg/mL) were added just before each use. Feeding units were placed in a water bath at
37 ◦C and ticks were fed as previously described [52]. Data on the number of feeding females
were recorded twice a day and engorged females that detached were weighed and stored
individually in glass vials with pierced lids that were kept in a desiccator at approximately
90% relative humidity at RT. Engorgement and egg batch weights were also recorded. Values
of sub and importin-α RNAi tick groups were compared with controls by one-way ANOVA
test with post-hoc Tukey HSD (https://astatsa.com/OneWay_Anova_with_TukeyHSD/,
accessed on 12 October 2020; p < 0.05).

3.7. Corroboration of Sub and Importin-α Silencing by qRT-PCR in I. ricinus Organs

After three days of artificial feeding, six fed females per group were selected for RNA
extraction. Dissection of fed females was performed to separate the five major organs:
salivary glands, fat body, Malpighian tubules, ovary and midgut (2 ticks per biological
replicate, 3 biological replicates per group). Organs were placed in 100 µL of TRIzol Reagent
(Invitrogen) and total RNA was extracted and gDNA removed using the Direct-Zol RNA

http://n2t.net/addgene:1596
https://astatsa.com/OneWay_Anova_with_TukeyHSD/
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Miniprep Plus Kit (Zymo Research Europe GmbH) following the manufacturer’s recom-
mendations. cDNAs of each sample were reverse-transcribed using the ProtoScript II First
Strand cDNA Synthesis Kit (New England Biolabs Inc., Ipswich, MA, USA). Gene knock-
down levels after sub and importin-α RNAi were assessed by qPCR on cDNA samples using
gene-specific oligonucleotide primers whose targets differ from those of the dsRNAs (sub,
F: 5′ CAGAGGAGATAGCGGCCAACATT 3′, R: 5′ GGCTCTCGCGCTCCTTCATCATG 3′;
importin-α, F: 5′ TGGGCGCTCTCCAATCTTTG 3′, R: 5′ TCACTGCCTGGATCTTGTCG
3′), the Luna Universal qPCR Master Mix and the CFX96 Touch Real-Time PCR Detection
System (BioRad). A dissociation curve was run at the end of the reaction to ensure that
only one amplicon was formed, and the amplicons denatured consistently in the same
temperature range for every sample. The cDNA levels were normalized against the tick
elongation factor (elf ) using the genNorm Delta-Delta-Ct (ddCt) method (Ayllón et al., 2013).
Cycle threshold (Ct) values for normalized sub and importin-α dsRNA-treated samples were
compared with those of the GFP control samples to determine levels of gene knockdown.

3.8. Co-Regulation Assessment of Sub and Importin-α

The cDNAs obtained above (see 2.6 Gene knockdown by RNAi in ticks) were used to
assess the sub mRNA levels after importin-α knockdown and the importin-α mRNA levels
when sub was knocked down. The Ct values were normalized against the tick elf using
the genNorm Delta-Delta-Ct (ddCt) method as described above. Normalized sub and
importin-α Ct values were compared to those of the GFP control samples to determine their
concentration in the absence of the corresponding interacting protein.

3.9. Histone Microarray Analysis

EpiTriton Histone Peptide Arrays were used following the manufacturer’s recom-
mendations (Epicypher, Inc., Durham, NC, USA) with recombinant I. scapularis SUB
and Anaplasma phagocytophilum heat shock protein 70 (HSP70) as a negative control.
Both recombinant proteins, SUB and HSP70, were produced in E. coli as previously de-
scribed [55]. Proteins were applied to the histone array diluted in array buffer (phosphate-
buffered saline PBS, 5% BSA (w/v), 0.1% Tween-20) at 2 µM concentration and incu-
bated overnight at 4 ◦C. The next day, arrays were washed with array buffer and in-
cubated with a protein-specific 1:500 dilution of primary rabbit polyclonal antibodies
for SUB [56] and HSP70 [55] for 2.5 h at RT. Slides were washed with PBS and probed
with a fluorescently labelled Alexa Fluor 635 goat anti-rabbit IgG secondary antibody
(A31576; Invitrogen). Microarrays were scanned and analyzed using a Genepix Personal
4100 A microarray scanner (Molecular Devices, LLC., San Jose, CA, USA) for measur-
ing fluorescence in relative fluorescence units (RFU) (Data S1). Fluorescence was nor-
malized against control empty spots (average of 87 technical replicates) and the values
compared between SUB and HSP70 by Student’s t-test (p < 0.05) and One-Way ANOVA
(https://goodcalculators.com/one-way-anova-calculator/, accessed on 12 October 2020;
p < 0.05) tests (n = 2 technical replicates).

3.10. Corroboration of SUB-Histone 4 (H4) K-Butyrylated (H4but) Peptide Interaction by Protein
Pull-Down and Western Blot Analysis

The recombinant I. scapularis SUB was produced as described above and used for
interaction with the synthetic peptide of human H4 K5,8,12 but (amino acids 1–23, Ac-
SGRGK (but) 5GGK (but) 8GLGK (but) 12GGAKRHRKVLR-Peg (Biot), butyrylated at
lysines 5, 8 and 12). Dynabeads MyOne Streptavidin T1 (Invitrogen) was used following
the manufacturer’s instructions. As a negative control, the same procedure was carried
out but without incubation with the H4but peptide. The recombinant SUB was used
as a positive control. Eluted protein-H4 complexes and positive and negative controls
were separated by electrophoresis in a 12% SDS polyacrylamide precast gel (ClearPage)
and transferred to a nitrocellulose blotting membrane (GE Healthcare Life Sciences). The
membrane was blocked with 3% BSA in TBS (150 mM NaCl, 50 mM Tris-HCl, pH 7.5)
for 2 h at RT and washed four times with TBS-0.05% Tween 20. SUB-specific primary
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antibodies diluted in TBS were used for SUB detection and incubated with membrane
overnight at 4 ◦C. Goat anti-rabbit IgG (whole molecule) peroxidase antibodies (dilution
1:1000; Sigma-Aldrich, St. Louis, MI, USA) diluted in TBS with 3% BSA were used as
secondary antibodies and incubated with the membrane for 2 h at RT. The membrane was
finally washed five times with TBS-0.05% Tween 20, and immunoreactive proteins were
visualized with chemiluminescence by incubating the membrane for 2 min with Pierce ECL
Western blotting substrate (Thermo Fisher Scientific) and with TMB Stabilized Substrate
for Horseradish Peroxidase (Promega).

4. Conclusions

The characterization of the interactome of a co-factor regulatory protein such as SUB is
crucial to understand its function in the cell regulome. The physical interaction of SUB with
Importin-α suggested one pathway of entrance into the nucleus for SUB, but the results
also suggested that importin-α mediated entry may be not the only mechanism. Moreover,
SUB has evolved to exert several functions and to interact with various other proteins in
these capacities. The interaction of SUB with histone H4 also suggested new mechanisms
underlying a role for this protein in chromatin remodeling and the regulation of gene
expression. The expression of importin-α has been described to be regulated by miRNAs in
humans [38]. For example, miR-223 was shown to inhibit the NF-kB signaling pathway by
targeting Importins α4 or α5 and reducing its expression [57]. SUB/AKR are involved in
the Relish/NF-kB gene regulation pathway playing an important role in several cellular
functions, such as immune response to bacterial infection [21,58]. Pathogens like Anaplasma
phagocytophilum are able to manipulate the tick miRNA profile to facilitate infection by
upregulating isc-mir-79 in I. scapularis tick cells [59], but the functional implications for the
regulation of importin-α are still unknown. In light of our results, along with the previously
described functions of Importin-α in gene regulation and epigenetic modifications, further
studies will be required to unravel the significance of the SUB-Importin-α interaction in
different biological contexts. Moreover, the characterization of the SUB interactome and its
interacting proteins such as Importin-α opens the possible identification of new targets for
interventions to control tick infestation and pathogen infection that would contribute to
vaccine development.
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