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Abstract 

Background: Mass spectrometry remains the privileged method to characterize pro-
teins. Nevertheless, most of the spectra generated by an experiment remain unidenti-
fied after their analysis, mostly because of the modifications they carry. Open Modi-
fication Search (OMS) methods offer a promising answer to this problem. However, 
assessing the quality of OMS identifications remains a difficult task.

Methods: Aiming at better understanding the relationship between (1) similarity of 
pairs of spectra provided by OMS methods and (2) relevance of their corresponding 
peptide sequences, we used a dataset composed of theoretical spectra only, on which 
we applied two OMS strategies. We also introduced two appropriately defined meas-
ures for evaluating the above mentioned spectra/sequence relevance in this context: 
one is a color classification representing the level of difficulty to retrieve the proper 
sequence of the peptide that generated the identified spectrum ; the other, called LIPR, 
is the proportion of common masses, in a given Peptide Spectrum Match (PSM), that 
represent dissimilar sequences. These two measures were also considered in conjunc-
tion with the False Discovery Rate (FDR).

Results: According to our measures, the strategy that selects the best candidate by 
taking the mass difference between two spectra into account yields better quality 
results. Besides, although the FDR remains an interesting indicator in OMS methods 
(as shown by LIPR), it is questionable: indeed, our color classification shows that a non 
negligible proportion of relevant spectra/sequence interpretations corresponds to 
PSMs coming from the decoy database.

Conclusions: The three above mentioned measures allowed us to clearly determine 
which of the two studied OMS strategies outperformed the other, both in terms of 
number of identifications and of accuracy of these identifications. Even though qual-
ity evaluation of PSMs in OMS methods remains challenging, the study of theoretical 
spectra is a favorable framework for going further in this direction.

Keywords: Mass spectrometry, Open Modification Search, Peptide identification, Blind 
search
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Background
Proteomics is at the core of various studies that aim at understanding the complexity of 
life. In particular, one of the objectives is to discover all the modifications that can affect 
proteins, and possibly result in a modulation or a total change of their cellular functions 
[1, 2]. Mass spectrometry in tandem MS mode (MS/MS) is the most powerful method 
to identify proteins and characterize their modifications on a large scale. However, it 
remains frustrating to observe that, in spite of an abundant literature on the subject, 
most of the spectra generated by this analytical technique—namely, tens of thousands 
of spectra per hour of analysis—are left unidentified after their analysis by a dedicated 
software. The reason behind this low rate of identification is likely due to the large pro-
portion of spectra generated from proteins carrying modifications [3]. Software usu-
ally infer the identification of an experimental spectrum from its similarity to reference 
spectra. When a peptide carries a modification, its mass is by nature modified. This mass 
modification prevents its identification by conventional methods, which compare each 
experimental spectrum with only a restricted set of reference spectra that approximately 
share the same mass in order to avoid excessive runtime. Some known modifications can 
be included in the modeling of reference spectra, but their number must remain low to 
circumscribe the search space.

In 2015, the study conducted by  Chick et  al.  [4] renewed the interest in so-called 
Open Modification Search (OMS) methods known since 2005 [5, 6], with the promise 
of revealing unexpected modifications which would have been lost otherwise, and con-
sequently gaining better rates of spectra identifications. OMS methods compare each 
experimental spectrum to all the reference spectra representing a proteome. Then, 
whereas conventional methods, by definition, try to identify pairs of spectra (experimen-
tal vs reference) that are supposed to represent the same chemical compound (i.e., an 
ideal reference spectrum is matched to its imperfect experimental counterpart), OMS 
methods allow matches between similar spectra that represent distinct chemical com-
pounds with unequal masses. As a result, this comparison produces a list of PSMs (Pep-
tide Spectrum Matches) per experimental spectrum, and a non-zero mass difference �m 
between the experimental spectrum and its associated peptide is assumed to be due to 
one or several modifications that differentiate them. Most of the time, only one PSM 
per experimental spectrum is reported: each experimental spectrum is associated to the 
most similar reference spectrum. Many scores exist to evaluate the similarity between 
two spectra, which all take into account, at a certain level, the number of peaks (or, 
equivalently, of masses) that are shared by the two spectra, a number called shared peaks 
count (SPC). Once the complete list of PSMs is sorted by score, a threshold based on a 
measure of statistical significance determines which PSMs are validated according to a 
false discovery rate (FDR) [7].

Since 2015, several very rapid OMS methods have been developed. For a few of them, 
the reference spectra come from consensus templates already observed, identified and 
stored in spectral librairies [8–11]; for others, the reference spectra, so-called theoretical 
spectra in that case, are generated from a protein database by simulating an ideal frag-
mentation of peptides (see Fig. 1) [12–14].

Besides the comparison of spectral pairs, some methods also associate pairs of spectra 
when they share sequence tags [15–17]. These methods have improved the identification 
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rate and as much as an almost twofold increase in the rate of identified spectra has 
been reported [15, 18]. However, despite the scientific relevance of better spectra iden-
tifications, OMS methods are still underused, notably because their reliability remains 
debated. It is therefore important to better describe the advantages and limitations of 
these methods. Because all OMS methods have in common that at some point, they 
must decide wether or not to use the information of �m within a PSM to infer a better 
identification, we focused our study on a thorough undertanding of two widely spread 
strategies to determine the best PSM for each experimental spectrum. In the first strat-
egy (called Strategy1 in this paper), the best PSM is chosen according to a score that does 
not take the �m into account. The second strategy (called Strategy2) tries to improve the 
alignment—and thus the score (Fig. 2)—of all the PSMs returned for a given experimen-
tal spectrum according to �m before the choice of the best PSM. In order to determine 
the most efficient strategy, a prerequisite was to be able to implement both strategies 
using the same software, which implies the availability of very efficient spectra compari-
son and alignment algorithms. The SpecOMS software [14], which we have previously 
developed, fulfills these conditions.

To compare in-depth the limits of each strategy, we decided to ground this study using 
the theoretical spectra derived from the human proteome, considering successively 
each theoretical spectrum in the role of an experimental spectrum. In such a way, we 
eliminate the inherent identification difficulties due to the imperfection of experimen-
tal spectra (noise, missing peaks, etc.) and concentrated on the benefits of each strat-
egy. Consequently, PSMs with �m  = 0 can only be explained by differences in terms of 
amino acids, namely insertions, deletions and/or substitutions of one or several amino 
acids. Note that any modification (whether it is a post-translational modification (PTM) 
or a sequence modification) induces the same number of peak shifts in a spectrum. 
Every PSM matching a peptide to itself was considered irrelevant and consequently for-
bidden. Thus, we challenged the two above strategies to discover many diverse modifi-
cations, while keeping a certain proximity between peptides (since they arise from the 
same proteome). As conventional methods do, many OMS methods estimate the FDR of 
their results with a target/decoy approach. We also used this approach to compare both 
strategies, even though it is still unclear whether or not this method underestimates the 

Fig. 1 Example of in silico generation of a theoretical spectrum. The theoretical spectrum of peptide EAEISEK 
is composed of masses of the two main types of ions obtained by mass spectrometry: the b series (blue 
table) and y series (red table). A b-ion contains the N-terminal part of the peptide and is numbered according 
to the peptide sequence, from left to right. A y-ion contains the C-terminal part of the peptide and is 
numbered backwards according to the peptide sequence, from right to left. Masses are given in Daltons
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incorrect identifications [19, 20]. That is why, we propose two additional measures of the 
PSM characteristics to evaluate their quality and compare the strategies.

Results
We successively implemented Strategy1 and Strategy2 (see “Methods” section) to com-
pare all the theoretical spectra generated from the human proteome (572,063 spectra) 
against a database merging the target and decoy human proteins (1,148,608 spectra). 
To denote unambiguously the role that each theoretical spectrum can alternately play, 
we call it bait when it plays the role of an experimental spectrum and hit when it rep-
resents the theoretical spectrum modeled from the protein database. By extension, we 
also designate by bait and hit the peptides that generated respectively these theoretical 
spectra. Any pair (bait,hit) having an SPC greater than or equal to our initial threshold 7 
(see “Methods” section) is called a candidate PSM. Any PSM returned by our software 
will be called best PSM. On the one hand, Strategy1 selects the best hit according to the 
raw SPC score, computed without taking into account the observed �m . On the other 
hand, Strategy2 iteratively tests, on each possible amino acid and at the N-terminal and 
C-terminal sides of the peptide, whether a modification of mass �m could improve the 
alignment between the two spectra [21]. In this latter case, a new score shift SPC is com-
puted, which corresponds to the number of shared masses after realignement, and the 
best PSM is selected according to this new score.

The results are summarized in Tables 1 and 2. In each of the two strategies, SpecOMS 
reported 455,404 best PSMs structured in the form of tuples (bait,hit,SPC,�m ), where 
(a) hit is the best candidate for bait (depending on the selected strategy), (b) SPC is the 
number of shared masses between bait and hit (according to raw SPC in Strategy1 and to 

Fig. 2 MS/MS spectra matches and their peptide sequences. b-ions are displayed in blue, y-ions in red, 
and matches between spectra in dashed lines. Intensities of all peaks are set to an arbitrary unit value in 
theoretical spectra. The EAEDISEK MS/MS spectrum (in the middle) shares 7 masses (black dashed lines) 
with the native EAEISEK spectrum (above). After a shift of �m at position 3 in EAEISEK (below), 8 new masses 
match with EAEDISEK (as shown in green), and one match is removed (grey dashed line). The SPC is then 
improved from 7 (raw SPC) to 14 (shift SPC)
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shift SPC in Strategy2), (c) a mass difference of �m (expressed in Daltons) exists between 
bait and hit—more precisely �m is equal to mass of bait minus mass of hit.

Table 1 Number of PSMs obtained by Strategy1 according to raw SPC 

The best PSMs provided by SpecOMS are separated into three groups based on �m , and subdivided in each group by the 
origin of the hit (target or decoy database). An FDR < 1% is reached whenever  raw SPC is greater than or equal to 17 (row in 
bold)

Min  raw SPC �m = 0 �m < 0 �m > 0 Total

#target #decoy #target #decoy #target #decoy #target #decoy FDR(%)

7 71,852 87,705 88,895 39,432 107,842 59,678 268,589 186,815 41.02

8 71,852 87,705 55,874 12,352 61,225 19,550 188,951 119,607 38.76

9 32,972 32,740 41,378 3874 40,085 4822 114,435 41,436 26.58

10 32,970 32,739 31,973 868 30,245 1026 95,188 34,633 26.68

11 10,918 11,209 26,095 310 24,547 305 61,560 11,824 16.11

12 10,918 11,208 21,553 112 20,313 94 52,784 11,414 17.78

13 2571 1180 17,893 46 16,939 34 37,403 1260 3.26

14 2571 1180 14,955 22 14,243 17 31,769 1219 3.7

15 1137 380 12,352 9 11,818 9 25,307 398 1.55

16 1137 380 10,239 6 9801 5 21,177 391 1.81

17 672 61 8403 5 8085 4 17,160 70 0.41
18 672 61 6907 4 6662 3 14,241 68 0.48

19 495 49 5590 2 5413 1 11,498 52 0.45

20 495 49 4557 1 4415 1 9467 51 0.54

Table 2 Number of PSMs obtained by Strategy2 according to shift SPC 

The best PSMs provided by SpecOMS are separated into three groups based on �m , and subdivided in each group by the 
origin of the hit (target or decoy database). An FDR < 1% is reached whenever  shift SPC is greater than or equal to 21 (row 
in bold). Only results for odd minimum  shift SPC are displayed here: indeed,  shift SPC is always even, since a match always 
involves both a b-ion and a y-ion after realignment. The results we obtain are thus the same for consecutive odd and even  
shift SPC (except for a few exceptions due to overlapping masses)

Min  shift SPC �m= 0 �m < 0 �m > 0 Total

#target #decoy #target #decoy #target #decoy #target #decoy FDR(%)

7 14,207 17,401 145,801 86,218 122,479 69,298 282,487 17,2917 37.97

9 5132 4787 145,756 86,183 122,465 69,287 273,353 160,257 36.96

11 1944 1793 144,795 85,247 121,833 68,671 268,572 155,711 36.7

13 721 343 139,895 80,327 119,006 65,901 259,622 146,571 36.08

15 496 187 116,674 61,154 110,457 58,923 227,627 120,264 34.57

17 341 42 58,584 130,53 55,297 130,52 114,222 26,147 18.63

19 250 36 37,840 1681 35,439 1647 73,529 3364 4.37

21 201 12 29,675 271 27,908 251 57,784 534 0.92
23 160 10 24,262 87 22,881 82 47,303 179 0.38

25 131 5 20,036 35 18,910 36 39,077 76 0.19

27 108 4 16,686 18 15,792 14 32,586 36 0.11

29 92 2 13,835 12 13,120 9 27,047 23 0.08

31 67 2 11,345 4 10,801 5 22,213 11 0.05

33 54 0 9314 2 8888 3 18,256 5 0.03

35 44 0 7608 2 7296 2 14,948 4 0.03

37 39 0 6231 2 5989 2 12,259 4 0.03

39 17 0 5008 1 4832 1 9857 2 0.02
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About 80% of the 572,063 tryptic peptides from the human proteome share at least 7 
peaks with any other peptide, and about 23% of them share at least 10 peaks (target or 
decoy).

Since the number of best PSMs obtained by SpecOMS only depends on the number 
of pairs of spectra that initially share at least 7 masses (7 being the threshold parameter 
chosen in this study, see “Methods” section), the number of best PSMs remains iden-
tical in both strategies. By contrast, Strategy1 and Strategy2 provide dissimilar sets of 
best PSMs, that we respectively named PSM1 and PSM2 (see Fig. 6, “Methods” section). 
About 37% of the PSMs (167,291 baits) differ between both strategies when the initial 
SPC threshold is set to 7. We separated PSM1 and PSM2 into 3 groups according to �m : 
G1 is the group of PSMs such that �m = 0 (i.e., the bait and the hit have the same mass), 
G2 is the group such that �m > 0 (the mass of the bait exceeds the mass of the hit) and 
G3 is the group such that �m < 0 (the mass of the hit exceeds the mass of the bait). 
Note that when �m  = 0 in Strategy2, the score of the corresponding PSMs is likely to 
increase, while the score of PSMs with �m = 0 remains unchanged (since no realign-
ment is possible). As a result, many candidate PSMs selected with �m = 0 in Strategy1 
has been overpassed by PSMs associated to �m  = 0 in Strategy2 (127,949 PSMs). Next, 
we evaluated the confidence of the results with the typical target-decoy approach [7] and 
compute the minimum similarity score that guarantees a FDR usually accepted by users. 
Respectively to a FDR < 1%, Strategy1 validates 17,160 PSMs with a minimal raw SPC of 
17 (i.e. considering best PSMs for which raw SPC ≥ 17), while Strategy2 validates 57,784 
PSMs with a minimal shift SPC of 21 (i.e. considering best PSMs for which shift SPC 
≥ 21). Strategy2 recruits more than three times more PSMs than Strategy1 so, we can 
conclude that Strategy2 behaves better than Strategy1 according to the number of vali-
dated PSMs. Thus, 3% to 10% of the theoretical spectra have at least one “neighbor pep-
tide” that shares a sufficient number of masses so that their similarity is not estimated to 
be considered as the result of chance. It must be remembered that a hit is supposed to 
directly identify a bait for PSMs with �m = 0 . We know that it cannot be the case in our 
dataset, since we set SpecOMS so as to forbid PSMs involving the same peptide. Indeed, 
very few PSMs were validated by the target-decoy method in G1 (672 PSMS with Strat-
egy1, 201 PSMs with Strategy2), which is consistent with the composition of this group. 
On the opposite, the G2 and G3 groups represent most of the validated PSMs, but one 
may wonder to what extent the information given by these PSMs is enough to restore 
the correct amino acid sequence of the baits—a sine qua non condition to consider a 
posteriori an identification as correct.

To answer this question, we proposed new criteria to measure the quality of iden-
tifications. Knowing exactly which peptide generated each bait, we should be able to 
accurately assess the effectiveness of each strategy. Firstly, we defined a new classi-
fication that reflects the level of difficulty for a user or software to retrieve the bait 
sequence using both the hit sequence, the value of �m and the shift location. PSMs 
with �m  = 0 can only be explained by differences in terms of amino acid sequences. 
Then, by applying one or several editing operations (insertion(s), deletion(s), and/or 
substitution(s)), the hit can always be transformed into the bait. Given a PSM, if the 
bait can be deduced from the hit without any ambiguity in just one editing operation 
specified by �m , we classified this PSM as Green. However, when �m corresponds 
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to an insertion of several amino acids, this is not enough to reconstruct the sequence 
of the bait without ambiguity—several permutations of amino acids can lead to the 
same �m . In this case, we classified the PSM as Orange. We classified all other PSMs 
as Red (see “Methods” section). As a result, the Red class contains a large variety of 
PSMs: those that require several to many editing operations to transform the bait into 
the hit (in other words, bait and hit sequences are very dissimilar), but also those 
whose sequences may be close, but that contain permutations of amino acids that are 
difficult to infer from �m . In particular, PSMs with �m = 0 are obviously classified 
as Red, because the hit and the bait are different and no realignment is possible. An 
illustration of the color classification containing more examples is given in Fig. 3.

Secondly, we introduced a new feature, which we call the  Low Information Peaks 
Rate (LIPR), that measures, for a given PSM, the proportion of masses that are shared 
by two spectra but correspond to different amino acid sequences (see “Methods” sec-
tion). In summary, the higher this value, the less sequence information the PSM car-
ries, in the sense that proportionally many shared peaks correspond to distinct amino 
acid sequences.

We present the distributions of the sets PSM1 and PSM2 obtained respectively by 
Strategy1 and Strategy2 among the 3 color classes, as well as the evaluation of the 
LIPR feature, in Figs. 4 and 5 . It can be seen that, globally, both strategies behave in 
a similar fashion, but at 1% FDR, Strategy2 validates roughly three times more Green 
PSMs than Strategy1 (27,211 vs 9153). Thus, at first glance, the number of additional 
identifications obtained by Strategy2 (compared to Strategy1) does not come at the 
cost of a deterioration of the quality of the results.

In terms of LIPR, it can be noted that its average value is higher for PSM1 (38.5% for 
PSM1 vs 22.97% for PSM2 ). Generally speaking, in both strategies the LIPR decreases 

Fig. 3 Illustration of the Green/Orange/Red classification of PSMs. The first two rows present PSMs with a bait 
unambiguously deductible from the information given by the PSM. Such PSMs are classified as Green. In the 
first example, �m corresponds to the mass of S, which can thus be added in the hit at the given location to 
retrieve the bait. In the second example, the absolute value of �m corresponds to the mass of EPPNPE, which 
can be deleted from the hit to retrieve the bait. In the third row, �m can correspond to two possible amino 
acid sequences (VH or HV). Such PSM is thus classified as Orange. In the last three rows, transforming hit into 
bait is more difficult because there is too much ambiguity, although sequences may be close as in the first 
red row. In all cases, such PSMs are classified as Red
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when the minimum SPC increases. At a 1% FDR threshold, results are quite similar 
for both strategies (3.93% for PSM1 vs 2.53% for PSM2).

A strong difference concerning LIPR appears between target and decoy PSMs, and this 
phenomenon is present in both strategies (results not shown). The average LIPR of target 
PSMs in PSM1 is 31%, whereas it reaches 49% in decoy PSMs. This difference increases 
with the minimum SPC that is observed, and the LIPR suddenly drops near the 1% FDR 
threshold ; for instance, for  raw SPC ≥ 15 in PSM1 , the average LIPR of decoy PSMs is 
64% whereas it is 4% for target PSMs. The LIPR can thus be seen as a way to capture the 
“randomness” of decoy PSMs, for which matches between peaks that correspond to dif-
ferent sequences are much more common than in target PSMs, especially for PSMs with 
high SPC values.

To highlight the differences between the PSMs provided by each strategy, we isolated 
PSMs specific to Strategy1 (a set of PSMs called SS1 ) from PSMs specific to Strategy2 (a 

Min
raw SPC

#Green
PSMs

#Orange
PSMs

#Red
PSMs Total LIPR (avg %)

7 51562 28438 375404 455404 38.5
10 29697 10160 89964 129821 35.79
15 12852 4438 8415 25705 5.05
17 9153 3071 5006 17230 3.93
20 5460 1676 2382 9518 4.73

Fig. 4 Color classification and LIPR for Strategy1 ( PSM1 ). Number of PSMs in the three color categories and 
average LIPR according to minimum  raw SPC (left). Percentage of PSMs in the three color categories (Green: 
solid line, Orange: dotted and dashed line, Red: dashed line) according to  raw SPC (right). The vertical line is 
located at FDR < 1% (raw SPC = 17)

Min
shift SPC

#Green
PSMs

#Orange
PSMs

#Red
PSMs Total LIPR (avg %)

7 110279 28724 316401 455404 22.97
10 110279 28724 294605 433608 20.72
15 75330 22763 249798 347891 18.29
20 32866 9999 34028 76893 4.74
21 27211 8334 22773 58318 2.53
25 19176 6022 13955 39153 1.79
30 13734 4375 8960 27069 1.62
35 8108 2496 4348 14952 1.36
40 5684 1670 2505 9859 1.28

Fig. 5 Color classification and LIPR for Strategy2 ( PSM2 ). Number of PSMs in the three color categories and 
average LIPR according to minimum  shift SPC (left). Percentage of PSMs in the three color categories (Green: 
solid line, Orange: dotted and dashed line, Red: dashed line) according to  shift SPC (right). The vertical line is 
located at FDR < 1% (shift SPC = 21)
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set of PSMs called SS2 ). Since SS1 and SS2 are exactly what differentiates  Strategy1 from  
Strategy2, highlighting the main differences (or similarities) between these two sets is 
particularly informative. It should also be noted that this comparison can only be done 
at SPC = 7, thus with the whole set of (specific) PSMs, since  raw SPC and  shift SPC are 
by definition distinct scores.

The number of PSMs in each color class, as well as the average LIPR for SS1 and SS2 are 
displayed in Table 3. We can clearly see that Strategy2 contains many more PSMs clas-
sified as Green, compared to Strategy1 (more than 16 times more). The average LIPR is 
also much higher in SS1 (61.7%) than in SS2 (19.44%).

The results we obtain concerning the color classification and LIPR can be interpreted 
in two different manners. First, they can be considered independently of the FDR, based 
on the argument that the FDR is a measure that remains debated in OMS methods. 
Based on the results presented in Table 3, it can be seen that Strategy2 clearly outper-
forms Strategy1. Another way to consider these two indicators is to compare them tak-
ing the FDR into account (namely, at an FDR less than 1%). In that case (see Figs. 4 and 
5) if Strategy2 still outperforms Strategy1 in terms of number of PSMs (roughly 3 times 
more Green or Orange PSMs in Strategy2 than in Strategy1), the results in terms of per-
centage are in favour of Strategy1 (70.9% of the PSMs are Green or Orange in Strategy1 
vs 60.9% for Strategy2). However, the fact that our color classification marks as Red pro-
portionally more PSMs from Strategy2 than from Strategy1 must be put into perspective 
with a lower LIPR value associated to Strategy2, indicating a close proximity between 
the bait and the hit. So, a large number of these Red PSMs are likely due to a very small 
number of editing operations like permutations in sequences. Then, a deeper analysis of 
the Red category should convert, with minimal additional computational efforts, many 
Red PSMs into Green or Orange PSMs. Besides, we can note the high proportion of 
PSMs from the human proteome classified as Green when SPC ≥ 7 . If all the hits associ-
ated to those Green PSMs came from the target database, it would be come as very good 
news because these PSMs refer to peptides that differ by unambiguous editing opera-
tions from their “closest neighbor” (from 11% in Strategy1 to 24% in Strategy2). Since 
it is not the case, it means that the decoy database is not only constituted of “incorrect 
sequences” as it should be. Then, it is clear that for both strategies, the presence of many 
Green PSMs in the decoy database hinders the identification of the baits.

Discussion
In this work, we aimed at comparing two OMS strategies that frequently appear in 
recently published OMS methods. Evaluating the respective performances of the two 
studied strategies has been conducted through three different measures: along with 
the FDR, we introduced two ways of interpreting the PSMs: the first one is a color 

Table 3 Average LIPR and distribution of PSMs in results specific to PSM1 (SS1 ) and specific to PSM2 
( SS2 ) in the three color categories

Dataset #Green  PSMs #Orange  PSMs #Red  PSMs Total LIPR (avg %)

SS1 3858 6507 156,926 167,291 61.7

SS2 62,575 6793 97,923 167,291 19.44
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classification of the PSMs and the second one, called LIPR, represents the ratio of com-
mon peaks that disagree in terms of sequence. In summary, all three indicators show that 
Strategy2 outperforms Strategy1. Note that the fact that Strategy2 outperforms Strategy1 
could seem obvious at first sight, following the idea that realigning the peaks (as done in 
Strategy2) could only lead to better results. However, since Strategy2 naturally widens 
the search space for each bait spectrum—since it tries to explain �m at different loca-
tions in the hit spectra—, this may actually lead to numerous erroneous PSMs. Hence, 
the fact that Strategy2 behaves better than Strategy1 (with respect to the FDR in this 
case) was not necessarily easily predictable.

The performances obtained by Strategy2 also lead us to conclude that, among the 
two, Strategy2 is the one that should be implemented in OMS software. Spectral Align-
ment  [5] was already based on a score involving �m to select the best PSM by using, 
similarly to Strategy2, a realignment process. However, it should be noted that Strategy2 
requires to realign very efficiently pairs of spectra if one wants to maintain fast execu-
tion time. More recently, MODPlus  [16] and Open-pFind  [15] select the set of candi-
date PSMs with sequence tags and then perform realignments. ANN-SoLo  [10, 11] 
and the Hybrid search  [9] approximate the improved score obtained taking modified 
peaks into account (ANN-SoLo’s shifted dot product, hybrid search’s cosine similar-
ity). On the other hand, some OMS methods still rely on Strategy1 (e.g. MSFragger [12], 
MetaMorpheus  [13]) and do not take �m into account to choose the best candidate 
PSM—although they may use it once the best candidate is chosen in order to locate 
the modification. Concerning our color classification, we saw that although Strategy2 
recruits more Green and Orange PSMs than Strategy1, it contains proportionally more 
Red PSMs. However, the average LIPR from the Red class obtained by Strategy2 is much 
lower than for Strategy1. This leads us to think that a proportion of the Red PSMs from 
Strategy2, that share enough peaks corresponding to common subsequences, could be 
considered as “almost valid” PSMs. More precisely, we believe that with additional meth-
odological and computational effort, some of these Red PSMs could be transfered to 
the Orange or Green category, an effort that methods implementing Strategy2 should 
pursue.

We have conducted our study in a “strict” environment, namely comparing theoreti-
cal spectra only, and using a score (SPC) that only takes common peaks into account. 
Although this could be seen as a limitation, it can also be argued that comparing the-
oretical spectra is an opportunity to provide an overview of the proximity of tryptic 
peptides extracted from the human proteome from a mass spectrometry point of view. 
Besides, we place ourselves in an “adversary” context, where no redundancy is allowed, 
and thus where no PSM corresponds to an exact sequence matching. Concerning SPC, 
it can be noted that it is, in any method, systematically taken into account at some level 
in the scoring function. In our case, SPC allowed us to be context and data independ-
ent: we consider having no particular knowledge of the dataset nor the spectra at hand, 
and conducted our experiments in an “unsupervised” manner. Moreover, Strategy2 (as 
implemented here) always determines the exact value for our score, whereas other OMS 
methods use approximate scores, slightly surestimating them, which may have an impact 
on the results.
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By comparing two OMS strategies with theoretical peptides and new indicators, we 
also developped an environment which allowed us to see and understand elements 
that are more difficult to see in an experimental context. This protocol could be used 
to understand principles that are at the heart of other (OMS) MS identification tools, 
perceive their strengths and weaknesses, in order to configure and calibrate them. For 
example, the idea behind the color classification is not specific to the SpecOMS software 
we used nor to the mass shifting implied by Strategy2, and could help assessing the effi-
ciency of any OMS research tool. Furthermore, we believe that our two indicators (used 
here in a context where both spectra are theoretical) can be adapted—to some extent—
to classical MS/MS experiments in which theoretical spectra need to be compared to 
experimental spectra.

Our study also calls for several possible perspectives and extensions, which we briefly 
mention here: apply our study to experimental contexts (which would require to adapt 
LIPR and color classification), use a more elaborate score than SPC, improve our color 
classification algorithm so as to “explain” more PSMs from the current Red class, allow 
more than one location to explain �m , and finally use other types of decoy database. 
Any combination of the above suggestions could also be considered.

Conclusion
Despite recent progress, much remains to be done concerning the identification of MS/
MS spectra carrying modifications, and the quality evaluation of OMS methods. The 
OMS methods present different strategies to identify the best PSM and, in this paper, we 
compared two such strategies that are well represented in the recent methods. We led 
this study in a strictly identical environment for both strategies by implementing them in 
the same software (SpecOMS [14]) and on an ideal dataset formed by theoretical spectra 
only, that we compare to itself, in order to get rid of identification difficulties [22] due to 
the imperfection of experimental spectra (noise, missing peaks, etc.). In addition to the 
conventional FDR, we introduced two new criteria to evaluate the quality of PSMs. For 
each of the observed criteria, Strategy2, which attempts to align �m between spectra 
before choosing the best candidate PSM, has always proven to be better. Overall, Strat-
egy2 promotes the PSMs where the hit is derived from the bait by easily identifiable edit-
ing operations. Then, more often, the sequence of the bait can be properly determined 
with Strategy2.

We can note that, regardless of the origin, a modification has the same impact on 
spectra and therefore, even though we did not perform the comparison on experimen-
tal spectra, we can extrapolate the superiority of Strategy2 in the analysis of any experi-
mental dataset. According to these results, OMS methods should implement Strategy2 
but we have to emphasize that Strategy2 requires an efficient algorithm to find the best 
alignment of spectra on a very large number of candidate PSMs, the likely reason why it 
is not done in all OMS methods.

We can also note that OMS methods further complicate the protein inference problem 
[23, 24], since the bait peptide should not be considered as known until �m is explained. 
Typically, the bait peptides with unexplained �m are those marked as Red in our clas-
sification. This confirms the need to investigate more deeply the Red PSMs, by providing 
an automatic method retrieving bait from hit in these PSMs. Generally, we showed that 
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the color classification and also the LIPR are pertinent indicators that can be considered 
independently of the FDR. Then, with some additionnal efforts, it would be interesting 
to adapt these criteria to usual MS/MS experiments in which theoretical spectra need to 
be compared to experimental spectra.

Methods
Peptide identification using SpecOMS

We implemented two strategies to find the best PSMs using the SpecOMS software 
[14]. Next, we applied these two strategies to compare the large set of theoretical spec-
tra generated from the human database against themselves. To perform this comparison 
between theoretical spectra, we added a new functionality to SpecOMS (in the form of a 
new search mode).

A peptide that plays the role of an experimental spectrum in a peptide spectrum 
match (PSM) is called the  bait, whereas a peptide associated to a bait in a PSM is called 
a  hit. Parameters were set in such a way that SpecOMS extracted from its data structure 
SpecTrees [25] all pairs of spectra of the form (bait,hit) whose shared peaks count (SPC) 
is greater than or equal to 7.

The above threshold of 7 appears to be a good trade-off for our study: first, it should 
not be too low so as to avoid many PSMs with a relationship carrying little information 
between the hit and the bait. It should not be too high either, so as to prevent the case 
where a low scored candidate PSM would be (definitely) discarded, since the score for 
such PSMs may be greatly increased (and thus may become chosen as best PSM) by our 
shifting procedure in Strategy2 (see Fig. 6).

The following parameters of SpecOMS were then set in all the runs: thresh-
old  =  7 (as discussed above), single_match  =  true, nbMissCleavage  =  0, mini-
mumPeptideLength  =  7, maximumPeptideLength  =  30, maxMassesCount  =  60, 
minimumScore = 60, decoyBase = true. Some of these parameters (and in particular 
minimumScore) were set so as to force SpecOMS not to search for missed cleavages nor 
semi-tryptic peptides: since we compare a set of peptides to itself, we know these phe-
nomena cannot appear.

Depending on the run, the parameter “shift” of SpecOMS was set to false (Strat-
egy1) or true (Strategy2). More precisely, in Strategy1, for each bait, SpecOMS selects 
the best PSM based on the highest SPC, a score that we call  raw SPC.

In Strategy2, the best PSM for a given bait b is selected after the following two-step 
procedure is applied: first, for every candidate hit h for b such that �m  = 0 , SpecOMS 
realigns h to b by shifting its masses (by �m ) at each possible relevant location in the 
spectrum, and retains the shift location in h that yields the best newly computed SPC (a 
principle frequently used to explain �m [26]). Second, SpecOMS chooses the best PSM 
among the candidate PSMs for b, based on the newly computed SPC, that we call  shift 
SPC. See Figs. 6 and 7 for an illustration.

Data

The human proteome was downloaded from Ensembl 99, release GrCh38 [27] on the 
Ensembl FTP server. Proteins predicted with the annotation “protein coding” were 
added to 116 contaminant proteins downloaded from the cRAP contaminant database. 
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Fig. 6 Workflow for  Strategy1 and  Strategy2. Proteins are processed by SpecOMS in order to find the best 
PSM for each peptide of the database. This is done by computing the shared peaks count (SPC) between 
every peptide (seen as a theoretical spectrum) of the initial database, compared to all peptides (except itself ) 
from both the target and decoy databases. In Strategy1, the best PSM is chosen according to the raw shared 
peaks count (or  raw SPC). In Strategy2, an extra computation is realized for all candidate PSMs with �m  = 0 , 
consisting in shifting the peaks according to �m at all possible locations, and keeping the best induced SPC 
(or  shift SPC)

Fig. 7 Determining the best PSM in each strategy. Suppose, fictitiously, that a given bait is to be compared 
to 4 peptides (called hits). Hit 1 is discarded as its  raw SPC with bait is below the imposed threshold of 7. Hits 
2, 3 and 4 are candidate PSMs for bait. If �m  = 0 for hits 2, 3 and 4, a shift may be applied, and in that case  
shift SPC is obtained (with  shift SPC ≥  raw SPC by definition). In Strategy1, the best PSM for bait is hit 2, as it is 
based on  raw SPC. In Strategy2, the best PSM for bait is hit 3, as it is based on  shift SPC 
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The resulting set of proteins is referred to as the  target database. After in silico digestion 
by trypsin, which cleaves after lysine and arginine (K and R), peptides whose lengths 
are out of the range 7 to 30 amino acids (inclusive), together with those containing the 
letter ‘X’ (representing an unknown amino acid—about 3%) were removed. SpecOMS 
generated the decoy database from the target database by reversing the initial protein 
sequences before the in silico digestion is applied.

Theoretical spectra generation

Each peptide is fragmented in silico by SpecOMS, so as to transform it into a  theoretical 
spectrum. For this, ions from the b and y series are generated, each with the same inten-
sity unit, as intensity is not taken into account in our study (only the shared peaks count 
(SPC), i.e. the number of common peaks—or masses—will be considered). For a given 
peptide, the set of generated masses represents its theoretical spectrum.

Measuring the quality of PSMs

Different measures were performed on the two datasets obtained with Strategy1 or 
Strategy2, in particular to determine to which extent the chosen identification strategy 
impacts the results.

The first classical measure that we used is the number of PSMs we can validate at a 
given False Discovery Rate (FDR). We calculated the FDR as the proportion of best PSMs 
of the form (bait,hit) for which the hit is a decoy, over the total number of best PSMs. In 
this work, we were essentially interested by PSMs for which the FDR is less than 1%.

The Green/Orange/Red classification

Another parameter which we consider as informative for validating MS/MS results, 
notably in this context, is our ability to explain a PSM of the form (bait,hit) obtained by a 
given strategy ; by “explain”, we mean unambiguously determine the transformation (in 
terms of amino acid sequence) that is required to retrieve the bait starting from the hit. 
Recall that since distinct pairwise peptides are compared, bait and hit necessarily differ 
in terms of sequence ; besides, they cannot differ otherwise (e.g. due to chemical modi-
fications) since our set is composed of theoretical spectra only. Thus, the question we 
ask ourselves is the following: given a PSM (bait,hit) together with �m ,  shift SPC and its 
correspondng best shift location, how difficult is it to precisely explain bait from hit ? For 
this, we introduce here a classification of PSMs into three colors (Green, Orange or Red), 
depending on this level of difficulty, from the easiest (Green) to the hardest (Red). In a 
nutshell, Green means that we are able to explain the link between hit and bait unambig-
uously, Orange contains some level of ambiguity, and Red means that further informa-
tion and/or computational efforts are necessary to explain the relationship between bait 
and hit. For instance, if �m is explained by a single insertion, deletion or substitution, 
the corresponding PSM will be classified as Green, whereas if several consecutive inser-
tions, deletions and/or substitutions are necessary at a given location, it will be classified 
as Orange since the location is known, but the sequence order is not completely deter-
mined (e.g., if we know that amino acids A and L need to be inserted at a given location, 
some ambiguity remains since we can either insert “AL” or “LA”). Finally, a PSM is Red 
whenever it is neither Green or Orange. Red thus represents either valid identifications 
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that are too difficult to explain (e.g., when bait and hit differ at two or more distinct 
locations), or invalid ones (e.g., when �m = 0 , while bait and hit have very dissimilar 
sequences). Algorithm  1 describes our classification algorithm in details, and we also 
refer to Fig. 3 for an illustration on different examples.

Low Information Peaks Rate (LIPR)

In an MS/MS experiment, spectra are considered similar to each other if they share a 
high number of masses. Ions from the same series (i.e., y-ions or b-ions in our case), 
which represent the same fragment, necessarily possess the same mass. Consequently, 
common masses represent relevant information concerning sequence similarity. How-
ever, the converse is not always true: identical masses may not represent identical 
sequences, for example when amino acids are permuted (e.g., AEAE and EEAA have the 
same mass) or in more complex situations when combinations of different amino acids 
turn out to have the same total mass (e.g., KE and GVT have the same mass).

Following the above discussion, we introduce here a new measure, that we call Low 
Information Peaks Rate (or LIPR), which is defined as follows: for a given PSM (bait,hit), 
LIPR(bait,hit) is the ratio of common masses between bait and hit that  do not correspond 
to identical sequences (see Fig. 8 for an illustration). LIPR is thus a value between 0 and 1 
(which we will express as a percentage) ; a LIPR close to 0 implies that the two amino acid 
sequences of bait and hit are very similar. In that case, one can argue that the PSM at hand 
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is relevant, and that retrieving bait from hit may be feasible. On the other hand, when LIPR 
is close to 1, both sequences, although sharing a non negligible number of masses, repre-
sent very dissimilar sequences, and the PSM can thus be considered as debatable.
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