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Mixed cropping has been suggested as a resource-efficient approach to meet high
produce demands while maintaining biodiversity and minimizing environmental impact.
Current breeding programs do not select for enhanced general mixing ability (GMA)
and neglect biological interactions within species mixtures. Clear concepts and efficient
experimental designs, adapted to breeding for mixed cropping and encoded into
appropriate statistical models, are lacking. Thus, a model framework for GMA and SMA
(specific mixing ability) was established. Results of a simulation study showed that an
incomplete factorial design combines advantages of two commonly used full factorials,
and enables to estimate GMA, SMA, and their variances in a resource-efficient way.
This model was extended to the Producer (Pr) and Associate (As) concept to exploit
additional information based on fraction yields. It was shown that the Pr/As concept
allows to characterize genotypes for their contribution to total mixture yield, and, when
relating to plant traits, allows to describe biological interaction functions (BIF) in a mixed
crop. Incomplete factorial designs show the potential to drastically improve genetic gain
by testing an increased number of genotypes using the same amount of resources. The
Pr/As concept can further be employed to maximize GMA in an informed and efficient
way. The BIF of a trait can be used to optimize species ratios at harvest as well as to
extend our understanding of competitive and facilitative interactions in a mixed plant
community. This study provides an integrative methodological framework to promote
breeding for mixed cropping.

Keywords: mixed cropping, intercropping, breeding, general mixing ability, producer/associate concept,
incomplete factorial design, biological interaction, simulations

INTRODUCTION

Climate change, such as rising global temperatures and climatic volatility are predicted to
jeopardize future agricultural productivity (Rahmstorf and Coumou, 2011). The current strategies
to produce stable and high yields, e.g., by the application of mineral fertilizer, are of limited future
use since they themselves are a contributor to these changing climatic parameters (Thompson et al.,
2019). Thus, alternative approaches to achieve high and stable yields while maintaining biodiversity
and minimizing environmental impact have to be developed. Mixed cropping is the simultaneous
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cultivation of two or more crops on the same field. Especially
legume/non-legume species mixtures have been proposed to
achieve a higher per area production and profitability and higher
yield stability with less or no external inputs (Bedoussac et al.,
2015; Raseduzzaman and Jensen, 2017; Wendling et al., 2017;
Viguier et al., 2018). Good pairs of complementary species
have already been identified, such as combinations of corn (Zea
mays L.) with cowpea (Vigna unguiculata L., Ofori and Stern,
1986), with common bean (Phaseolus vulgaris L., Hoppe, 2016;
Starke, 2018), and with faba bean (Vicia faba L., Li et al.,
2020), as well as small grain cereals such as barley (Hordeum
vulgare L., Hauggaard-Nielsen et al., 2001) with pea (Pisum
sativum L.) or wheat (Triticum aestivum L.) with faba bean
(Agegnehu et al., 2006) or with lentil (Lens culinaris MEDIK.,
Viguier et al., 2018).

The choice of the genotypes best suited to mixing within
each species is not straight-forward, and a robust strategy
for evaluating and identifying the right mixing partners from
among a large number of candidates is essential to selecting the
components of mixtures and improving the mixing ability of each
species. Selection efficiency for mixed cropping yield under pure
stand has been reported to be moderate or low highlighting the
value dedicated breeding efforts for mixed cropping (de Oliveira
Zimmermann, 1996; O’Leary and Smith, 2004; Annicchiarico
et al., 2019). Well performing genotypes should display a high
general mixing ability (GMA), i.e., lead to a high total mixture
yield performance across several potential mixing partners, and
a low variance in specific mixing ability (SMA), i.e., little or
no specific interaction with individual mixing partners in that
respect. In order to develop efficient breeding strategies for crop
mixtures of two species, trial designs must be developed that
allow precise estimation of GMA and SMA variance.

Current trial designs apply a factorial setup, combining m
genotypes of species one and n genotypes of species two.
With increasing numbers of genotypes of both mixing partners,
factorial designs quickly result in an unfeasibly high number
of experimental plots. Therefore, often specific dimensions of
both crop species are used: depending on the question to be
addressed either (i) factorials of equal (or similar) dimensions
of m and n with a small to medium number of genotypes
(Annicchiarico and Piano, 1994; Hauggaard-Nielsen and Jensen,
2001) or (ii) factorials of different dimensions for m and n
(Annicchiarico, 2003; Hoppe, 2016; Starke, 2018) are employed.
The former allows GMA and SMA estimations of both crop
species involved, the latter emphasizes one species over the
other and is comparable to the topcross designs, used in hybrid
breeding. With advances in mixed modeling statistical software
(such as with the GNU R packages “lme4” or “SOMMER”),
analyses of largely incomplete datasets are possible (Bates
et al., 2015; Covarrubias-Pazaran, 2016; R Core Team, 2019).
Incomplete factorial designs have been suggested to mitigate the
limitations of (i) and (ii) by expanding the numbers of m and
n while maintaining a feasible number of experimental plots.
Previously, they have been applied to assess GMA and SMA
effects in wheat (Triticum aestivum L.) cultivar mixtures (Forst
et al., 2019) and found recent application in genomic prediction
in corn (Zea mays L.) hybrid breeding (Seye et al., 2020).

Another important area to advance breeding for mixed
cropping focuses on exploiting information that is contained
in the fraction yields of mixed crops via the application of
the producer (Pr) and associate (As) concept (Wright, 1985;
Goldringer et al., 1994; Annicchiarico et al., 2019). In the mixed
cropping context, the Pr effect, sometimes also referred to as
direct effect, is the capacity of a genotype to influence its own
yield in a mixture, while the As effect is its capacity to influence
the yield of its companion crop or variety (Annicchiarico
et al., 2019). As laid out by Wright (1985), Forst (2018), and
Sampoux et al. (2020), the Pr and As effects of a given genotype
sum up to its GMA effect. It has been applied to single row
experiments in breeding nurseries (Goldringer et al., 1994) or
wheat cultivar mixtures (Forst, 2018), and to the mixed cropping
context (Wright, 1985; Sampoux et al., 2020). Separated yield
data enables either uni- or bivariate (or multivariate) analysis,
i.e., joint analysis of the two (or multiple) fraction yields. In
clinical psychology as well as in livestock breeding, multivariate
analysis procedures have successfully been applied in situations
where traits were correlated, e.g., due to pleiotropy, and yielded
higher precision for QTL detection than univariate approaches
(Sørensen et al., 2003; Meier et al., 2015). In mixed cropping
conditions, it can be assumed that errors of measurements are
generally negatively correlated between the two crops, e.g., via
compensation effects. Often in mixed cropping, one of the species
is at a competitive disadvantage and genotypes of the species
that is very non-competitive generally express a low GMA in
mixtures (Annicchiarico and Piano, 1994; Corre-Hellou et al.,
2006). However, the competitive ability of genotypes is obscured
when only whole mixture yield is observed (Annicchiarico et al.,
2019). The assessment of fraction yields is not only important
to identify these competitive abilities, but can also be applied
to optimize a mixture toward a specific ratio, e.g., for feed
nutrition or legume subsidies reasons, as is for example the
case in Switzerland (Bundesamt für Landwirtschaft BLW, 2019).
Thus, shaping community performance and composition via
traits can be of interest in the breeding process. Furthermore,
high genetic correlations between certain traits and mixture yield
would allow indirect selection based on most important key traits
for Pr and As effects.

The choice of an efficient trial design, the choice of an efficient
analysis method and the assessment of yield proportions are
interrelated topics. They provide the potential to be combined
in an integrated approach to promote breeding for mixed
cropping. While some published work focuses on the parallel
genetic improvement of two species (Sampoux et al., 2020), many
publications rely on the improvement of one species at a time and
do not take the potential of analyzing separated yield data into
account. Thus, the objectives of this study were to (i) develop
a model to estimate GMA and SMA variances of binary species
mixtures, and to compare different experimental designs for their
usefulness in estimating these parameters, (ii) subdivide GMA
into Pr and As effects in order to categorize cultivars’ influence
on mixture yield and to compare the precision of a uni- versus a
bivariate approach in estimating Pr, As, and error (co)variances,
and (iii) establish a concept to link plant traits to biological
interactions between involved species in mixture.
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MATERIALS AND METHODS

To exemplify the case of a mixed crop, a hypothetic binary
mixture of a legume species (pea) and a non-legume species
(barley) will be used in this study.

The GMA Model of Total Mixture Yield
Mixture yield can be expressed with the following model:

yijk = µ+ rk + Gpi + Gbj + Sij + Eijk (1)

with yijk the total mixture yield of the i-th pea cultivar mixed
with the j-th barley cultivar in the k-th block, µ the intercept
of mixture yields, rk the effect of the k-th block (replication),
Gpi and Gbj the GMA effects the i-th pea cultivar and the j-th
barley cultivar, respectively, Sij the SMA effect, i.e., interaction,
of the i-th pea cultivar with the j-th barley cultivar and
Eijk the error term.

This model-framework was used to compare four different
trial designs (A–D), comprising three full (“f”) factorials, with all
possible pairwise combinations present, and an incomplete (“i”)
factorial with only a subset of all possible pairwise combinations
present (Figure 1). In the following, m is the number of barley
cultivars and n the number of pea cultivars, used in the design.
Design A, using 240 plots per replicate (m = 8 and n = 30), is the
most resource-expensive design. Designs B, C, and D were using

FIGURE 1 | The four experimental designs used in this study, comprising
three full (f) factorials with all possible pairwise combinations present and an
incomplete (i) factorial with only a subset of all possible pairwise combinations
present. The designs included (A) an 8 barleys × 30 peas full factorial
(8 × 30f), (B) an 8 barleys × 8 peas full factorial (8 × 8f), (C) an 2 barleys ×
30 peas full factorial (2 × 30f), and (D) an 8 barleys times 30 peas incomplete
factorial (8 × 30i). The last three designs consume roughly the same amount
of experimental resources with 64, 60, and 60 experimental plots, respectively.

only approximately 25% of the resources of A with, respectively,
64 (m = 8, n = 8), 60 (m = 8, n = 30), and 60 (m = 2, n = 30)
plots per replicate, while sharing commonalities with design A.
Designs B and C are both also full factorials (with equal and
unequal dimensions of m and n) and design D shares the same
size of m and n with design A while being an incomplete factorial.
Design C (2 × 30f) full factorial has similarities with a top
cross design, used in early stages of a hybrid breeding program.
Design D (8 × 30i) was constructed using four independently
randomized 8 × 8 latin squares of which only two “entries” were
used for the mixtures. This ensured that (a) every barley was
combined with eight pea cultivars, and every pea was combined
with two different barley cultivars and (b) confounding, i.e.,
two or more pea cultivars sharing the same two barley cultivars
was minimized.

For the comparison of the four designs, datasets with total
mixture yield-data (“total yield setting”) were simulated with
the following models for a “SMA present” and a “SMA absent”
simulation, respectively. For the SMA absent simulation, Sij
was set to zero in the model in formula (1). Simulations were
performed according to the following procedure, using parameter
settings in the same order of magnitude as empirical values from
preliminary trials (Haug et al., in preparation) to produce data
that is as close to empirical data as possible. The intercept of
mixture yield was set to 38.8 dt/ha. For each of the following
parameters, the corresponding effects were drawn from their
respective probability distributions: block effects rk were drawn
from a normal distribution with a mean of 0 and a variance
of 2, i.e., N (0, 2). Pea GMA effects Gpi were drawn from N
(3, 0), barley GMA effects Gbj were drawn from N (0, 5) and
SMA effects Sij were drawn from N (0, 5) for the SMA present
simulation and from N (0, 0) for the SMA absent simulation,
i.e., the effect size was set to zero. Errors eijk were drawn from
N (0, 5). For each simulation run, effects were drawn anew.
“True” values (i.e., values used to simulate data) of each effect
were saved after each simulation run for later comparison with
the estimated parameter values, e.g., the true GMA effects of
the pea cultivars, were stored for later comparison with GMA
effects estimated by the best linear unbiased predictors (BLUPs)
received by the mixed model to analyze the simulated data.
Design D normally would have 64 pairwise combinations. The
realistic case of missing/unusable genotypes was assumed, by
excluding two pea lines in our case, thus resulting in 60 pea-barley
combinations. For each of the four trial designs n = 1,000 data
sets were simulated, for the SMA present, as well as the SMA
absent simulation, i.e., 8 × 1,000 simulated data-sets in total.
Each dataset comprised two replicates (blocks). All simulations
and subsequent analyses were done using GNU R (R Core Team,
2019). The R-code used for simulation and analysis is publically
available (Haug, 2020a).

The Pr/As Model of Fraction Yield of
Each Species
Effects on separated yield data, i.e., pea and barley fraction yields,
can be described by a model, containing Pr and As effects:

ypijk = µp + rpk + Ppi + Abj + Epijk (2)
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ybijk = µb + rbk + Pbj + Api + Ebijk (3)

with ypijk the fraction yield of pea from the combination of the
i-th pea cultivar with the j-th barley cultivar in the k-th block,
µp the intercept of pea fraction yields, Ppi the effects of the k-th
block on pea fraction yield, Ppi the Pr effects and Abj the As effects
of the i-th pea and the j-th barley cultivar, respectively, and Epijk
the error for the fraction yield of the i-th pea with the j-th barley
in the k-th block. Each dataset comprised two replicates (blocks).
Parameters apply in analogy for barley fraction yields in formula
3. Interactions between Pr and As effects are ignored.

Since total mixture yield yijk decomposes into (ypijk + ybijk),
also the other parameters can be decomposed: µ into

(
µp + µb

)
,

rk into (rpk + rbk), Gp into (Pp + Ap), Gb into (Pb + Ab), and Eijk
into (Epijk + Ebijk). Hence, formula 1 (without Sij can be rewritten
as in formula 4.

ypijk + ybijk = µp + µb + rpk + rbk + Ppi + Api + Pbj + Abj
+Epijk + Ebijk

(4)[
Ppi
Api

]
∼ N2

( [
0
0

]
,

[
6.1 −4.1
−4.1 7.5

] )
(5)

[
Pbj
Abj

]
∼ N2

( [
0
0

]
,

[
6.1 −2.7
−2.7 1.5

] )
(6)

[
Pbj
Abj

]
∼ N2

( [
0
0

]
,

[
6.1 3.6
3.6 8.4

] )
(7)

Decomposition of GMA into Pr and As effects is illustrated in
Figure 2. Separated yield data (“fraction yield setting”) were
simulated to compare the precision of a univariate versus a
bivariate analysis approach for design D (Figure 1). As in the total
yield setting, two blocks per data set were simulated. In contrast
to the total yield setting, for each “plot” the separated yields of pea
and barley were simulated with a mean pea yield of 18.3 dt/ha

FIGURE 2 | Decomposition of the general mixing ability (GMA) of pea
(
Gpi

)
in

its producer
(
Ppi

)
, and associate

(
Api

)
effects. Parameters apply in analogy

for barley.

and a mean barely yield of 19.1 dt/ha, according to previously
mentioned preliminary experimental data. The following settings
were used: block effects rpk and rbk were both drawn from N
(0, 2) as in the total yield setting. Pea Pr effects Ppi were drawn
from N (0, 6.1) and As effects Abj from N (0, 7.5). Barley Pr
effects Pbj were drawn from N (0, 6.1) and As effects Api from
N (0, 1.5), errors Epijk and Ebijk were drawn for pea yield from
N (0, 8.4) and for barley yield from N (0, 6.1). Correlations
of pea Pr effects with pea As effects were set to −0.61, and
correlation of barley Pr with barley As effects were set to −0.81.
Within-plot error-correlations, i.e., the correlation of errors of
barley yields with the errors of the corresponding pea yields
in the same plot, were set to 0, −0.5, and −0.9, respectively,
to create three different error-correlation scenarios. Within-
plot error-correlations and Pr/As correlations were translated
into co-variances. The variance-covariance matrices of Pr/As
effects of pea, barley and the errors are shown in formulas 5,
6, and 7. Pr and As effects as well as errors were drawn from
a distribution that follows the law of a multivariate normal
distribution, using the function “mvrnorm” from the R-package
“MASS” (Venables and Ripley, 2002), and the covariances
shown in formulas 5–7. In total, three data sets for each
of the three different error correlation settings with 1,000
simulations were created.

Simulated data from the fraction yield setting was analyzed
using (i) a univariate approach with models equal to those
used to simulate the data (formulas 2, 3) and (ii) a bivariate
approach (formula 4) in which the two dependent variables
were analyzed jointly (Covarrubias-Pazaran, 2018). In addition
to the parameters estimated by the univariate approach,
the bivariate approach also estimates the before mentioned
covariances. Both approaches were done as mixed models where
block-effects were considered as fixed and all other effects
as random, assuming independent and identically distributed
random variables. The uni- and the bivariate analyses were
done with the “mmer” function of the R-package “SOMMER”
(Covarrubias-Pazaran, 2016, 2018). Estimates of the model
parameters, e.g., estimated GMA or Pr variances of pea, and
BLUPs for the genetic effects, e.g., BLUPs of GMA effects, were
saved for later analysis for each of the 1,000 datasets per setting.
Depending on the analysis approach, each dataset yielded a
different set of BLUPs for the pea and barley Pr and associate
effects. For n = 1,000 analyses, Pearson correlations between the
two sets of BLUPs and the true value were computed, Fisher-z-
transformed, averaged for each coefficient and transformed back.
T-tests between the mean correlation of the univariate and the
bivariate approach within each parameter were conducted to
compare the approaches for their accuracy to estimate the true
effect values. The R-code used for simulation and analysis is
publically available (Haug, 2020b).

Trait versus GMA/Pr/As Analyses for the
Characterization of Biological Interaction
Functions (BIFs)
Beyond the purely statistical treatment of the data described
above, the relationships between a fictive explanatory trait and
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the GMA/Pr/As variables were investigated. This explanatory
trait was set into relation with the GMA, Pr, and As effects
of equally fictive genotypes. Nine possible scenarios of trait-
GMA, trait-Pr effect, and trait As-effect relationships were
investigated, allowing the categorization of traits according to
their biological interaction function in a mixed-crop plant
community. Exemplary scatter plots with n = 100 simulated
genotypes and positive, null and negative relationships between
trait and GMA, trait and Pr, and trait and As effects were created
to suggest a simple visual analysis of these relationships. Potential
symbiotic trait functions were associated to the corresponding
functions relationships.

RESULTS

Incomplete Design Yields Comparable
Estimates to Full Factorial Designs
Four experimental designs were compared for their ability
to estimate GMA and SMA variances as well as estimating
genotypic effects (BLUPs) correctly in two different simulations,
a “SMA-present” and a “SMA-absent” simulation.

Over both scenarios, the precision of the estimates increased
with experimental resource input (Table 1). With design A
(8 × 30f), utilizing 240 experimental plots per replicate, the
narrowest CIs among the four designs were received, more
narrow than the ones of designs B (8 × 8f), C (2 × 8f), and D
(8× 30i), which were using only 64, 60, and 60 experimental plots
per replicate, respectively (Table 1). Among the latter, only minor
differences in CIs were observed (except lower reliability on GMA
variance of barley in design C and on GMA variance of pea in
design B in the SMA-absent simulation). Besides GMA variance
of barley of design C in the SMA-present simulation and the
GMA variance of pea of design B in the SMA-absent simulation,
certain parameters were estimated similarly well with designs B,
C, and D as with the benchmark design A. Barley GMA variance
of designs B and D showed similar CIs compared to design A for
both the SMA-present and the SMA-absent simulation, whereas
design C, which only uses two instead of eight barley cultivars,
estimated barley GMA variance less precisely (CI of ±0.43 in
both scenarios). In addition, pea GMA variance of designs C
and D of the SMA-absent simulation were similarly precisely
estimated compared with design A, whereas design B estimated
this parameter with lower precision (CI of±0.11).

Besides the variation of estimates, a check of the correct
estimation of the size of the parameter itself revealed that for the
SMA-present simulation (Table 1), all four experimental designs
accurately estimated GMA, SMA, and error variances, with all
confidence intervals (CIs) of means overlapping the true values,
except for the SMA variance of design C.

For the SMA-absent simulation, pea and barley GMA
variances were mostly accurately estimated in the four designs
with significant but small underestimations of pea GMA variance
by designs C and D. SMA variances in this simulation were
significantly overestimated and error variances were significantly
underestimated for all four designs. Compared with the mean
SMA variance of the benchmark design A of 0.14, in this TA
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simulation designs B, C, and D showed significantly higher SMA
variances with 0.27, 0.35, and 0.36, respectively. Similarly, the
mean error variance of design A was with 4.88 significantly higher
(and thus closer to the truth of 5.0) than the error variances of
designs B, C, and D, with means between 4.76 and 4.80.

When comparing the four designs for their correlation of
BLUPs with the truth value, (Table 1) the correlation coefficients
of benchmark design A were among the highest across all
estimated BLUPs. However, correlations of BLUPs of pea GMA
effects with the true effects of design B were similar compared
with the benchmark design A for both simulations. For the
correlations of BLUPs for pea GMA with their true values
of designs C and D showed significantly lower correlation
coefficients compared with design A and B for both SMA
simulation models. However, this difference was less apparent in
the SMA-absent simulation with correlation coefficients of 0.84
and 0.83 of designs C and D compared with 0.95 and 0.96 of
designs A and B, respectively. All correlation coefficients differed
significantly from each other (p < 0.001). For barley GMA,
design B and D showed with 0.93 and 0.91 high mean correlation
coefficients that were similar to the mean of design A (0.98).
Correlation coefficients for SMA effects were in the range of the
correlation coefficients for pea GMA effects and barley GMA
effects, with values between 0.67 (design D) and 0.77 (design A).

The Pr/As Concept Allows to
Characterize Cultivars’ Contribution to
Mixture Yield
In Figure 3, thirty simulated cultivars with their Pr and As effects
are shown. Pr effects range from −5.0 to +7.0 and As effects
range from −5.4 to +4.3. As effect has to be read as the effect
of the species (e.g., pea) on the yield (or any other trait) of its
companion species (e.g., barley). Since the Pr and As effects of
a cultivar sum up to its GMA, cultivars that lie on the line with
slope −1 and intercept 0 have a GMA of zero, those above this
line have a positive and below a negative GMA. The cultivars
thus can be grouped into six sectors, U, V, W, X, Y, and Z, with
U–W having positive GMA due to a high Pr effect that offsets
a negative As effect (sector U), both a positive Pr and As effect
(sector V) and a positive As effect that makes up for a negative
Pr effect (sector W). On the other hand, cultivars below the
identity line have a negative GMA with a positive Pr effect that
does not compensate for a negative As effect (sector X), both
negative Pr and As effects (sector Y) and a negative Pr effect
which is not offset by their positive As effect (sector Z). These six
sectors allow to characterize and differentiate the mixing ability
of the pea cultivars.

Comparing the uni- and bivariate approach using the
data from the fraction yield setting, correlation of errors of
0, −0.5, and −0.9 resulted in very similar parameter estimates
(Supplementary Table 1). The “error correlation of −0.5
scenario” was used to analyze separated fraction yield data of
both models in more detail. Both analysis approaches, uni-
and bivariate, produced unbiased results of parameter estimates,
i.e., all 95% confidence intervals of the estimates contained the
true values for both approaches (see Supplementary Table 2).

Estimates did not differ significantly between the univariate
and the bivariate analysis approach. CIs, used as a measure for
precision, differed only by 0.01 or not at all. However, only
the bivariate model allows to estimate the correlation between
Pr and As effects.

Pr/As-Trait Relationships Uncover
Biological Interaction Functions (BIFs) of
Traits
The GMA, Pr, and As effects on total or fraction yield do not
reveal the underlying biological processes or traits that influence
the mixing ability. Yet, the examination of relationships between
a fictive explanatory trait and Pr/As effects on fraction yield
fills this lack by defining nine potential biological interaction
functions (BIFs) of a given trait that underlie the GMA-trait
pattern (Figure 3). This GMA-trait relationship can be positive
(+), absent (0) or negative (−). However, the GMA-trait
relationship is subdivided in its underpinned three possible
Pr-trait/As-trait relationships. These can then be interpreted
in terms of BIFs: commensalism (Pr+/As0, Pr0/As+, i.e., trait

FIGURE 3 | Best linear unbiased predictors of producer (Pr) and associate
(As) effects of 30 pea cultivars of a bivariate analysis of simulated data in
which an 8 barleys × 30 peas incomplete factorial design was used (Design
C). Pr and As effects represent the yield effects in dt/ha of cultivars of a focal
species (here pea) on partial yields of itself (Pr) or on the associated species
(As; here barley; read “As effect of pea on barley yields”). Data taken from a
randomly chosen simulated data set of the Pr/As data. The sum of the Pr and
As effects of a cultivar equals its GMA effect, thus, the line with slope –1 and
intercept 0 separates genotypes with positive (above) and negative (below)
GMA. Genotypes can have a positive GMA by either a high Pr effect that
offsets for a negative. As effect (sector U), both positive Pr and As effects
(sector V) or a high As effect that offsets for a negative Pr effect (sector W;
consequently opposite for sectors X, Y, and Z).
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will profit only one species), mutualism (Pr+/As+, i.e., trait
promotes both species), antagonism (Pr+/As−, Pr−/As+, i.e.,
trait promotes one species but hampers second species),
neutralism (Pr0/As0, i.e., trait does not affect any of the two
species), amensalism (Pr0/As−, Pr−/As0, i.e., trait is hampering
only one species), and competition (Pr−/As−, i.e., trait is
hampering both species). This more detailed correlations will
allow to identify key traits that are important for good mixing
ability for a crop and can contribute to indirect selection.

DISCUSSION

The overall goal of this study was to develop a novel framework
for breeding for mixed cropping by (i) formulating models
for mixed cropping, suggesting experimental designs and
analysis methods for mixed cropping experiments, (ii) proposing
extensions to the use of the Pr/As concept, and (iii) linking
the latter to traits in order to uncover the biological interaction
function (BIF) of traits.

Incomplete Designs to Increase
Selection Intensities
With all four designs, GMA, SMA, and error variances were
overall correctly estimated, i.e., with little or no bias. As expected,
the low-resource designs B, C, and D showed a slightly lower
precision (i.e., higher CIs). The comparison of the three low-
resource designs, incomplete factorial design (D) versus the two
full factorial designs B and C, revealed similar estimations of
GMA, SMA, and error variances. Design C (with two barley
genotypes) does not allow a meaningful estimation of GMA
variance. Thus, for an estimation of both species’ GMA variance
and SMA variance, designs B or D are preferred, which is in line
with the suggestion of Annicchiarico et al. (2019). Seye et al.
(2020) used an incomplete factorial design for hybrid testing
that was created by crossing one inbred line of one pool with
one inbred line from the opposite other pool and compared
to a classical topcross design where all inbred lines of pool 1
were crossed with the same line of pool 2. In the incomplete
design, estimates for general combining ability (GCA) for both
parents of a hybrid cannot be disentangled and are identical.
Nonetheless, they emphasize, that if one only considers selection
among the tested lines of the training set, the incomplete factorial
(similar to design D of this study) always outperformed a
topcross design (similar to design C) in terms of genetic gain,
since twice the amount of genotypes (similar to barley in our
case) could be tested and consequently selection intensity could
be twice as high.

Correlations of true with estimated pea GMA values are
lower in the incomplete design D compared with design B. In
the absence of SMA, however, correlations come close to those
of design B and even high-resource design A. This suggests
that incomplete factorials can combine the advantages and
applications of both designs with equal or similar dimensions of
m and n and of designs with unequal dimensions of m and n,
the latter being similar to topcross designs in hybrid breeding.
At similar resource requirements, incomplete factorials allow

more genotypes to be tested without a substantial loss of GMA
precision and accuracy. This will allow to increase selection
intensity similar to the example shown in maize hybrid breeding
(Seye et al., 2020). Moreover, testing larger sets of genotypes allow
to exploit larger genetic variance of a given species. Since selection
gain depends on both intensity and genetic variance, incomplete
designs have a great potential to increase selection gain when
breeding for mixed cropping.

Incomplete Designs for Early and Later
Stages of Breeding for Mixed Cropping
Besides having been suggested for calibration of genomic
prediction models for hybrid breeding (Seye et al., 2020),
incomplete designs have been used to estimate GMA and SMA
effects in wheat cultivar mixtures (Forst et al., 2019). The findings
of Forst et al. (2019) could be applied to hybrid breeding as well
as to breeding for mixed cropping: in the early development
of a hybrid selection scheme for a crop, a broad range of
genotypes could be tested in an incomplete diallel, similar to
the one in Forst et al. (2019) that identified suitable material to
form “pools” in cultivar mixtures. In mixed cropping, in early
stages of breeding, where the size of the GMA variances of
the two species are yet unknown and both species are of equal
interest, an incomplete factorial with equal sizes of m and n
would be advisable to subsequently design a breeding scheme
based on the results. In later stages of both hybrid breeding
(heterotic pools have been formed) and breeding for mixed
cropping (focal species has been chosen), an incomplete factorial,
e.g., in the form of design D, could be applied to both pools
(hybrid breeding) or the focal species (mixed cropping). Only
little literature has been published on actual experiments for
breeding for mixed cropping. Some authors focus on the stepwise
approach, first conducting a topcross design (similar to design C)
to identify most promising genotypes for mixtures, followed by
a full factorial to identify best combinations (similar to design
B) for the development of two components of a mixture, such
as species mixtures of maize (Hoppe, 2016) or common bean
(Starke, 2018). The results presented in this study suggest such
stepwise experiments could have been combined to a single one
by the application of an incomplete design, thus speeding up the
selection process. Incomplete designs can be applied to similar
problems where factorial experimental designs are used, notably
hybrid breeding, animal breeding.

Pr/As Concept to Select Genotypes
According to Their Species-Specific
Mixing Ability
The Pr/As concept allows to cluster genotypes into groups of
particular “mixing-behaviors” within positive or negative GMA.
Therefore, depending on the desired proportion of fraction yield
by farmers, in our example a larger ratio of pea to barley,
pea genotypes can be selected from either sectors U or V of
Figure 3, while pea genotypes of sector W would support a
higher proportion of barley. The Pr/As concept also allows
to select for GMA maximization via a regression of the Pr
effects on the As effects, i.e., fit a regression to the Figure 3
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dataset. For instance, a regression with a slope strictly steeper
than −1 (e.g., −1.5) indicates total yield can be increased by
more competitive cultivars of the focal species, thus, GMA is
maximized via the selection toward higher Pr or lower As effects.

The Pr/As concept can be seen as the genetic correspondence
to the replacement series as, for example, described by Wendling
et al. (2017). They compared four different crop species in
pairwise combinations for their biomass yield under mixed
cropping. Both the Pr/As concept and replacement series
describe levels of competitiveness between two species under
varying competitive conditions within the mixture, conveyed
by different sowing ratios in the replacement series, and by
genetic differences in competitiveness in the Pr/As concept. The
low and high sowing ratios of a species in the replacement
series would then correspond to low (positive As effects) or
high competitive (negative As effects) genotypes, respectively.
Wendling et al. (2017) observed linear relationships between
mixed crop species only in two out of twelve replacement
series. For all other scenarios, local maxima with transgressive
overyielding were identified, i.e., mixture biomass yield exceeded
the pure-stand biomass yield of each species. Due to the
resemblance of the two concepts, it is quite possible, that
similar local maxima for mixture yield occur in a Pr/As
context. In this case, instead of a linear regression, bi-,
polynomial, local, or non-parametric regressions could be
applied, in order to find a target interval for As values to
maximize mixture yield.

Pr and As effects are correctly estimated without being
biased by different levels of correlated errors. A bivariate
model is provided, able to take such a correlation into
account. This model is an original analysis approach and the
canonical way to treat paired variables that are presenting
obvious inter-dependencies (yield of two crops cultivated on
the same plot). However, this bivariate approach, with our
design chosen to ensure balance and avoid confounding as
much as possible, did not yield an improvement in terms of
precision of estimates compared with the univariate approach.
This is against our expectation and suggesting literature
(Sørensen et al., 2003; Meier et al., 2015) but the focus of
this study was on parameter estimation, whereas strengths of
bivariate approaches might rather lie in other applications, such
as hypothesis testing and outcome prediction. Even though
the precision of estimates could not be improved with it,
the multivariate approach can be used to estimate genetic
correlations between traits (Meyer, 1991), which is fundamental
for the use of indirect selection methods in mixed crops as
suggested by Annicchiarico et al. (2019).

Pr/As-Trait Relationships to Shape
Species Mixtures
The Pr/As concept can be seen as an extension of the concept
of competitive effect and response (Goldberg and Fleetwood,
1987). There, a relationship or effect of trait A (e.g., early
vigor), measured in species one (competitive effect) on a different
trait B (e.g., yield), measured in species two (competitive
response) is assumed. In the Pr/As context, however, trait

FIGURE 4 | Schematic representation of pea genotypes with three potential
relationships (positively correlated, uncorrelated, negatively correlated) of their
GMA with a fictive explanatory trait and three potential underlying Pr- and
As-trait relationships. Values of the explanatory trait lie on the x-axis, GMA, Pr,
and As values on the y-axis. Pr/As-trait relationships reveal different biologic
interaction functions (BIFs). The pattern describes a neutral (0), positive (+) or
negative (–) influence on the species on which the trait was measured (left of
the slash) or the species associated to this species (right of the slash).

A in species one (e.g., early vigor) can have an effect on a
trait B that is common in both species (e.g., yield of species
one and two, i.e., Pr/As effects), as visualized in Figure 4.
By combining the Pr/As concept with trait measurements, the
BIF of a trait can be determined. This bears the potential
for further systematic investigation and categorization of trait
functions in mixed cropping and community ecology, where
it might serve to discover, which trait categories prevail in
successful plant or other organismic communities, and shape the
functioning – or non-functioning – coexistence of these. The
identification of BIFs is therefore very important for breeding
for crop mixture, which is not possible, if only the trait-GMA
relationship (i.e., total yield) is being looked at. Nevertheless,
analyzing correlations between GMA and traits can still be
of interest to identify key traits that influence total mixture
performance like in forage crops but not the performance of
individual species.

CONCLUSION

A GMA/SMA model could be applied to compare different
experimental designs for their capacity to provide meaningful
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information for breeders engaging in mixed cropping. Based
on our findings, we recommend to use an incomplete factorial
design in early stages of breeding for mixed cropping, since
it allows to extend the number of tested cultivars at equal
levels of experimental resources. Breeding programs can be
sped up by the possibility to merge otherwise stepwise full
factorial experiments into one single step. The Pr/As concept
applied to an incomplete factorial design was shown to be
an adequate tool to optimize mixture yield. It enables (i) to
select genotypes with a suitable GMA-type thus optimizing
mixture composition and (ii) to identify competitive optima
for yield maximization in mixed cropping. It further allows
to characterize the function of traits within species mixtures
by their BIF and thus gain knowledge about their role in the
biological interactions between species in a plant community.
For ease of comprehension, the current study does not take
genotype × environment (G×E) interactions into account.
Future research should address these interactions, and the models
and methodology provided here can be expanded to integrate this
interaction. This study provides an integrative methodological
approach for the emerging field of breeding for mixed cropping
of arable crops.
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