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1 �Summary
The discovery in the 1980s of the pathogenic mechanisms of Agrobacterium 
tumefaciens led to transgenesis, a technique for increasing the diversity 
of traits that could be used in plant breeding. Various other means of plant 
transformation were then implemented. This new technique was introduced 
when in vitro mutagenesis was stalled due to the lack of screening systems 
for mutations, until the description in 2000 of the Targeting Induced Local 
Lesions in Genomes (TILLING) technique, which was then followed by various 
developments in plant breeding.

Consumer acceptance of the genetically modified organism (GMO) 
products resulting from these artefactual transformations differed between 
countries. In the European countries, with a long culinary tradition and numerous 
products under official quality labels, the precautionary principle, which had 
previously prevailed in third countries, was introduced in the face of these new 
techniques, which at the time had lacked any long history of safe use. From then 
on, these GMOs were only produced and marketed after a risk assessment. 
In addition, labelling and traceability, according to the farm-to-fork approach, 
are required with specific and general post-market environmental monitoring. 
This chapter describes the scientific, technical and regulatory framework of 
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this European traceability system, which allows all European consumers to 
make informed choices about their food. Moreover, this traceability approach 
enables the coexistence of genetically modified (GM), non-GM and GM-free 
supply chains and should thus make it possible to avoid mixing food products 
with those for pharmaceutical, functional food or industrial use (GAO, 2016b).

The framework we describe in this chapter must be used to deal with 
the traceability of ‘new’ GMOs and ‘hidden’ GMOs. GMOs resulting from the 
in vitro mutagenesis of isolated cells and new breeding techniques (NBT), 
so named by the non-governmental organisations (NGOs) and the farmers’ 
union that brought the dispute before the French Conseil d’État (FCE) in 2015, 
engendered a conflict that led to the European Court of Justice (ECJ) recalling 
the 2001/18 directive’s definition of GMOs in 2018. The feasibility of this 
traceability of the ‘hidden’ and ‘new’ GMOs is discussed in the next chapter.

1.1 �Introduction

Unlike the many targets considered for the detection or identification of 
molecules (e.g. aflatoxin) or pathogens, GMOs are a highly political–technical–
scientific issue. Thus, when they are discussed or explored in contemporary 
literature and media, the state-of-the-art techniques and scientific knowledge 
involved are only partially taken into account (Bertheau, 2019; Davison and 
Bertheau, 2007, 2009). Despite the passage of 30 years, the definition of GMO 
is still imprecise and contested. Since 2007, the European Commission, when 
asked for a legal opinion on the GMO or non-GMO status of NBT products 
as defined by the Dutch Commission on Genetic Modification (COGEM), was 
unable to explain them – even during and after the decision in 2018 by the 
ECJ (European Court of Justice, 2018; Schaart and Visser, 2009). While the US 
had shown a robust precautionary mindset until the Reagan presidency, the 
European Union (EU), which was lagging in this domain, began to apply the 
precautionary principle only after the 1987 conference on protecting the North 
Sea (Wiener and Rogers, 2002). This consideration of a superior principle (the 
precautionary principle) soon became apparent in European legislative texts, 
for instance, about GMOs.

Directive 1990/220, replaced by Directive 2001/18 and then consolidated 
in Directive 2018/350 (Breyer et al., 2009), was the first legislation regulating 
the release of GMOs in Europe. It defined a GMO as ‘an organism in which 
the genetic material has been altered in a way that does not occur naturally 
by mating and/or natural recombination’. This directive was supplemented 
by Regulation 1829/2003, which regulates GMOs intended for non-crop feed 
and food, according to the principle of ‘one key, one lock’ – a way to facilitate 
authorisations for imported GMOs. Mandatory traceability was implemented by 
Regulation 1830/2003. As has often been pointed out by various authors, these 
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regulations are based on techniques implemented as part of the precautionary 
principle governing risk assessments. These regulations are in contrast to the 
approach of third countries that consider only the trait and the presumed 
related inherent risks. These considerations within European regulations are in 
line with the European ‘White Paper’ on health security (European Commission, 
2001; Garcia, 2006; Spranger, 2015) and the Cartagena Protocol, where the EU 
and its Member States (MS) are signatories.

Some terms in the Directive 2001/18/EC, such as ‘traditional crossing 
techniques’, are confusing and cause significant technical and legal digression. 
The minima definition, adopted by the European Commission (Commission 
of the European Communities, 1992), specifies that: ‘“Traditional breeding” 
means practices which use one or more of a number of methods (e.g. physical 
and/or chemical means, control of physiological processes), which can lead to 
successful crosses between plants of the same botanical family’. This definition, 
therefore, lays the foundation for the interpretation of ‘traditional breeding’ in 
the context of GMOs, which is in line with the recent decisions of the ECJ (July 
2018) and of the French Conseil d’État (Conseil d’État, 2020). Another ambiguity 
surrounds the generic term ‘genetics’. The rational interpretation would be 
that, given the progress of scientific knowledge over the past 30 years, this 
term also includes epigenetics and epitranscriptomics. However, up to now, 
interpretation based on sound science has had no significant repercussions in 
the European risk assessment guidelines and procedures.

Epigenetics (DNA methylation and ‘histone code’) and epitranscriptomics 
(RNA modifications), among others such as organelles’ genomes, are indeed 
not taken into account in the current European Food Safety Authority (EFSA) 
risk assessments. In contrast, the transmission of those changes to offspring 
– a significant risk assessment element in biology and a crucial point in 
European directives – has long been proven. A recent EFSA colloquium on 
epigenetics, a term defined in 1942 by Conrad Waddington, recorded that 
little knowledge was available (EFSA et al., 2016). Epigenetics is the study of 
how genes and their products influence the expression of the phenotype in 
a given organism, free from any activity that involves genetic alteration. This 
definition evolved to describe epigenetics as being ‘primarily concerned 
with the mechanisms through which cells become committed to a particular 
form or function and through which that functional or structural state is then 
transmitted in cell lineages’ (Jablonka and Lamb, 2002, p82). The lack of 
consideration of these transmission mechanisms to descendants is clearly 
in contradiction with the European precautionary principle. Therefore, the 
European directives 1990/220, 2001/18, and 2018/350 do not address the 
transmissibility of artefactual genetic, epigenetic and epitranscriptomic and 
organelles’ modifications arising from techniques which are still currently under 
development. The regulatory situation in other countries for GMOs and ‘new 
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GMOs’, whether or not they are signatories to the Cartagena Protocol that we 
discuss here, seems even more complicated (Friedrichs et al., 2019a,b; GAO, 
2016b; Van Eenennaam et al., 2019).

1.1.1 �The Cartagena Protocol on Biosafety

This 2000 International Protocol (CPB), which came into force in 2003, was 
implemented in the EU by Regulation 1946/2003. It uses a GMO definition 
slightly different from the European one but covers all in vitro mutagenetic 
(production of genetic mutations on isolated plant cells) techniques. The 
protocol is restricted to the living modified organism (LMO), i.e. its capacity for 
dissemination and reproduction and therefore, fundamentally, that which could 
impact ecosystems. Thus, the Europeans, signatories to the protocol, accepted 
this LMO concept where the definition corresponded well to the European 
directives (Husby, 2007).

From 2010, the ‘Nagoya–Kuala Lumpur Additional Protocol’ implements 
Article 27 of the CPB. Under this treaty, supply chain operators (stakeholders 
placing products on the market, producers, exporters, importers and 
transporters) will be held responsible, including financially, for the movement of 
LMOs between the MS and any potential damage caused. The EU, a signatory 
to this protocol ratified by the MS, must therefore be able to identify the LMOs 
produced or in transit through its territory and must inform the importing third 
countries (1946/2003, 65/2004). European companies are thus responsible if 
there is an insufficient qualification of their living products in this respect, such 
as seeds.

1.1.2 �The ‘proven safety’ of GMOs

Directives 2001/18 and 2018/350 specify: ‘This Directive should not apply to 
organisms obtained through certain techniques of genetic modification which 
have conventionally been used in a number of applications and have a long 
safety record’. The appreciation of a long history of proven safety can only be 
judged on the history of the techniques used and their mass production. The 
2018/350 Directive offers an explicit reference to what cannot be considered 
‘a technique traditionally used for various applications and whose safety has 
long been proven’. Transgenesis is included in its Annex 1A, among the new 
techniques producing GMOs, offering a valuable indication of the legislator’s 
intention when deciding not to consider the process as traditional and of 
proven safety. Therefore, the timeframe for transgenic plants were 1983 for 
the proof of concept, 1986 for the first field experiments, 1990 for the first 
commercial genetically modified (GM) tobacco, 1994 for the first commercial 
GM vegetable, tomato, and 1996 for the first mass-marketed soybean. Thus 
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2001, the year of the Directive’s release, can be considered the beginning of 
the safety monitoring of GMOs.

Conversely, what were the techniques developed during the previous 
decades from 2001 that could have resulted in commercial products that would be 
of proven safety, a fortiori in 2020? The participants of an international symposium 
in London in 2016 concluded that the set of in vitro techniques, that is, the use of 
isolated plant cells, used in transgenesis and genome editing techniques, had 
changed very little over these decades (Altpeter et al., 2016; Hiei et al., 2014; 
Ikeuchi et al., 2019; Ledford, 2016; Maher et al., 2020; Que et al., 2014).

Apart from the first transgenic GMOs within the meaning of Directive 
2001/18 and the in vivo mutagenesis identified by the Food and Agriculture 
Organization (FAO), no variety derived from in vitro cultures of isolated cells 
was listed before the 2000s (National Academies of Sciences Engineering 
and Medicine, 2004; National Research Council, 2009). Therefore, the in vitro 
cultures of isolated cells had no proven safety record. 

Finally, the genotype–phenotype relationship of mutations transmissible 
to offspring remains an overall unmet challenge. Despite the progress in 
sequencing, the somaclonal variation, random mutations and epimutations 
remain challenging to exploit, except for rare traits that are easily selectable, 
such as pesticide tolerances. It was only at the beginning of the twenty-first 
century that the TILLING technique enabled their exploitation through costly 
‘high-throughput’ platforms, capable of screening thousands of mutants and 
making it possible to exploit, by marker-assisted selection, some of these 
random mutations and epimutations (Anderson et al., 2016; Irshad et al., 
2020; Manzanares et al., 2016; McCallum et al., 2000a; McCallum et al., 2000b; 
Unterseer et al., 2014). The difficulties in the adaptation of TILLING to various 
species and the costly installation of platforms that were able to screen the 
numerous mutants, which took several years, meant a delay in delivering 
practical outcomes despite some recent ‘speed breeding’ (Kurowska et al., 
2011; Pratap et al., 2018, Watson et al. 2018). 

Indeed, with the current state of the available scientific and legal data 
and the absence of traceability and post-marketing surveillance systems, it is 
estimated that the minimum necessary duration to enable confidence in the 
demonstration of a long-proven safety could be well above 30 years.

1.1.3 �‘Hidden GMOs’ and new techniques for modifying 
genomes and epigenomes

We have previously mentioned the ECJ and the FCE decisions. This challenge 
is currently decisive in the political definition of GMOs that should be traced. In 
2007, the Dutch COGEM had drawn up a heterogeneous list of various techniques 
(the NBTs) for which the European Commission was questioned as to the GMO 
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status, or not, of the resulting products (Schaart and Visser, 2009). The lack of a 
legal response from the Commission allowed the various stakeholders to ensure 
that the resultant products were not GMOs as envisaged by some third countries. 

This absence of a response from the EC proved to be a loophole into which 
companies rushed. The marketing of varieties which were tolerant to herbicides 
(VrTH in French), with unknown status and for which the breeding processes 
were not available at the time of registration in the national catalogues of 
cultivars, was the catalyst to close this loophole. In 2015, in response to the 
herbicide-tolerant varieties, such as Clearfield rapeseed, a consortium of 
nine French environmental associations and agricultural unions filed an 
action before the FCE to annul an article of the Environmental Code which 
excluded organisms obtained by ‘mutagenesis’ from the scope of French GMO 
regulations. In 2016, the FCE considered it necessary to seek the opinion of 
the ECJ on four questions of interpretation of the European law, while adding 
requests on the status of products resulting from new techniques for modifying 
genomes and epigenomes. In 2018, the ECJ reminded1 that organisms 
obtained by mutagenesis (thus including in vitro, i.e. with a step of isolated cell 
cultures) are indeed GMOs within the meaning of Directive 2001/18, with a few 
ones being exempted. The Annex I.B.’s exemption applies only to mutagenic 
techniques developed mainly before its adoption and whose products would 
have demonstrated a proven safety (implied by prolonged commercial use). 

This ECJ decision conformed with the definition of traditional breeding 
found in Directive 90/220 and the above recalled 1992 CEC’s definition. 
Therefore, the GMO Directive was determined to cover organisms derived from 
in vitro cultures of isolated cells and NBTs (as new techniques mainly developed 
after 2001). As a result, the Conseil d’État enjoined the French government 
in February 2020 to (i) amend the Environmental Code and to (ii) establish 
a restrictive list of mutagenesis techniques or methods traditionally used for 
safety purposes that have long been proven, allowing their exemption. The 
French Government was finally asked to identify, within the Official Catalogue 
of Varieties, varieties obtained by mutagenesis techniques that were mainly 
developed after the adoption of Directive 2001/18. Those cultivars should have 
been subject to the obligations applicable to GMOs, in terms of risk assessment, 
prior authorisation and traceability and labelling in particular (GAIN USDA, 
2021), and, thus, should be withdrawn from the market. The draft decree of the 
French authorities triggered a community barrage of questions and concerns.

In November 2019, The Council of the EU requested2 the Commission 
(Council Decision (EU) 2019/1904) to submit, by 30 April 2021, ‘a study in 
light of the Court of Justice’s judgment in Case C-528/16 regarding the 

1 �https​:/​/eu​​r​-lex​​.euro​​pa​.eu​​/lega​​l​-con​​tent/​​FR​/TX​​T/​?ur​​i​=CE​L​​EX​:62016CJ0528 
2 �https​:/​/ec​​.euro​​pa​.eu​​/food​​/plan​​t​/gmo​​/mode​​rn​_bi​​otech​​/new-​​genom​​ic​​-te​​chniq​​ues​_e​n 

https://eur-lex.europa.eu/legal-content/FR/TXT/?uri=CELEX:62016CJ0528
https://ec.europa.eu/food/plant/gmo/modern_biotech/new-genomic-techniques_en
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status of novel genomic techniques3 under Union law’ (Directives 2001/18/
EC and 2018/350, Regulations (EC) 1829/2003, Regulation (EC) 1830/2003 
and Directive 2009/41/EC). This EC request for April 2021 did not prevent the 
Commission from delivering in advance its conclusion to the French authorities 
in 2020 about the project of the French decree. An anticipated reply that 
still militates in favour of political decisions of principle instead of legal and 
scientific considerations.

The decision of the ECJ is binding and cannot be appealed against. 
Therefore, in Europe, GMOs’ traceability must target any organism that has 
gone through a phase of isolated cells in in vitro culture, including those 
obtained by adding new techniques.

1.1.4 �The mutagenesis exemption

The 2001/18 and 2018/350 directives are based on the precautionary principle, 
by defining GMOs as human-mutated–artefactual–organisms. They are exempt 
from the requirements of risk assessment and labelling for the products of 
techniques with numerous applications and a long safety record at the 2001/18 
adoption time. As previously stated, they were no clear indications about which 
products were to be considered, but the techniques’ history made it clear. Several 
stakeholders, MS and EC executives took the in vivo mutagenesis techniques 
started in the 1930s as an example of exempted methods. For these actors, the 
in vivo International Atomic Energy Association (IAEA) mutants rather massively 
developed since the 1950s are adequate proof of any random mutagenesis in 
the requested long history of safety. The stakeholders and executives had then 
argued that in vitro mutagenesis was an in-depth technique developed before 
2001 in continuity with the in vivo IAEA-listed mutants. Thus, according to them, 
in vitro mutagenesis should be considered as the continuity of the in vivo one, 
and in vitro-derived mutants should thus be exempted. However, as pointed 
out by Thorpe (2012):

‘During the 1990s, continued expansion in the application of in vitro 
technologies to an increasing number of plant species was observed. However, 
only limited success has been achieved in exploiting somaclonal variation (Karp, 
1994) or in the regeneration of useful plantlets from mutant cells (Dix, 1994); 
also, the early promise of protoplast technology remains largely unfulfilled 
(Feher & Dudits, 1994)’.

There would thus be an apparent drastic technical and historical disconti-
nuity between in vivo and in vitro techniques. The reasoning is also supported 
by the effective use of in vitro mutants only after the publication of the TILLING 
technique in 2000 (McCallum et al., 2000a; McCallum et al., 2000b). Indeed, the 

3 �NGT (Novel Genomic Techniques) is the new name of NBT.
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induction of DNA-damaging mechanisms might differ between the in vivo and 
in vitro techniques (Brash and Hart, 1978; Krishna et al., 1987). A certain sto-
chasticity of ‘rebel’ cells will impede a direct complete 3D regeneration from a 
totipotent isolated cell. A totipotent cell is a single cell that can give rise to a new 
organism. Thus, several external impulses are necessary to induce the develop-
ment of organisms (Mojtahedi et al., 2016; Richard et al., 2016). Drug discovery 
and cancer studies are some of the areas of advanced biology which require the 
3D organisation of cells, for example, by creating organoids (3D tissue cultures) 
when the whole organism is not suitable. Indeed, the varying cell types, spatio-
temporal organisation, diffusion gradients and the molecular contents in the 
interior and the immediate environment; that is, the interactions between the 
cells and matrix(s), in an organoid, are more representative of life than isolated 
cell cultures (Edmondson et al., 2014). Epimutations can be observed after in 
vitro fecundation (fertilisation) but not in in vivo-conceived children (Peters et al., 
2015; Song et al., 2015). Similarly, the somaclonal variations caused in plant cell 
cultures vary according to the species’ reproductive biology, the cultivar and the 
number of individuals used, and the culture protocol, which does not promise 
any in vivo–in vitro continuity (Martínez, 2018; Skirvin et al., 1994).

The cells and tissues sense their environment and communicate to 
coordinate themselves through diverse molecules, including nucleic acids 
whose natural epigenomic ‘decoration’ (patterns) is essential for non-self-
identification (Hammarlund et al., 2020; Monticolo et al., 2020; Sablowski, 2016). 
This essential epigenetic profile is generally lost during in vitro manipulations. 
Exocytosis is an in vivo phenomenon of how the cell transports molecules so that 
they can be released from the cell without a corresponding model in vitro, while 
polyploid plants exhibit more significant variability in plants regenerated in vitro 
(Gavazzi et al., 1987; Ruiz et al., 2020; Skirvin et al., 1994; van den Bulk et al., 
1990; Žárský et al., 2009). Multicellular organisms evolve by selecting, in vivo, 
the germinal and meristematic cells ‘resistant’ to mutations and epimutations, 
the opposite of in vitro somaclonal variation (Balestrazzi et al., 2020; Burian 
et al., 2016; Morrow, 1975). This idea of in vivo selected cells protected from 
the effect of mutagens is found in other somatic mutation studies (Franco et al., 
2019). Indeed, some species seem to have evolved by selecting low rates of 
somatic mutations and epimutations, which do not correspond to the variations 
observed in vitro (Hofmeister et al., 2020; Orr et al., 2020). Thus, the in vivo and 
in vitro stages and mutageneses look dramatically different, and these legal 
and biological traits interact with GMO traceability issues.

1.1.5 �Summary

The remainder of this chapter, and the next one, will consider the various 
techniques used to generate GMOs within the ECJ and FCE context. After a 
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section dedicated to the current European frame in place for GMO traceability, 
this chapter will also explain the elements that are considered to be scars and 
signatures which could likely detect and identify new GMOs, and even suggest 
the technique used at their origin. ‘Scars’ are the unintended genetic and 
epigenetic modifications due to techniques related to isolated cells in in vitro 
cultures. ‘Signatures’ are both the unintended changes and the molecular 
patterns necessary for a mutagenesis technique to be performed, such as gene 
editing.

Due to the EC and MS’ inability to launch research programmes on detecting 
and identifying ‘hidden’4 and new GM varieties and prove their artefactual 
character, since February 2020, many stakeholders and some policymakers 
and scientists have expressed that the ECJ’s decision cannot be implemented 
(Haut Conseil des Biotechnologies (HCB), 2017; Scientific Advice Mechanism 
(SAM), 2017; Vain, 2007; van der Meer et al., 2021). Indeed, compared to 
transgenic GMOs with the random insertion of foreign DNA providing a univocal 
molecular signature, the new challenge is that with the similarity of the essential 
components of organisms such as nucleotides and DNA, cut repair systems are 
impeding us from distinguishing, easily in one step, some targeted modifications 
that may be natural or artefactual, such as SNV and indels of SDN15 and SDN2 
(Rostoks, 2021). This is a way of saying that a sand dune and a skyscraper are 
indistinguishable because they are both made from sand.

However, the European Network of GMO Laboratories (ENGL) recognised 
that analytical traceability was possible to facilitate the enforcement of 
procedures, if enabled by the classification of products as GMOs (European 
Network of GMO Laboratories (ENGL), 2019). The information gathered 
from notifiers could allow laboratories to develop identification methods by 
considering several converging elements, such as molecular markers, in a 
matrix approach. These elements, that would make these products from NBT 
in vitro cultures detectable and identifiable, and the applicable European GMO 
regulations, differentiating them from spontaneously mutated products, are 
now considered. The transgenesis-derived GMOs can serve as a framework 
and model for the detection of these ‘new GMOs’. The lack of engagement,6 
created by the European Commission’s refusal in 20177 to let ENGL work on the 
detectability of products derived from NBTs, should not be repeated. Indeed, 
all techniques and targets exist for the classical detection of these new GMOs. 
The detection techniques required have been developed in recent years by the 
ENGL network of laboratories (Holst-Jensen et al., 2012, 2013).

4 �The French VrTH (herbicide-tolerant varieties such as Clearfield rapeseed)
5 �Sequence-Directed Nuclease Mutagenesis
6 �https​:/​/ww​​w​.inf​​ogm​.o​​rg​/66​​46​-ue​​-expe​​rts​-s​​e​-pen​​chent​​-meth​​od​es-​​de​-de​​tecti​​on 
7 �https​:/​/ww​​w​.inf​​ogm​.o​​rg​/66​​78​-no​​uveau​​x​-ogm​​-comm​​issio​​n​-eur​​ope​-v​​eut​​-e​​lle​-t​​racab​​ilite​ https​:/​/ww​​w​.inf​​ogm​.o​​rg​/66​​

79​-ne​​w​-gmo​​s​-doe​​s​-eur​​opean​​-comm​​issio​​n​-wa​n​​t​-the​​m​-tra​​ceabl​e 

https://www.infogm.org/6646-ue-experts-se-penchent-methodes-de-detection
https://www.infogm.org/6678-nouveaux-ogm-commission-europe-veut-elle-tracabilite
https://www.infogm.org/6679-new-gmos-does-european-commission-want-them-traceable
https://www.infogm.org/6679-new-gmos-does-european-commission-want-them-traceable
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2 �The technical framework of the traceability of GMOs
2.1 �Introduction

Preliminary studies with stakeholders have made it possible to define a 
threshold for exemption from GMO labelling in a situation of adventitious 
(accidental) or technically unavoidable presence (Bertheau, 2002; Bertheau 
et al., 2002; Davison and Bertheau, 2007; Regulations 258/1997 then 
2015/2283, 49/2000, 50/2000, 1830/2003). The unit was not defined in these 
scenarios, but the reasoning and data were based on polymerase chain 
reaction (PCR)-targeted DNA techniques, which were later formally endorsed 
by the ENGL network. The European General Food Law (Regulations 
178/2002, 2019/1381) made traceability a mandatory ‘one step forward 
and one step back’ for all food products, including GMOs. It established the 
EFSA and the European Union Reference Laboratories (CRL-GMFF renamed 
EURL-GMFF), installed for the first time in a European authority (JRC, Ispra, 
Italy). Regulation 1830/2003 established an administrative traceability system 
for easily placing genetically modified (GM) food/feed on the EU market. It 
further complemented Article 21 of Directive 2001/18/EC by exempting 
labelling products below a 0.9% threshold of adventitious (accidental) and 
technically unavoidable presence of GMOs. A European network of State 
Control laboratories and research laboratories was informally set up in Ispra 
(Italy) in 1999, based on the Belgian and French network models. This network 
was officially opened by the European Commissioner for Research, Philippe 
Busquin, in December 2002. This ENGL network for GMO detection has 
since integrated the National Reference Laboratories (NRL), established by 
Regulation 1981/2006. 

The various regulations and directives oblige the GMO producers who 
wish to market their products in Europe to provide a detection/identification/
quantification method and the control material for interlaboratory validation of 
the procedure provided. In addition, a commercial source of reference material 
must be made available to private and enforcement laboratories. Originally 
prepared from seeds certified at the JRC IRMM8 of the European Commission, 
the production of these reference materials, at this time, originated from 
seeds as powder and then in DNA form, but was gradually transferred by the 
petitioning companies to a private actor. The quality of this new reference 
material was recently judged to be flawed by the enforcement laboratories. 
The ENGL and the NRL had to re-specify the rules and criteria9 of production in 
the face of these producers’ laxity (EURL-GMFF, 2019b). 

8 �Institute for Reference Materials and Measurements of the Joint Research Centre. 
9 �https​:/​/gm​​o​-crl​​.jrc.​​ec​.eu​​ropa.​​eu​/gu​​idanc​​​edocs​​.htm 

https://gmo-crl.jrc.ec.europa.eu/guidancedocs.htm
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Most of the ENGL research laboratories participated in the FP4–FP710 
European programmes. Those projects focused on GMO traceability strategies 
(QPCRGMOFood and GMOChips), on cultures’ co-existence (SIGMEA) and 
finally the traceability and co-existence in the whole supply chains (Co-Extra, the 
largest of those European research programmes) (Bertheau, 2013a; European 
Commission, 2010).

As in other areas of food safety, these control laboratories are seeking ISO 
17025 accreditation. Therefore, the laboratories participate in private, national 
and EURL-GMFF11 proficiency tests (Broothaerts et al., 2020; International 
Standard Organisation (ISO), 2017; Ribarits et al., 2021; Trapmann et al., 2014; 
Žel et al., 2006). The ENGL laboratories also participate in the interlaboratory 
validations of the petitioners’ methods. Therefore, the ENGL laboratory 
network is the technical, regulatory and scientific backbone of a complex 
detection domain whose goals, functionalities and rules are still evolving. The 
European Commission strongly supervises/verifies that there should be this 
world reference in GMO traceability. 

Before any scientific consideration, the definition and controls of GMOs 
depend fundamentally on political negotiations as much as its measurement 
unit, and this frames the technical, scientific and the recent legal upheavals.

2.2 �Traceability in the GMO context

Traceability is a vital requirement for consumers, European consumers in 
particular. Traceability is the ability to trace the history, application, use and 
location of an item or its characteristics through recorded identification data. 
As stated by the Codex Alimentarius, ‘Traceability is the ability to track the 
movements of a food among the specific stages of production, processing 
and distribution’, a statement following the EU's ‘Hygiene Package’ (Dwinger 
et al., 2007). Document-based traceability is the first requirement along food-
processing chains. It is a prerequisite for compliance with the international 
specific quality management standards (ISO 9000:2015, ISO 9001:2015) and 
is linked with food safety standards (ISO 22000:2018 and ISO 22005:2007). 
Traceability is mandatory in the EU since the General Food Law (178/2002 
regulation) of the ‘Hygiene Package’. The information must be available ‘one 
step forward and one step back’, and traceability documents must be retained 
for GMOs for a minimum of five years. This regulation avoids any distortion of 
competition and additional costs in the EU. Indeed, the GMOs’ documentary 
traceability requirements do not differ from the other EU-mandatory traceability 
obligations. This device was implemented to satisfy the precautionary principle 

10 �https​:/​/ec​​.euro​​pa​.eu​​/euro​​stat/​​cros/​​conte​​nt​/re​​searc​​h​-pro​​jects​​-unde​​r​-fra​​mewor​​​k​-pro​​gramm​​es​-0_​​en 
11 �https​:/​/gm​​o​-crl​​.jrc.​​ec​.eu​​ropa.​​eu​/Pr​​ofici​​ency-​​​tests​​.html​ 

https://ec.europa.eu/eurostat/cros/content/research-projects-under-framework-programmes-0_en
https://gmo-crl.jrc.ec.europa.eu/Proficiency-tests.html
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introduced by the community ‘White Paper’ of 2001 (Aerni, 2019). The complete 
integration of the general procedures for traceability and alerts in the EU has 
enabled the development of a reliable traceability system for GMOs, included 
in the RASFF12 alert system, without additional cost (Demortain, 2011; Parisi 
et al., 2016; Price and Cotter, 2014). However, despite these regulatory controls, 
fraud, adulteration and accidental contamination, whether or not due to human 
error, are still possible, although control systems such as the blockchain, may 
reduce the products’ falsifiability (Demestichas et al., 2020).

The history of GMOs is indeed a long process of unexpected contamination 
of seeds and food chains, due to human errors in particular, for example, 
by unauthorised products such as StarLink® (intended for the industry) or 
Prodigene (intended for pig vaccination) corn varieties (Ellstrand, 2003; Price 
and Cotter, 2014). This inability to trace GMOs in some areas of the world was 
exacerbated after September 2001 when the US authorities’ concern increased 
about their failure to protect themselves from malicious GMOs, especially if 
they were possible weapons of bioterrorism/biowarfare. The US Government 
Accountability Office (GAO) recommended strengthening the cooperation 
between the US agencies concerning traceability, which could have led to a 
convergence of operations between the regions of the world (Davison and 
Bertheau, 2008; GAO, 2008, 2016a, b). The fight against bioterrorism spurred 
the development of PCR devices or other detection systems, miniaturised and 
usable in the field or storage silos, together with techniques and strategies 
applicable for the detection of unknown biological elements and unknown 
GMOs such as NBT products (Hedman et al., 2018; Holst-Jensen et al., 2011; 
Minogue et al., 2019; Parida et al., 2020; Sugumar and Kong, 2008).

Transgenic GMOs provide unambiguous signatures by their random 
insertions and sometimes rearrangements of the insert, but the need to control 
analytical costs led to the development of the ‘matrix approach’. The primary 
goal of this approach was to determine the elements common to several GMOs 
to establish screening strategies, followed by the identification–quantification 
for authorised GMOs. Thus, the databases made it possible to identify the 
most authorised GMOs’ unequivocal profiles (patterns). Any discrepancy with 
these profiles allowed a suspicion of the presence of unauthorised GMO(s). 
Any information (sequence, geographical origin, nature of the processed 
product or whistle-blower alerts) can also be used. This matrix approach was 
adopted in all control laboratories. Such multi-parametric multi-step methods 
are used in many detection/identification fields with workflow systems, such 
as metabarcoding (Liu et al., 2020a) or other decision-making tools (Ruttink 
et al., 2010; Bellocchi et al., 2010; Bohanec et al., 2013). The detection of 
unknown GMOs is also possible, through a variant of the matrix approach 

12 �Rapid Alert System for Food and Feed https​:/​/ec​​.euro​​pa​.eu​​/food​​/safe​​ty​/r​a​​sff​_e​n 

https://ec.europa.eu/food/safety/rasff_en
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– the differential quantitative PCR – which works by quantifying the sequences 
common or not to several GMOs (Cankar et al., 2008; Gruden et al., 2013). 
Detecting and univocally identifying one or more GMOs, even the unknown 
ones, with the matrix approach, is more straightforward than identifying the 
taxa of an ecosystem (Ruppert et al., 2019).

Due to the strong consumer rejection of these new products, the detection 
of GMOs from transgenesis developed rapidly (Regulation 258/1997 then 
2015/2283) (Levidow and Marris, 2001; Gaskell et al., 2004; Kantar, 2019). The 
multiplication of GMOs was accompanied by a census of their characteristics 
in tables, and then in databases such as GMOMETHODS13, GMDD14 and 
EUGenius15 (Hemmer, 1997; Dong et al., 2008; Bonfini et al., 2016). These 
databases made it possible to organise the cost-effective analyses by 
successive steps, to determine one or several GMOs – from the screening step, 
using elements common to several GMOs, to a unique GMO identification, 
through its patterns or its unequivocal signature, followed by quantification. 
Various private or public tools were subsequently developed on the web,16 or 

13 �https​:/​/gm​​o​-crl​​.jrc.​​ec​.eu​​ropa.​​eu​/gm​​omet​h​​ods/
14 �http://gmdd​.sjtu​.edu​.cn/ 
15 �https​:/​/eu​​giniu​​s​.eu/​​eugin​​ius​/p​​ages/​​​home.​​jsf
16 �https​:/​/gm​​o​-crl​​.jrc.​​ec​.eu​​ropa.​​eu​/jr​​cg​mom​​atrix​/ 

Figure 1 Current two-step procedure for the detection of transgenic GMOs. The matrix 
approach can be implemented more in depth, when necessary, e.g. for unknown GMOs.

https://gmo-crl.jrc.ec.europa.eu/gmomethods/
http://gmdd.sjtu.edu.cn/
https://euginius.eu/euginius/pages/home.jsf
https://gmo-crl.jrc.ec.europa.eu/jrcgmomatrix/
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as the JRC pre-hybridised and implementable probe plates (Angers-Loustau 
et al., 2014). This type of methodological approach (see Fig. 1) provides a 
standardised basis (CEN/TS 16707, 2014) that can be extended to other 
targets, as discussed later in this and the next chapter. Varieties, like the 
Elite varieties of commercial cultivars, pangenomes and structural variants 
are also identifiable by such approaches (Alonge et al., 2020; Li et al., 2018; 
Sohn et al., 2017), for example, by detecting lesions in non-replicating DNA 
(Moreno et al., 2016). This polymorphic, multi-target screening step is capable 
of targeting from point variant to chromosomal rearrangement. It uses simplex 
or multiplex PCRs in e.g. SNPLex or DNA chips (Hougs et al., 2017; Wilkesa 
et al., 2016). Figure 1 presents a very simplified scheme of data analysis for 
identifying the GMOs of an agri-food product. Some determination criteria 
– such as epigenetic and epitranscriptomic modifications – have not been 
incorporated, for ease of reading. However, the principle remains the same: 
after organising the data, the analyses by dichotomous choices classically 
used in the detection of transgenic GMOs will allow, with the help of decision 
support tools (tables, decision support systems (DSS), artificial intelligence) 
to detect any new GMO, such as NBT products, and to verify that the traits 
used in the detection and quantification are not natural because they are 
integrated into an artefactual context, the unequivocal signature of the 
GMOs. The convergent flow of evidence, given as an example in Fig. 1 of 
the next chapter, is particularly illustrated in the case of an SDN1 or SDN2 
modification; an SDN3 change would be identified by the univocal signature 
of the insert’s edge fragments (these modifications are discussed further in 
the next chapter).

The analytical methods in this context must meet several objectives at the 
lowest cost, to identify and quantify a target and allow a multi-target approach 
to detect unknown GMOs. Various alternative methods have been developed, 
such as the bioassay of plantlets (e.g. herbicide-tolerant soybean seedlings) 
or infrared detection, to avoid the destruction of valuable material or large 
quantities of material (Anklam et al., 2002; Burgos, 2015). This last method 
might lead to a suspicion of the presence of unknown GMOs (Bonfini et al., 
2001; Michelini et al., 2008; Fumiere et al., 2009). These methods have not 
experienced any commercial or enforcement developments.

Some immunological methods continue to demonstrate that they are of 
interest in some specific situations. An immediate benefit of the development of 
GMO detection methods in the early 2000s was the standardised development 
of methods and procedures used later on in other detection sectors; however, 
the associated societal benefit, positive externalities and an essential return 
on investment are difficult to quantify (Davison and Bertheau, 2007, 2009; 
Bertheau and Davison, 2013).
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2.3 �The DNA target molecule in detection

DNA was chosen as the preferred target for this approach to analytical traceability, 
as the methodology is usable (i) from the field to the final consumer, with (ii) a 
continuity of detection available along the supply chains, and (iii) the versatility 
of the approaches it provides from the screening of sequences common to 
several GMOs to the quantification of univocal sequences, and (iv) agility from 
the sequencing of short, amplified fragments to e.g. the chromosome walking 
for the identification of unknown GMOs. DNA preserves well. It can be found in 
ancient, mummified and fossilised samples and products after many industrial 
processes, even if the size of the extractable fragments has decreased. The 
decrease in size is not too much of a problem, since quantification in quantitative 
real-time PCR (QRT-PCR) and other derived techniques are more reliable with 
relatively small pieces. Only highly refined products, such as certain industrial 
sugars and oils, contain such small amounts of DNA that the analytical cost 
becomes prohibitive. 

The DNA unit proposed by the ENGL network was accepted by the 
European Commission (2004/787). The method for calculating the GMO 
content (GMO%) is based on the haploid genome unit:

	 GMO% � � � � �
� �

�
�Copy Number of the GMO specific sequence

Copy Number oof the Taxon specific sequence� � ��
�100 	

The PCR, qualitative or quantitative real-time, is the dominant target 
amplification technique for (i) its sensitivity, (ii) its specificity at several levels 
(from point mutation to structural mutant) and (iii) its versatility (detection, 
sequencing, nested-PCR to improve specificity and sensitivity and a 
combination of techniques such as SNPLex and amplification for hybridisation 
on DNA chips). However, some limitations in multiplexing, especially the 
amplification errors, are often forgotten, for example, in preparing sequencing 
libraries. The development of small amplification devices, driven, for example, 
by biodefense’s needs, allows their use from the seed to the field, from the 
grain silo to the transformed product through the cargo. Signal amplification 
techniques have not been successful, particularly following QRT-PCR 
development with a calibrator (Miao et al., 2015; Vora et al., 2008). Some other 
target amplification techniques continue to be used or even take precedence 
over PCR in some situations. Of particular note is the current trend towards 
isothermal nucleic acid amplification techniques such as LAMP, RPA and NASBA 
(Bodulev and Sakharov, 2020; Kumar et al., 2018), with less sophisticated and 
cheaper devices and generally much shorter amplification time. The lower 
need for extraction and purification of target DNA due to lower sensitivity to 
inhibitors gives these techniques another advantage.



﻿Advances in identifying GM plants16

Published by Burleigh Dodds Science Publishing Limited, 2021.

Moreover, they can be easily used for DNA and RNA amplification 
at different points of need, such as fields (Zou et al., 2020), with more 
understandable readings when coupled with qualitative detection towards 
a dipstick (Lateral Flow Device) or flocculation (Singh et al., 2019b, Mason 
and Botella, 2019). On the other hand, the more complex methodological 
developments, such as the need to define four or six primers or accentuated 
constraints in multiplexing, without taking into account the effect of various 
inhibitory reagents, hamper their use, which has not yet been integrated into 
the standards and methods proposed by the notifiers (Parida et al., 2008; 
Lobato and O'Sullivan, 2018; Zou et al., 2020). Ligase Chain Reaction (LCR) is a 
technique able to detect point mutations and is used in multiplex techniques 
such as SNPLex (Chaouachi et al., 2005). New techniques which do not use 
enzymes, such as the Host Cell Reactivation (HCR) Assay, and could be used 
on-site (point-of-need), are not yet in the GMO methodological pipelines 
(Ikbal et al., 2015; Ouyang and Han, 2019).

The use of digital PCR (ddPCR) is another discernible technological trend. 
This application of limit dilution sub-sampling techniques has the advantage of 
reducing the effect of PCR inhibitors (Quan et al., 2018) and their dependence 
on reference materials of fluctuating quality and availability.

Indeed, some GMOs withdrawn from the market can take years to 
disappear from supply chains, but remain quantifiable (Regulation 619/2011). 
This regulation also established a 0.1% tolerance threshold for unauthorised 
GMOs in feed to ease the flow of international trade, provided the EFSA had 
studied the dossier. Such a threshold does not apply to food or seeds.

These simplex or multiplex techniques have been completed by high-
detection density techniques such as biosensors, microarrays and DNA 
chips, for which the amplification of the signal and the target can increase 
the detection sensitivity (Chen et al., 2018; Vora et al., 2008). These types of 
multi-target biosensors, previously developed by the European GMOChips 
programme, are particularly well suited for screening and the matrix approach 
(Chaouachi et al., 2005; Gruden et al., 2013; Holst-Jensen et al., 2013; von 
Gotz, 2010). Tiling chips could also be adapted for GMO detection purposes 
(Gregory et al., 2008).

2.4 �Other GMO detection targets

Inexpensive and rapid, the immunological tests developed are still used 
by some operators but have not been integrated into the routine of state 
controls (Fraiture et al., 2015; International Organization for Standardization 
(ISO), 2004; Stave, 2002). Some proteins may be present in several GMOs, 
thus preventing the differentiation between authorised and unauthorised 
transformation events, while the protein production varies significantly 
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between tissues and varieties (Grothaus et al., 2006; SeedQuest, 2011; Van 
den Bulcke et al., 2007). In some cultivars, the protein content may be even 
lower than the quantification limit. Nevertheless, the immunological tests have 
proven their usefulness for operators, particularly in some particular cases 
such as Cry9C, the only reported case of a protein specific to a transformation 
event. Indeed, immunological tests were used to remove StarLink®, a GM corn 
approved for industrial use and animal feed, from the food market, which 
would have cost nearly US$1 billion17 (Bratspies, 2003; Diaz et al., 2002; Price 
and Cotter, 2014; Schmitz et al., 2005). StarLink® was the first example of a 
long and controversial series of contaminations due to insufficient supply 
chain segregation. These tests can be used mainly in the field or at harvest 
and transport to silos, and are still used in production quality control in the 
seed field as for RoundUp Ready® soybeans, that is, mainly with self-pollinated 
species. Nevertheless, these immunological tests (Agdia, SDIX, EnviroLogix, 
Creative Diagnostics) are still used for dispersion studies (Strain et al., 2014), 
or as versatile screening means, for example, in ‘GMO-free’ supply chains 
(Identity Preservation, Eurofins).

Epigenetic and epitranscriptomic targets have so far not been considered 
in the case of transgenic GMOs. These targets are nevertheless detectable 
but do not have the critical feedback from the DNA target detection (Bey 
et al., 2016; Fojtová and Fajkus, 2020; Mozgová et al., 2015). Apart from the 
reverse transcription usable for RNA detection with PCR (RT-PCR), nucleic acid 
sequence-based amplification (NASBA), strand displacement amplification 
(SDA), recombinase polymerase amplification (RPA) and various other methods 
will be applicable in GMO traceability (Zhao et al., 2020).

2.5 �DNA extraction

The matrix effect is often underestimated, as for PCR for sequencing libraries 
(Pasquali et al., 2019; Robin et al., 2016). From the beginning of GMO detection, 
it was necessary to choose between a general lysis-extraction process followed 
by a purification step and specific processes adapted to each matrix. The latter 
choice would have increased the accreditation efforts and training of personnel 
to different methods. The current consensus is to use a general technique, most 
often CTAB-based, followed by purification to reduce the amount of inhibitors 
present (International Organisation of Standardization (ISO), 2005a). The 
phenol–chloroform process remains the best on a diagnostic lab scale but can 
be discarded for its risks (Bonfini et al., 2001; Piskata et al., 2019; Sajali et al., 
2018). The dramatic difficulties faced with DNA extraction explain the absence 

17 �https​:/​/en​​.wiki​​pedia​​.org/​​wiki/​​StarL​​ink​_c​​o​rn​_r​​ecall​ https​:/​/ww​​w​.ncb​​iotec​​h​.org​​/news​​/less​​ons​-a​​venti​​s​-sta​​rlink​​​-corn​​
-reca​​ll 

https://en.wikipedia.org/wiki/StarLink_corn_recall
https://www.ncbiotech.org/news/lessons-aventis-starlink-corn-recall
https://www.ncbiotech.org/news/lessons-aventis-starlink-corn-recall
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of an ISO standard. This difficult extraction step partly explains the growing 
success of alternative amplification methods to PCR and ddPCR, which are less 
sensitive to PCR inhibitors (Walker and Hsieh, 2019).

Specific matrices and highly refined products are always subject to peculiar 
treatments (Corrado, 2016; Demeke and Jenkins, 2010; Gryson et al., 2002; 
Waiblinger et al., 2007). Documentary traceability, with the conservation of 
samples before processing, is then essential. Ideally, the sample preparation 
should allow several analyses, including screening – which is a subset of 
the matrix approach – followed by identifying the GMOs, all with sufficient 
replications to assess the measurements' variability (Block et al., 2013; Gerdes 
et al., 2012a).

2.6 �GMO quantification

The QRT-PCR assay remains the method of choice for its versatility, especially 
the standardisation that has accompanied it, despite alternative quantification 
techniques (Holst-Jensen et al., 2006; International Organization for 
Standardisation (ISO), 2005c, d, 2006). The availability of reliable reference 
materials is currently necessary for this technique. The matrix approach and the 
detection of epigenetic and epitranscriptomic changes also require reference 
materials that are as complete as possible, such as crushed seeds. Indeed, 
the current trend to develop alternative certified reference materials, such 
as plasmids, or suppress them in front of the ddPCR, poses a risk for current 
and future applications of, for example, the matrix approach or chromosome 
walking (Trapmann et al., 2010; Caprioara-Buda et al., 2012; Deprez et al., 
2016).

Qualitative immunological or PCR methods can be used with subsampling 
strategies, of which ddPCR is only an application, to determine the GMO content 
according to a previously defined threshold (Bertheau and Kobilinsky, 2004; 
Kobilinsky and Bertheau, 2005; International Organization for Standardization 
(ISO), 2005b, 2020; Macarthur and von Holst, 2012). A cost function has even 
been integrated into the International Seed Testing Association (ISTA) and the 
EU-acknowledged methods for seed quality determination (Gregoire et al., 
2002; International Organization for Standardisation (ISO), 2020; Laffont 
et al., 2005; Regulatory Committee of Directive 2001/18, 2020; Remund et al., 
2001).

A great deal of work has been done to reduce the measurement 
uncertainties, and with them, litigation. However, the recent regulations aimed at 
reducing the GMO content by requiring the mass conversion of measurements 
made into haploid genome equivalents may increase these uncertainties 
at several levels and increase litigation (Corbisier et al., 2017; Corbisier and 
Emons, 2019; EURL-GMFF, 2019a; Rose et al., 2011; Žel et al., 2012).
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The vast uncertainties due to sampling are not considered in laboratory 
practices (Gy, 2004a,b).

2.7 �Standardisation of GMO detection methods

The analytical traceability of GMOs was the first systematic application of PCR 
and its quantitative variations, together with the necessary international guide-
lines and standards (ISO 21569, 21570, 21571, 24276, 21098). This standardisa-
tion work is based on performance criteria that are still relevant, both routinely 
and for petitioners’ supplying methods (Bertheau et al., 2002; European 
Network of GMO Laboratories (ENGL), 2015; International Organization for 
Standardisation (ISO), 2006 – ISO 24276). The ISO working group on GMOs, 
initiated by France, has now extended its activities to identifying varieties by 
the matrix approach of biomarkers (fingerprinting) (ISO/TC 34/SC 16 Horizontal 
methods for molecular biomarker analysis). The mutual recognition of the differ-
ent variants of techniques developed by the firms is in progress through stand-
ardisation at the International Union for the Protection of New Varieties of Plants 
(UPOV)18 and ISO; International Organization for Standardization (ISO/TC 34/
SC 16), 2015; International Organization for Standardization (ISO), 2019a,b,c).

Variety identification by fingerprinting is an ancient practice whose 
principles are usable for all GMO traceability (Kwon et al., 2005; Bhargava and 
Sharma, 2013; Korir et al., 2013 Matsaunyane and Dubery, 2018; Singh et al., 
2019a). This set of techniques addressing the nuclear genome and epigenome 
complements the use of organelle (chloroplast) genomes, for species and 
variety/cultivar identification and for marker-assisted breeding (Daniell et al., 
2016; Żmieńko et al., 2011). These techniques, already implemented by the 
ISTA19 laboratories, involve multi-parametric analyses of numerous molecular 
markers for the unambiguous identification of new GMOs. Tiling DNA chips 
used in plant breeding will facilitate these identifications and classifications 
(Anderson et al., 2016; Liu, 2007). The increasingly used techniques such as 
NASBA and LAMP are not the priority of standardisation, which remains a long 
and expensive procedure. 

This lack of consideration for such techniques can also be explained by 
the significant changes they would entail for analytical laboratories in training, 
purchasing equipment, or evaluating the equivalence between PCR and these 
methods.

However, the accuracy of all these laboratory techniques depends on 
the representativity of the samples. We thus have to consider the aspects of 
sampling all along the supply chains.

18 �Working Group on Biochemical and Molecular Techniques, and DNA-Profiling in Particular, https://www.upov.int/
meetings/en/topic.jsp?group_id=261

19 �International Seed Testing Association

https://www.upov.int/meetings/en/topic.jsp?group_id=261
https://www.upov.int/meetings/en/topic.jsp?group_id=261
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3 �Sampling and supply chains coexistence issues
3.1 �Introduction

GMO sampling strategies are not fundamentally different from those used in 
other areas of quality control. They are conditioned by the size, homogeneity 
of the products’ distribution, and the distribution of the element(s) to be 
detected. They also vary according to the position in the supply chains (Onori 
et al., 2013). The detection of small quantities of GMOs, known as LLP,20 that is, 
a GMO which is currently unauthorised but in imported feed or withdrawn from 
the market, remains a significant issue (Demeke and Perry, 2014; Demeke et al., 
2014; Grohmann et al., 2014).

Homogeneous products such as seeds or products processed in large 
quantities have standardised sampling plans, including cost functions (Allnutt, 
2006; Hochegger et al., 2016; Kobilinsky and Bertheau, 2005; Laffont et al., 
2005; Remund et al., 2001). On the other hand, sampling in the field, in the 
framework of coexistence, or cargoes, imposes complicated and expensive 
sampling strategies that introduce substantial measurement uncertainties 
(Bancal et al., 2014; Bellocchi et al., 2009; Esbensen et al., 2012; Eurachem and 
CITAC, 2007; Kay and Paoletti, 2001; Minkkinen et al., 2012; Paoletti et al., 2003). 
Some estimates indicate sampling uncertainties in the final measurements, 
which are at least 100 times greater than those of the analytical ones (Gy,  
1998).

The heterogeneous distribution of the elements to be detected, as for 
mycotoxins, increases the uncertainties, complicates sampling plans and 
increases costs (Armitage, 2003; Miraglia et al., 2009; Onori et al., 2013). 
Several commitments such as high confidence limits, low detection thresholds, 
and the management of withdrawn GMOs also increase costs (EURL-GMFF, 
2011; European Commission, 2011a). Accordingly, some authors propose 
using simplified mycotoxin-specific sampling designs instead of the new 
complex ones.

Field sampling, especially for cross-pollinated species, is undoubtedly 
one of the most challenging and contentious steps (Darmency et al., 2009),. 
It has been the subject of much work in the SIGMEA and Co-Extra research 
programmes because of the long-distance dissemination for open-pollinated 
plants (Brunet et al., 2013; Messéan et al., 2006; Sustar-Vozlic et al., 2010). Some 
viable pollens can spread 3  km for corn and more than 20  km for Agrostis, 
while many contamination points outside the fields and regrowth in agricultural 
sites make it challenging to manage pollen and kernel flows. Finally, GMO 
production areas shall be kept outside of regions with wildtype relatives, such 
as Beta maritima, genetic resources, or the production of hybrid varieties (Aono 

20 �Low-Level Presence
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et al., 2006; Bailleul et al., 2016; Busi and Powles, 2016; Emberlin et al., 1999; 
Rousseau et al., 2006; Snow, 2012). There are no reliable sampling plans for 
such particularities. Accordingly, some authors recommend using simplified 
sampling plans and postponing the GMO content assessment to the storage 
at the exit of the field. All these difficulties, complicated agricultural practices 
and crop rotations, with the absence of register and coordination organisms, 
have led to the recommendation to restrict GM crops in areas dedicated to the 
opposite of flexible coexistence, based on farming neighbours’ negotiations 
(Bertheau, 2012, 2013; Czarnak-Kłos and Rodríguez-Cerezo, 2010; Rizov and 
Rodriguez-Cerezo, 2015; Rizov and Rodriguez Cerezo, 2014). 

A land-sharing vs land-sparing option is similarly openly debated about 
biodiversity preservation, for instance, in natural parks.

3.2 �Sampling techniques

A best practices-based sample preparation is as essential for GMOs as it is for 
other testing in traceability systems. It must routinely allow for practical limits 
of detection (LoD) and quantification (LoQ) to be reached, without increasing 
measurement uncertainties (European Network of GMO Laboratories (ENGL), 
2011). The reliability of any analysis is based on the representativeness of the 
portion of the sample that is tested (Pitard, 2019). The reduction of the bulk 
samples via homogenisation and then to the test portion is a laborious, often 
contaminating procedure, and a source of measurement uncertainties, for which 
guidelines have been defined (Berben et al., 2014). The laboratories initially 
faced many practical problems regarding volumes and masses that could be 
processed quickly with easily cleanable mixing and grinding equipment. In any 
case, the extraction of fast, cheap and free DNA of the maximum amount of 
amplification inhibitors remains a challenge, both in terms of the reliability of 
the results and the cost involved.

The cost and unreliability of field sampling may lead to recommendations 
for simplified plans that are cheaper, even if they are less reliable, which 
means that sampling may be postponed until harvest and move towards the 
silos (Bailleul et al., 2016; Bannert, 2006; Miraglia et al., 2009). Long-distance 
dissemination of viable pollen (more than 20 km for some) is probably more 
important than initially estimated (Brunet et al., 2013; Heuberger et al., 2010; 
Rousseau et al., 2006). Such field sampling difficulties are exacerbated by the 
statistical power and suspected contamination that could be reached. For 
example, the sizes of required samples for a 95% confidence limit of detection 
would be:

•• 100 plants at 3% contamination level. 
•• 200 plants at 1.5% contamination level. 
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•• 300 plants at 1% contamination level. 
•• 3000 plants at 0.1% contamination level. Such a practical threshold is 

generally targeted for avoiding labelling of technically unavoidable or 
fortuitous presence at the 0.9% GMO legal threshold.

Even if sample-pooling strategies make it possible to reduce the number of 
samples tested in the first instance, the limits of laboratories and collectors are 
very quickly reached. These difficulties explain the many precautions taken in 
seed production, such as exclusion zones for the production of maize or sugar 
beet hybrid seeds, and the numerous GMO seed contaminations observed 
over the years.

Due to the difficulties in the field sampling of open-pollinated crops, 
the arrival of materials at the storage silo can be the first opportunity to 
carry out testing for the presence of GMOs. The samples taken by probes 
are typically used to analyse the incoming material. Specific procedures are 
required to analyse large products, such as beets, for pooled analyses. While 
immunoassays are still used for their relative cost, they lose ground to PCR 
and alternative methods, for instance, the detection of several GMOs with 
mobile PCR instruments and direct quantification. Isothermal techniques 
can replace PCR, mostly when deep-stick or flocculation formats have been 
adapted to facilitate their use. The storage in silos often allows a reduction in 
GMO contents in a given batch by illegal mixing of the contents. Leaving the 
storage facilities is probably the most critical step for export and industrial 
processing stages. It is the object of the most significant precautions to 
prevent cross-contamination.

Only a few tests are carried out downstream, because most firms rely 
on hazard analysis critical control point (HACCP) approaches to avoid 
contamination. For several decades, governments have favoured organisations’ 
self-monitoring to disengage themselves, while the governments’ enforcement 
services, facing their increasingly reduced means, have to endorse these 
sources of adulteration with documentary traceability, unless there is suspicion 
of contamination or presence (Davison and Bertheau, 2008; Dwinger 
et al., 2007). The underlying reasoning of such self-monitoring is that a firm’s 
reputation takes a long time to establish, whereas the mistrust induced by fraud 
takes a long time to redress. Therefore, analytical checks are only carried out in 
severe doubt or emergency cases such as those determined by the MS’ RASFF21 
network. It is likely that after an initial challenge phase in the detection of NBT 
products, where operators are testing the willingness of MS to implement the 
decision of the ECJ, the same documentary traceability-based enforcement 
strategy will prevail for NBT products.

21 �Rapid Alert System for Food and Feed https​:/​/ec​​.euro​​pa​.eu​​/food​​/safe​​ty​/r​a​​sff​_e​n 

https://ec.europa.eu/food/safety/rasff_en


Published by Burleigh Dodds Science Publishing Limited, 2021.

Advances in identifying GM plants﻿ 23

4 �Conclusion
This chapter has considered the technical advances developed to identify 
transgenic GMOs and assure the traceability of GMOs in food supply chains. 
The use of different targets and signal amplification of variants, with or without 
hybridisation, makes available a range of qualitative and quantitative methods 
(QRT-PCR, LAMP, NASBA, LCR, SNPLex…) that can be chosen, depending on the 
target. These methodological approaches can be applied from the field to the 
laboratory, from point mutation to the junction sequence between rearranged 
elements and from single to multiple targets (Bertheau, 2013; Bertheau, 2019; 
Chhalliyil et al., 2020). Associated with various decision support tools, they 
allow, via the matrix approach, the identification of any GMO. Most of the 
methods and guidelines necessary for the analytical traceability of GMOs in 
the supply chains are available on the EURL-GMFF website.22

The implementation of GMO traceability systems is a techno-political 
decision, subject to many pressures. Changing the definition of GMOs or the 
measurement unit in the future will only reinforce citizens’ mistrust in politicians, 
administrations, and researchers interested in these techniques. As noted in the 
recent ENGL report (ENGL, 2019), the current EU regulations, with their mandatory 
requirement for the supply of reference materials and biomarkers such as those 
used in varietal identification, would, with some probable adjustments, mostly 
suffice to ensure their traceability, whatever the method of obtaining them.

Techniques to detect all kinds of molecular targets, like ‘hidden’ and ‘new’ 
GMOs, are available. The issues of detection and identification, such as defining 
targets and routine methods for those GMOs, are considered in more depth in 
the next chapter.

5 �Where to look for further information
The book resulting from the Co-Extra European research program gives 
an overview of the problems and solutions concerning the traceability and 
coexistence of GMO and non-GMO supply chains (https​:/​/on​​linel​​ibrar​​y​.wil​​ey​
.co​​m​/doi​​/book​​/10​.1​​002​/9​​​78111​​83737​​81).

The site of the European GMO reference laboratory and the ENGL network 
provides the majority of references necessary for any analytical practice in 
GMO detection (https://gmo​-crl​.jrc​.ec​.europa​.eu/).

Louis Pasteur (1822–1895) professed: "Have the cult of the critical spirit. 
Reduced to itself, it is neither an awakener of ideas, nor a stimulant of great 
things. Without it, everything is null and void", so in the face of the assertions 
of the economy of the promise of firms, please consider carefully sites like this 
one: https://www​.gmwatch​.org​/en/.

22 �​https​:/​/gm​​o​-crl​​.jrc.​​ec​.eu​​ropa.​​eu​/de​​​fault​​.htm 

https://gmo-crl.jrc.ec.europa.eu/default.htm
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