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Abstract: 27 

Vegetation optical depth (VOD), as a microwave-based vegetation index for vegetation water 28 

and biomass content, is increasingly used to study the impact of global climate and 29 

environmental changes on vegetation. Currently, VOD is mainly retrieved from passive 30 

microwave data and few studies focused on VOD retrievals from active microwave data. The 31 

Advanced SCATterometer (ASCAT) provides long-term C-band backscatter data at Vertical-32 

Vertical (VV) polarization. In this study, a new ASCAT INRAE Bordeaux (IB) VOD (hereafter, 33 

IB VOD), was developed based on the Water Cloud Model (WCM) coupled with the Ulaby 34 

linear model for soil backscattering. The main features of IB VOD are that (i) the ERA5-Land 35 

soil moisture (SM) dataset was used as an auxiliary SM dataset in the retrievals, (ii) pixel-based 36 

soil model parameters were mapped using Random Forest (RF), and (iii) the vegetation model 37 

parameter was calibrated for each day. The IB VOD product was retrieved over Africa during 38 

2015-2019, and its performances were evaluated in space and time by comparing with 39 

aboveground biomass (AGB), lidar tree height (TH), normalized difference vegetation index 40 

(NDVI), enhanced vegetation index (EVI) and leaf area index (LAI). Results were inter-41 

compared with three other VOD products at the same frequency. In terms of spatial correlation 42 

with AGB (R = 0.92) and TH (R = 0.89), IB VOD outperforms the other VOD products, 43 

suggesting IB VOD has a strong ability to capture spatial patterns of AGB and TH. By 44 
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comparing all VOD products against NDVI, EVI and LAI, we found that the highest temporal 45 

correlation with NDVI (EVI, LAI) was obtained with IB VOD over 29.94 % (36.65 %, 30.19 46 

%) of the study region. Considering all three vegetations indices, highest temporal correlation 47 

values with IB VOD could be particularly noted for deciduous broadleaf forests, woody 48 

savannas and savannas. 49 

 50 

Keywords: VOD, ASCAT, active microwave, Africa, biomass, tree height, NDVI, EVI, 51 

LAI 52 

 53 

1. Introduction: 54 

Vegetation optical depth (VOD), a measure of extinction effects of the microwave (passive or 55 

active) radiations by the vegetation canopy, is related to the vegetation water content (VWC) 56 

(Wigneron et al., 2017).  VOD has been used in many applications in the fields of global climate 57 

and environmental changes. For example, several studies have investigated carbon dynamics in 58 

the pantropics (Brandt et al., 2018; Fan et al., 2019; Qin et al., 2021; Wigneron et al., 2020) and 59 

at the global scale (Liu et al., 2015; Liu et al., 2013), vegetation phenology (Jones et al., 2011), 60 

the global isohydricity variations and drought detection (Konings and Gentine, 2017; Rao et 61 

al., 2019), and burned area trends and fire risks (Fan et al., 2018; Forkel et al., 2019). VOD has 62 

also been used to estimate the gross primary production (GPP) (Teubner et al. 2018), the crop 63 

yields (Chaparro et al., 2018; Patton and Hornbuckle, 2013) and asymmetry patterns in inter-64 

annual productivity (Al-Yaari et al., 2020). 65 

Several VOD datasets used in the above-mentioned studies are mainly derived from passive 66 

microwave sensors operating at different frequencies (Frappart et al., 2020). Those datasets 67 
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include the high-frequencies (C-/X-/Ku- band) VOD (Du et al., 2017; Karthikeyan et al., 2019, 68 

2020; Owe et al., 2008) from AMSR-E (the Advanced Microwave Scanning Radiometer, July 69 

2002-2008) (Koike et al., 2004) and its successor, AMSR2 (the Advanced Microwave Scanning 70 

Radiometer 2, 2012-present) (Imaoka et al., 2012) and the low frequency VOD at L-band (L-71 

VOD) (Feldman et al., 2018; Fernandez-Moran et al., 2017; Konings et al., 2016; Wigneron et 72 

al., 2017, 2021) from the Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 2010) and Soil 73 

Moisture Active Passive (SMAP) (Entekhabi et al., 2010) satellites. In addition, a long-term 74 

VOD product merging the different high frequency datasets was also released (Liu et al., 2011; 75 

Moesinger et al., 2020). Although different passive VOD products have been widely used in 76 

different applications, they still have some deficiencies. For instance, the time period of each 77 

product is rather short in terms of years (the longest acquisition period of the different sensors 78 

is ~ 11 years for SMOS), and the spatial resolution of the VOD data is coarse (~25 km). 79 

Moreover, the data quality from passive sensors (especially at low frequency (L-band)) are 80 

more likely to be affected by radio frequency interference (RFI) (Li et al., 2021). 81 

Active microwave data can provide long-term records (Advanced SCATterometer (ASCAT) 82 

provided data from 2007 with a spatial resolution of 25-50 km) and high spatial resolution data 83 

(~10 m for Sentinel-1 from 2014) with less RFI influence than for passive microwave sensors, 84 

resulting in high quality products. Active microwave sensors can also observe different 85 

information from the vegetation and soil compared with passive sensors (Dente et al. 2014; Li 86 

et al. 2017; Teubner et al. 2018). In previous studies, the active backscatter observations have 87 

been mainly utilized in the retrievals of ocean winds (Hersbach et al., 2007; Stoffelen and 88 

Anderson, 1997) and soil moisture (SM) (Bai et al., 2017; Konings et al., 2017; Wagner et al., 89 

1999b) but very few studies focus on VOD retrievals. To our knowledge, there are only 90 

preliminary results obtained from Sentinel-1 in southern France (El Hajj et al., 2019) and one 91 

global active VOD dataset (hereafter, ASCAT V16 VOD) developed by Vreugdenhil et al. 92 
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(2016) from ASCAT observations. Two parameters were used in the retrieval of ASCAT V16 93 

VOD. The first one is the maximum range of the backscatter values over bare soils that are 94 

related to SM changes. The setting of this parameter was based on the Koppen-Geiger climate 95 

classification map (Kottek et al., 2006) and the parameter was set to a constant value over most 96 

regions except for the desert climate zone. The second parameter is the difference between the 97 

wet and dry references that are obtained from the historically wettest and driest backscatter 98 

measurements. This product is not yet public, and it has not been evaluated in detail in the 99 

literature (Vreugdenhil et al., 2017, 2020). 100 

To retrieve VOD from the ASCAT observations, two challenges need to be solved: (1) selecting 101 

suitable models which account for the vegetation (mainly through the VOD parameter) and bare 102 

soil (mainly through SM and roughness) effects in the simulation of the ASCAT C-band 103 

backscatter. Several bare soil and vegetation backscatter models have been proposed in the 104 

literature. Most popular bare soil backscatter models include the Ulaby linear model (Ulaby et 105 

al., 1978), the Oh model (Oh et al., 1992), the Dubois model (Dubois et al., 1995),  the integral 106 

equation model (IEM) (Fung et al., 1992) and the advanced IEM (AIEM) (Chen et al., 2003). 107 

Concerning the vegetation backscatter models, the most widely used models are the water cloud 108 

model (WCM) (Attema and Ulaby, 1978), the Michigan microwave canopy scattering 109 

(MIMICS) model (Ulaby et al., 2007) and the Tor Vergata model (Bracaglia et al., 1995). (2) 110 

The second issue is to deal with the ill-posed problem in retrieving both VOD and SM 111 

(Wigneron et al., 2000). ASCAT allows multi-angular observations, but the use of this 112 

information requires careful implementation (Pfeil et al., 2020). To integrate multi-angular 113 

information, ASCAT backscatter measurements (VV polarization) are normalized to the 114 

incidence angle (θ) of 40 degrees (Hahn et al., 2017; Naeimi et al., 2009). Therefore, retrieving 115 

simultaneously SM and VOD using mono-angle and mono-polarization observations may be 116 

difficult.  117 



6 

 

Here we aim at retrieving VOD (0.25 degree x 0.25 degree) from ASCAT backscatter data 118 

(hereafter, INRAE Bordeaux (IB) VOD) over Africa from 2015 to 2019. The WCM (for 119 

vegetation scattering components) and the Ulaby linear model (for soil scattering) were chosen 120 

to simulate ASCAT backscatter as they have good computational efficiency due to analytical 121 

solutions and performant simulation accuracy at large scales (Lievens et al., 2017; Shamambo 122 

et al., 2019).  To overcome the ill-posed problem of retrieving both VOD and SM from mono-123 

angular ASCAT observations, we focused on retrieving only the VOD parameter and we used 124 

an existing SM product as input parameter (Baur et al., 2019; Lievens et al., 2017; Shamambo 125 

et al., 2019). The observation time of the SM data derived from other EO sensors (such as 126 

SMOS, SMAP or AMSR2 SM) is different from that of ASCAT and the time period of those 127 

products is too short (for instance, SMOS was launched end of 2009). Therefore, our retrieval 128 

algorithm used model-based SM data from the ERA5-Land product as a known SM input of 129 

the retrieval algorithm. For a first evaluation analysis, this study is conducted over Africa as 130 

this continent has a large variety of vegetation and climate conditions. Following Li et al. 131 

(2021), several vegetation parameters and indices (Aboveground Biomass (AGB), Lidar tree 132 

height (TH), the Moderate Resolution Imaging Spectroradiometer (MODIS) normalized 133 

difference vegetation index (NDVI) and Enhanced Vegetation Index (EVI) and leaf area index 134 

(LAI)) were used to evaluate the performance of IB VOD in space and time. In addition, to 135 

understand the performance of IB VOD, we made a comparison between IB VOD and three 136 

other VOD products at C-band.   137 

This study is organized as follows: Section 2 introduces the datasets. Section 3 presents the 138 

models including WCM, Ulaby linear model and the method used for model calibration. In 139 

Section 4, we present the results of the calibrated model and the evaluation of IB VOD. 140 

Discussion and conclusion are provided in Section 5 and 6. 141 
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2.  Data  142 

Several datasets were used in this study. The main features and purpose of each dataset are 143 

shown in Table 1. More details are given as follows. 144 

2.1 ASCAT backscatter data 145 

The Advanced SCATterometer (ASCAT) (Figa-Saldaña et al., 2014) is an active microwave 146 

sensor that measures VV backscatter with incidence angles from 25 to 65 degrees at C-band 147 

(5.255 GHz) (Wagner et al., 2013). ASCAT is carried by the Meteorological Operational 148 

Satellite Program of Europe (Metop) series of satellites. This series includes three satellites 149 

which were launched on 19 October 2006 (MetOp-A), 17 September 2012 (MetOp-B) and 7 150 

November 2018 (MetOp-C), respectively. Each satellite flew in a sun-synchronous orbit and 151 

overpassed the surface twice a day near the Local Sidereal Time (LST) 09:30 (descending) and 152 

21:30 (ascending). 153 

The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) 154 

provides users with two kinds of backscatter data at a spatial resolution of 25 km or 50 km: 155 

level one (L1) original data and level two (L2) processed data. The L2 data are normalized by 156 

using a second-order polynomial function describing the relationship between incidence angle 157 

and backscatter (Wagner et al., 1999a), and are included in the soil moisture datasets. The data 158 

are stored in a discrete global grid (Swath Grid format); the grid spacing of the 50 km data is 159 

25 km, and 12.5 km for the 25 km data. 160 

Five years (2015-2019) L2 MetOp-A backscatter (25 km x 25 km) data normalized at an 161 

incidence of 40 degrees were used in the present study.  As there is usually a lower vegetation 162 

water stress in the morning making descending VOD data more suitable to monitor biomass 163 

(Frappart et al., 2020), only observations from the descending orbits were used. ‘Low quality’ 164 

data were masked through the quality flags (snow cover, frozen soil, topography and wetland 165 
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probability) (Lievens et al., 2017), and then we used the inverse distance weighting algorithm 166 

to average the backscatter data to the WGS 84 latitude/longitude format with a spatial resolution 167 

of 0.25 degree (Lievens et al., 2017). 168 

2.2 ERA5-Land Soil Moisture data 169 

The ERA5-Land Soil Moisture (SM) dataset from the topsoil layer (layer 1, 0-7 cm) was used 170 

in this study. ERA5-Land SM is a reanalysis dataset modelled by the European Centre for 171 

Medium-Range Weather Forecasts (ECMWF) surface model (Berrisford et al., 2011) with an 172 

enhanced resolution compared to ERA5 SM. The data are hourly and have a spatial resolution 173 

of 0.1 degree x 0.1 degree (around 10 km x 10 km). An evaluation of ERA5-Land SM by using 174 

the International Soil Moisture Network (ISMN, Dorigo et al., 2021) in situ measurements at 175 

the global scale suggested that it has an overall good performance (R = 0.72~0.76, ubRMSE = 176 

0.05 m3/m3) (Beck et al., 2020; Chen et al., 2021). ERA5-Land SM modelled at the local time 177 

of 09:00 am, which is close to the time of the ASCAT observation, were inputs to the water 178 

cloud model (WCM) used to retrieve IB VOD. The data were resampled to the 0.25 degree 179 

resolution by area-weighted averaging. 180 

2.3 Soil and terrain data 181 

The soil and terrain data have an important impact on the soil moisture and the signal acquired 182 

from the microwave observations (Guio Blanco et al., 2018; Ma et al., 2015). Therefore, we 183 

considered using those two kinds of data in the calibration of the soil model parameters. 184 

The soil data include the soil property and the soil temperature (ST) data. The applied soil 185 

property data were obtained from the SoilGrid250m dataset (Hengl et al., 2017). This dataset 186 

was generated by the machine learning method at 250 m spatial resolution and seven standard 187 

depths. In this study, we used the average value of the first (0 cm, corresponding to the surface) 188 

and second depth (5 cm) of each soil property. More details about the dataset and the method 189 
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used to compute average data from different depths were described in Hengl et al. (2017). 190 

Fifteen SoilGird250m parameters were used in the present study and are described in Appendix 191 

Table 1. The ST data were obtained from ERA5-Land, for the same soil layer and at the same 192 

time as ERA5-Land SM.  193 

The terrain parameters were obtained from a digital elevation model (DEM). The DEM data 194 

used here is the Global Multi-resolution Terrain Elevation Data (GMTED) 2010 at a spatial 195 

resolution of 1 km (Danielson and Gesch, 2011). The SAGA (System for Automated 196 

Geoscientific Analyses) GIS software (Conrad et al., 2015) was used to calculate six terrain 197 

parameters: Slope, Terrain Surface Convexity (TSC), Terrain Surface Texture (TST), Terrain 198 

Ruggedness Index (TRI), Plan Curvature (PlanCur) and Profile Curvature (ProfCur). All terrain 199 

parameters used in this study are given in Appendix Table 2. 200 

2.4 Vegetation variables used for validation  201 

As there is no large-scale in situ dataset that can be used for the validation of VOD (Li et al. 202 

2020, 2021), AGB (Saatchi and CCI AGB), Lidar tree height (TH) (Simard and Potapov tree 203 

height) and vegetation indices (MODIS NDVI, EVI and LAI) were used as the benchmark to 204 

assess the performance of IB VOD (Fernandez-Moran et al., 2017; Li et al., 2021). The rationale 205 

for using these different vegetation parameters is given in the following. VOD is related to the 206 

vegetation water content which is determined by the quantity of vegetation (parameterized by 207 

biomass) and the vegetation water status (parameterized by the vegetation moisture content). 208 

VOD can thus provide information on AGB and on the vegetation water status and stress of the 209 

vegetation canopy (Frappart et al., 2020; Togliatti et al., 2019). As presented above, VOD is 210 

directly related to AGB and many studies have shown that the yearly average of C-band VOD 211 

can be used to estimate AGB (Chaparro et al., 2019; Liu et al., 2015; Tian et al., 2016). 212 

Therefore, spatial correlation between the yearly average of IB VOD and AGB was computed 213 

to assess the performance of VOD. Similarly, the total amount of vegetation matter (AGB) is 214 
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dependent on the vegetation height (Asner et al., 2012). For instance, one of the key objectives 215 

of the recent Global Ecosystem Dynamics Investigation (GEDI) lidar instrument is to monitor 216 

the aboveground carbon balance from accurate estimates of the vegetation height (Duncanson 217 

et al., 2020). Thus, the comparison of VOD with tree height data was also conducted to verify 218 

the expected dependence of VOD on AGB. Several studies have also shown that the temporal 219 

dynamics of VOD is a good indicator of the vegetation phenology (Lawrence et al., 2014, Jones 220 

et al., 2011, 2014) as monitored from optical vegetation indices (NDVI, EVI and LAI). 221 

Therefore, these different vegetation indices (VIs) were also used in this study to assess the 222 

performance of VOD in temporal terms. More generally, note that similarly to what is done 223 

here, many studies evaluating the VOD products have been based on AGB, TH, NDVI, EVI 224 

and LAI (Grant et al., 2016; Li et al., 2020, 2021; Rodríguez-Fernández et al., 2018; Tian et al., 225 

2016, 2018). More details about these data sets are presented in Appendix A. All those data sets 226 

were resampled to the spatial resolution of the ASCAT product (0.25 degree) by arithmetic 227 

average. 228 

2.5 C-band VOD products used for inter-comparison 229 

To evaluate the quality of the IB VOD product, we compared it with other VOD products 230 

retrieved at the same frequency (C-band). In this comparison, we used three datasets: two public 231 

passive VOD datasets and one active VOD dataset (Frappart et al., 2020). The two passive 232 

VOD datasets are AMSR2 VOD (Owe et al., 2008) and Vegetation Optical Depth Climate 233 

Archive (VODCA) VOD (Moesinger et al., 2020). The retrieval algorithm of the two products 234 

is the Land Parameter Retrieval Model (LPRM) but a different version (version 5 (V5)) was 235 

used for AMSR2, while Version 6 (V6) was used for VODCA (Li et al., 2020). VODCA LPRM 236 

V6 VOD was rescaled via cumulative distribution function matching using AMSR-E VOD as 237 

the reference. AMSR2 LPRM V5 VOD is available at the Goddard Earth Sciences Data and 238 

Information Services Center (GES DISC) website. VODCA LPRM V6 is available at 239 
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https://doi.org/10.5281/zenodo.2575599. The active VOD dataset is the ASCAT V16 VOD 240 

(Vreugdenhil et al., 2016). As there is no available website to download the dataset, the ASCAT 241 

V16 VOD dataset was produced by the authors of this study based on the published algorithm 242 

(Vreugdenhil et al., 2016).   243 

2.6 Ancillary vegetation dataset 244 

Two ancillary vegetation datasets were used in this study. The MODIS-based land cover map 245 

over Africa was used to assist in soil model parameter calibration and to interpret the VOD 246 

inter-comparison results as a function of land cover types. This land cover map is produced by 247 

combining the 500 m MCD12Q1 (Collection 6) over 2017 in the International Geosphere-248 

Biosphere Programme (IGBP) scheme (Sulla-Menashe and Friedl, 2019). In addition, the tree 249 

cover percentage (TCP) data from MOD44B Vegetation Continuous Fields (VCF) product 250 

(DiMiceli et al., 2015) over 2017 were used to assist in calibrating the soil and vegetation model 251 

parameters. 252 

The TCP data were re-scaled to the 0.25 degree grid by arithmetic averaging, and the land cover 253 

type with the maximum cover fraction in each 0.25 degree grid was considered as the land cover 254 

type of the pixel (Fernandez-Moran et al., 2017). 255 

256 
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Table 1. Overview of all datasets used in this study 257 

Dara Name 
Spatial 

sampling 

Temporal 

period 
Time period Purpose Reference 

ASCAT backscatter data 12.5km Daily 2015-2019 model input and calibration https://archive.eumetsat.int/ 

ERA5-Land soil moisture data 0.1° Hourly 2015-2019 model input and calibration https://cds.climate.copernicus.eu/ 

ERA5-Land soil temperature data 0.1° Hourly 2017 model calibration https://cds.climate.copernicus.eu/ 

Soil property data 250m Yearly / model calibration Hengl et al., 2017 

Terrain data 1km Yearly / model calibration Danielson and Gesch, 2011 

MODIS land cover 500m Yearly 2017 model calibration Sulla-Menashe and Friedl, 2019 

MODIS LAI 500m 8-day 2015-2018 model calibration and validation Myneni et al., 2015 

MODIS VCF 1km Yearly 2017 model calibration DiMiceli et al., 2015 

Saatchi AGB data 1km Yearly 2015 validation Carreiras et al., 2017; Saatchi et al., 2011 

CCI AGB data 100m Yearly 2017 validation Santoro and Cartus, 2019 

Simard tree height data 1km Yearly 2005 validation Simard et al., 2011 

Potapov tree height data 30m Yearly 2019 validation Potapov et al., 2020 

MODIS NDVI and EVI 1km 16-day 2015-2018 validation Didan, 2015 

AMSR2 LPRM V5 VOD 0.25° Daily 2015-2019 inter-comparison https://disc.gsfc.nasa.gov/ 

VODCA LPRM V6 VOD 0.25° Daily 2015-2018 inter-comparison https://doi.org/10.5281/zenodo.2575599 

ASCAT V16 VOD 0.25° Daily 2015-2019 inter-comparison Vreugdenhil et al., 2016 

258 
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3.  Methodology 259 

3.1 Water cloud model 260 

The water cloud model (WCM) developed by Attema and Ulaby (1978) is a semi-empirical 261 

model used to simulate the radar backscatter signal from vegetation and bare soil land surfaces.  262 

In WCM, the total backscatter reflected by the vegetated-soil surface ( obs
σ °

, in linear units) is 263 

decomposed into three components: the direct backscatter of vegetation ( vegeσ°
, in linear units), 264 

the double-bounce backscatter between the vegetation canopy and the bare soil surface (265 

vege soilσ °
+ , in linear units) and the direct backscatter from the soil surface attenuated by the 266 

vegetation canopy ( soil
σ °

, in linear units). The attenuation effects of vegetation are 267 

parameterized by the vegetation transmissivity ( 2γ ) which can be computed from the incidence 268 

angle (θ, 40 degrees in this study) and VOD as given below: 269 

 2
obs vege soil vege soilσ σ γ σ σ° ° ° °

+= + +  (1) 270 

 With 271 

 ( )2
1 1

vege
AV cosσ θ γ° = −  (2) 272 

 ( )2 2 /exp VOD cosγ θ= −  (3) 273 

Where A is the vegetation canopy backscattering at the full cover (Bindlish and Barros, 2001) 274 

(the V1 index can generally be set to one (Attema and Ulaby, 1978)). 275 

To model the backscatter of the soil surface ( soil
σ ° ), we used a linear relationship (Eq. (4)) 276 

relating the soil backscatter ( ( )soil dBσ °
, in dB) to soil moisture (SM). This simple model was 277 

proposed by Ulaby et al. (1978) and has been used in many studies (Hosseini et al., 2015; 278 

Lievens et al., 2017; Quesney, 2000).  279 
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 ( ) 1010 *soil dB soillog C D SMσ σ° °= = +  (4) 280 

Where C is the radar backscatter in very dry conditions (SM ~ 0 m3/m3), and D parameterizes 281 

the sensitivity of the radar data to soil moisture.   282 

Following Baghdadi et al. (2017) and Zribi et al. (2019), we neglected the vege soilσ °
+  term and 283 

VOD can be computed as: 284 

 0.1( * )

1
ln

2 10
obs

C D SM

Acos
VOD cos

Acos

σ θθ
θ

°

+

 −= −  − 
 (5) 285 

In this study, our objective was to retrieve VOD from ASCAT over the whole African continent. 286 

Therefore, the parameters A, C and D have to be calibrated over each pixel of Africa. We 287 

performed first the calibration of the soil parameters (C and D) by selecting spatial/temporal 288 

conditions for which the vegetation effects could be neglected and then we calibrated the 289 

vegetation parameter (A). 290 

Note that, when vegetation is very dense, the vegetation transmissivity can be assumed to be 291 

zero ( 2 0γ = ) and Eq. (2) can be simplified and written as: 292 

 
( )

1010
obs dB

obs vege
A cos

σ

σ σ θ
°

° °= = = ∗  (6) 293 

And the value of A for very dense vegetation (VDV) conditions (referred to as
0A ) can be 294 

computed very simply as: 295 

 0 /σ θ°=
obs

A cos  (7) 296 

3.2 Soil model parameters (C and D) calibration 297 

To calibrate the soil parameters (C and D), we first computed the values of the C and D 298 

parameters from the “bare soil” pixels where these parameters could be directly calibrated, and 299 

then we used the random forest approach to calibrate C and D for the pixels where this direct 300 
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calibration could not be done. The soil calibration was performed in the year 2017. The different 301 

steps are summarized in Fig. 1. 302 

3.2.1 Step 1: “bare soil” pixels selection 303 

The purpose of step 1 is to select “bare soil” pixels. Only two cases where the observed 304 

backscatter can be assumed to originate totally from the soil (Wigneron et al., 2002) are 305 

considered, namely, either bare land without any vegetation cover throughout the year (case 1), 306 

or land covered by a certain degree of sparse dynamic vegetation (case 2).  307 

The case 1 was defined here by considering two conditions: there is no MODIS LAI observation 308 

(i.e. LAI = Nan) throughout the year and the IGBP land cover type is “bare soil”. When the 309 

pixels correspond to case 2, it means there is a period during which the vegetation is relatively 310 

sparse (e.g. before the vegetation development or after senescence). Following Parrens et al. 311 

(2016), the condition of sparse vegetation was defined as LAI lower than 0.5 m2 m-2. 312 

Then the “bare soil” pixels were divided into two categories: pixels where ( )obs dBσ °  is sensitive 313 

to soil moisture (SM) (category 1) and pixels where ( )obs dBσ °
 is in very dry conditions all the 314 

time, so that ( )obs dBσ °
 ~ constant (category 2).  315 

More specifically, to distinguish pixels/dates corresponding to categories 1 and 2 we used the 316 

following criteria: 317 

First, we extracted the time series of ( )obs dBσ °  and soil moisture (SM) from, respectively, the 318 

ASCAT and ERA5 Land SM datasets for pixels/dates corresponding to the case 1 and 2. For 319 

category 1, the standard deviation of ( )obs dBσ °   and SM (corresponding to the dates where LAI < 320 

0.5 m2 m-2 or LAI=Nan) should be larger than 0.5 dB and 0.04 m3/m3, respectively, and the 321 

number of the ( )obs dBσ °  data corresponding to these two cases should be larger than 30% of the 322 

whole number of backscatter observations. For category 2, the standard deviation of ( )obs dBσ °  323 
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and SM should be lower than 0.5 dB and 0.04 m3/m3, respectively, and the number of SM data 324 

lower than 0.05 m3/m3 should be larger than 95% of the total number of backscatter 325 

observations. 326 

This filtering step was mainly done to:  327 

-identify the areas (category 1) with clear temporal changes in both ( )obs dBσ °
 and SM, so that we 328 

could compute a linear relationship between ( )obs dBσ °
 and SM (Eq. (4)), and  329 

-distinguish very dry areas (category 2), where SM is almost constant and over which the value 330 

of ( )obs dBσ °  in very dry conditions could be obtained.  331 

3.2.2 Step 2: soil parameters computation for “bare soil” pixels 332 

In step 2, over the pixels corresponding to category 1, the slope (D) and intercept (C) of Eq. (4) 333 

were retrieved. Over the pixels corresponding to category 2, we retrieved only the intercept (C).  334 

For pixels corresponding to category 1, a linear regression between the time series of ( )obs dBσ °
 335 

and SM was established and we only retained the values of C and D when the following 336 

conditions, ensuring a robust and physically-based linear relationship, were met:  337 

(i) the correlation value (R) of the linear relationship between time series of ( )obs dBσ °  338 

and SM is positive,  339 

(ii) the relationship is significant (p-value < 0.01) 340 

For pixels corresponding to category 2, the C parameter was simply computed as the average 341 

value of the backscatter time series. 342 

3.2.3 Step 3: soil parameters calibration for all pixels 343 

Based on the results of step 2 (where we computed the values of the C and D parameters from 344 

the pixels where these parameters could be determined), we used the corresponding soil 345 

property data (Appendix Table 1) and terrain data (Appendix Table 2) as predictors to train two 346 
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random forest (RF) regression models for the C and D parameters, separately. RF regression is 347 

a machine learning method that has the advantage to be a nonlinear and nonparametric method, 348 

and the contribution of each predictor to the target that is computed by the RF model is very 349 

useful for tuning the model. We implemented the RF analysis using the python sklearn package 350 

(Pedregosa et al., 2011) for each soil model parameter. The GridSearchCV function was used 351 

to find the optimal setting of the two RF parameters (n_estimators and max_features). Besides, 352 

there are 27 predictors for each soil model parameter and collinearity exists among them. In 353 

order to achieve a good model performance with fewer predictors, the Recursive Feature 354 

Elimination (RFE) method (Guyon et al., 2002) was used to select the predictors. After this 355 

training step, the trained random forest models allowed us to compute a map of the soil model 356 

parameters (C and D) over the whole of Africa by inputting the soil property and terrain maps 357 

of Africa.  358 

  359 

Fig. 1.  Flowchart for computing the C and D map over Africa. 360 
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3.3 Vegetation model parameter (A) calibration 361 

The dynamic vegetation parameter A of the WCM model was calibrated using the measured 362 

backscatter ( ( )obs dBσ ° ) over the very dense vegetated (VDV) region which was defined as the 363 

region where the percentage of tree cover in vegetation continuous fields (VCF) is larger than 364 

75% (Santoro et al., 2015). Considering that the vegetation transmissivity is close to zero over 365 

VDV regions (Konings et al., 2017; Parrens et al., 2017), we assumed that the soil backscatter 366 

( soil
σ ° ) is totally attenuated, meaning that the backscatter of vegetation ( vegeσ ° ) can be set equal 367 

to the measured backscatter ( obs
σ °

, in linear units) as given in Eq. (6). Eq. (7), converted from 368 

Eq. (6), was used to compute
0 ( )A t  by spatial averaging all

0 ( , , )A i j t  values over all VDV pixels 369 

at t day.  370 

In an initial step, we set ( , , )A i j t  equal to 
0 ( )A t  over all pixels (assuming all pixels have the 371 

same 
0 ( )A t  value at date t). However, this assumption fails when 0( )*

obs
A t cosσ θ° > , because 372 

in that case 0.1( * )10 C D SM
Acosθ+ −  is always negative and therefore VOD cannot be computed 373 

from Eq. (5). To overcome the issue, we divided the study area into two regions:  374 

- Region 1 included all pixels where more than 50% of the obs
σ °  data are lower than375 

0( )* θA t cos : it generally corresponds to pixels with sparse or low vegetation where 376 

relatively low ( , , )A i j t values were retrieved. In region 1, we set ( , , )A i j t  equal to 
0 ( )A t .  377 

- Region 2 included all pixels where more than 50% of the obs
σ °  data are higher or equal 378 

than 0( )* θA t cos : it generally corresponds to pixels with dense vegetation where high 379 

( , , )A i j t values were retrieved. In region 2, we set ( , , )A i j t  equal to 95%
0 ( )A t  which is 380 

the 95th percentile of 
0 ( , )A i j over all VDV pixels at day t.  381 
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So, eventually, the value of ( , )A i j for each pixel on each day (t) in Africa was set simply as 382 

follows: 383 

 0
95%
0

( ), 1
( , , )

( ), 2

= 


A t region
A i j t

A t region
 (8) 384 

The flowchart for mapping the vegetation parameter is presented in Fig. 2. 385 

 386 

Fig. 2.  Flowchart for computing the A map over Africa. 387 

4.  Result 388 

This section is divided into two parts: the first concerns the results of the soil and vegetation 389 

parameters calibration, the second concerns the evaluation and inter-comparison of IB VOD 390 

with other products. 391 
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4.1 Calibration results of soil parameters  392 

4.1.1 Computation results of C and D for “bare soil” pixels  393 

Based on the method defined in section 3.2.1, we extracted 1610 and 7524 pixels belonging, 394 

respectively, to category 1 ( ( )obs dBσ °
 is sensitive to the soil moisture) and category 2 ( ( )obs dBσ ° is 395 

in very dry conditions all the time). 396 

The computation of C and D was carried out for both categories 1 and 2. For the pixels 397 

belonging to category 1, the C and D values were derived based on Eq. (4). As ( )obs dBσ °
 increases 398 

with the increase in soil moisture, only the pixels that obtained a significant positive correlation 399 

(p-value<0.01) between ( )obs dBσ °
 and SM were kept. As a result, 78.39 % of the pixels (1262 400 

pixels) were retained. For category 2, all pixels (7524 pixels) can be used to compute the C 401 

value. Together with the pixels retained for category 1 (1262 pixels), 8786 pixels were used to 402 

calibrate the C parameter. 403 

The spatial distribution of the pixels used for the calibration of the C and D parameters is shown 404 

in Fig. 3 (a). We can see that the pixels used to calibrate the D value are located in the north, 405 

centre and south of Africa. Grassland, which represents 630 pixels (50.80 %), is the most 406 

common vegetation type among these pixels, then cropland with 302 pixels (23.93 %), followed 407 

by open shrubland with 298 pixels (23.61 %), and finally savanna, barren or sparsely vegetated, 408 

crop & natural vegetation mosaic with 26 pixels (2.06 %). Pixels in category 2 are mainly 409 

distributed in the Sahara Desert. The distribution of the retrieved C values can be well fitted 410 

with a Gaussian distribution, while that of the D values is better represented by a lognormal 411 

distribution (Fig. 3 (b, c)). 412 
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 413 

Fig. 3. (a) Spatial distribution of pixels used to calibrate the C (red and blue) and D (blue) soil 414 

parameters; and histograms of the retrieved (b) C and (c) D values. 415 

4.1.2 Variable used for training the RF model 416 

In order to estimate the values of C and D over the whole of Africa, two random forest 417 

regression models were built. Based on the results of the GridSearchCV, we set the 418 

n_estimators equal to 1000 for the two RF models, and the value of the max_features equal to 419 

the number of the variables. The RFE algorithm was applied to the predictors of the selection 420 

experiments for each model. The selected predictors and their importance are shown in Fig. 4. 421 

The predictors that have higher importance mean that they can explain better the target (e.g. the 422 

retrieved C and D values).  423 

Based on the RFE algorithm, 16 out of the 27 variables were selected to train the model used 424 

to map the C value, including 4 terrain parameters (importance weight of 30.42 %) and 12 soil 425 

property parameters (importance weight of 69.58 %). The top five variables by importance were 426 

the soil organic carbon density (Ocdens) (25.50 %), the standard deviation of elevation 427 

(dem_std) (12.63 %), the terrain ruggedness index (TRI) (7.05 %), the pH index measured in 428 
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water solution (Phihox) (6.25 %) and the terrain surface texture (TST) (6.21 %). Those five 429 

variables can explain around 58 % of the target. Similarly, to map the D value, we selected 16 430 

variables consisting of 3 terrain parameters (importance weight of 16.46 %) and 13 soil property 431 

parameters (importance weight of 83.54 %). The top five variables by importance were the pH 432 

index measured in KCl solution (Phikcl) (17.83 %), the mean value of soil temperature 433 

(mean_ST) (7.84 %), the soil organic carbon stock (Ocstha) (6.62 %), the coefficient of 434 

variations of the soil temperature (cv_ST) (6.53 %) and the weight percentage of the sand 435 

particles (Sndppt) (6.19 %). 436 

As presented in section 3.1, the C value corresponds to the radar backscatter in very dry 437 

conditions, and D represents the sensitivity of the radar data to soil moisture.  Therefore, the C 438 

value is more related to terrain roughness and the D value is more related to the soil properties. 439 

The two RF models for the C and D values have different features. For instance, the contribution 440 

of the terrain parameters (related to topography) in the C value model is, as expected, larger 441 

than that in the D value model. Conversely, similar aspects were found between the two RF 442 

models. For instance, the predictor related to the soil organic carbon is in the top five predictors 443 

for the two models: Ocdens is the most important variable in the C value model, while Ocstha 444 

ranks in the third place of predictors in the D value model.  445 
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 446 

Fig. 4. Importance of the selected variables in the RF model for predicting the (a) C value and 447 

(b) D value. 448 

4.1.3 Performance of RF model and calibration results of C and D 449 

A 10-fold cross-validation was used to evaluate the performance of the two RF models. 450 

Scatterplots between the true value and predicted value from the trained models are shown in 451 

Fig. 5. Both models performed quite well and the model for the C value obtained better scores 452 

(R2 = 0.86, RMSE = 1.31 dB) than the one for the D value (R2 = 0.61, RMSE = 2.38 dB/ m3
⸱m-453 

3). From Fig. 5, we can note an overestimation in the lower values and an underestimation in 454 

the higher values for both the C and D models, and the underestimation being stronger in the D 455 

value model. This underestimation is most likely caused by the training dataset that does not 456 

have enough pixels in the range of 20-25 dB/ m3
⸱m-3. According to the statistics in the D values 457 

(Fig. 5(b)), the number of pixels used to train the model in that range (20-25 dB / m3
⸱m-3) is 458 

around 20, accounting for only 1.58 % of the total number of training pixels. 459 
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 460 

Fig. 5. Scatterplots between the retrieved and RF predicted values based on the 10 folders cross-461 

validation for the (a) C value and (b) D value. 462 

The RF predicted maps for C and D in Africa are presented in Fig. 6 (a) and (b). To better 463 

understand the spatial distribution of the C and D values in those two maps, we grouped the C 464 

and D values in each IGBP vegetation type (Fig. 6 (c)). Fig. 6 (d) shows that the median of the 465 

C values is similar (~ -14.8 dB) for each IGBP vegetation type. Very large variability in the C 466 

values can be noted for barren or sparsely vegetated (BSV). When analyzing the Ocdens and 467 

TRI data for BSV, we found that the pixels with the higher TRI values correspond to higher C 468 

values, and the higher Ocdens values correspond to the lower C value. To a more limited extent, 469 

the same results were obtained too for open shrubland (OSH), mostly in southern and northwest 470 

Africa. With regard to the spatial distribution of the D values, OSH presents the lower values 471 

in the map. As for the D values, the range of the D values is the largest for BSV among all 472 

vegetation types. A large range in the D values is also obtained for cropland and grassland. 473 
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 474 

Fig. 6. Map of the (a) C and (b) D soil model parameters and (d) the corresponding boxplot in 475 

(c) different land cover types.  476 

4.2 Calibration results of the vegetation parameter  477 

To map the vegetation parameter A of the WCM model over Africa, we first computed the 478 

0( , )A i j  values using Eq. (8) over the very dense vegetation (VDV) area for each day (t) and 479 

then calculated the mean value over all VDV pixels  (
0 ( )A t ) and the 95th percentile ( 95%

0 ( )A t ). 480 

Fig 7 (a) shows the spatial distribution of the VDV areas. The VDV areas are mainly located in 481 

the Congo basin where the dominant land cover type is the evergreen broadleaf forests (Fig. 6 482 

(c)). In this study, the vegetation calibration was made over five years (2015-2019). 
0 ( )A t  483 

presents lower values in winter and spring while larger values were found in summer when the 484 

vegetation growth reaches its peak (Fig 7 (b)). 95%
0 ( )A t  has the same trend as

0 ( )A t  but with 485 

larger values. To calibrate the A value in WCM, we used 
0 ( )A t  in most regions of Africa, and 486 

95%
0 ( )A t  was mainly adopted in the VDV areas (Fig 7 (c)). 487 
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 488 

Fig. 7. (a) Map of the very dense vegetation (VDV) region selected in this study, and (b) daily 489 

values of 
0A  and 95%

0A  for five years (2015-2019). The solid line represents the average value 490 

of five years, and the shading describes one standard deviation. (c) Map of Region 1 and Region 491 

2 used in the calibration of the vegetation parameter. 492 

4.3 Evaluation of IB VOD 493 

The performance of IB VOD was evaluated in both space and time. The spatial correlation 494 

between IB VOD and AGB (Saatchi AGB, CCI AGB), TH (Simard TH, Patapov TH) and the 495 

temporal correlation between IB VOD and VIs (NDVI, EVI and LAI) were computed as 496 

performance metrics. In addition, three other VOD datasets (ASCAT V16, AMSR2 LPRM V5 497 

and VODCA LPRM V6) retrieved at the same frequency band (C-band) were also included in 498 

the inter-comparison. As VODCA LPRM V6 VOD data was only updated until the year 2018, 499 

the temporal performance of IB VOD was evaluated from 2015 to 2018. 500 

4.3.1 Spatial patterns of IB VOD 501 

Fig. 8 shows the average value of IB VOD and three other VODs (ASCAT V16, AMSR2 LPRM 502 

V5 and VODCA LPRM V6) computed from 2015 to 2018. All maps present similar general 503 
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spatial patterns: the highest VOD values are distributed in the equatorial rain forests and the 504 

lowest values in the Sahara Desert. The VOD values generally decrease as the distance from 505 

the equator increases. In terms of VOD range, IB VOD has a larger range of values (~ 0 - 1.5) 506 

than the three other VOD. The changing patterns with the latitude of IB VOD are more 507 

consistent with those of V16 VOD which is computed from the same sensor (ASCAT) (Fig. 8 508 

(d)). There are also some differences between IB VOD and the three other VOD. The values of 509 

IB VOD in the rainforests are ~ 1.5 times larger than those of VODCA LPRM V6 VOD. Zonal 510 

VOD averages show that the peak of IB VOD is sharper and presents a faster decrease with the 511 

increasing distance to the equator than AMSR2 LPRM V5 and VODCA LPRM V6 VOD (Fig. 512 

8 (d)). Moreover, the values of IB VOD are generally lower than those of the three other VOD 513 

datasets except for the rainforest region (Fig. 8 (d)). Importantly, IB VOD shows a very similar 514 

pattern with CCI AGB and Tree height (Fig. 8 (d) & (h)). 515 

 516 

Fig. 8. Temporal average of VOD for (a) ASCAT IB, (b) ASCAT V16, (c) AMSR2 LPRM V5 517 

and (e) VODCA LPRM V6 from years 2015-2018, and (f) CCI AGB and (g) Potapov tree 518 

height. Side plots show the zonal average for (d) the four VOD and (h) CCI AGB and Potapov 519 

TH data sets. 520 
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Boxplots of the four VOD for each land cover class are presented in Fig. 9 (a). Wide quantile 521 

ranges are found for IB VOD over the region covered by evergreen broadleaf forest (EBF), 522 

woody savanna (WSA) and cropland/natural vegetation mosaic (CVM). The same can also be 523 

noted for ASCAT V16 and AMSR2 LPRM V5 VOD for the EBF and CVW classes, 524 

respectively, but to a lower extent. VODCA LPRM V6 VOD has a very narrow range in each 525 

vegetated IGBP class and particularly in EBF. The highest yearly VOD values were obtained 526 

for EBF, followed by WSA, MFO and DBF (Fig. 9 (b)). Except for EBF, WSA and CVM, the 527 

lowest average value was obtained with IB VOD over each land cover class. The change in IB 528 

VOD for the different vegetation classes is quite consistent with that of AGB (R=0.94-0.95), 529 

while the consistency is less clear for the three other VOD datasets. For example, the AGB 530 

value of EBF is four times larger than that of DBF, while the change in the AMSR2 LPRM V5 531 

and VODCA LPRM V6 VOD values for these two vegetation classes is much lower. 532 

 533 

Fig. 9. Boxplots of the four VOD datasets (ASCAT IB, ASCAT V16, AMSR2 LPRM V5, and 534 

VODCA LPRM V6) (top) and two AGB datasets (CCI and Saatchi) (bottom) for different IGBP 535 

land cover classes.  536 
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4.3.2 Evaluating IB VOD against aboveground biomass and tree height  537 

When considering the spatial relationship between the four yearly average VOD and AGB (Fig. 538 

10), it was found to be almost linear for the active VOD datasets (IB and V16) and quite non-539 

linear (exponential form) for the passive ones. In terms of linear fit, highest spatial correlation 540 

values were obtained with IB VOD (R = 0.92), followed by V16 VOD (R = 0.83-0.86), AMSR2 541 

LPRM V5 VOD (R = 0.76) and VODCA LPRM V6 VOD (R = 0.69). The spatial relationship 542 

between the two AGB and the four VOD datasets was computed for each land cover type (Table 543 

2). The highest spatial correlation (R-value) with AGB was obtained with IB VOD in most of 544 

the vegetation types, except for evergreen broadleaf forest (EBF) and cropland (CRO). For 545 

EBF, CRO and barren or sparsely vegetated (BSV), the highest R-values were obtained with 546 

ASCAT V16 and AMSR2/VODCA VOD, respectively. 547 

In order to assess the capacity of VOD to predict AGB, two functions (linear and exponential 548 

regression) were selected to compute the best-fitted relationships for each VOD dataset. The R 549 

correlation coefficient calculated between predicted and reference AGB is used to evaluate the 550 

quality of the prediction. In terms of predicted AGB, the highest R values (R = 0.92) were 551 

obtained by IB VOD, followed by AMSR2 LPRM V5 VOD (R ~ 0.88-0.90) while lower R 552 

values were obtained for VODCA LPRM V6 and ASCAT V16 VOD (R ~ 0.83-0.86) 553 
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 554 

Fig.10. Density scatter plots showing the spatial relationship between the four yearly average 555 

VOD datasets (from left to right: ASCAT IB, ASCAT V16, AMSR2 LPRM V5, VODCA 556 

LPRM V6) and two AGB datasets (from top to bottom: Saatchi, CCI). R1 represents the spatial 557 

correlation between VOD and reference AGB, while R2 represents the spatial correlation 558 

between predicted AGB and reference AGB. Computations were made over 2015 -2017. The 559 

solid line is the fitted line. 560 

Table 2. Spatial correlation of the four VOD datasets with the two CCI and Saatchi AGB 561 

datasets for different IGBP land cover classes. 562 

AGB Product VOD Product EBF DBF MFO CSH OSH WSA SAV GRO CRO CVM BSV R_total 

Saatchi 2015 

ASCAT IB 0.54 0.83 0.88 0.62 0.30 0.78 0.78 0.58 0.58 0.79 0.21 0.92 

ASCAT V16 0.58 -0.22 -0.26 -0.26 -0.16 0.67 0.31 0.17 0.17 0.30 0.11 0.83 

AMSR2 LPRM V5 0.54 0.53 0.74 0.23 0.09 0.31 0.61 0.51 0.62 0.57 0.19 0.76 

VODCA LPRM V6 0.36 0.40 0.62 -0.20 - 0.18 0.57 0.44 0.59 0.56 0.18 0.69 

CCI 2017 

ASCAT IB 0.70 0.31 - 0.66 0.27 0.71 0.60 0.53 0.36 0.72 0.28 0.92 

ASCAT V16 0.74 - 0.47 - -0.08 0.64 0.43 0.30 0.20 0.45 0.09 0.86 

AMSR2 LPRM V5 0.55 0.30 - - 0.12 0.32 0.38 0.45 0.39 0.57 0.40 0.76 

VODCA LPRM V6 0.38 0.21 - -0.32 0.05 0.18 0.33 0.40 0.36 0.55 0.37 0.69 

Note: [-] indicates that correlation is not significant (p-value>0.05). The number of pixels used in the computation are 2734 563 
(EBF), 200 (DBF), 180 (MF), 118 (CS), 1746 (OS), 1237 (WS), 5628 (S), 8636 (G), 1269 (C), 238 (CNVM), 1623 (BSV). 564 
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 565 

Fig.11. Density scatter plots showing the spatial relationship between the four yearly average 566 

VOD datasets (from left to right: ASCAT IB, ASCAT V16, AMSR2 LPRM V5 and VODCA 567 

LPRM V6) and two tree height datasets (from top to bottom: Simard, Patapov). R1 represents 568 

the spatial correlation between VOD and tree height (TH), while R2 represents the relationship 569 

between predicted TH and reference TH. The solid line is the fitted line. 570 

Fig. 11 shows the density scatter plot between two tree height (TH) datasets (Simard and 571 

Patapov) and the four VOD datasets. The active VOD datasets have a more pronounced linear 572 

spatial relationship with the two TH datasets than the passive VOD, similarly with the result 573 

obtained for AGB. IB VOD presents the best spatial linear relationship with the two TH datasets 574 

(R ~ 0.89). In contrast, VODCA LPRM V6 VOD got the lowest R-value (R = 0.74-0.78). 575 

Regarding the potential to predict TH, VODCA LPRM V6 VOD also showed the poorest 576 

performances as saturation happened for high VOD values. The best ability to predict TH for 577 

both the Simard and Potapov datasets was obtained by IB and AMSR2 LPRM V5 VOD (R~ 578 

0.89-0.90).  579 
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4.3.3 Evaluating IB VOD against MODIS VIs 580 

 581 

Fig.12. Density scatter plots of the spatial relationship between four yearly average VOD 582 

datasets (from left to right: IB, ASCAT V16, AMSR2 LPRM V5 and VODCA LPRM V6) and 583 

two MODIS VI datasets (from top to bottom: NDVI, EVI and LAI).  584 

With respect to the spatial relationship between the VOD and MODIS VIs, Fig. 12 shows 585 

saturation for high VIs values is more obvious for the active VOD datasets (ASCAT IB and 586 

V16), while the relationship is almost linear for the passive VOD (AMSR2 LPRM V5 and 587 

VODCA LPRM V6). Saturation starts when the values of NDVI (EVI, LAI) exceeds ~ 0.7(0.4, 588 

2). The correlation coefficients obtained with the active VOD dataset are lower than 0.75. 589 

Higher spatial correlations (R ~ 0.91-0.93) were obtained with passive VOD, but saturation can 590 
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also be noted for AMSR2 LPRM V5 for higher NDVI and EVI values and VODCA LPRM V6 591 

for higher LAI values.  592 

In order to evaluate the ability of IB VOD to monitor the vegetation dynamics, the temporal 593 

correlations between 16-day average VOD and MODIS VIs (NDVI, EVI and LAI) were 594 

computed for each pixel from 2015 to 2018 (Fig.13). IB VOD presents a positive temporal 595 

correlation with each VI in most regions of the African continent (values exceeding 0.85 in 596 

Nigeria for instance). Negative correlation values (R∼-0.7) can be noted in some arid and semi-597 

arid regions, such as the south of Ethiopia and western Namibia. Compared with the results of 598 

the three other VOD datasets, we found that the spatial distribution of pixels with a positive 599 

correlation obtained with IB VOD is similar to that obtained with AMSR2 LPRM V5 and 600 

VODCA LPRM V6 VOD. Although ASCAT V16 VOD shows generally different spatial 601 

patterns (Fig 13 (b), (f) and (g)), similar negative correlation values were found in South Africa 602 

and the Sahara Desert. Interestingly, for some pixels in the north of Africa, the temporal 603 

correlation between each VI and passive VOD is opposite to that obtained with the active VOD. 604 

A more detailed analysis of these results as a function of land cover classes is given in 605 

Supplementary. 606 
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 607 

Fig.13. Temporal correlations between four VOD datasets (from left to right: ASCAT IB, 608 

ASCAT V16, AMSR2 LPRM V5 and VODCA LPRM V6) and three MODIS VIs datasets 609 

(from top to bottom: NDVI, EVI and LAI) for each pixel from 2015 to 2018. Grey pixels 610 

correspond to pixels where correlation is not significant (p > 0.05). Blank pixels denote “no 611 

valid data”. 612 

 613 
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Fig.14. Maps showing which VOD datasets obtained the highest absolute temporal correlation 614 

(R) values with MODIS VIs and (d) its percentage of coverage. Grey pixels correspond to pixels 615 

where the correlation is not significant (p > 0.05). Blank pixels denote “no valid data”. 616 

 617 

To get an easier overview of the performance of each VOD dataset in terms of temporal 618 

correlation, a map showing which VOD products showed the highest temporal correlation with 619 

MODIS VIs over Africa is given in Fig. 14. For IB, the pixels with the highest temporal 620 

correlations with NDVI are mainly distributed in the centre-west (3°S-15°S). ASCAT V16 621 

obtained the highest correlation values in a few regions in Centre Africa. The highest correlation 622 

values for AMSR2 LPRM V5 VOD were located in the south of Africa and the north of the 623 

Congo basin. For VODCA LPRM V6 VOD, the distribution of the highest correlation values 624 

is scattered all over Africa, mainly out of the central regions of Africa. Similar results were also 625 

found for EVI and LAI. As noted above, more pixels obtained the highest correlation values 626 

with EVI and LAI for IB VOD, especially in eastern Africa (Tanzania) and south of the Sahel 627 

region.  628 

Fig. 14 (c) gives the percentage of pixels where the highest correlation was obtained for each 629 

VOD product. IB VOD shows the best performance with EVI (LAI), over 36.65 % (30.19 %) 630 

of the pixels, followed by VODCA LPRM V6 VOD (23.87 % for EVI, 26.06 % for LAI). 631 

Conversely, regarding NDVI, VODCA LPRM V6 VOD obtained the best score (32.25 %), 632 

followed by IB (29.94 %). The lowest scores were obtained by ASCAT V16 VOD (5.32 % for 633 

NDVI, 6.88 % for EVI). In addition, we plotted the pixels with high correlation differences 634 

(HCD) in Fig. S1 to evaluate if there is a strong difference between the products obtaining the 635 

best scores. HCD means that the highest correlation value with one product is larger by 0.1 than 636 

that obtained with all the other products. Overall, IB obtained the best score in terms of temporal 637 
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correlation in many pixels and this score was strongly (by a value of 0.1) improved in 638 

comparison with the other products. 639 

 640 

Fig. 15. Time series of the four VOD products (daily), NDVI, ASCAT backscatter and ERA5-641 

Land Soil moisture from January 2015 to December 2018 over three types of vegetation 642 

(Grassland, Savanna and Evergreen Broadleaf Forest). 643 

The seasonal dynamics of IB and three other VOD are also analysed based on the daily time 644 

series of VOD along with NDVI at three selected sites (Fig. 15). ASCAT IB VOD is noisier at 645 

a daily time-scale than the three other VOD products (this aspect will be explored in discussion), 646 

while a clear seasonal change can be well observed for all VOD products. AMSR2 LPRM V5 647 

and VODCA LPRM V6 VOD present similar seasonal variations but with different values. This 648 

is because VODCA LPRM V6 VOD is a fusion of VOD retrieval results from multiple sensors. 649 

The VODCA data used in this study were retrieved from AMSR2 and then calibrated via 650 

cumulative distribution function matching using AMSR-E as the scaling reference (Moesinger 651 
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et al., 2020). ASCAT V16 VOD is more stable (almost flat) than the three other VOD products 652 

(green line in Fig.15 (a), (c) and (e)). This could be explained by the fact that V16 VOD is 653 

derived using two coefficients (slope and curvature) of the second-order Taylor expansion 654 

(Teubner et al., 2019), and those two coefficients are averaged by using a kernel smoother with 655 

a half-width window of 21 days (Vreugdenhil et al., 2020). The value of V16 VOD decreases 656 

with the increase of NDVI (Fig. 14 (e)), which can explain why a negative temporal correlation 657 

between V16 VOD with NDVI and EVI was found over some areas of evergreen broadleaf 658 

forests (Fig 15. (b) and (f)). At the same time, a large time lag (~180 days) between the four 659 

VOD products and NDVI (Fig. 15 (a)) was found in grassland. Tian et al. (2018) and Lawrence 660 

et al. (2014) also found time lags, varying by a large range of days, between L-VOD and NDVI 661 

over different vegetation types. 662 

 663 

5. Discussion 664 

The evaluation and inter-comparison results presented in this study show that IB VOD obtained 665 

good scores in both temporal and spatial terms. This promising result indicates that IB VOD is 666 

a valid and alternative candidate for application in biomass and carbon estimation. We should 667 

also notice that there are some uncertainties in IB VOD. Those uncertainties mainly come from 668 

the soil and vegetation model calibration and SM input. 669 

As for the soil parameter calibration, we calculated the value of C and D for each pixel 670 

corresponding to bare land without any vegetation cover throughout the year (case 1) and land 671 

covered by a certain degree of sparse dynamic vegetation (case 2), which is different from 672 

previous studies where the soil coefficients (C and D) of the Ulaby linear model were calibrated 673 

from experimental data measured over different sites. Then the calibration of C and D was 674 

extended at continent-scale using a RF machine learning method. Compared with the C and D 675 

values computed in Shamambo et al. (2019), the values of C and D obtained in our study are 676 
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lower and their range is larger. Although Shamambo et al. (2019) also used ASCAT data, their 677 

different research region (south-west of France) and calibration methods caused different 678 

results. For the D value, numerous experimental studies at C-band have shown a variable 679 

sensitivity of the radar signal to soil moisture, varying approximately between 5 dB / m3
⸱m-3 680 

and 30 dB / m3
⸱m-3 (Baghdadi et al., 2008; Baghdadi et al., 2016; Verhoest et al., 2008). Our 681 

results are in good agreement with these previous results. Fig 6 (a) shows very low C values on 682 

smooth dunes (in Sahara) and the strongest values on areas with topography (including in the 683 

Sahara), which is in very good coherence with the reality of the terrain and the nature of the 684 

scattering in these areas. However, we should note that the performance of the RF model used 685 

to estimate the soil parameters is better for C than for D (Fig. 5). One of the reasons could be 686 

that the number of pixels used to train the D value model is far less than that used to train the 687 

C value model (1262 pixels for C vs 8786 pixels for D). Moreover, pixels with a low R-value 688 

(<0.4) (accounting for around 8 % of the data in category 1, Fig. S2) will also affect the training 689 

of the model. In the future, to improve the C and D model performance, the calibration will be 690 

carried at a larger scale and the threshold of the R-value will be increased to select “better” 691 

pixels.  692 

As for the vegetation parameter (A) calibration, its value was set to a spatially constant value 693 

in only two regions of Africa for each day. Ma et al. (2020) found that changes in the value of 694 

A have little effect on the simulation of the VV polarized backscatter when the vegetation water 695 

content is lower than 1.5 kg/m2. In addition, the A parameter is related to the vegetation single 696 

scattering albedo (ω) which is a key parameter in the passive microwave VOD retrievals. In the 697 

LPDR and LPRM algorithms, ω was set to a constant value globally (Du et al., 2017; Owe et 698 

al., 2001). However, studies in the passive microwave domain have recently suggested that the 699 

vegetation single scattering albedo may vary seasonally in different vegetation types (Baur et 700 

al. 2019). Bindlish and Barros (2001) also found that better performances in SM retrievals were 701 
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obtained with the WCM model when different A values were set for different types of land 702 

cover. Therefore, IGBP-based or pixel-based calibration of A could be considered in future 703 

works. Moreover, the daily A value was calibrated over VDV in Africa and then extended to 704 

the whole of Africa. When we will extend our method to a global scale, the calibration of the 705 

A value should thus be re-evaluated. In addition, Shamambo et al. (2019) found that the 706 

correlation between the observed backscatter and WCM simulated backscatter is small or 707 

negative in karstic areas.  This information should also be considered in future analyses. 708 

Our retrieval algorithm used the ERA5-Land SM as a known SM input of the retrieval 709 

algorithm. Therefore, the IB VOD retrievals made in this study may be sensitive to the quality 710 

of the ERA5-Land SM dataset. A simple sensitivity analysis was made to assess the effect of 711 

the uncertainty in SM on the retrieved VOD values. Fig. S3 shows that decreasing (increasing) 712 

SM by a value of 0.05 m3/m3 (that corresponds to an estimate of the ubRMSE of ERA5-Land 713 

(Chen et al., 2021)) will lead to a decrease (increase) in VOD of 0.02 over grassland, 0.01 over 714 

savanna, and 0.02 over the evergreen broadleaf forest. The relative change of VOD in grassland 715 

is 16.21 % which is larger than that in savanna (5.24 %) and evergreen broadleaf forest (2.57 %). 716 

This is because the observed backscatter is dominated by soil scattering for low vegetation, so 717 

that the uncertainty in SM has a larger influence on the retrieval of VOD in grassland. Anyway, 718 

the relative change of VOD, due to the uncertainty in input SM, may appear as relatively modest 719 

if we consider the uncertainties existing in global AGB maps, which may differ by about 50% 720 

in some regions. Moreover, when they will become available, any other more appropriate soil 721 

moisture data set could be used in the retrieval based on the framework proposed in this study. 722 

IB VOD was directly computed from the observed values of the ASCAT backscatter ( ) and 723 

the ERA5-Land SM, so that large daily fluctuations of SM and  made IB VOD noisier than 724 

the three other VOD products (Fig. 15 (e), (f) and (g)). Although IB VOD is noisy, it still shows 725 

obsσ °

obs
σ °
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obvious seasonal dynamics. There are also some possible ways to improve the time series of 726 

the daily IB VOD values in the future. For instance, in the LPDR algorithm (Du et al., 2017), a 727 

30-day moving median filter was applied to the daily X-band VOD (Du et al., 2017), which 728 

makes the time series of LPDR X-band VOD very smooth. This filtering step could be used in 729 

the future as it helps to improve the temporal continuity of VOD and reduce short-term noises 730 

(for illustration, in Fig. S4, a moving window was applied to all VOD time series shown in Fig. 731 

15). Another possible way is to use the ASCAT multi-angle data: the normalized ASCAT 732 

backscatter at the incidence angle θ = 40 degrees can be converted to the backscatter at any 733 

angle by using a second-order Taylor expansion that describes the angular backscatter 734 

dependency (Hahn et al., 2017). More information originating from different angles could be 735 

added to the retrieval algorithm to improve the IB VOD performance. However, this will make 736 

the calibration more complex. All these different results show the importance of improving the 737 

time-series of daily IB VOD in future works. 738 

In this study, IB VOD is spatially linearly related to AGB and TH. The relationships with VIs 739 

exhibit a saturation for high IB VOD values (Fig. 10-12). In contrast, passive VOD shows a 740 

linear relationship with VIs but shows saturation for high AGB and TH values. This is can be 741 

explained by the fact the active microwave data are generally more sensitive to vegetation 742 

structure compared with passive data (Ferrazzoli et al., 1989; Fung and Eom, 1985; Wigneron 743 

et al., 1999). Active microwave radiations are affected by a two-way attenuation through the 744 

canopy layer, while, in the passive domain, there is one-way attenuation (Fernandez-Moran et 745 

al., 2017). C-band radar backscatter return from the middle of vegetation (between canopy top 746 

and ground) (Pulliainen et al., 1994), therefore VOD retrieved from ASCAT could more 747 

sensitive to branch and trunk diameter which are well correlated to biomass (Mankou et al., 748 

2021), explaining the good correlation between ASCAT VOD and AGB. Conversely, as VIs 749 

were calculated from optical sensors they are more sensitive to saturation. The high sensitivity 750 
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of ASCAT VOD to AGB is a new and interesting finding of this study which should be 751 

investigated further. 752 

6. Conclusion and outlook 753 

An alternative ASCAT-IB VOD product was retrieved in this study during 2015-2019 over 754 

Africa by using the water cloud model coupled with the Ulaby linear model. The idea of using 755 

the soil moisture as input was adopted in the retrievals of VOD. Two Random Forest models 756 

were trained to map the soil parameters (C and D) of the Ulaby linear model, and the trained 757 

model showed good performance (R2=0.85 for C and R2=0.61 for D). For the vegetation 758 

parameter (A) of WCM, a temporally dynamic value calibrated from observations over the very 759 

dense vegetated area was used. IB VOD and the three other VOD products were evaluated 760 

against several vegetation datasets (AGB, tree height and MODIS VIs). Comparison with other 761 

VOD products suggested IB VOD has advantages in terms of both spatial and temporal 762 

performances. Especially, IB VOD presents a very good linear relationship with AGB and tree 763 

height data (R ~ 0.89-0.92) showing the considerable potential of IB VOD to study global AGB 764 

and tree height changes. Moreover, the temporal correlation between IB VOD and NDVI or 765 

EVI showed obvious improvements (> 0.1) in savanna and woody savanna compared to the 766 

three other VOD products considered in the present study. 767 

The encouraging results found in Africa suggest that we can extend the proposed method to 768 

produce a long term (from 2007- present) and global IB VOD product. In addition, Steele-769 

Dunne et al. (2012) and Frolking et al. (2011) found that variations in canopy water content 770 

could account for the backscatter variations between the ascending and descending orbits. 771 

Therefore, IB VOD retrieved from different orbits can be explored in the future to analyse daily 772 

changes in the vegetation water content. Moreover, when soil moisture datasets at a finer spatial 773 

resolution downscaled from several sensors will be available (Fan et al., 2015) and swarms of 774 

SAR cubesats will be available in a decade, the method used in the present study could be 775 
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extended to retrieve a high-resolution active VOD product (e.g. from Sentinel-1). More 776 

importantly, IB VOD is independent of passive microwave observations, and as such, it could 777 

be used in inter-comparison of VOD products based on the triple collocation (TC) or TC-related 778 

methods (Li et al., 2021). Moreover, two independently (passive & active) retrieved VOD 779 

products could be used in a physics-based VOD model (Jackson and Schmugge, 1991) to 780 

decouple the effects of the vegetation moisture content / structure / biomass on the microwave 781 

observations. 782 

Data availability  783 

ASCAT IB VOD was developed by INRAE (Institut national de recherche pour l’agriculture, 784 

l’alimentation et l’environnement). ASCAT IB VOD will be made available at the INRAE 785 

Bordeaux remote sensing lab website (https://ib.remote-sensing.inrae.fr/).  786 
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Appendix A. Vegetation variables used for validation 795 

A.1 Aboveground biomass 796 

Two static AGB benchmark maps were applied to assess the performance of IB VOD for 797 

monitoring the aboveground vegetation biomass. The first AGB map (referred to as Saatchi 798 
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AGB) was extracted from the 1 km resolution AGB dataset developed by Saatchi et al. (2011). 799 

We used the updated Saatchi AGB that is representative of AGB circa 2015 (Carreiras et al. 800 

2017; Saatchi et al. 2011).  801 

The second AGB map (Fig. 8 (f))  (referred to as CCI AGB) which has a spatial resolution of 802 

100 m was extracted from the European Space Agency's (ESA's) Climate Change Initiative 803 

(CCI) AGB dataset (Santoro and Cartus 2019). This dataset was produced using 2017 data from 804 

the Synthetic Aperture Radar (SAR) C-band Sentinel-1 and L-band Advanced Land Observing 805 

Satellite (ALOS-2) Phased Array L-band SAR (PALSAR-2). More details about this AGB map 806 

can be referred to Santoro and Cartus (2019). 807 

A.2 Lidar tree height 808 

Two kinds of tree height datasets were used to evaluate the IB VOD performance. The first 809 

dataset was developed by Simard et al. (2011) at 1-km resolution. It was generated using data 810 

collected in 2005 by the Geoscience Laser Altimeter System (GLAS) sensor. For the areas not 811 

directly covered by the lidar footprint, tree height was simulated with vegetation, topography 812 

and climatology data through Random Forest. The second dataset was a newly released product 813 

(Potapov et al. 2020) (Fig. 8 (g)). This 30 m resolution dataset was generated from Global 814 

Ecosystem Dynamics Investigation (GEDI) lidar measurements and the Landsat analysis-ready 815 

data (ARD) (Qiu et al. 2018) acquired in the year 2019.  816 

A.3 MODIS vegetation indices  817 

Three MODIS vegetation indices (VIs), NDVI, EVI and LAI, were used to evaluate the 818 

temporal performance of IB VOD. NDVI and EVI were obtained from MODIS MOD13A1 819 

version 6 product (Didan 2015) at a spatial resolution of 500 m and a temporal resolution of 16 820 

days. LAI data were obtained from MCD15A2H (Myneni et al., 2015) at a spatial resolution of 821 

500 m and a temporal resolution of 8 days. These MODIS VIs were used to test the IB VOD’s 822 
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sensitivity to the green photosynthetic activity of vegetation in both space and time.  NDVI is 823 

derived from the near-infrared and red frequency bands and presents saturation in areas with 824 

dense vegetation (Huete et al. 2002). Compared to NDVI, EVI is less prone to saturation as a 825 

band in the blue frequency was added in the calculation of the indices. Only VIs observations 826 

with the corresponding flag set to “good quality” were used. We then adopted an arithmetic 827 

averaging method to resample these two vegetation indices to the same projection with a spatial 828 

resolution of 0.25 degree. 829 

  830 
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Appendix Table 831 

    Appendix Table 1. Soil property data used to calibrate the soil model parameters 832 

ID Name Description Units 

1 AWCh1 
Available soil water capacity (volumetric fraction) with FC = pF 
2.0 

% 

2 AWCh2 
Available soil water capacity (volumetric fraction) with FC = pF 
2.3 

% 

3 AWCh3 
Available soil water capacity (volumetric fraction)  with FC = pF 
2.5 

% 

4 Bldfie Bulk density (fine earth) kg/m3 

5 Cecsol Cation Exchange Capacity of soil cmolc/m3 

6 Clyppt Weight percentage of the clay particles (<0.0002 mm) % 

7 Crfvol Volumetric percentage of coarse fragments (>2 mm) % 

8 Ocdens Soil organic carbon density kg/m3 

9 Ocstha Soil organic carbon stock ton/ha 

10 Orcdrc Soil organic carbon content Permille 

11 Phihox pH index measured in water solution pH 

12 Phikcl pH index measured in KCl solution pH 

13 Sltppt Weight percentage of the silt particles (0.0002–0.05 mm) % 

14 Sndppt Weight percentage of the sand particles (0.05–2 mm) % 

15 Wwp 
Available soil water capacity (volumetric fraction) 
until wilting point 

% 

16 mean_ST Mean value of soil temperature K 

17 std_ST Standard deviation of soil temperature K 

18 cv_ST Coefficient of variance of soil temperature / 

 833 

  834 
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  Appendix Table 2. Terrain data used to calibrate the soil model parameters 835 

ID Name Description   Units   

1 dem_mean Mean value of elevation m 

2 dem_std Standard deviation of elevation m 

3 dem_cv Coefficient of variance of elevation / 

4 Slope Surface gradient   degree 

5 TSC Measure of surface upwards convexity / 

6 TST Terrain surface texture / 

7 TRI Terrain ruggedness index / 

8 PlanCur Contour curvature / 

9 ProfCur Slope profile curvature / 

 836 

 837 

References 838 

Al-Yaari, A., Wigneron, J.P., Ciais, P., Reichstein, M., Ballantyne, A., Ogee, J., Ducharne, A., Swenson, J.J., 839 

Frappart, F., Fan, L., Wingate, L., Li, X., Hufkens, K., & Knapp, A.K. (2020). Asymmetric responses of 840 

ecosystem productivity to rainfall anomalies vary inversely with mean annual rainfall over the 841 

conterminous United States. Glob Chang Biol, 26, 6959-6973 842 

Asner, G.P., Clark, J.K., Mascaro, J., Galindo García, G.A., Chadwick, K.D., Navarrete Encinales, D.A., 843 

Paez-Acosta, G., Cabrera Montenegro, E., Kennedy-Bowdoin, T., Duque, Á., Balaji, A., von 844 

Hildebrand, P., Maatoug, L., Phillips Bernal, J.F., Yepes Quintero, A.P., Knapp, D.E., García 845 

Dávila, M.C., Jacobson, J., & Ordóñez, M.F. (2012). High-resolution mapping of forest carbon 846 

stocks in the Colombian Amazon. Biogeosciences, 9, 2683-2696Attema, E.P.W., & Ulaby, F.T. 847 

(1978). Vegetation modeled as a water cloud. Radio Science, 13, 357-364 848 

Baghdadi, N., Cerdan, O., Zribi, M., Auzet, V., Darboux, F., El Hajj, M., & Kheir, R.B. (2008). 849 

Operational performance of current synthetic aperture radar sensors in mapping soil surface 850 



47 

 

characteristics in agricultural environments: application to hydrological and erosion modelling. 851 

Hydrological Processes, 22, 9-20 852 

Baghdadi, N., El Hajj, M., Zribi, M., & Bousbih, S. (2017). Calibration of the Water Cloud Model at C-Band 853 

for Winter Crop Fields and Grasslands. Remote Sensing, 9 854 

Baghdadi, N.N., El Hajj, M., Zribi, M., & Fayad, I. (2016). Coupling SAR C-Band and Optical Data for 855 

Soil Moisture and Leaf Area Index Retrieval Over Irrigated Grasslands. IEEE Journal of Selected 856 

Topics in Applied Earth Observations and Remote Sensing, 9, 1229-1243 857 

Bai, X., He, B., Li, X., Zeng, J., Wang, X., Wang, Z., Zeng, Y., & Su, Z. (2017). First Assessment of Sentinel-858 

1A Data for Surface Soil Moisture Estimations Using a Coupled Water Cloud Model and Advanced 859 

Integral Equation Model over the Tibetan Plateau. Remote Sensing, 9, 714 860 

Baur, M.J., Jagdhuber, T., Feldman, A.F., Akbar, R., & Entekhabi, D. (2019). Estimation of relative canopy 861 

absorption and scattering at L-, C- and X-bands. Remote Sensing of Environment, 233 862 

Beck, H.E., Pan, M., Miralles, D.G., Reichle, R.H., Dorigo, W.A., Hahn, S., Sheffield, J., Karthikeyan, L., 863 

Balsamo, G., Parinussa, R.M., van Dijk, A.I.J.M., Du, J., Kimball, J.S., Vergopolan, N., & Wood, E.F. 864 

(2020). Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements 865 

from 826 sensors 866 

Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A.J., Poli, P., & Sato, H. (2011). 867 

Atmospheric conservation properties in ERA-Interim. Quarterly Journal of the Royal Meteorological 868 

Society, 137, 1381-1399 869 

Bindlish, R., & Barros, A.P. (2001). Parameterization of vegetation backscatter in radar-based, soil moisture 870 

estimation. Remote Sensing of Environment, 76, 130-137 871 

Bracaglia, M., Ferrazzoli, P., & Guerriero, L. (1995). A fully polarimetric multiple scattering model for crops. 872 

Remote Sensing of Environment, 54, 170-179 873 

Brandt, M., Wigneron, J.P., Chave, J., Tagesson, T., Penuelas, J., Ciais, P., Rasmussen, K., Tian, F., Mbow, 874 

C., Al-Yaari, A., Rodriguez-Fernandez, N., Schurgers, G., Zhang, W., Chang, J., Kerr, Y., Verger, A., 875 

Tucker, C., Mialon, A., Rasmussen, L.V., Fan, L., & Fensholt, R. (2018). Satellite passive microwaves 876 

reveal recent climate-induced carbon losses in African drylands. Nat Ecol Evol, 2, 827-835 877 



48 

 

Carreiras, J.M.B., Quegan, S., Le Toan, T., Ho Tong Minh, D., Saatchi, S.S., Carvalhais, N., Reichstein, M., 878 

& Scipal, K. (2017). Coverage of high biomass forests by the ESA BIOMASS mission under defense 879 

restrictions. Remote Sensing of Environment, 196, 154-162 880 

Chaparro, D., Duveiller, G., Piles, M., Cescatti, A., Vall-llossera, M., Camps, A., & Entekhabi, D. 881 

(2019). Sensitivity of L-band vegetation optical depth to carbon stocks in tropical forests: a 882 

comparison to higher frequencies and optical indices. Remote Sensing of Environment, 883 

232Chaparro, D., Piles, M., Vall-llossera, M., Camps, A., Konings, A.G., & Entekhabi, D. (2018). L-884 

band vegetation optical depth seasonal metrics for crop yield assessment. Remote Sensing of 885 

Environment, 212, 249-259 886 

Chen, K.S., Tzong-Dar, W., Leung, T., Qin, L., Jiancheng, S., & Fung, A.K. (2003). Emission of rough 887 

surfaces calculated by the integral equation method with comparison to three-dimensional moment 888 

method simulations. IEEE Transactions on Geoscience and Remote Sensing, 41, 90-101 889 

Chen, Y., Feng, X., & Fu, B. (2021). An improved global remote-sensing-based surface soil moisture 890 

(RSSSM) dataset covering 2003–2018. Earth System Science Data, 13, 1-31Conrad, O., Bechtel, B., 891 

Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., & Böhner, J. (2015). System 892 

for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8, 1991-893 

2007 894 

Danielson, J.J., & Gesch, D.B. (2011). Global multi-resolution terrain elevation data 2010 (GMTED2010). 895 

US Department of the Interior, US Geological Survey 896 

Dente, L., Ferrazzoli, P., Su, Z., van der Velde, R., & Guerriero, L. (2014). Combined use of active and 897 

passive microwave satellite data to constrain a discrete scattering model. Remote Sensing of 898 

Environment, 155, 222-238 899 

Didan, K. (2015). MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V006. 900 

In: NASA EOSDIS Land Processes DAAC 901 

DiMiceli, C., Carroll, M., Sohlberg, R., Kim, D.H., Kelly, M., & Townshend, J.R.G. (2015). MOD44B 902 

MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006. In: NASA 903 

EOSDIS Land Processes DAAC 904 



49 

 

Dorigo, W., Himmelbauer, I., Aberer, D. et al. (2021). The International Soil Moisture Network: serving 905 

Earth system science for over a decade. Hydrology and Earth system Science, in press,   906 

https://doi.org/10.5194/hess-2021-2 907 

Du, J., Kimball, J.S., Jones, L.A., Kim, Y., Glassy, J., & Watts, J.D. (2017). A global satellite environmental 908 

data record derived from AMSR-E and AMSR2 microwave Earth observations. Earth System Science 909 

Data, 9, 791-808 910 

Dubois, P.C., van Zyl, J., & Engman, T. (1995). Measuring soil moisture with imaging radars. IEEE 911 

Transactions on Geoscience and Remote Sensing, 33, 915-926 912 

Duncanson, L., Neuenschwander, A., Hancock, S., Thomas, N., Fatoyinbo, T., Simard, M., Silva, C.A., 913 

Armston, J., Luthcke, S.B., Hofton, M., Kellner, J.R., & Dubayah, R. (2020). Biomass estimation from 914 

simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. 915 

Remote Sensing of Environment, 242 916 

El Hajj, M., Baghdadi, N., Wigneron, J.-P., Zribi, M., Albergel, C., Calvet, J.-C., & Fayad, I. (2019). First 917 

Vegetation Optical Depth Mapping from Sentinel-1 C-band SAR Data over Crop Fields. Remote 918 

Sensing, 11 919 

Entekhabi, D., Njoku, E.G., O'Neill, P.E., Kellogg, K.H., Crow, W.T., Edelstein, W.N., Entin, J.K., 920 

Goodman, S.D., Jackson, T.J., Johnson, J., Kimball, J., Piepmeier, J.R., Koster, R.D., Martin, N., 921 

McDonald, K.C., Moghaddam, M., Moran, S., Reichle, R., Shi, J.C., Spencer, M.W., Thurman, S.W., 922 

Tsang, L., & Van Zyl, J. (2010). The Soil Moisture Active Passive (SMAP) Mission. Proceedings of the 923 

IEEE, 98, 704-716 924 

Fan, L., Wigneron, J.P., Ciais, P., Chave, J., Brandt, M., Fensholt, R., Saatchi, S.S., Bastos, A., Al-Yaari, A., 925 

Hufkens, K., Qin, Y., Xiao, X., Chen, C., Myneni, R.B., Fernandez-Moran, R., Mialon, A., Rodriguez-926 

Fernandez, N.J., Kerr, Y., Tian, F., & Penuelas, J. (2019). Satellite-observed pantropical carbon 927 

dynamics. Nat Plants, 5, 944-951 928 

Fan, L., Wigneron, J.P., Xiao, Q., Al-Yaari, A., Wen, J., Martin-StPaul, N., Dupuy, J.L., Pimont, F., Al Bitar, 929 

A., Fernandez-Moran, R., & Kerr, Y.H. (2018). Evaluation of microwave remote sensing for monitoring 930 

live fuel moisture content in the Mediterranean region. Remote Sensing of Environment, 205, 210-223 931 



50 

 

Fan, L., Xiao, Q., Wen, J., Liu, Q., Jin, R., You, D., & Li, X. (2015). Mapping High-Resolution Soil Moisture 932 

over Heterogeneous Cropland Using Multi-Resource Remote Sensing and Ground Observations. Remote 933 

Sensing, 7, 13273-13297 934 

Feldman, A.F., Akbar, R., & Entekhabi, D. (2018). Characterization of higher-order scattering from 935 

vegetation with SMAP measurements. Remote Sensing of Environment, 219, 324-338 936 

Fernandez-Moran, R., Al-Yaari, A., Mialon, A., Mahmoodi, A., Al Bitar, A., De Lannoy, G., Rodriguez-937 

Fernandez, N., Lopez-Baeza, E., Kerr, Y., & Wigneron, J.-P. (2017). SMOS-IC: An Alternative SMOS 938 

Soil Moisture and Vegetation Optical Depth Product. Remote Sensing, 9, 457 939 

Ferrazzoli, P., Luzi, G., Paloscia, S., Pampaloni, P., Schiavon, G., & Solimini, D. (1989). Comarison between 940 

the microwave emissivity and backscatter coefficient of crops. IEEE Transactions on Geoscience and 941 

Remote Sensing, 27, 772-778 942 

Figa-Saldaña, J., Wilson, J.J.W., Attema, E., Gelsthorpe, R., Drinkwater, M.R., & Stoffelen, A. (2014). The 943 

advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for 944 

European wind scatterometers. Canadian Journal of Remote Sensing, 28, 404-412 945 

Forkel, M., Dorigo, W., Lasslop, G., Chuvieco, E., Hantson, S., Heil, A., Teubner, I., Thonicke, K., & 946 

Harrison, S.P. (2019). Recent global and regional trends in burned area and their compensating 947 

environmental controls. Environmental Research Communications, 1 948 

Frappart, F., Wigneron, J.-P., Li, X., Liu, X., Al-Yaari, A., Fan, L., Wang, M., Moisy, C., Le Masson, E., 949 

Aoulad Lafkih, Z., Vallé, C., Ygorra, B., & Baghdadi, N. (2020). Global Monitoring of the Vegetation 950 

Dynamics from the Vegetation Optical Depth (VOD): A Review. Remote Sensing, 12 951 

Frolking, S., Milliman, T., Palace, M., Wisser, D., Lammers, R., & Fahnestock, M. (2011). Tropical forest 952 

backscatter anomaly evident in SeaWinds scatterometer morning overpass data during 2005 drought in 953 

Amazonia. Remote Sensing of Environment, 115, 897-907 954 

Fung, A.K., Li, Z., & Chen, K.S. (1992). Backscattering from a randomly rough dielectric surface. IEEE 955 

Transactions on Geoscience and Remote Sensing, 30, 356-369 956 

Fung, A.K., & Eom, H. (1985). A Comparison between Active and Passive Sensing of Soil Moisture from 957 

Vegetated Terrains. IEEE Transactions on Geoscience and Remote Sensing, GE-23, 768-775 958 

Grant, J.P., Wigneron, J.P., De Jeu, R.A.M., Lawrence, H., Mialon, A., Richaume, P., Al Bitar, A., Drusch, 959 

M., van Marle, M.J.E., & Kerr, Y. (2016). Comparison of SMOS and AMSR-E vegetation optical depth 960 



51 

 

to four MODIS-based vegetation indices. Remote Sensing of Environment, 172, 87-100Guio Blanco, 961 

C.M., Brito Gomez, V.M., Crespo, P., & Ließ, M. (2018). Spatial prediction of soil water retention in a 962 

Páramo landscape: Methodological insight into machine learning using random forest. Geoderma, 316, 963 

100-114 964 

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using 965 

support vector machines. Machine Learning, 46, 389-422 966 

Hahn, S., Reimer, C., Vreugdenhil, M., Melzer, T., & Wagner, W. (2017). Dynamic Characterization of the 967 

Incidence Angle Dependence of Backscatter Using Metop ASCAT. IEEE Journal of Selected Topics in 968 

Applied Earth Observations and Remote Sensing, 10, 2348-2359 969 

Hengl, T., Mendes de Jesus, J., Heuvelink, G.B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotic, A., 970 

Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B., Guevara, M.A., Vargas, R., 971 

MacMillan, R.A., Batjes, N.H., Leenaars, J.G., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B. 972 

(2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS One, 12, 973 

e0169748 974 

Hersbach, H., Stoffelen, A., & de Haan, S. (2007). An improved C-band scatterometer ocean geophysical 975 

model function: CMOD5. Journal of Geophysical Research, 112 976 

Hosseini, M., McNairn, H., Merzouki, A., & Pacheco, A. (2015). Estimation of Leaf Area Index (LAI) in 977 

corn and soybeans using multi-polarization C- and L-band radar data. Remote Sensing of Environment, 978 

170, 77-89 979 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., & Ferreira, L.G. (2002). Overview of the 980 

radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of 981 

Environment, 83, 195-213 982 

Imaoka, K., Maeda, T., Kachi, M., Kasahara, M., Ito, N., & Nakagawa, K. (2012). Status of AMSR2 983 

instrument on GCOM-W1. In, Earth Observing Missions and Sensors: Development, Implementation, 984 

and Characterization II (p. 852815): International Society for Optics and Photonics 985 

Jackson, T.J., & Schmugge, T.J. (1991). Vegetation effects on the microwave emission of soils. Remote 986 

Sensing of Environment, 36, 203-212Jones, M.O., Jones, L.A., Kimball, J.S., & McDonald, K.C. (2011). 987 

Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote 988 

Sensing of Environment, 115, 1102-1114 989 



52 

 

Karthikeyan, L., Pan, M., Konings, A.G., Piles, M., Fernandez-Moran, R., Nagesh Kumar, D., & Wood, E.F. 990 

(2019). Simultaneous retrieval of global scale Vegetation Optical Depth, surface roughness, and soil 991 

moisture using X-band AMSR-E observations. Remote Sensing of Environment, 234 992 

Karthikeyan, L., Pan, M., Nagesh Kumar, D., & Wood, E.F. (2020). Effect of Structural Uncertainty in 993 

Passive Microwave Soil Moisture Retrieval Algorithm. Sensors (Basel), 20 994 

Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M.-J., Font, J., 995 

Reul, N., Gruhier, C., Juglea, S.E., Drinkwater, M.R., Hahne, A., Martín-Neira, M., & Mecklenburg, S. 996 

(2010). The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle. 997 

Proceedings of the IEEE, 98, 666-687 998 

Koike, T., Nakamura, Y., Kaihotsu, I., Davaa, G., Matsuura, N., Tamagawa, K., & Fujii, H. (2004). 999 

Development of an Advanced Microwave Scanning Radiometer (Amsr-E) Algorithm for Soil Moisture 1000 

and Vegetation Water Content. Proceedings of Hydraulic Engineering, 48, 217-222 1001 

Konings, A.G., & Gentine, P. (2017). Global variations in ecosystem-scale isohydricity. Glob Chang Biol, 1002 

23, 891-905 1003 

Konings, A.G., Piles, M., Rötzer, K., McColl, K.A., Chan, S.K., & Entekhabi, D. (2016). Vegetation optical 1004 

depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations. 1005 

Remote Sensing of Environment, 172, 178-189 1006 

Konings, A.G., Yu, Y., Xu, L., Yang, Y., Schimel, D.S., & Saatchi, S.S. (2017). Active microwave 1007 

observations of diurnal and seasonal variations of canopy water content across the humid African tropical 1008 

forests. Geophysical Research Letters 1009 

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate 1010 

classification updated. Meteorologische Zeitschrift, 15, 259-263 1011 

Lawrence, H., Wigneron, J.-P., Richaume, P., Novello, N., Grant, J., Mialon, A., Al Bitar, A., Merlin, 1012 

O., Guyon, D., Leroux, D., Bircher, S., & Kerr, Y. (2014). Comparison between SMOS Vegetation 1013 

Optical Depth products and MODIS vegetation indices over crop zones of the USA. Remote Sensing 1014 

of Environment, 140, 396-406 1015 

Li, X., Al-Yaari, A., Schwank, M., Fan, L., Frappart, F., Swenson, J., & Wigneron, J.P. (2020a). Compared 1016 

performances of SMOS-IC soil moisture and vegetation optical depth retrievals based on Tau-Omega 1017 

and Two-Stream microwave emission models. Remote Sensing of Environment, 236 1018 



53 

 

Li, X., Wigneron, J.-P., Frappart, F., Fan, L., Ciais, P., Fensholt, R., Entekhabi, D., Brandt, M., Konings, 1019 

A.G., Liu, X., Wang, M., Al-Yaari, A., & Moisy, C. (2020b). Global-scale assessment and inter-1020 

comparison of recently developed/reprocessed microwave satellite vegetation optical depth products. 1021 

Remote Sensing of Environment 1022 

Li, Y., Guan, K., Gentine, P., Konings, A.G., Meinzer, F.C., Kimball, J.S., Xu, X., Anderegg, W.R.L., 1023 

McDowell, N.G., Martinez-Vilalta, J., Long, D.G., & Good, S.P. (2017). Estimating Global 1024 

Ecosystem Isohydry/Anisohydry Using Active and Passive Microwave Satellite Data. Journal of 1025 

Geophysical Research: Biogeosciences, 122, 3306-3321 1026 

Lievens, H., Martens, B., Verhoest, N.E.C., Hahn, S., Reichle, R.H., & Miralles, D.G. (2017). Assimilation 1027 

of global radar backscatter and radiometer brightness temperature observations to improve soil moisture 1028 

and land evaporation estimates. Remote Sensing of Environment, 189, 194-210 1029 

Liu, Y.Y., de Jeu, R.A.M., McCabe, M.F., Evans, J.P., & van Dijk, A.I.J.M. (2011). Global long-term passive 1030 

microwave satellite-based retrievals of vegetation optical depth. Geophysical Research Letters, 38 1031 

Liu, Y.Y., van Dijk, A.I.J.M., de Jeu, R.A.M., Canadell, J.G., McCabe, M.F., Evans, J.P., & Wang, G. (2015). 1032 

Recent reversal in loss of global terrestrial biomass. Nature Climate Change, 5, 470-474 1033 

Liu, Y.Y., van Dijk, A.I.J.M., McCabe, M.F., Evans, J.P., & de Jeu, R.A.M. (2013). Global vegetation 1034 

biomass change (1988-2008) and attribution to environmental and human drivers. Global Ecology and 1035 

Biogeography, 22, 692-705 1036 

Ma, C., Li, X., & McCabe, M.F. (2020). Retrieval of High-Resolution Soil Moisture through Combination 1037 

of Sentinel-1 and Sentinel-2 Data. Remote Sensing, 12 1038 

Ma, C.F., Li, X., & Wang, S.G. (2015). A Global Sensitivity Analysis of Soil Parameters Associated With 1039 

Backscattering Using the Advanced Integral Equation Model. IEEE Transactions on Geoscience and 1040 

Remote Sensing, 53, 5613-5623 1041 

Mankou, G.S., Ligot, G., Loubota Panzou, G.J., Boyemba, F., Loumeto, J.J., Ngomanda, A., Obiang, D., 1042 

Rossi, V., Sonke, B., Yongo, O.D., & Fayolle, A. (2021). Tropical tree allometry and crown allocation, 1043 

and their relationship with species traits in central Africa. Forest Ecology and Management, 1044 

493Moesinger, L., Dorigo, W., de Jeu, R., van der Schalie, R., Scanlon, T., Teubner, I., & Forkel, M. 1045 

(2020). The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth 1046 

System Science Data, 12, 177-196 1047 



54 

 

Myneni, R., Knyazikhin, Y., & Park, T. (2015). MCD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 1048 

8-day L4 Global 500m SIN Grid V006. In: NASA EOSDIS Land Processes DAAC 1049 

Naeimi, V., Scipal, K., Bartalis, Z., Hasenauer, S., & Wagner, W. (2009). An Improved Soil Moisture 1050 

Retrieval Algorithm for ERS and METOP Scatterometer Observations. IEEE Transactions on 1051 

Geoscience and Remote Sensing, 47, 1999-2013 1052 

Oh, Y., Sarabandi, K., & Ulaby, F.T. (1992). An empirical model and an inversion technique for radar 1053 

scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 30, 370-381 1054 

Owe, M., de Jeu, R., & Holmes, T. (2008). Multisensor historical climatology of satellite-derived global land 1055 

surface moisture. Journal of Geophysical Research, 113 1056 

Owe, M., de Jeu, R., & Walker, J. (2001). A methodology for surface soil moisture and vegetation optical 1057 

depth retrieval using the microwave polarization difference index. IEEE Transactions on Geoscience 1058 

and Remote Sensing, 39, 1643-1654 1059 

Parrens, M., Al Bitar, A., Mialon, A., Fernandez-Moran, R., Ferrazzoli, P., Kerr, Y., & Wigneron, J.P. (2017). 1060 

Estimation of the L-Band Effective Scattering Albedo of Tropical Forests Using SMOS Observations. 1061 

Ieee Geoscience and Remote Sensing Letters, 14, 1223-1227 1062 

Parrens, M., Wigneron, J.-P., Richaume, P., Mialon, A., Al Bitar, A., Fernandez-Moran, R., Al-Yaari, A., & 1063 

Kerr, Y.H. (2016). Global-scale surface roughness effects at L-band as estimated from SMOS 1064 

observations. Remote Sensing of Environment, 181, 122-136 1065 

Patton, J., & Hornbuckle, B. (2013). Initial Validation of SMOS Vegetation Optical Thickness in Iowa. Ieee 1066 

Geoscience and Remote Sensing Letters, 10, 647-651 1067 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, 1068 

P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & 1069 

Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning 1070 

Research, 12, 2825-2830 1071 

Pfeil, I., Wagner, W., Forkel, M., Dorigo, W., & Vreugdenhil, M. (2020). Does ASCAT observe the spring 1072 

reactivation in temperate deciduous broadleaf forests? Remote Sensing of Environment, 250 1073 

Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M.C., Kommareddy, A., Pickens, A., 1074 

Turubanova, S., Tang, H., Silva, C.E., Armston, J., Dubayah, R., Blair, J.B., & Hofton, M. (2020). 1075 



55 

 

Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of 1076 

Environment 1077 

Pulliainen, J.T., Heiska, K., Hyyppa, J., & Hallikainen, M.T. (1994). Backscattering properties of boreal 1078 

forests at the C- and X-bands. IEEE Transactions on Geoscience and Remote Sensing, 32, 1041-1050 1079 

Qiu, S., Lin, Y., Shang, R., Zhang, J., Ma, L., & Zhu, Z. (2018). Making Landsat Time Series Consistent: 1080 

Evaluating and Improving Landsat Analysis Ready Data. Remote Sensing, 11, 51 1081 

Qin, Y., Xiao, X., Wigneron, J.-P., Ciais, P., Brandt, M., Fan, L., Li, X., Crowell, S., Wu, X., Doughty, R., 1082 

Zhang, Y., Liu, F., Sitch, S., & Moore, B. (2021). Carbon loss from forest degradation exceeds that from 1083 

deforestation in the Brazilian Amazon. Nature Climate Change 1084 

Quesney, A. (2000). Estimation of Watershed Soil Moisture Index from ERS/SAR Data. Remote Sensing of 1085 

Environment, 72, 290-303 1086 

Rao, K., Anderegg, W.R.L., Sala, A., Martínez-Vilalta, J., & Konings, A.G. (2019). Satellite-based 1087 

vegetation optical depth as an indicator of drought-driven tree mortality. Remote Sensing of 1088 

Environment, 227, 125-136 1089 

Rodríguez-Fernández, N.J., Mialon, A., Mermoz, S., Bouvet, A., Richaume, P., Al Bitar, A., Al-Yaari, 1090 

A., Brandt, M., Kaminski, T., Le Toan, T., Kerr, Y.H., & Wigneron, J.-P. (2018). An evaluation of 1091 

SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-1092 

ground biomass in Africa. Biogeosciences, 15, 4627-4645 1093 

Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T., Salas, W., Zutta, B.R., Buermann, W., 1094 

Lewis, S.L., Hagen, S., Petrova, S., White, L., Silman, M., & Morel, A. (2011). Benchmark map of forest 1095 

carbon stocks in tropical regions across three continents. Proc Natl Acad Sci U S A, 108, 9899-9904 1096 

Santoro, M., Beaudoin, A., Beer, C., Cartus, O., Fransson, J.E.S., Hall, R.J., Pathe, C., Schmullius, C., 1097 

Schepaschenko, D., Shvidenko, A., Thurner, M., & Wegmüller, U. (2015). Forest growing stock volume 1098 

of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR. Remote 1099 

Sensing of Environment, 168, 316-334 1100 

Santoro, M., & Cartus, O. (2019). ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets 1101 

of forest above-ground biomass for the year 2017, v1. In: Centre for Environmental Data Analysis 1102 

Shamambo, D.C., Bonan, B., Calvet, J.-C., Albergel, C., & Hahn, S. (2019). Interpretation of ASCAT Radar 1103 

Scatterometer Observations Over Land: A Case Study Over Southwestern France. Remote Sensing, 11 1104 



56 

 

Simard, M., Pinto, N., Fisher, J.B., & Baccini, A. (2011). Mapping forest canopy height globally with 1105 

spaceborne lidar. Journal of Geophysical Research, 116 1106 

Steele-Dunne, S.C., Friesen, J., & van de Giesen, N. (2012). Using Diurnal Variation in Backscatter to Detect 1107 

Vegetation Water Stress. IEEE Transactions on Geoscience and Remote Sensing, 50, 2618-2629 1108 

Stoffelen, A., & Anderson, D. (1997). Scatterometer Data Interpretation: Measurement Space and Inversion. 1109 

Journal of Atmospheric and Oceanic Technology, 14, 1298-1313 1110 

Sulla-Menashe, D., & Friedl, M. (2019). MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 1111 

Global 500m SIN Grid V006. In: NASA EOSDIS Land Processes DAAC 1112 

Teubner, I.E., Forkel, M., Camps-Valls, G., Jung, M., Miralles, D.G., Tramontana, G., van der Schalie, R., 1113 

Vreugdenhil, M., Mösinger, L., & Dorigo, W.A. (2019). A carbon sink-driven approach to estimate gross 1114 

primary production from microwave satellite observations. Remote Sensing of Environment, 229, 100-1115 

113 1116 

Teubner, I.E., Forkel, M., Jung, M., Liu, Y.Y., Miralles, D.G., Parinussa, R., van der Schalie, R., 1117 

Vreugdenhil, M., Schwalm, C.R., Tramontana, G., Camps-Valls, G., & Dorigo, W.A. (2018). Assessing 1118 

the relationship between microwave vegetation optical depth and gross primary production. 1119 

International Journal of Applied Earth Observation and Geoinformation, 65, 79-91 1120 

Tian, F., Wigneron, J.P., Ciais, P., Chave, J., Ogee, J., Penuelas, J., Raebild, A., Domec, J.C., Tong, X., 1121 

Brandt, M., Mialon, A., Rodriguez-Fernandez, N., Tagesson, T., Al-Yaari, A., Kerr, Y., Chen, C., 1122 

Myneni, R.B., Zhang, W., Ardo, J., & Fensholt, R. (2018). Coupling of ecosystem-scale plant water 1123 

storage and leaf phenology observed by satellite. Nat Ecol Evol, 2, 1428-1435 1124 

Togliatti, K., Hartman, T., Walker, V.A., Arkebauer, T.J., Suyker, A.E., VanLoocke, A., & Hornbuckle, 1125 

B.K. (2019). Satellite L–band vegetation optical depth is directly proportional to crop water in the 1126 

US Corn Belt. Remote Sensing of Environment, 233Ulaby, F., Batlivala, P., & Dobson, M. (1978). 1127 

Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare 1128 

Soil. IEEE Transactions on Geoscience Electronics, 16, 286-295 1129 

Ulaby, F.T., Sarabandi, K., McDonald, K., Whitt, M., & Dobson, M.C. (2007). Michigan microwave canopy 1130 

scattering model. International Journal of Remote Sensing, 11, 1223-1253 1131 



57 

 

Verhoest, N.E., Lievens, H., Wagner, W., Alvarez-Mozos, J., Moran, M.S., & Mattia, F. (2008). On the Soil 1132 

Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic 1133 

Aperture Radar. Sensors (Basel), 8, 4213-4248 1134 

Vreugdenhil, M., Dorigo, W.A., Wagner, W., de Jeu, R.A.M., Hahn, S., & van Marle, M.J.E. (2016). 1135 

Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval. IEEE 1136 

Transactions on Geoscience and Remote Sensing, 54, 3513-3531 1137 

Vreugdenhil, M., Hahn, S., Melzer, T., BauerMarschallinger, B., Reimer, C., Dorigo, W.A., & Wagner, W. 1138 

(2017). Assessing Vegetation Dynamics Over Mainland Australia With Metop ASCAT. IEEE Journal 1139 

of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 2240-2248 1140 

Vreugdenhil, M., Navacchi, C., Bauer-Marschallinger, B., Hahn, S., Steele-Dunne, S., Pfeil, I., Dorigo, W., 1141 

& Wagner, W. (2020). Sentinel-1 Cross Ratio and Vegetation Optical Depth: A Comparison over 1142 

Europe. Remote Sensing, 12 1143 

Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., Figa-Saldaña, J., de Rosnay, P., Jann, 1144 

A., Schneider, S., Komma, J., Kubu, G., Brugger, K., Aubrecht, C., Züger, J., Gangkofner, U., 1145 

Kienberger, S., Brocca, L., Wang, Y., Blöschl, G., Eitzinger, J., & Steinnocher, K. (2013). The ASCAT 1146 

Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications. 1147 

Meteorologische Zeitschrift, 22, 5-33 1148 

Wagner, W., Lemoine, G., & Rott, H. (1999a). A Method for Estimating Soil Moisture from ERS 1149 

Scatterometer and Soil Data. Remote Sensing of Environment, 70, 191-207 1150 

Wagner, W., Noll, J., Borgeaud, M., & Rott, H. (1999b). Monitoring soil moisture over the Canadian Prairies 1151 

with the ERS scatterometer. IEEE Transactions on Geoscience and Remote Sensing, 37, 206-216 1152 

Wigneron, J.P., Ferrazzoli, P., Calvet, J.C., & Bertuzzi, P. (1999). A parametric study on passive and active 1153 

microwave observations over a soybean crop. IEEE Transactions on Geoscience and Remote Sensing, 1154 

37, 2728-2733 1155 

Wigneron, J.-P., Fouilhoux, M., Prévot, L., Chanzy, A., Olioso, A., Baghdadi, N., & King, C. (2002). 1156 

Monitoring sunflower crop development from C-band radar observations. Agronomie, 22, 587-595 1157 

Wigneron, J.-P., Li, X., Frappart, F., Fan, L., Al-Yaari, A., De Lannoy, G., Liu, X., Wang, M., Le Masson, 1158 

E., & Moisy, C. (2021). SMOS-IC data record of soil moisture and L-VOD: Historical development, 1159 

applications and perspectives. Remote Sensing of Environment, 254 1160 



58 

 

Wigneron, J.P., Fan, L., Ciais, P., Bastos, A., Brandt, M., Chave, J., Saatchi, S., Baccini, A., & Fensholt, R. 1161 

(2020). Tropical forests did not recover from the strong 2015-2016 El Nino event. Sci Adv, 6, eaay4603 1162 

Wigneron, J.P., Jackson, T.J., O'Neill, P., De Lannoy, G., de Rosnay, P., Walker, J.P., Ferrazzoli, P., 1163 

Mironov, V., Bircher, S., Grant, J.P., Kurum, M., Schwank, M., Munoz-Sabater, J., Das, N., Royer, A., 1164 

Al-Yaari, A., Al Bitar, A., Fernandez-Moran, R., Lawrence, H., Mialon, A., Parrens, M., Richaume, P., 1165 

Delwart, S., & Kerr, Y. (2017). Modelling the passive microwave signature from land surfaces: A review 1166 

of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms. 1167 

Remote Sensing of Environment, 192, 238-262 1168 

Wigneron, J.P., Waldteufel, P., Chanzy, A., Calvet, J.C., & Kerr, Y. (2000). Two-Dimensional Microwave 1169 

Interferometer Retrieval Capabilities over Land Surfaces (SMOS Mission). Remote Sensing of 1170 

Environment, 73, 270-282 1171 

Zribi, M., Muddu, S., Bousbih, S., Al Bitar, A., Tomer, S.K., Baghdadi, N., & Bandyopadhyay, S. (2019). 1172 

Analysis of L-Band SAR Data for Soil Moisture Estimations over Agricultural Areas in the Tropics. 1173 

Remote Sensing, 11 1174 

 1175 




