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ABSTRACT

Atmospheric correction over inland and coastal waters is one of the major remaining challenges in aquatic remote sensing, often hindering the quantitative retrieval
of biogeochemical variables and analysis of their spatial and temporal variability within aquatic environments. The Atmospheric Correction Intercomparison Exercise
(ACIX-Aqua), a joint NASA - ESA activity, was initiated to enable a thorough evaluation of eight state-of-the-art atmospheric correction (AC) processors available for

* Corresponding author at: NASA Goddard Space Flight Center, Greenbelt, MD, USA.
E-mail address: nima.pahlevan@nasa.gov (N. Pahlevan).

https://doi.org/10.1016/j.rse.2021.112366

Received 6 August 2020; Received in revised form 16 February 2021; Accepted 20 February 2021

Available online 9 March 2021

0034-4257/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:nima.pahlevan@nasa.gov
www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2021.112366
https://doi.org/10.1016/j.rse.2021.112366
https://doi.org/10.1016/j.rse.2021.112366
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2021.112366&domain=pdf
http://creativecommons.org/licenses/by/4.0/

N. Pahlevan et al. Remote Sensing of Environment 258 (2021) 112366

Landsat-8 and Sentinel-2 data processing. Over 1000 radiometric matchups from both freshwaters (rivers, lakes, reservoirs) and coastal waters were utilized to
examine the quality of derived aquatic reflectances (p,,). This dataset originated from two sources: Data gathered from the international scientific community
(henceforth called Community Validation Database, CVD), which captured predominantly inland water observations, and the Ocean Color component of AERONET
measurements (AERONET-OC), representing primarily coastal ocean environments. This volume of data permitted the evaluation of the AC processors individually
(using all the matchups) and comparatively (across seven different Optical Water Types, OWTs) using common matchups. We found that the performance of the AC
processors differed for CVD and AERONET-OC matchups, likely reflecting inherent variability in aquatic and atmospheric properties between the two datasets. For
the former, the median errors in p,,(560) and p,,(664) were found to range from 20 to 30% for best-performing processors. Using the AERONET-OC matchups, our
performance assessments showed that median errors within the 15-30% range in these spectral bands may be achieved. The largest uncertainties were associated
with the blue bands (25 to 60%) for best-performing processors considering both CVD and AERONET-OC assessments. We further assessed uncertainty propagation to
the downstream products such as near-surface concentration of chlorophyll-a (Chla) and Total Suspended Solids (TSS). Using satellite matchups from the CVD along
with in situ Chla and TSS, we found that 20-30% uncertainties in p,,(490 < 1 < 743 nm) yielded 25-70% uncertainties in derived Chla and TSS products for top-
performing AC processors. We summarize our results using performance matrices guiding the satellite user community through the OWT-specific relative perfor-
mance of AC processors. Our analysis stresses the need for better representation of aerosols, particularly absorbing ones, and improvements in corrections for sky- (or

sun-) glint and adjacency effects, in order to achieve higher quality downstream products in freshwater and coastal ecosystems.

1. Introduction

Compensation for atmospheric scattering and absorption and for
surface reflection at the air-water interface (i.e., sky-glint and sun-glint)
from the signal measured at the Top of Atmosphere (TOA) is referred to
as the process of atmospheric correction (AC). Robust AC is essential for
the accurate retrieval of aquatic reflectance and downstream science
products (e.g., near-surface concentration of chlorophyll-a; Chla, and
Total Suspended Solids; TSS) from remotely sensed observations. AC
over the open ocean is carried out adequately, as reported by the In-
ternational Ocean Color Coordinating Group (IOCCG) (IOCCG, 2010),
but over inland and coastal waters inaccurate AC still leads to large
uncertainties in satellite data products, thus limiting the detection of
subtle variability in aquatic ecosystems (Pahlevan et al., 2020). As a
result, some satellite-based methods for the detection of harmful algal
blooms (HABs), for instance, rely on Level 1 TOA or simple Rayleigh-
corrected quantities in order to avoid large uncertainties in Level 2
products introduced by poor AC performance over eutrophic waters
(Binding et al., 2021; Matthews and Bernard, 2013; Schaeffer et al.,
2018; Stumpf et al., 2016).

The availability of image data at resolutions on the order of tens of
meters, such as those acquired by the joint National Aeronautics and
Space Administration (NASA) and U.S. Geological Survey (USGS)
Landsat program and the Copernicus Sentinel-2 Services, has spurred
development of applications for smaller water bodies such as lakes,
rivers and estuaries. This has led to the development of a number of
novel AC processors to obtain accurate satellite-derived aquatic re-
flectances (p,,) for downstream products (e.g., Chla). These processors
show significant differences in methods and previous ad hoc compari-
sons were limited in geographic scope, or in the number or types of
matchups (i.e., coastal versus freshwater), and did not often adhere to an
identical matchup analysis approach (Ansper and Alikas, 2019; De
Keukelaere et al., 2018; Ilori et al., 2019; Pahlevan et al., 2017b; Pah-
levan et al., 2017c; Pereira-Sandoval et al., 2019; Renosh et al., 2020;
Soomets et al., 2020; Vanhellemont, 2019; Warren et al., 2019). Thus,
important questions remain unaddressed, for example, whether pro-
cessors meet the currently defined 30% threshold requirements (Global
Climate Observing System; GCOS) across all bands, how they compare to
heritage approaches (e.g., Franz et al., 2015), and specifying which
processor(s) can provide more reliable downstream products given the
uncertainties in p,, under various atmospheric conditions and/or across
distinct aquatic ecosystems. A list of widely used notations and acro-
nyms throughout this article is provided in Table 1.

To address important questions relating to atmospheric correction,
NASA and the European Space Agency (ESA) jointly conducted an At-
mospheric Correction Intercomparison eXercise (ACIX) in coordination
with the Committee on Earth Observation Satellites (CEOS) validation
group. The initial exercise (ACIX-I; Doxani et al. (2018)) focused on
diverse land-cover types and continental/coastal atmospheric

conditions and mostly evaluated aerosol optical thickness (AOT)
retrieval to gauge performances. The scope of the first exercise was
however limited for aquatic studies due to the absence of assessments of
pw retrieval accuracy. Therefore, a second Atmospheric Correction
Intercomparison eXercise (ACIX-II), hereafter referred to as ACIX-Aqua,
commenced in October 2018. To fulfill the objective of ACIX-Aqua, a
large number of high-quality observations from a representative range
of aquatic environments were desirable. Automated and systematically
processed radiometric observations through the Ocean Color component
of the Aerosol Robotic Network (AERONET-OC; Zibordi et al., 2009a;
Zibordi et al., 2006) are an invaluable asset for such analyses (Hlaing
et al., 2013; Jamet et al., 2011; Mélin et al., 2010). They mostly repre-
sent coastal ecosystems, but also include a number of freshwater sites
(Philipson et al., 2016). To complement the AERONET-OC database and
to add more data representing freshwater ecosystems, a community-
wide data sharing initiative was undertaken. The goal was to include
optically diverse water bodies where, for example, AC may be more
challenging due to environmental factors, such as the presence of
absorbing aerosols or land adjacency effects (AE) (IOCCG, 2018). This
second data set is henceforth referred to as the Community Validation
Database (CVD).

The purpose of this article is to provide an objective assessment of
state-of-the-art atmospheric correction using a global dataset repre-
senting a wide array of atmospheric and aquatic conditions. We evalu-
ated eight different AC processors applied to Landsat-8 Operational Land
Imager (OLI) data and Sentinel-2A/B MultiSpectal Instrument (MSI)
images over inland and coastal waters. Owing to their inherent differ-
ences in measurement techniques and representations of aquatic envi-
ronments, the AERONET-OC and CVD matchups were primarily treated
independently. Additionally, our entire dataset (AERONET-OC and CVD
aggregated) was divided into Optical Water Types (OWTs, Section 3.4),
which allowed an assessment of processors across widely variable
coastal and inland water conditions. Furthermore, we aimed to inves-
tigate how uncertainties in p,, manifest in satellite retrieved Chla and
TSS for each processor. To that end, we provide a brief overview of

Table 1
List of widely used notations, acronyms, and symbols.
Symbol Description
Pw In situ aquatic reflectance
Pw Satellite derived aquatic reflectance
Pr Top-Of-Atmosphere (TOA) reflectance
Pre Rayleigh-corrected reflectance
Chla In situ chlorophyll-a
TSS In situ Total Suspended Solids
Chla? Pseudo Chla derived from p,,
TSSP Pseudo TSS derived from p,,
Chla" Remotely sensed Chla (estimated from p,,)

TSS" Remotely sensed TSS (estimated from p,,)
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atmospheric correction followed by a description of the in situ data
employed in the analysis. Subsequently, succinct descriptions of the AC
processors, matchup selection, OWT classification, as well as Chla and
TSS retrieval algorithms, and statistical metrics used for the perfor-
mance assessments are presented. The results and their implications for
scientific studies and monitoring applications are further elaborated
upon in Sections 4 and 5. Finally, we offer recommendations (Section 6)
on the viability of the AC processors for freshwater and coastal ecosys-
tems with due attention to the quality of downstream products, such as
Chla and TSS.

2. Background: Atmospheric correction

During the early ocean color era, prior to the launch of the Coastal
Zone Color Scanner (CZCS), radiative transfer analyses had shown that
most of the “blue” photons reaching TOA over the ocean arise from
within the atmosphere (Gordon, 1976) through the scattering and ab-
sorption processes induced by gas molecules and aerosols. The purpose
of AC for satellite observations is, therefore, to compensate for the
photons that do not originate from the water column. The goal is to
estimate non-dimensional aquatic reflectance p,, ,which may also be
denoted as water-leaving reflectance in the literature (Ruddick et al.,
2006). In the absence of sun-glint (i.e., direct solar beam specular
reflection), surface whitecaps and AE, the total signal expressed as TOA
reflectance, p/(1), can be simplified as

p(d) =7, (A) 1)+ 2a() + 20 (D)) )

where t is the diffuse transmission (Gordon and Wang, 1994), p, is the
Rayleigh reflectance in the absence of aerosol, p, is the aerosol reflec-
tance, and pgr is the radiance arising from Rayleigh-aerosol multiple-
scattering. Depending on the methodology adopted for AC, the three
components within the brackets are computed either as one unknown
parameter, i.e., ppqh, Or by separating the Rayleigh and aerosol contri-
butions (Antoine and Morel, 1999; Deschamps et al., 1983; Gordon,
1978). The diffuse transmission is also computed knowing the trans-
missions due to air and gas molecules as well as aerosols (Yang and
Gordon, 1997). Among all the unknown components, estimating the
aerosol contribution is the most intractable undertaking, and small er-
rors may lead to high uncertainties in p,, (Gordon and Wang, 1994).

Several approaches have been proposed for the removal of atmo-
spheric effects over open oceans for missions like the Moderate Reso-
lution Imaging Spectroradiometer (MODIS), Medium-Spectral
Resolution Imaging Spectrometer (MERIS), Global Imager (GLI), and
POLarization and Directionality of the Earth’s Reflectances (POLDER)
(IOCCG, 2010). These approaches differ primarily in the methodology
used for the removal of the aerosol contribution (Antoine and Morel,
1999; Chomko and Gordon, 1998; Fukushima et al., 1998; Gao et al.,
2000; Gordon, 1997; Gordon et al., 1997; Gordon and Wang, 1994;
Harmel and Chami, 2011; Nicolas et al., 2002). This body of research
collectively asserts that the performance of the existing AC processors
are, in general, acceptable over clear ocean waters, where water-leaving
radiance in the near-infrared (NIR) is negligible and maritime (non-
absorbing) aerosols are the dominant aerosol type (I0CCG, 2010).

In both inland and coastal waters, water-leaving radiance in the NIR
is often not negligible, and AE due to multiple-scattering from neigh-
boring terrestrial terrain can contribute to ppes (Bulgarelli et al., 2014;
Santer and Schmechtig, 2000; Sterckx et al., 2015). Moses et al. (2017)
reported how the removal of atmospheric effects over inland and coastal
waters might be further complicated by other factors, such as the
proximity to terrestrial sources of aerosols, which result in an optically
heterogeneous atmosphere. In coastal waters, terrestrial- and marine-
source aerosols can also produce spatially variable and mixed condi-
tions (Pahlevan et al., 2017a) that may not be fully represented in
existing aerosol models (Ahmad et al., 2010). Some variants of the open-
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ocean algorithms attempt to account for non-negligible water-leaving
radiances in the NIR in inland and coastal waters (Bailey et al., 2010;
Moore et al., 1999; Siegel et al., 2000; Stumpf, 2004). Alternatively, the
use of the short-wave infrared (SWIR) bands has been demonstrated to
improve retrievals in sediment-dominated waters (Gao et al., 2000;
Vanhellemont and Ruddick, 2014; Wang, 2007; Wang and Shi, 2007).
However, AC over inland and coastal waters is still an important area of
research and development.

3. Methods
3.1. Dataset

The radiometric quantity commonly utilized in remote sensing
studies is the in situ aquatic reflectance, p,, defined as

pw =nXx LW’(0+)/EJ(O+) =7nX Rm (2)

where L,(0") and E40") are the water-leaving radiance and down-
welling irradiance just above the water surface, respectively, and Rys is
remote-sensing reflectance (Mobley 1999). To avoid confusion with
nomenclature used in the terrestrial remote sensing community, we
adopt the term “aquatic reflectance” for p,,.

The standard AERONET-OC product (Level 2), the normalized
L,(0") corrected for bidirectional effects (Morel et al., 2002), was
divided by the solar irradiance spectrum (Thuillier et al., 2003) resam-
pled by 11 nm square filters (Zibordi et al., 2006), and then multiplied
by # to yield py,. The initial pool of matchups for both missions included
> 1200 samples. To account for the difference in the spectral sampling of
AERONET-OC and p,,, we applied the deep neural network approach’
proposed in Pahlevan et al. (2017d), which converts AERONET-OC p,, to
OLI (443, 482, 561, and 655 nm) and MSI (443, 490, 560, and 664 nm)
broadband observations. Throughout this research, however, we use
MSI band centers to refer to these four visible bands. The spectral band
adjustments amounted to <15% change in the magnitude of p,, at the
490, 560, and 664 nm bands, subject to the shape and magnitude of the
spectra (Fig. 3). Note that only <17% of our final AERONET-OC dataset
corresponded to inland waters; thus, the associated analysis is primarily
representative of coastal regions (Fig. S1).

In order to expand the representation of inland watersinland waters,
a total of 2679 hyperspectral p,, records were compiled in the CVD.
These spectra had been acquired using field radiometers that were
assembled and calibrated by six different manufacturers. These in-
struments were utilized for field measurements following 10 different
techniques, all of which are listed in Table S1 and Fig. S2. A visual in-
spection of p,, was carried out to detect data showing abnormal spectral
features (e.g., noisy spectra, negative values in any spectral bands). This
led to the exclusion of less <1% of the initial database. Such a small
percentage of excluded spectra was a result of the data quality screening
that had already been undertaken by the data providers. No further
adjustments (e.g., corrections for the Bidirectional Reflectance Distri-
bution Function; Hlaing et al., 2012) were applied to this dataset.

The in situ radiometric data were provided at various spectral reso-
lutions (between 1 and 3.3 nm) and ranges (mostly within the 350-900
nm range). The spectra were convolved with the relative spectral re-
sponses of OLI and MSI to obtain band-equivalent p,,. Here, MSI NIR
bands at 705, 743, and 783 nm bands were also simulated. Overall, <
10% of the entire CVD were measured in coastal (e.g., near Crete,
Greece) or brackish waters (e.g., Baltic Sea), and the rest represent a
diverse range of freshwater ecosystems, from hypereutrophic lakes (e.g.,
Lake Taihu, China), to oligotrophic lakes (Lake Garda, Italy), and to
rivers (e.g., Japura River, Brazil) (Table S1). The CVD is thus a signifi-
cant complement to AERONET-OC. The continental distributions of

1 Code can be accessed via https://github.com/STREAM-RS/STREAM-RS
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Fig. 1. Locations of valid in situ radiometric matchups acquired near-coincident with Landsat-8 and Sentinel-2 overpasses (see Section 3.3 for more details). These
matchups correspond to diverse aquatic ecosystems, including lakes, rivers, and coastal waters (see Tables S1 and S3). The Community Validation Database (CVD)
contains data mostly representing inland waters. Background map source: https://www.shadedrelief.com/

valid OLI and MSI matchups, following the implementation of the
matchup criteria (Section 3.3) are illustrated in Fig. 1.

The assessment of the effect of AC on the quality of downstream
products requires matchups accompanied by in situ measurements of
water constituents. The AERONET-OC data do not include measure-
ments of Chla and TSS while the CVD has some direct measurements
with 123 matchups (Fig. 2). Therefore, for the CVD, we primarily
focused on a quantitative analysis (Section 4.2.1) using this subset of

Chla and TSS matchups and compared them against Chla and TSS esti-
mated from p,, (hereafter referred to as Chla" and TSS") via best-practice
retrieval algorithms (Section 3.5). For the AERONET-OC data, we
applied select retrieval algorithms to p, to estimate Chla and TSS,
hereafter referred to as pseudo in situ estimates (Chla® and TSSP) (Sec-
tion 4.2.2). For an ideal AC processor, ChlaP and Chld'", for instance, are
expected to agree if produced via the same algorithm. It is therefore
plausible to assume that the differences in products are attributable to

H—

30

20

10

[mgm™]

[gm”

Fig. 2. Frequency distributions of available Chla (left) and TSS in the CVD matchups (Section 4.2.1). Mean and median values are 15.8 and 8.3 mg m 3 for Chla, and

6.8 and 4.25 g m~° for TSS.
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Table 2

Attributes of AC processors used to process OLI and MSI matchups for this exercise (ACIX-Aqua).

Two-step models

Correction ACOLITE GRS MEETC2 POLYMER SeaDAS iCOR
Gaseous 02, 03 (OMI) CH4, CO, C02, NO2, 02, 03 02, 03, NO2 03 and NO2 02, 03, NO2 (NCEP/ 02, 03, NO2, CO, CO2, CH4
(CAMS) (Gasteiger et al., 2014) OMI) (03 climatology)
Water vapor NCEP CAMS (Rahman and Dedieu, ECMWF NA NA ECMWF (OLI)
1994) (Schlapfer, 1998)
Sun-glint Fit to residuals at Treated spectrally dependent Cox and Munk, 1954 Treated as bulk signal Optional Subtraction of minimum
pre(1609) & p,(2200)
Sky-glint Gordon et al., 1988 OSOAA LUTs OSOAA LUTs Ahmad and Fraser, Haan and Kokke, 1996
1982
Adjacency effects NA NA NA NA SIMEC (Sterckx et al., 2015)
Aerosol Dark target approach (area-based) Fitted to CAMS Dark target and BPC (per- Polynomial fitting NIR-SWIR band ratio Dark target and AOT multi-parameter
(area-based) pixel) (per-pixel) (per-pixel) inversion
(area-based)
Rayleigh LUT 6SV OSOAA OSOAA SOS Ahmad and Fraser, MODTRAN 5.0 (Berk et al., 2006)

Other Considerations
Geometry

Aerosol model

Cloud masking

Output grid cell size (m)
Assumptions on bio-optical
conditions

Version

Open source access
Organizations
References

(Kotchenova et al., 2006)

Scene center for OLI and 5-km grids
for MSI
Continental/maritime aerosols
(Kotchenova et al., 2006)

p«{1609) > 0.0215

10
No

20,181,210
Yes (ACOLITE)
RBINS
Vanhellemont, 2019
(Vanhellemont and Ruddick, 2018

(Chami et al., 2015) (Chami et al., 2015)

Per-pixel multi-scale

Mixture of fine and coarse (Shettle and Fenn, 1979)

modes (Moulin et al., 2001)
(Harmel and Chami, 2011)
pr (865) > 0.0275 & NA
0 < NDWI <1.1

20 10

No Yes
(Saulquin et al., 2016)

1.1.4 2
Yes (GRS) No
INRAE ACRI-ST

Harmel et al., 2018 Saulquin et al., 2016

(Lenoble et al., 2007)
Per-pixel

NA

p: (865) > 0.2

10/20/60
Yes
(Park and Ruddick,
2005)
4.12
Yes (POLYMER)
HYGEOS
Steinmetz et al., 2011
Steinmetz and Ramon,
2018

1982
Per-pixel

Coastal/Ocean
(Ahmad et al., 2010)

P (1609) > 0.018

20/30
Yes
(Bailey et al., 2010)

7.5
Yes (SeaDAS)
NASA
Franz et al., 2015
Pahlevan et al., 2017c¢

Per-pixel

MODTRAN rural models
(Berk et al., 2006)

Cloud mask layers are provided
(De Keukelaere et al., 2018)
60
No

2.5
No
VITO
De Keukelaere et al., 2018

Machine-learning models

Model components

Cc2X

OC-SMART

Atmospheric modeling
Atmospheric parameterization
Adjacency effects

Aquatic modeling

Aquatic parameterization

Retrieval approach
Architecture

Geometry

Aerosol models

Cloud masking

Output grid cell size (m)
Version

Assumption on bio-optical conditions

SOS (Lenoble et al., 2007)
03, WV, NO2, 02, P,
No
Hydrolight (Mobley and Sundman, 2008)
NOMAD data (Bailey and Werdell, 2006)
jnun
Pt=> Pw

MLP, sigmoid activation function; six hidden layers; 77 neurons each

Other Considerations

Per-pixel

Coastal - AERONET-OC (Holben et al., 1998)

IdePix

10/20/30

1.0 (C2X NN)
Yes
(Brockmann et al., 2016)

AccuRT (Stamnes et al., 2018)

03, WV, NO2, 02, P,
No

AccuRT (Stamnes et al., 2018)

Ocean color climatology (Fan et al., 2021)

Pre=> pw

MLP, hyperbolic tangent activation function; 3 layers;

100 x 75 x 50 neurons

Per-pixel

Coastal/Ocean - (Ahmad et al., 2010)

Nordkvist et al., 2009
30/60
1.0
Yes
(Fan et al., 2021)

(continued on next page)
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Table 2 (continued)

Machine-learning models

OC-SMART

c2X

Model components

Yes (OC-SMART)
Stevens Institute of Technology
Fan et al., 2021; Fan et al., 2017

Yes (SNAP)
Brockman Consult

Brockmann et al., 2016

Open source access

Organization
References

ACOLITE: Atmospheric Correction for OLI lite; C2X: Case-2 Extreme Waters; GRS: Glint Removal for Sentinel-2; MEETC2: Meet Case 2 waters; POLYMER: POLYnomial based algorithm applied to MERIS; OC-SMART:

Ocean Color Simultaneous Marine and Aerosol Retrieval Tool; SeaDAS: SeaWiFS Data Analysis System; iCOR: image CORrection for atmospheric effects; WV: Water vapor; MLP: Multilayer perceptron; Py: surface

pressure; ECMWF: European Centre for Medium-Range Weather Forecasts; NCEP: National Centers for Environmental Prediction; NDWI; Normalized difference water index; OSOAA:: Ordres Successifs Océan Atmosphere

Avancé; TOMS: Total Ozone Mapping Spectrometer; OMI: Ozone Monitoring Instrument; CAMS: Copernicus Atmospheric Monitoring System; BPC: Bayesian Predictive Classification.
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individual processors and how they influence p,, in spectral bands
contributing to Chla or TSS retrievals. Moreover, this assessment uses all
the valid matchups (N > 400; Section 3.3). The analysis also demon-
strates the sensitivity of retrieval algorithms (Table 4) to uncertainties
associated with each AC processor, providing insights into the choice of
retrieval algorithm for a respective processor. For completeness, this
sensitivity assessment was also repeated for the CVD matchups (Ap-
pendix C).

3.2. AC processors

Eight AC methods were evaluated (Table 2). According to their un-
derlying mechanisms, the processors fall into two broad categories,
namely two-step and machine-learning schemes. In the two-step pro-
cedure, the effects of Rayleigh and gaseous absorption are first removed
and then aerosol contribution is approximated (Eq. 1). ACOLITE and
iCOR are the two processors that follow heritage terrestrial approaches
for removing aerosol contributions (Vermote et al., 1997) while SeaDAS
applies the heritage ocean color approach (Mobley et al., 2016).

POLYMER, on the other hand, fits a second-order polynomial func-
tion to p, to simultaneously correct for aerosol and sun-glint signals.
Similarly, GRS applies a spectral fitting approach to the observed ppun
signal to approximate aerosol radiance. The two machine-learning
models, C2X and OC-SMART, are both based on multilayer perceptron
neural networks, trained with synthetic datasets that were generated
using in-water and atmospheric radiative transfer models. MEETC2
utilizes a Bayesian Predictive Classification (BPC) method using
Gaussian Mixture Model prior distributions on p,. and dissociates the
effects of hydrosols and aerosols. Further details on the processors and
relevant citations are provided in Table 2.

3.3. Matchup selection

While each processor has specific exclusion criteria to mask out
clouds and/or haze and handle AE or sun-glint, we further employed an
additional masking strategy to retain or remove matchups that could
better inform our analysis. Prior to the matchup filtering, all potential
matchups were inspected for outliers where either no valid retrievals
were derived (e.g., due to clouds) or major disparities between p,, and p,,,
were identified. If the difference between p,, and p,, in any band for at
least four processors was >100%, the retrieval was flagged as an outlier
and the matchup was subsequently discarded from the entire assess-
ment. These two exclusion criteria eliminated 1392 CVD matchups
leaving a total of 1287 samples. Among the excluded measurements
were in situ measurements in small lakes (e.g., Methods #6 and #9 in
Table S1), close to shorelines, or in proximity of man-made objects
where AE may have impeded a reliable AC. A similar preliminary cloud-
masking led to ~ 600 matchups for the AERONET-OC dataset.

For image data, p,, were extracted from within 150 m x 150 m
square boxes surrounding the matchup location. This is equivalent to 5
x 5-element and 15 x 15-element windows for OLI and MSI, respec-
tively, in the visible bands. For the NIR bands of MSI, this window size
represents a 7 x 7-element window (Drusch et al., 2012). An area of
approximately 90 m x 90 m centered around the AERONET-OC sites was
discarded to minimize contamination from the respective platforms (e.
g., lighthouses), where instruments are deployed. Slight differences in
the window sizes between OLI and MSI matchups were assumed to
introduce negligible uncertainties. The median value of the remaining
valid pixels was chosen to best represent p,,. Additional (conservative)
masking criteria (Eq. 3 & 4) were developed (Pahlevan et al., 2014) and
modified via experimenti