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Abstract

In this work, a mathematical model representing two series interconnected chemostats

where the mortality of the species is taken into consideration, is studied in detail. The study

is carried out with di�erent mortalities of the two tanks. The speci�city of this study is

the intervention of two types of heterogeneities. There is heterogeneity in relation to the

distribution of the total volume in both tanks and heterogeneity in relation to the di�erent

mortalities of the two tanks. We study the performance of the serial con�guration under two

di�erent criteria which consists on the substrate concentration leaving the second tank and

the biogas �ow rate production. A comparison is made with a single chemostat where the

mortality rate is considered to be the same in all tanks, i.e. in the single chemostat and in the

interconnected tanks. Conditions depending on the mortality rate, on the parameter de�ning

the distribution of the total volume between the two tanks and on the operating parameters

that are the substrate concentration at the entrance of the �rst tank and the dilution rate, are

involved. These conditions allow to have a serial con�guration with mortality more e�cient

than a single chemostat with the same mortality.

Keywords chemostat, gradostat, mortality, bifurcations, global stability, operating diagram,

biogas production
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1 Introduction

The mathematical model of the chemostat has received a great attention in the literature for
many years (see for instance [16] and literature cited inside). This is probably due to its rel-
ative simplicity that can explain and predict quite faithfully the dynamics of real bioprocesses
exploiting microbial ecosystems. It is today an important tool for decision making in industrial
world, such as for dimensioning bioreactors or designing e�cient operating conditions [13, 20].
Several extensions of the original model of the chemostat, considering spatial heterogeneity, have
been proposed to better cope reality (see for instance [19]). Lovitt and Wimpenny has proposed
the "gradostat" experimental device as a collection of chemostats of same volume interconnected
in series [22, 23], which has led to the so-called "gradostat model" representing in a more gen-
eral framework a gradient of concentrations [36, 39]. The gradostat model has been further
generalized as the "general gradostat model" representing more general interconnection graphs
with tanks of di�erent volumes [37, 38]. Particular interconnection structures have been investi-
gated and compared for the properties in terms of input-output performances (see for instance
[5, 7, 15, 28]). It has been notably shown that a series of reactors instead of a single perfectly
mixed one can signi�cantly improve the performances of the bioprocess (in terms of matter con-
version) while preserving the same residence time, or equivalently that the same performance can
be obtained with a smaller residence time considering several tanks in series instead of a single
one [14, 17, 24, 25, 45]. On another hand, it is known that in real processes, various growth
conditions can be met and that it could be di�cult to setup exactly the same perfect conditions
in di�erent reactors. These conditions include toxicity levels of culture media, which means more
concretely that the consideration of a bacterial mortality, although often neglected compared to
the removal rate, might be non avoidable and could also be variable. To the best of our knowl-
edge, the possible impacts of mortality in the design of series of chemostats has not been yet
studied in the literature, which is the purpose of the present work. Its contributions also cover
interests in theoretical ecology for a better grasp of the interplay between spatial heterogeneity
and mortality in resource-consumers models. Indeed, considering di�erent removal rates in the
classical chemostat model or more general ones allows to consider additional mortality terms
[21, 29, 33, 43]. However, these mathematical studies have mainly concern analyses of equilibria
and stability and not the performances of the system in presence of mortality.

In view of providing clear messages to the practitioners, we investigate how the operating di-
agram of a series of two interconnected chemosats in series is modi�ed when considering di�erent
or identical mortality rates in both tanks. Operating diagrams have proven to be a good synthetic
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tool to summarize the possible operating modes, emphasized in [26] for its importance for bioreac-
tors. Indeed, such diagrams are more and more often constructed both in the biological literature
[26, 35, 40, 44] and the mathematical literature [1, 2, 4, 9, 10, 11, 12, 18, 30, 31, 32, 34, 41, 42].

Then, we study the performances in terms of conversion ratio and byproduct production (such
as biogas). As we shall see, several aspects are not intuitive, which show that the consideration
of mortality can signi�cantly modify the favorable operating conditions.

Along the paper, we use the abbreviations LES for locally exponentially stable and GAS for
globally exponentially stable in the positive orthant.

The paper is organized as follows. Section 2 includes the introduction of the mathematical
model corresponding to the serial con�guration of two chemostats with mortality rate. After-
wards, Section 3 focuses on the study of performances of the serial con�guration with respect
of the output substrate concentration. Then, Section 4 considers the performances of the serial
con�guration with respect of the biogas production. Next, Section 5 is devoted to illustrations
and numerical simulations and a conclusion is given in Section 6. Moreover, we set up the single
chemostat with mortality in Appendix A, while Appendix B is devoted to the existence and
stability analysis of the steady states of the serial chemostat and Appendix C to its operating
diagram. These results are extension of former results, in the case without mortality [7], but
that have required to revisit signi�cantly the mathematical proofs. Finally, Appendix D contains
technical proofs.

2 Presentation of the model

We consider two serial interconnected chemostats where the total volume V is divided into
V1 = rV and V2 = (1− r)V , with r ∈ (0, 1), as shown in Fig. 1. The substrate and the biomass
concentrations in the tank i are respectively denoted Si and xi, i = 1, 2. The input substrate
concentration in the �rst chemostat is designated Sin, the �ow rate is constant and is designated
by Q. The output substrate concentration is the concentration of substrate in the second tank
Sout = S2.

Sin

Q

QQ
Sout = S2

S1
x1

S2
x2

rV (1− r)V

Figure 1: The serial con�guration of two chemostats.

The mathematical model is given by the following equations:

Ṡ1 = D
r (Sin − S1)− f(S1)x1

ẋ1 = −D
r x1 + f(S1)x1 − ax1

Ṡ2 = D
1−r (S1 − S2)− f(S2)x2

ẋ2 = D
1−r (x1 − x2) + f(S2)x2 − ax2,

(1)

where f is the growth function, a is the mortality rate of the biomass and D = Q/V is the
dilution rate of the whole structure. The dilution rate of the �rst tank is Q/V1 = D/r. The
dilution rate of the second tank is Q/V2 = D/(1− r).

Note that these equations are not valid for r = 0 and r = 1, which correspond to a single
chemostat. For sake of completeness, the useful results on the single chemostat are given in
Appendix A. The considered growth function satis�es the following properties.

Assumption 1. The function f is C1, with f(0) = 0 and f ′(S) > 0 for all S > 0.
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We de�ne
m := sup

S>0
f(S), (m may be +∞). (2)

As f is increasing then the break-even concentration is de�ned by

λ(D) := f−1(D) when 0 ≤ D < m. (3)

The particular case without mortality of the biomass (a = 0) is studied in [7]. The results
on the existence and stability of steady states of system (1) are very similar to the case without
mortality. The details are given in Appendix B. The system can have up to three steady states:

• The washout steady state E0 = (Sin, 0, Sin, 0).

• The steady state E1 = (Sin, 0, S2, x2) of washout in the �rst chemostat but not in the
second one.

• The steady state E2 = (S∗1 , x
∗
1, S
∗
2 , x
∗
2) of persistence of the species in both chemostats.

As in the case without mortality, see Table 3 in the Appendix, for any operating condition
(Sin, D), one and only one of the steady-states E0, E1 and E2, is stable. It is then globally
asymptotically stable (GAS).

The operating diagram of the system is described in Appendix C. The operating diagram
has as coordinates the input substrate concentration Sin and the dilution rate D, and shows
how the solutions of the system behave for di�erent values of these two parameters. The regions
constituting the operating diagram correspond to di�erent qualitative asymptotic behaviors. The
operating diagram of system (1) is depicted in Fig. 2.

The aim of this work is to establish a comparison of the performance of the serial con�guration
with ones of the single chemostat. In the following, we compare both structures according to
two di�erent criteria; the output substrate concentration and the biogas �ow rate.

3 Output substrate concentration

We assume that the serial con�guration is functioning at a stable steady state. The output
substrate concentration at steady state depends on the parameters D, Sin and r. It is denoted
Soutr (Sin, D).

Proposition 1. Assume that Assumption 1 is satis�ed. The output substrate concentration at
steady state of system (1) is given by

Soutr (Sin, D) =


Sin if Sin ≤ min

(
λ
(

D
1−r + a

)
, λ
(
D
r + a

))
S2 if λ

(
D

1−r + a
)
≤ Sin ≤ λ

(
D
r + a

)
S∗2 if Sin > λ

(
D
r + a

) (4)

where S2 = λ
(

D
1−r + a

)
and S∗2 is the unique solution of equation h(S2) = f(S2). In this

equation, the function h is de�ned by:

h(S2) = D+(1−r)a
1−r

S∗1−S2

b−S2
, (5)

where S∗1 = λ
(
D
r + a

)
and b =

D(Sin−S∗1 )
D+ra + S∗1 .

Proof. The output substrate concentration at steady state of system (1) is equal to Sin, if E0 is
the GAS steady state. It is equal to S2 if E1 is the GAS steady state and to S∗2 if E2 is GAS.
According to Theorem 3 in the Appendix, E0 is GAS if and only if

D ≥ max(r, 1− r)(f(Sin)− a),
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which is equivalent to

Sin ≤ min
(
λ
(

D
1−r + a

)
, λ
(
D
r + a

))
.

On the other hand, using Theorem 3, S2 depends on D and r and we have S2 = λ
(

D
1−r + a

)
.

E1 is GAS if and only if

r(f(Sin)− a) ≤ D ≤ (1− r)(f(Sin)− a),

which is equivalent to

λ
(

D
1−r + a

)
≤ Sin ≤ λ

(
D
r + a

)
.

Finally, using Theorem 3, we know that S∗2 depends on parameters Sin, D, r. It is the unique
solution of equation h(S2) = f(S2), where h is de�ned by (5). On the other hand E2 is GAS
if and only if the condition D < r(f(Sin) − a) is satis�ed, which is equivalent to the condition
Sin > λ

(
D
r + a

)
.

Although Soutr (Sin, D) is de�ned only for 0 < r < 1, we can extend it, by continuity, for
r = 0 and r = 1 by

Sout0 (Sin, D) = Sout1 (Sin, D) = Sout(Sin, D). (6)

where Sout(Sin, D), which is the output substrate concentration of the single chemostat, is given
by

Sout(Sin, D) =

{
Sin if Sin ≤ λ(D + a),
λ (D + a) if Sin > λ(D + a).

(7)

For more information on Sout(Sin, D), see Appendix A.
The proof of (6), comes from the following remarks. First, we have S2(D, 0) = λ(D+ a) and

second, according to Lemma 9 in the Appendix, we can extend S∗2(Sin, D, r), by continuity, to
r = 1, by

S∗2(Sin, D, 1) = λ(D + a).

Our aim in this section is to compare Soutr de�ned by (4) and (6) and Sout de�ned by (7).

3.1 The serial con�guration can be more e�cient than the single chemostat

We �x r and we describe the set of operating conditions (Sin, D) for which

Soutr (Sin, D) < Sout(Sin, D), (8)

that is to say, the serial con�guration with volumes rV and (1− r)V , is more e�cient than the
single chemostat of volume V . For r ∈ (0, 1), let gr : [0, r(m− a)) 7→ R de�ned by

gr(D) := λ
(
D
r + a

)
+ r(D+ar)

(1−r)(D+a)

(
λ
(
D
r + a

)
− λ(D + a)

)
. (9)

Lemma 1. For r ∈ (0, 1) we have gr(D) > λ
(
D
r + a

)
.

Proof. As 0 < r < 1 and λ is an increasing function then, we have λ(D/r+a) > λ(D+a). Using
(9), we have gr(D) > λ(D/r + a).
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Sin

D

0 λ(a)

I0(r)

I1(r)

I2(r)

Γr

Φr

Φ1−r

(a) 0 < r < 1/2

Sin

D

0 λ(a)

I0(r)

I3(r)

I2(r)

Γr

Φr

Φ1−r

(b) 1/2 < r < 1

Figure 2: The operating diagram of of system (1) and the curve Γr de�ned by (14).

Theorem 1. Assume that Assumption 1 is satis�ed. For any r ∈ (0, 1), we have

Soutr (Sin, D) = Sout(Sin, D)⇐⇒ Sin = gr(D).

Moreover,

Soutr (Sin, D) < Sout(Sin, D)⇐⇒ Sin > gr(D).

Proof. Recall that S∗2(Sin, D, r) is the unique solution of equation f(S2) = h(S2) with h de�ned
by (5). Let us �rst prove that

S∗2(Sin, D, r) < λ(D + a)⇐⇒ Sin > gr(D). (10)

Since f is increasing, see Assumption 1, and h is decreasing, see Lemma 8 in the Appendix,
then the condition S∗2(Sin, D, r) < λ(D + a) is equivalent to the condition h(λ(D + a)) <
f(λ(D + a)) = D + a. Using (5), a straightforward computation shows that the condition
h(λ(D + a)) < D + a is equivalent to Sin > gr(D), where gr is de�ned by (9). This proves (10).
Let us go now to the proof of the theorem. Assume that Sin > gr(D). Using Lemma 1, we have

Sin > λ(D/r + a) > λ(D + a).

Using (4) and (7), we have

Soutr (Sin, D) = S∗2(Sin, D, r),
Sout(Sin, D) = λ(D + a).

(11)

From (10), we have Soutr (Sin, D) < Sout(Sin, D). Hence, we proved the following implication

Sin > gr(D) =⇒ Soutr (Sin, D) < Sout(Sin, D). (12)

Assume now that Sin ≤ gr(D). When r < 1/2, three cases must be distinguished. First, if

λ(D + a) < λ
(
D
r + a

)
< Sin ≤ gr(D),

then, by (4) and (7), we obtain (11). Hence, using (10), we have Soutr (Sin, D) ≥ Sout(Sin, D).
Secondly, if

λ(D + a) < λ
(

D
1−r + a

)
≤ Sin ≤ λ

(
D
r + a

)
,

then, by (4) and (7), we have

Soutr (Sin, D) = λ
(

D
1−r + a

)
,

Sout(Sin, D) = λ(D + a).
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Therefore, we have Soutr (Sin, D) > Sout(Sin, D). Finally, if Sin ≤ λ(D + a), then

Soutr (Sin, D) = Sout(Sin, D) = Sin.

When r ≥ 1/2, the proof is similar, excepted that we must distinguish only two cases,
λ(D + a) < Sin ≤ λ(D/r + a) and Sin ≤ λ(D + a). Hence, we have proved the reciprocal
implication of (12). This completes the proof of second equivalence in the theorem.

The same calculations show the equivalence if inequalities are replaced by equalities.

Theorem 1 asserts that the serial con�guration is more e�cient than the single chemostat if
and only if Sin > gr(D). Let us illustrate this result in the operating diagram of system (1).
Consider the curve of equation

Φr =
{

(Sin, D) : Sin = λ(D/r + a)
}
. (13)

According to the results given in Appendix C, the curves Φr and Φ1−r de�ned by (13)
separate the operating plane (Sin, D) in four regions in which the system has di�erent asymptotic
behaviour, see Table 3. To put it simply, in the I0(r) region, E0 is GAS, in I1(r), E1 is GAS, and
in I2(r) ∩ I3(r), E3 is GAS, see Fig. 2. This �gure also shows the plot of the curve Γr, de�ned
by

Γr :=
{

(Sin, D) : Sin = gr(D)
}
. (14)

Using Lemma 1, we see that for all r ∈ (0, 1), the curve Γr is always at right of the curve
Φr. According to Theorem 1, the output substrate concentration of the serial con�guration is
smaller than the one of the single chemostat, if and only if (Sin, D) is at right of the curve Γr
depicted in Fig. 2.

3.2 The output substrate concentration as a function of the volume fraction

r

In this section we assume that (Sin, D) is �xed and we look at the values of r for which (8) holds.
More precisely we are going to describe the function

r 7→ Soutr (Sin, D). (15)

Proposition 2. Assume that Assumption 1 is satis�ed. Let D > 0, Sin > λ(a). We denote
r0 = D/(f(Sin)− a).

1. If Sin ≤ λ(D + a), then for any r ∈ [0, 1], one has Soutr (Sin, D) = Sout(Sin, D) = Sin.

2. If λ(D + a) < Sin < λ(2D + a), then 1/2 < r0 < 1 and one has

Soutr (Sin, D) =


S2 if 0 ≤ r ≤ 1− r0

Sin if 1− r0 ≤ r ≤ r0

S∗2 if r0 ≤ r ≤ 1.
(16)

3. If λ(2D + a) ≤ Sin, then 0 < r0 ≤ 1/2 and one has

Soutr (Sin, D) =

{
S2 if 0 ≤ r ≤ r0

S∗2 if r0 ≤ r ≤ 1.
(17)

Here S2 = λ
(

D
1−r + a

)
and S∗2 = S∗2(Sin, D, r) is the unique solution of equation f(S2) =

h(S2), where h is de�ned by (5).
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Proof. If Sin ≤ λ(D + a), then, for all r ∈ (0, 1), one has

Sin ≤ λ(D + a) ≤ min
{
λ
(

D
1−r + a

)
, λ
(
D
r + a

)}
.

Then, according to (4), one has Soutr (Sin, D) = Sin. This proves item 1 of the proposition.
Let r0 = D/(f(Sin)− a), i.e. Sin = λ(D/r0 + a).
If λ(D + a) < Sin < λ(2D + a), then r0 ∈ (1/2, 1), so that 1− r0 < r0. The interval [0, 1] is

subdivided into three sub-intervals. Firstly, if 0 ≤ r ≤ 1− r0 < r0, then r < r0 ≤ 1− r, so that

λ
(

D
1−r + a

)
≤ Sin = λ

(
D
r0

+ a
)
< λ

(
D
r + a

)
.

Hence, according to (4), one has

Soutr (Sin, D) = λ
(

D
1−r + a

)
.

Secondly, if 1− r0 ≤ r ≤ r0, then r0 ≥ max{r, 1− r}, so that

Sin = λ
(
D
r0

+ a
)
≤ min

{
λ
(

D
1−r + a

)
, λ
(
D
r + a

)}
.

Hence, according to (4), one has Soutr (Sin, D) = Sin. Finally, if r0 < r ≤ 1, then one has

Sin = λ
(
D
r0

+ a
)
> λ

(
D
r + a

)
.

Hence, according to (4), one has

Soutr (Sin, D) = S∗2(Sin, D, r).

This proves item 2 of the proposition.
If λ(2D + a) ≤ Sin, then r0 ∈ (0, 1/2]. Therefore, r0 ≤ 1 − r0. The proof of item 3 of the

proposition is the same as the proof of item 2 excepted that now, the interval [0, 1] is subdivided
now into two sub-intervals [0, r0] and [r0, 1], so that the interval for which Soutr (Sin, D) = Sin is
empty.

Sin

D

0 λ(a)

J0

J1

J3

J2

J4

Φ1

Φ1/2

Γ

Figure 3: In each region, the map r 7→ Soutr (Sin, D) for �xed (Sin, D) has a di�erent behavior.

We want to determine the values r ∈ (0, 1) for which the condition (8) is satis�ed. We
need the following Assumption that is satis�ed by any concave growth function but also by non
concave growth functions, satisfying additional conditions, see Section 3.4.

Assumption 2. For every D ∈ [0,m − a), the function r ∈ (D/(m − a), 1) 7→ gr(D) ∈ R is
decreasing.
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Let D < m− a. Using gr(D) > λ(D/r + a), we have

lim
r→D/(m−a)

gr(D) > lim
r→D/(m−a)

λ (D/r + a) = +∞.

On the other hand, using L'Hôpital's rule, we have

lim
r→1

gr(D) = g(D). (18)

where g : [0,m− a)→ R+ is de�ned by

g(D) = λ(D + a) +Dλ′(D + a). (19)

Therefore, from Assumption 2, the function r 7→ gr(D) is decreasing from (D/(m − a), 1) to
(g(D),+∞). Hence, it admits an inverse function

Sin ∈ (g(D),+∞) 7→ r1(Sin, D) ∈ (D/(m− a), 1).

We use the notation r1(·, D) to recall the dependence of the inverse function in D. For all
D ∈ (0,m− a), r ∈ (D/(m− a), 1) and Sin > g(D), we have

r = r1(Sin, D)⇐⇒ Sin = gr(D), (20)

r > r1(Sin, D)⇐⇒ Sin > gr(D). (21)

Theorem 2. Assume that Assumptions 1 and 2 are satis�ed. Let g de�ned by (19).

• If Sin ≤ g(D) then for any r ∈ (0, 1), we have Soutr (Sin, D) > Sout(Sin, D). In addition,
for r = 0 and r = 1 we have Soutr (Sin, D) = Sout(Sin, D).

• If Sin > g(D) then Soutr (Sin, D) < Sout(Sin, D) if and only if r1(Sin, D) < r < 1, with
r1(Sin, D), de�ned by (20). In addition, for r = 0, r = r1(Sin, D) and r = 1, we have
Soutr (Sin, D) = Sout(Sin, D).

Proof. The function r 7→ gr(D) is decreasing and tends to g(D) as r tends to 1, as shown by (18).
Thus, for all r ∈ (0, 1), we have g(D) < gr(D). If Sin ≤ g(D), then Sin < gr(D). According to
Theorem 1, for all r ∈ (0, 1), we have Soutr (Sin, D) > Sout(Sin, D).

Let Sin > g(D). Let r1 = r1(Sin, D). According to (21), for all r > r1, we have S
in > gr(D).

Thus, according to Theorem 1, we have Soutr (Sin, D) < Sout(Sin, D).
The equality Soutr (Sin, D) = Sout(Sin, D) is veri�ed for the r = 0 and r = 1, see (6). In

addition, we have Sin = gr1(D), see (20). Hence, according to Theorem 1, we have Soutr1 (Sin, D) =
Sout(Sin, D).

Let us now describe the subsets of the operational space (Sin, D) for which the behaviour
described in the three cases of Proposition 2 occurs. For a complete description we will also
distinguish the sub-cases for which there exists r1 = r1(Sin, D) such that, for r1 < r < 1, (8)
is satis�ed, as shown in Theorem 2. Consider the curves Φ1 and Φ1/2, de�ned by (13), and the
curve Γ de�ned by

Γ := {(Sin, D) : Sin = g(D)}, (22)

These three curves intersect at (λ(a), 0) and, using the inequality g(D) > λ(D + a), which is
satisfeied for all D > 0, one deduces that Γ is at the right of Φ1. Therefore, the curves Φ1,
Φ1/2 and Γ separate the set of operating parameters (Sin, D) into the following four subsets, see
Fig. 3.
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λ(D + a)

1

(a) (Sin, D) ∈ J1
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y
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r (Sin, D)
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λ(D + a)

1

(b) (Sin, D) ∈ J2

r

y

y = Sout
r (Sin, D)

0 r0 r1

λ(D + a)

1

(c) (Sin, D) ∈ J3

r

y

y = Sout
r (Sin, D)

0 r0

λ(D + a)

Sin

1

(d) (Sin, D) ∈ J4

Figure 4: For Sin and D �xed, the output substrate concentration of the serial con�guration,
in red, compared to that of the single chemostat, in blue; r1(Sin, D) is de�ned by (20), r0 =
D/(f(Sin)− a) and J1, J2, J3, J4 are depicted in Fig. 3.

J0 =
{

(Sin, D) : Sin ≤ λ(D + a)
}
,

J1 =
{

(Sin, D) : λ(D + a) < Sin ≤ min{g(D), λ(2D + a)}
}
,

J2 =
{

(Sin, D) : g(D) < Sin < λ(2D + a)
}
,

J3 =
{

(Sin, D) : max{g(D), λ(2D + a)} ≤ Sin
}
,

J4 =
{

(Sin, D) : λ(2D + a) < Sin < g(D)
}
.

(23)

Combining the results of Proposition 2 and Theorem 2, we �nd that the function r 7→
Soutr (Sin, D) is as in Fig. 4. In the following we will comment on this �gure.

• If (Sin, D) ∈ J1, then when Sin < λ(2D + a), Soutr (Sin, D) is given by (16) and when
Sin = λ(2D+a), Soutr (Sin, D) is given by (17). In addition, for all r ∈ (0, 1), Soutr (Sin, D) >
Sout(Sin, D). The equality is ful�lled for r = 0 and r = 1, see Fig. 4(a).

• If (Sin, D) ∈ J2, then S
out
r (Sin, D) is given by (16) and Soutr (Sin, D) < Sout(Sin, D) if and

only if r ∈ (r1(Sin, D), 1), where r1(Sin, D) is de�ned by (20). The equality is ful�lled for
r = 0, r = r1(Sin, D) and r = 1, see Fig. 4(b).

• If (Sin, D) ∈ J3 then Soutr (Sin, D) is given by (17) and Soutr (Sin, D) < Sout(Sin, D) if and
only if Sin > g(D) and r ∈ (r1(Sin, D), 1) where r = r1(Sin, D) is de�ned by (20). The
equality is ful�lled for r = 0, r = r1(Sin, D) and r = 1, see Fig. 4(c).

• If (Sin, D) ∈ J4 then Soutr (Sin, D) is given by (17) and for all r ∈ (0, 1), Soutr (Sin, D) >
Sout(Sin, D). The equality is ful�lled for r = 0 and r = 1, see Fig. 4(d).

Note that if (Sin, D) ∈ J0, then case 1 of Proposition 2 occurs. One remarks that the lowest
value of the red curve, corresponding to the lowest output substrate concentration of the serial
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con�guration, is obtained for (Sin, D) ∈ J2 ∩ J3 and r > r1(Sin, D). This lowest concentration
is obtained with the best possible serial con�guration.

Figures 2, 3 and 4 are made without graduations on the axes because they represent general
situations where the growth function is only assumed to verify our hypotheses. It should be
noticed that regions J0, J1 and J3 always exist and are connected. However, regions the J2 and
J4 do not always exist or are necessarily connected. This depends on the number of points of
intersection between curves Φ1/2 and Γ. For a linear growth rate, Φ1/2 = Γ and hence, regions
J2 and J4 do not exist, see Fig. 7(a). For a Monod growth function, curves Φ1/2 and Γ intersect
only at point (λ(a), 0) and hence, region J3 always exist and is connected but region J3 does not
exist, see Fig. 8(a). For a Hill growth function, curves Φ1/2 and Γ always intersect at (λ(a), 0)
and also at a unique positive point, Lemma 6. Hence, regions J2 and J4 both exist and are
connected, see Fig. 9(a,b,c).

3.3 The output substrate concentration as a function of the dilution rate

In this section we assume that Sin and r are �xed and we look at the values of the dilution rate
D for which (8) holds, i.e. the serial con�guration, is more e�cient than the single chemostat.
More precisely we are going to describe the function

D 7→ Soutr (Sin, D). (24)

We want to determine the subset of values of D for which the condition (8) is satis�ed. We
need the following Assumption that is satis�ed by any concave growth function, but also by non
concave growth functions, satisfying additional conditions, see Section 3.4.

Assumption 3. For every r ∈ (0, 1), the function D ∈ [0, r(m− a)) 7→ gr(D) ∈ R is increasing.

Using gr(D) > λ(D/r + a), we have

lim
D→r(m−a)

gr(D) > lim
D→r(m−a)

λ(D/r + a) = +∞.

From Assumption 3, the function D 7→ gr(D) is increasing from [0, r(m − a)) to [gr(0) =
λ(a),+∞). Hence, its admits an inverse function

Sin ∈ (λ(a),+∞) 7→ Dr(S
in) ∈ [0, r(m− a)).

For all r ∈ (0, 1), Sin ≥ λ(a) and D ∈ [0, r(m− a)), we have

D = Dr(S
in)⇐⇒ Sin = gr(D), (25)

D < Dr(S
in)⇐⇒ Sin > gr(D). (26)

Proposition 3. Assume that Assumptions 1 and 3 are satis�ed. We have

Soutr (Sin, D) < Sout(Sin, D)⇐⇒ 0 < D < Dr(S
in),

where Dr(S
in) is de�ned by (25).

Proof. Let r ∈ (0, 1). According to (26), if D < Dr(S
in), then Sin > gr(D). Consequently,

according to Theorem 1, we have Soutr (Sin, D) < Sout(Sin, D).

3.4 How to check Assumptions 2 and 3

In this section we give su�cient conditions for Assumption 2 and 3 to be satis�ed. These
conditions will be useful for the applications given in Section 5. For this purpose we consider
the function γ de�ned by

γ(r,D) = gr(D), (27)
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de�ned on
dom(γ) = {(r,D) : 0 < r < 1, 0 < D/r + a < m},

which consists simply in considering gr(D), given by (9), as a function of both variables r and
D. If

∂γ
∂r (r,D) < 0 for all (r,D) ∈ dom(γ),

then Assumption 2 is satis�ed. Similarly, if

∂γ
∂D (r,D) > 0 for all (r,D) ∈ dom(γ),

then Assumption 3 is satis�ed. The following Lemmas give su�cient conditions, for partial
derivatives of γ to have their signs as indicated above.

Lemma 2. For D ∈ (0,m − a), let lD be de�ned on dom(lD) = (D/(m − a), 1] by lD(r) =
λ(D/r + a).

a Assume that for D ∈ (0,m− a) and r ∈ dom(lD) we have

lD(1) > lD(r) + (1− r)l′D(r) (28)

then, for all (r,D) ∈ dom(γ), we have ∂γ
∂r (r,D) < 0.

b If, for D ∈ (0,m− a), lD is strictly convex on dom(lD), then the condition (28) is satis�ed.

c If f is twice derivable, then lD is twice derivable and the following conditions are equivalent

1 For D ∈ (0,m− a) and r ∈ dom(lD), l′′D(r) > 0.

2 For S > λ(a), (f(S)− a)f ′′(S) < 2 (f ′(S))2.

Proof. Notice �rst that γ(r,D) can be written as follows

γ(r,D) = gr(D) = λ (D + a) +(
1

1−r − ra
D+a

) (
λ
(
D
r + a

)
− λ(D + a)

)
.

(29)

Using the de�nition of lD, γ(r,D) is given then by

γ(r,D) = lD(1) +
(

1
1−r − ra

D+a

)
(lD(r)− lD(1)) .

The partial derivative, with respect to r of γ is given then by

∂γ
∂r (r,D) = a(1−2r)

D+a l′D(r)+(
1

(1−r)2 − a
D+a

)
(lD(r)− lD(1) + (1− r)l′D(r)) .

(30)

Notice that 1
(1−r)2 − a

D+a > 0 for all r ∈ (0, 1). From l′D(r) = −D
r2
λ′
(
D
r + a

)
, it is deduced that

l′D(r) < 0. Therefore, if the condition (28) is satis�ed, and, in addition 0 < r ≤ 1/2, then, from

(30), it is deduced that ∂γ
∂r (r,D) < 0.

In the case r ∈ (1/2, 1), we use the following expression of γ(r,D) which is deduced from (29):

γ(r,D) = lD(1) +B(r) lD(r)−lD(1)
1−r ,

where B(r) = D+a−ar(1−r)
D+a . Straightforward computation show that

∂γ
∂r (r,D) =
D+ar(2−r)

(D+a)(1−r)2 (lD(r)− lD(1) + (1− r)C(r)l′D(r)) ,
(31)
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where C(r) = D+a−ar(1−r)
D+ar(2−r) . We have

C ′(r) = a
(D+ar(2−r))2

(
ar2 + 2(a+ 2D)r − 3D − 2a

)
.

Thus C ′(r) = 0 for

r = r∗ :=
1

a

(√
3a2 + 7aD + 4D2 − a− 2D

)
∈ (1/2, 1)

and (r − r∗)C ′(r) > 0 for r ∈ (1/2, 1), r 6= r∗. Hence, from C(1/2) = C(1) = 1, we have
0 < C(r) < 1 for all r ∈ (1/2, 1). Now, if we assume that (28) is satis�ed, for 1/2 < r < 1 we
have

lD(1) > lD(r) + (1− r)l′D(r) > lD(r) + (1− r)C(r)l′D(r).

Hence, from (31), it is deduced that ∂γ
∂r (r,D) < 0. This proves part a of the lemma.

Moreover, if lD is strictly convex on dom(lD) then for all s and r in (D/(m− a), 1], if s 6= r,
then

lD(s) > lD(r) + (s− r)l′D(r).

Taking s = 1 and r ∈ dom(lD) one obtains the condition (28). This proves part b of the lemma.
Assume now that f , and hence lD, are twice derivable. Using

λ′(D) = 1
f ′(λ(D)) , λ′′(D) = − f ′′(λ(D))

(f ′(λ(D)))3
, (32)

we can write
l′′D(r) = 2D

r3
λ′
(
D
r + a

)
+ D2

r4
λ′′
(
D
r + a

)
=

D
(

2(f ′(λ(D
r

+a)))
2−D

r
f ′′(λ(D

r
+a))

)
r3(f ′(λ(D

r
+a)))

3 .

Therefore, the condition 1 in item c in the lemma is equivalent to the following condition: For
all D ∈ (0,m− a) and r ∈ (D/(m− a), 1], we have

D
r f
′′ (λ (Dr + a

))
< 2f ′

(
λ
(
D
r + a

))2
. (33)

Using the notation S = λ
(
D
r + a

)
, which is the same as D/r = f(S) − a, the condition (33) is

equivalent to : For all S > 0, (f(S)− a)f ′′(S) < 2 (f ′(S))2, which is the condition 2 in c in the
lemma.

Lemma 3. Assume that

f ′
(
λ
(
D
r + a

))
≤ 1

rf
′ (λ (D + a)) . (34)

Then, ∂γ
∂D (r,D) > 0. Hence Assumption 3 is satis�ed. If f ′ is decreasing, then the condition

(34) is satis�ed.

Proof. From (29) we deduce that

∂γ
∂D (r,D) = λ′(D + a) + ra

(D+a)2

(
λ
(
D
r + a

)
− λ(D + a)

)
+
(

1
1−r − ra

D+a

) (
1
rλ
′ (D

r + a
)
− λ′(D + a)

)
.

Notice that 1
1−r − ra

D+a > 0, λ′(D + a) > 0 and λ
(
D
r + a

)
> λ(D + a). Therefore the condition

1
rλ
′ (D

r + a
)
− λ′(D + a) ≥ 0

is su�cient to have ∂γ
∂D (r,D) > 0. Using (32), this condition is equivalent to (34). Note that if

f ′ is decreasing, then this condition is satis�ed. Indeed, we have

f ′
(
λ
(
D
r + a

))
≤ f ′ (λ (D + a)) ≤ 1

rf
′ (λ (D + a)) ,

which is the condition (34).
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Remark 1. Notice that:

i The condition 2 in part c of Lemma 2 is equivalent to the condition

For all S > λ(a), d2

dS2

(
1

f(S)−a

)
> 0. (35)

Therefore, if f satis�es the condition (35), then it veri�es Assumption 2.

ii If the increasing growth function f is twice derivable and satis�es f ′′(S) ≤ 0 for all S > 0,
then the condition b in Lemma 2 and the condition (34) in Lemma 3 are satis�ed. Thus,
Assumptions 2 and 3 are satis�ed and our results apply for any concave growth function.

iii Assume that the increasing growth function f is twice derivable and there exists Ŝ ∈ (0,+∞)
such that f ′′ is nonnegative on (0, Ŝ) and nonpositive on (Ŝ,+∞). If moreover the condition
2 in part c of Lemma 2 is veri�ed for a = 0, then this condition is also veri�ed for any
a > 0 and S ∈ (λ(a), Ŝ). Therefore, if (1/f)′′ > 0 on (0, Ŝ) then Assumption 2 is satis�ed.

We will see in Section 5, how to use Remark 1 and Lemmas 2 and 3 to show that a linear
growth function, a Monod function and a Hill function satisfy Assumptions 2 and 3.

4 Biogas �ow rate

We recall that the biogas �ow rate is proportional to the microbial activity, as de�ned for instance
in [3, 27]. We consider here the biogas �ow rate as a function of the input substrate concentration
Sin, the dilution rate D and the parameter r.

For r(f(Sin)−a) ≤ D < (1−r)(f(Sin)−a), the biogas �ow rate corresponding to the steady
state E1 is given by the expression

G1(Sin, D, r) = V2x2f(S2), (36)

with V2 = (1− r)V , x2 and S2 de�ned in (64).
For D < r(f(Sin)− a), the biogas �ow rate corresponding to the positive steady state E2 is

given by the expression

G2(Sin, D, r) = V1x
∗
1f(S∗1) + V2x

∗
2f(S∗2), (37)

with V1 = rV , V2 = (1 − r)V , x∗1 and S∗1 de�ned in (66), x∗2 de�ned by (67) and S∗2 the unique
solution of h(S2) = f(S2).

Proposition 4. 1. When r(f(Sin)− a) ≤ D and D < (1− r)(f(Sin)− a) then

G1(Sin, D, r) = V D(Sin − S2). (38)

2. When D < r(f(Sin)− a) then

G2(Sin, D, r) = V D(Sin − S∗2). (39)

Proof. From system (59), considering equation Ṡ2 = 0, one obtains x2f(S2) = D(Sin−S2)/(1−
r). Thus,

G1(Sin, D, r) = V1
D
r (Sin − S2) = V D(Sin − S2).

From system (59), considering Ṡ1 = 0 and Ṡ2 = 0 gives respectively x∗1f(S∗1) = D(Sin − S∗1)/r
and x∗2f(S∗2) = D(S∗1 − S∗2)/(1− r). Thus, one has

G2(Sin, D, r) = V1
D
r (Sin − S∗1) + V2

D
1−r (S∗1 − S∗2)

= V D(Sin − S∗2).

This ends the proof of the proposition.
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AlthoughG1(Sin, D, r) andG2(Sin, D, r), given by (36) and (37), respectively, are not de�ned
for r = 0 or r = 1, the formulas (38) and (39) allow them to be extended to r = 0 and r = 1, as
was done for Soutr in (6). We can write

G1(Sin, D, 0) = G2(Sin, D, 1) = Gchem(Sin, D),

where
Gchem(Sin, D) = V D(Sin − λ(D + a), (40)

represents the biogas �ow rate of the single chemostat when 0 < D < f(Sin) − a. For more
information on Gchem(Sin, D), see (56) in Appendix A.

D

Biogas

0
Dr(Sin)

(a) 0 < r < 1/2

D

Biogas

0
Dr(Sin)

(b) r = 1/2

D

Biogas

0
Dr(Sin)

(c) 1/2 < r < 1

Figure 5: For r and Sin �xed, the curves of the maps D 7→ G1(Sin, D, r), in green, D 7→
G2(Sin, D, r), in orange, and D 7→ Gchem(Sin, D), in black, where G1, G2 and Gchem are given
by (38), (39) and (40) respectively.

r

y

y = G(r)

G(1)

(a)

r

y

y = G(r)

(b)

G(1)

r

y

y = G(r)

(c)

G(1)

Figure 6: The map r 7→ G(r) with G de�ned by (42). (a) f(S) = 4S, a = 0.6 and Sin = 1.5. (b)
f(S) = 4S/(5 + S), a = 0.3 and Sin = 1.5. (c) f(S) = 4S2/(25 + S2), a = 0.3 and Sin = 10.

4.1 The serial con�guration can be more e�cient than the single chemostat

In this section, we prove that the biogas �ow rate G1 corresponding to the steady state E1 is
always smaller than the biogas �ow rate of the single chemostat. However, the biogas �ow rate
G2 corresponding to the steady state E2 can be larger than the biogas �ow rate of the single
chemostat. More precisely, we have the following result.

Proposition 5. Assume that Assumption 1 is satis�ed. Let r ∈ (0, 1), 0 ≤ D < f(Sin)− a and
Gchem de�ned by (40).

1. If r(f(Sin) − a) ≤ D and D < (1 − r)(f(Sin) − a), then G1(Sin, D, r) < Gchem(Sin, D),
where G1 is given by (38).
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2. If D < r(f(Sin)− a), then

G2(Sin, D, r) > Gchem(Sin, D)⇐⇒ Sin > gr(D),

where G2 is given by (39) and gr is de�ned by (9).

• If, in addition, Assumption 2 is satis�ed, and Sin > g(D), then G2(Sin, D, r) >
Gchem(Sin, D), if and only if r > r1(Sin, D), where r1(Sin, D) is de�ned by (20).

• If, in addition, Assumption 3 is satis�ed, then G2(Sin, D, r) > Gchem(Sin, D), if and
only if D < Dr(S

in), where Dr(S
in) is de�ned by (25).

Proof. 1. SinceD/(1−r) > D and λ is increasing, we have λ(D/(1−r)+a) > λ(D+a). Then,
using the formula for G1 given in Proposition 4, this induces the inequality G1(Sin, D, r) <
Gchem(Sin, D).

2. According to Theorem 1, for any r ∈ (0, 1) and D < r(f(Sin)− a) one has S∗2(Sin, D, r) <
λ(D + a) if and only if Sin > gr(D). Consequently, using the formula for G2 given in
Proposition 4, one has G2(Sin, D, r) > Gchem(Sin, D) if and only if Sin > gr(D). If
Assumption 2 is satis�ed, then, using (21), we see that G2(Sin, D, r) > Gchem(Sin, D) if
and only if r > r1(Sin, D). If Assumption 3 is satis�ed, then, using (26), we see that
G2(Sin, D, r) > Gchem(Sin, D) if and only if D < Dr(S

in).
This ends the proof of the proposition.

Let Sin and D be �xed. The graphs of the biogas �ow rates functions

r 7→ G1(Sin, D, r), and r 7→ G2(Sin, D, r),

are easily obtained from the graph of the output substrate concentration, r 7→ Soutr (Sin, D), see
Fig. 4. Indeed, the formulas given in Proposition 4 show that, whenever these functions are
de�ned, we have

G1(Sin, D, r) = V D
(
Sin − Soutr (Sin, D)

)
,

G2(Sin, D, r) = V D
(
Sin − Soutr (Sin, D)

)
.

We will see in Section 5, some illustrative plots of the biogas �ow rates G1 and G2 as functions
of the parameter r ∈ [0, 1], for linear growth, see Fig. 7, Monod growth, see Fig. 8 and Hill
growth, see Fig. 9.

Let us illustrate the result of Proposition 5 by plotting the graphs of the biogas �ow rates

D 7→ G1(Sin, D, r) and D 7→ G2(Sin, D, r),

when r and Sin are �xed, see Fig. 5. This �gure is made without graduations on the axes
because its represents a general situation where the growth function is only assumed to verify
our hypotheses. Indeed the behaviors of the functions, depicted in this �gure, follow from our
results and are not simply numerical illustrations.

Notice that for any r ∈ (0, 1), the graph of G1 (plotted in green in the �gure) is always below
the graph Gchem (plotted in black). This illustrates item 1 of Proposition 5. Assuming that
Assumption 3 is satis�ed, then for all 0 < D < Dr(S

in), the graph of G2 (plotted in orange) is
above the graph of Gchem (plotted in black). This illustrates item 2 of Proposition 5.

4.2 The maximal biogas of the serial con�guration can exceed that of the

single chemostat

In Figure 5(c) the plot shows that the maximum of G2 (the red curve) is larger than the maximum
of Gchem, as we want to emphasize that the following inequality is possible

max
D

G2(Sin, D, r) > max
D

Gchem(Sin, D). (41)
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Indeed we will show that there is a value r∗ ∈ (0, 1) such that this inequality is true for all
r ∈ (r∗, 1). The treshold r∗ obviously depends on Sin and the the rate of mortality a. It will
be noted r∗(Sin, a) when we want to highlight this dependence. This phenomenon never never
occurs in the case of no mortality, since we have r∗(Sin, 0) = 1. Indeed, in the case without
mortality, we proved, see Proposition 6 of [7], that for all Sin > 0, and all r ∈ (0, 1) we have

max
D

G2(Sin, D, r) < max
D

Gchem(Sin, D),

that is to say, the maximal biogas �ow rate of the serial con�guration never exceed the maximal
biogas �ow rate of the single chemostat.

Let us we prove that, when a > 0, the inequality (41) is always true for r su�ciently close to 1.
Observe that for any �xed Sin > λ(a) and r ∈ (0, 1], the continuous function D 7→ G2(Sin, D, r)
is de�ned on the closed interval

[
0, r

(
f(Sin)− a

)]
. It is null at the extremities of this interval

and positive on the open interval
(
0, r

(
f(Sin)− a

))
. Therefore, it reaches it maximum. For a

given Sin > λ(a), we then consider the function

G(r) := max
D∈[0,r(f(Sin)−a)]

G2(Sin, D, r). (42)

We want to ensure that this maximum is reached at a single value, denoted D(r). Note
that D(1) represents the value, which we will assume to be unique, at which the function D 7→
Gchem(Sin, D) reaches its maximum. We need the following assumption.

Assumption 4. The function f is C2 and increasing and, for Sin > λ(a), there exists D(1) ∈
(0, f(Sin)− a) such that D 7→ Gchem(Sin, D) is

• strictly concave at D(1),

• increasing on (0, D(1)),

• decreasing on (D(1), f(Sin)− a),

These conditions are related to the single chemostat model. They are veri�ed for linear,
Monod, or Hill growth functions, see Remark 3 in Appendix A.

If Assumption 4 is satis�ed, then the maximum of the function D 7→ Gchem(Sin, D) is unique.
The following lemma shows that the function D 7→ G2(Sin, D, r) satis�es the same property for
r su�ciently close to 1.

Lemma 4. Assume that Assumption 4 is satis�ed, then for any Sin > λ(a), there exists a
neighborhood V1 of 1, such that for any r ∈ V1 ∩ {r ≤ 1}, the maximum of the function D 7→
G2(Sin, D, r) is unique. We denote it by D(r). Moreover, D is di�erentiable on V1 ∩ {r < 1}
with bounded derivative.

Proof. The proof is given in in Appendix D.2.

Proposition 6. Under Assumption 4, the function G admits left limits of its �rst and second
derivatives at r = 1, which are

G
′
(1−) = 0,

G
′′
(1−) = 2aD(1)

D(1)+a

(
Sin − λ(D(1) + a)

)
.

(43)

Proof. The proof is given in Appendix D.3.

Proposition 7. Under Assumption 4, there exists r∗ in (0, 1) such that (41) is true for any
r ∈ (r∗, 1) and

max
D

G2(Sin, D, r∗) = max
D

Gchem(Sin, D).
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Proof. From Proposition 6, there exist ε > 0 such that for all r ∈ (1−ε, 1), we have G(r) > G(1).
Therefore, the subset I of (0, 1) de�ned by

I = {ρ ∈ (0, 1) : ∀r ∈ (ρ, 1), G(r) > G(1)},

is non empty. Let r∗ be the lower bound of I. We have G(r∗) = G(1) and G(r) > G(1) for
r ∈ (r∗, 1). Using (42), we deduce that the equality in the proposition is true and (41) is true
for any r ∈ (r∗, 1).

The function r 7→ G(r) reaches its maximum at some rmax ∈ (r∗, 1). Let Dmax = D(rmax)
be the maximum of the function D 7→ G2(Sin, D, rmax). Therefore the maximal biogas �ow rate
of the serial chemostat is given by G2(Sin, Dmax, rmax). It satis�es

G2(Sin, Dmax, rmax) > Gchem
(
Sin, D(1)

)
.

We have plotted the function r 7→ G(r) for the linear, Monod, and Hill growth functions
considered in Fig. 6. It is seen in this �gure that the tangent at r = 1 is horizontal which
corresponds to G

′
(1) = 0. In addition, one remarks that G(r) > G(1) for r in some interval

(r∗, 1) and G(r∗) = G(1). Thus, with presence of mortality rate, if practitioners are able to
choose the dilution rate D, the good strategy consists in working with a serial con�guration and
choose r in the interval (r∗, 1). The serial con�guration should be operated at D = D(r), where
D(r) is de�ned in Lemma 4.

Remark 2. • If one is interested in increasing the �ow of biogas, the best choice is r = rmax,
D = Dmax.

• If one is interested in reducing the dilution rate, the best choice is r = r∗ and D = D∗,
where D∗ = D(r∗).

Indeed, for the choice r = r∗ and D = D∗, we have

G2(Sin, D∗, r∗) = Gchem
(
Sin, D(1)

)
,

but D∗ is expected to be signi�cantly smaller than D(1), the dilution rate that maximises biogas
for the simple chemostat. In fact, reducing D means that the �ow rate Q has been reduced, and
therefore energy has been saved to obtain the same result as with a simple chemostat

This result has an important message for practitioners: the serial con�guration is worth
considering when mortality is not negligible. To the best of our knowledge, this result is new in
the literature. On the other hand, it is not intuitive. For more information on this issue, see
Section 5.4. For biolobical comments on the heuristic underlying this non-intuitive behaviour,
the reader is refered to [6].

5 Illustrations and numerical simulations

This section illustrates of results using three di�erent growth functions. As concave functions,
we choose the linear growth function and the Monod function. As a non concave function, we
choose the Hill function.

5.1 Linear growth function

Let consider a linear function f(S) = αS, α > 0. As it is concave, according to item ii in
Remark 1, the linear function veri�es Assumptions 2 and 3. Therefore, our results apply for a
linear function.

One has λ(2D+a) = g(D) = (2D+a)/α then, the curves Φ1/2, de�ned by (13), and Γ, de�ned
by (22), are identical. Consequently, the operating plane (Sin, D) is divided in three regions Ji,
i = 0, 1, 3 de�ned in (23) that describe the behavior of the output substrate concentration and
the biogas �ow rate, see Figure 7(a).
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(c) (Sin, D) = η3

Figure 7: (a) The regions J0, J1 and J3 of the operating plane with f(S) = 4S and a = 0.3.
The biogas �ow rates corresponding to points η1 = (0.27, 0.6) ∈ J1 and η3 = (0.5, 0.6) ∈ J3 are
depicted in panels (b) and (c) respectively. In these panels, the numbered curves 0© (in black),
and 1©, 2© (in orange) are respectively de�ned by y = Gchem(Sin, D), y = G1(Sin, D, r) and
y = G2(Sin, D, r); r0(Sin, D) = D/(f(Sin)− a) and r1(Sin, D) is de�ned by (20). (b) r0 ≈ 0.77.
(c) r0 ≈ 0.35 and r1 = 0.5.
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(d) (Sin, D) = η3

Figure 8: (a) The regions J0, J1 J2 and J3 in the operating plane with f(S) = 4S/(5 + S) and
a = 0.3. The biogas �ow rates corresponding to points η1 = (3, 0.7) ∈ J1, η2 = (3.45, 0.7) ∈ J2

and η3 = (5, 0.7) ∈ J3 are depicted in panels (b), (c) and (d) respectively. In these panels the
curves are coloured and numbered as in Fig. 7, r0(Sin, D) = D/(f(Sin)− a), and r1(Sin, D) is
de�ned by (20) (b) r0 ≈ 0.58. (c) r0 ≈ 0.53 and r1 ≈ 0.87. (d) r0 ≈ 0.41 and r1 ≈ 0.54.

Consider the operating points η1 and η3, �xed respectively in regions J1 and J3, as shown
in Figure 7(a). The behavior of the biogas �ow rate for these operating points is depicted in
Figure 7(b,c). It should be noticed that for any other point (Sin, D) ∈ J1, the curve representing
the biogas �ow rate with respect to r should be similar to the curve shown in Figure 7(a), and
corresponding to (Sin, D) = η1. Similarly, for any other point (Sin, D) ∈ J3, it should be similar
to the curve shown in Figure 7(b), and corresponding to (Sin, D) = η3.

In the linear case, the equation Sin = gr(D) is a second degree algebraic equation in r
that gives two solutions, one corresponds to r1(Sin, D) de�ned by (20) and the other one is not
considered as it does not belong to (0, 1).

Since the point η3 = (0.5, 0.6) satis�es the condition Sin > g(D), as stated in item 2 of
Proposition 5, the serial con�guration has a higher biogas �ow rate production than a single
chemostat if and only if r ∈ (r1, 1), where r1(0.5, 0.6) ≈ 0.5, see Figure 7 (b).

5.2 Monod function

The Monod function is f(S) = mS/(K + S). As it is concave, according to item ii in Remark
1, the Monod function veri�es Assumptions 2 and 3. Therefore, our results apply for Monod
function.

19



Lemma 5. For any D > 0, the curve Γ, de�ned by (22), is at left of the curve Φ1/2, de�ned by
(13).

Proof. The curves Φ1/2 and Γ are respectively de�ned by equations Sin = λ(2D + a) and Sin =
g(D). Let the function H : [0, (m− a)/2) 7→ R be de�ned by

H(D) = λ(2D + a)− g(D) = KmD2

(m−D−a)2(m−a−2D)
.

Note that H(0) = 0 and, for any D ∈ (0, (m− a)/2), one has H(D) > 0 i.e. λ(2D + a) > g(D).
Hence, the curve Γ is at left of the curve Φ1/2.

As a consequence of Lemma 5, the operating plane (Sin, D) is divided in four regions Ji,
i = 0, 1, 2, 3 de�ned in (23) that describe the behavior of the output substrate concentration and
the biogas �ow rate, see Fig. 8(a).

Consider the operating points η1, η2 and η3, �xed respectively in regions J1, J2 and J3,
as shown in Fig. 8(a). The behavior of the biogas �ow rate for these points is depicted in
Fig. 8(b,c,d). It should be noticed that for any other point (Sin, D) ∈ J1 (resp. (Sin, D) ∈ J2

and (Sin, D) ∈ J3), the curve representing the biogas �ow rate with respect to r should be similar
to the curve shown in Fig. 8(b) (resp. 8(c) and 8(d)), and corresponding to (Sin, D) = η1 (resp.
(Sin, D) = η2 and (Sin, D) = η3).

In the Monod case, the equation Sin = gr(D) is a second degree algebraic equation in r
that gives two solutions, one corresponds to r1(Sin, D) de�ned by (20) and the other one is not
considered as it does not belong to (0, 1).

Since the point η2 (resp. η3) satis�es the condition Sin > g(D), as stated in item 2 of
Proposition 5, the serial con�guration has a higher biogas �ow rate production than a single
chemostat if and only if r ∈ (r1, 1), with r1(3.45, 0.7) ≈ 0.87 in Fig.8(c) and r1(5, 0.7) ≈ 0.54 in
Fig. 8(c).

5.3 Hill function

The Hill function is f(S) = mSp/(Kp + Sp). Note that if p = 1 this function reduces to the
Monod function. For p > 1 it is non-concave. We have

λ(a) =
(

a
m−a

)1/p
K.

Proposition 8. The Hill function satis�es the conditions (34) and (35). Therefore, according to
item iii in Remark 1, it veri�es Assumption 2 and according to Lemma 3, it satis�es Assumption
3.

Proof. Let us �rst prove that the Hill function satis�es the condition (35). Straightforward
computation give

d2

dS2

(
1

f(S)−a

)
= mpKp (p+1)(m−a)S2p−2+(p−1)aKpSp−2

((m−a)Sp−aKp)3
.

Therefore, d2

dS2

(
1

f(S)−a

)
> 0 for all S > λ(a), that is to say, (35) is satis�ed. This result can

also be obtained without laborious calculations by using item iii of Remark 1. Let Ŝ ∈ (0,+∞)
be the in�exion point of the Hill function f . It is su�cient to show that (1/f)′′ > 0 for all
S ∈ (0, Ŝ). One easily see that (

1
f

)′′
(S) = p(p+1)Kp

mSp+2 > 0,

for any S > 0. Consequently, for all p > 1, the Hill function veri�es Assumption 2.
Let us now prove that the Hill function veri�es the condition (34). Straightforward compu-

tations give

f ′ (λ(D + a)) = p
Km(D + a)

p−1
p (m− a−D)

p+1
p . (44)
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Figure 9: (a) The regions J0, J1 J2, J3 and J4 in the operating plane with f(S) = 4S2/(25 +S2)
and a = 0.1. The curves Γ and Φ1/2 intersects for D1 = 0.69 (see Lemma 6). (b,c) Zooms of
(a) showing the region J4. The biogas �ow rates corresponding to points η1 = (7, 1.6) ∈ J1,
η2 = (9, 1.6) ∈ J2, η3 = (12, 1.6) ∈ J3 and η4 = (2.33, 0.3) ∈ J4 are depicted in panels (d) to
(g), respectively. In these panels curves are coloured and numbered as in Fig. 7, r0(Sin, D) =
D/(f(Sin) − a), and r1(Sin, D) is de�ned by (20). (d) r0 ≈ 0.63. (e) r0 ≈ 0.54 and r1 ≈ 0.81.
(f) r0 ≈ 0.48 and r1 ≈ 0.61. (g) r0 ≈ 0.49.

Therefore,

f ′
(
λ
(
D
r + a

))
= p

Km

(
D
r + a

) p−1
p
(
m− a− D

r

) p+1
p .

Since p > 1, D + ra < D + a and

0 < rm− ra−D < m− a−D,
one has

(D + ra)
p−1
p < (D + a)

p−1
p (45)

(rm− ra−D)
1
p < (m− a−D)

1
p . (46)

From (45) one has
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(
D
r + a

) p−1
p =

(
1
r

) p−1
p (D + ra)

p−1
p <

(
1
r

) p−1
p (D + a)

p−1
p . (47)

On the other hand, we have

(
m− a− D

r

) p+1
p =

(
1
r

) 1
p
(
m− a− D

r

)
A,

where A = (rm− ra−D)
1
p . From (46), and using

0 < m− a−D/r < m− a−D,
we then deduce (

m− a− D
r

) p+1
p <

(
1
r

) 1
p (m− a−D)

p+1
p . (48)

Therefore, using (44), (47) and (48) one obtains

f ′
(
λ
(
D
r + a

))
= p

Km

(
D
r + a

) p−1
p
(
m− a− D

r

) p+1
p

< p
Km

1
r (D + a)

p−1
p (m− a−D)

p+1
p = 1

rf
′(λ(D + a)).

This ends the proof of (34). Consequently, according to Lemma 3, any Hill function satis�es
Assumption 3.

r

rmaxr∗

Gmax y = G(r)

G∗=Gmax
chem

(a)
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Dmax Dmax
chemD∗

Gmax

G∗=Gmax
chem

(b)

D

a=0

a=0.1

a=0.2

a=0.3

Biogas

(c)

Figure 10: (a) The map r 7→ G(r) de�ned by (42), with f(S) = 4S/(5 + S), a = 0.1 and
Sin = 1.5, showing the values r∗ and rmax. (b) The corresponding maps D 7→ Gchem(Sin, D),
in black, D 7→ G2(Sin, D, r∗), in blue and D 7→ G2(Sin, D, rmax), in red, show the values
D∗ < Dmax < Dmax

chem. (c) The biogas �ow rates for a = 0, 0.1, 0.2, 0.3 showing the e�ects of
mortality.

Let now consider the case p = 2 of the Hill function: f(S) = mS2/(K2 + S2).

Lemma 6. Let D1 = (3m− 4a−
√
m(5m− 4a))/4. If 0 < D < D1 then the curve Φ1/2, de�ned

by (13), at left of the curve Γ, de�ned by (22). In contrast, if D1 < D < (m − a)/2 then the
curve Φ1/2 is at right of the curve Γ.

Proof. Let the function H : [0, (m − a)/2) 7→ R be de�ned by H(D) := λ(2D + a) − g(D). We
have

H(D) = K
(√

2D+a
m−a−D −

(2D+a)(m−a−D)+(D+a)(m−a)

2(m−a−D)3/2
√
D+a

)
.

Straightforward computation shows that this function is positive if and only if the polynomial

Q(D) := 4D2 − 2(3m− 4a)D + 4a2 − 5am+m2

is negative. The solution of equation Q(D) = 0 are

22



D1 = 3m−4a−
√

∆
4 and D2 = 3m−4a+

√
∆

4 ,

where ∆ = 4m(5m − 4a) > 0, as a < m. Notice that we have 0 < D1 < (m − a)/2 and
(m − a)/2 < D2. Thus, for any D ∈ (D1, (m − a)/2), we have H(D) > 0 and then the curve
Φ1/2 at right of the curve Γ.

As a consequence of Lemma 6, the operating plane is divided in �ve regions Ji i = 0, 1, 2, 3, 4
de�ned in (23), see Figure 9(a,b,c).

Consider the operating points η1, η2, η3 and η4 �xed respectively in regions J1, J2, J3 and
J4, as shown in Figure 9(a,b,c). It should be noticed that for any other point (Sin, D) ∈ J1

(resp. (Sin, D) ∈ J2, (Sin, D) ∈ J3 and (Sin, D) ∈ J4), the curve representing the biogas �ow
rate with respect to r should be similar to the curve shown in Fig. 9(a) (resp. (b), (c) and (d)),
and corresponding to (Sin, D) = η1 (resp. (Sin, D) = η2, (Sin, D) = η3 and (Sin, D) = η4).

Recall that r1(Sin, D) is de�ned by (20). It is obtained by solving numerically the equation
Sin = gr(D). Since the point η2 (resp. η3) satis�es the condition S

in > g(D), as stated in item
2 of Proposition 5, the serial con�guration has a higher biogas �ow rate production than a single
chemostat if and only if r ∈ (r1, 1), with r1(9, 1.6) ≈ 0.81 in Fig. 9(e) and r1(12, 1.6) ≈ 0.61, in
Fig. 9(f).

5.4 The serial con�guration is worth considering when mortality is not neg-

ligible

In this section we numerically illustrate Remark 2. We �x Sin and we adopt the following
notations.

Dmax
chem = D(1), Gmaxchem = G(1) = Gchem

(
Sin, Dmax

chem

)
where G(r) is de�ned by (42) and D(r) is as in Lemma 4. Recall that r∗ ∈ (0, 1) satis�es

G(r∗) = G(1) = Gmaxchem, (49)

and G(r) > G(1) for r ∈ (r∗, 1), so that G(r) attains its maximum for r = rmax ∈ (r∗, 1), see
Fig. 10(a), obtained with a Monod function and Sin = 1.5. We adopt the following notations.

Dmax = D(rmax), Gmax = G2

(
Sin, Dmax, rmax

)
D∗ = D(r∗), G∗ = G2

(
Sin, D∗, r∗

)
= Gmaxchem

Table 1: Numerical values

a = 0 a = 0.1 a = 0.2 a = 0.3

Dmax
chem 0.4918 0.4359 0.3806 0.3259

G∗ = Gmaxchem 0.3930 0.3167 0.2478 0.1866

r∗ 1 0.839 0.717 0.631

D∗ 0.4918 0.3758 0.2969 0.2369

rmax 1 0.889 0.808 0.751

Dmax 0.4918 0.3925 0.3190 0.2591

Gmax 0.3930 0.3169 0.2490 0.1890
Gmax−Gmax

chem
Gmax

chem
0 0.06% 0.5% 1.3%

Dmax
chem−Dmax

Dmax
chem

0 10% 16.2% 20.5%

Dmax
chem−D∗
Dmax

chem
0 13.6% 22% 27.3%
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These notations are illustrated in Figs. 10(a,b). The zoom in Fig. 10(b) shows that Gmax

exceeds G∗ = Gmaxchem only slightly, but D∗ is signi�cantly smaller than Dmax, which is itself
smaller than Dmax

chem. We give in Table 1 the numerical values of r∗, rmax, D∗, Dmax, Gmax and
G∗ = Gmaxchem, for various values of the mortality rate a. The table also gives the relative gains

Gmax−Gmax
chem

Gmax
chem

,
Dmax

chem−Dmax

Dmax
chem

,
Dmax

chem−D∗
Dmax

chem
,

when replacing the single chemostat with the serial device using the ratios r∗ and rmax. The
gain in biogas production is almost negligible, but the gain in bioreactor �ow rate is signi�cant.

The biogas �ow rates Gchem(Sin, D), G2(Sin, D, r∗) and G2(Sin, D, rmax), for the various
considered values of the mortality rate a, are depicted in Fig. 10(c), in black, blue and red,
respectively. This �gure shows that mortality is a real problem as it considerably reduces biogas
production. Where mortality cannot be avoided or reduced, instead of using the single chemostat,
by using a serial device, biogas production can be slightly improved while signi�cantly reducing
the bioreactor �ow rate.

6 Conclusion

In this work, an in-depth study is carried out on the mathematical model of two interconnected
chemostats in serial with mortality. Equations contain a term representing the mortality rate
of the species. Due to this added term characterizing the mathematical model, this paper is
considered as an extension of the work done in [7], where the model does not consider the
mortality rate. However, the mathematical analysis revealed that the proofs have had to be
signi�cantly revisited and reveal several new non intuitive di�erences compared to the case
without mortality. Let us recall that without mortality, the dynamics admits a forward attractive
invariant hyperplane related to the total mass conservation, which is no longer veri�ed under
mortality consideration. This at the core of the di�erences in the mathematical analysis. The
study of the model is based on the analysis of the asymptotic behavior of its solutions, and is
supported by an operating diagram which describes the number and stability of steady states.
In a �rst step, we considered di�erent mortality rates a1, a2 in each tank. Then, in view of
comparing with the single con�guration, we considered identical mortality rate a = a1 = a2. We
analyzed the performances of the model at steady state for two di�erent criteria: the output
substrate concentration and the biogas �ow rate (and compared them for the single chemostat
with the same mortality rate a). Explicit expressions of criteria, depending on the dilution rate
D and the input substrate concentration Sin, are provided. These new results provide conditions
that insure the existence of a serial con�guration more e�cient than a single chemostat, in the
sense of minimizing the output substrate concentration or maximizing the biogas �ow rate.

Along the paper, the similarities, speci�cities and di�erences of our model compared to the
model without mortality (i.e. for a = 0) studied in [7] are highlighted. Among the di�erences
that attract attention, on the one hand, we have the operating diagram with di�erent mortality
which presents many more cases than the diagram without mortality where it is reduced to
only two cases. Thus, the presence of the four regions of stability on the same diagram is now
possible. On the other hand, we have the biogas production of the serial device in its maximum
state which can be signi�cantly larger than the largest biogas production of the single chemostat.
This never happens in the case without mortality. Finally, unlike the case without mortality,
the biomass productivity and the biogas �ow rate at steady state are not given by the same
formulas. Therefore, if biomass productivity is taken into account as a performance criterion,
the comparison between the serial chemostat and the single chemostat does not lead to the same
conclusions. For more details on this issue the reader can refer to [8].
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Appendix

A The single chemostat

In this section, we give a brief presentation of the mathematical model of the single chemostat
with mortality rate. The mathematical equations are given by

D

y

y = Sout(Sin, D)

λ(a)

Sin

δ0
(a)

D

y

y = xout(Sin, D)

δ
(b)

D

Sin0 λ(a)

I0

I1

Γ

Φ

(c)

Figure 11: (a) The map D 7→ Sout(Sin, D) is increasing on [0, δ], where δ = f(Sin)− a. (b) The
map D 7→ xout(Sin, D) with f(S) = 4S/(5 + S), Sin = 10 and a = 0.6. (c) The curve Γ in the
operating plane (Sin, D) of the single chemostat.

Ṡ = D(Sin − S)− f(S)x,
ẋ = −Dx+ f(S)x− ax, (50)

where S and x denote respectively the substrate and the biomass concentration, Sin the input
substrate concentration, a the mortality rate and D = Q/V the dilution rate, with Q the input
�ow rate and V the volume of the tank. The speci�c growth rate f of the microorganisms
satis�es Assumption 1. It is well known (see [16, 38]) that, besides the washout F0 = (Sin, 0),
this system can have a positive steady state

F1 = (S∗(D), x∗(Sin, D)),

where

S∗ = λ(D + a) and x∗ = D
D+a(Sin − λ(D + a)).

See Fig. 11(a) for the plot of the function D 7→ S∗(D) and Fig. 11(b) for the plot of the function
D 7→ x∗(Sin, D) for 0 ≤ D ≤ δ, where δ = f(Sin)− a.

The washout steady state F0 always exists. It is GAS if and only if D ≥ δ. It is LES if and
only if D > δ. The positive steady state F1 exists if and only if D < δ. It is GAS and LES
whenever it exists. Therefore, the curve Φ de�ned by

Φ := {(Sin, D) : D = f(Sin)− a} (51)

splits the set of operating parameters (Sin, D) into two regions, denoted I0 and I1, as depicted
in 11(c). These regions are de�ned by

I0 := {(Sin, D) : D ≥ f(Sin)− a},
I1 := {(Sin, D) : D < f(Sin)− a}. (52)

The behavior of the system in each region is given in Table 2. Figure 11(c), together with 2 is
called the operating diagram of the single chemostat.

The particularity of this operating diagram is that the curve limiting both regions I0 and I1

is translated from zero, unlike the case with mortality, as shown in Figure 2.5 of [16]. Thus, with
presence of mortality rate, the region where the washout is GAS, is larger.
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Table 2: Stability of steady states in the various regions of the operating diagram.
I0 I1

F0 GAS U
F1 GAS

The output substrate concentration of the single chemostat, at its stable steady state is given
by

Sout(Sin, D) =

{
Sin if D ≥ δ
λ (D + a) if D < δ.

(53)

Its output biomass concentration at steady state is then given by

xout(Sin, D) = D
D+a(Sin − Sout(D, a)) (54)

For all Sin > λ(a), one has

∂Sout

∂D (Sin, D) =

{
0 if D > δ
λ′(D + a) if D < δ,

Thus, for any growth function satisfying Assumption 1 the function D 7→ Sout(Sin, D) is
increasing on [0, δ], as shown in Figure 11(a). The function D 7→ xout(Sin, D) is illustrated in
Figure 11(b) for a Monod function.

The biogas �ow rate of the single chemostat is de�ned, up to a multiplicative yield coe�cient,
by

Gchem(Sin, D) := V xoutf(Sout). (55)

Using the expressions (53) and (54) respectively of Sout and xout, the biogas �ow rate of the
single chemostat is given by:

Gchem(Sin, D) =

{
0 if D ≥ δ
V D(Sin − λ(D + a)) if D < δ.

(56)

For a given Sin > λ(a), the function D 7→ Gchem(Sin, D) is null for D = 0 or D ≥ δ, and is
positive for D ∈ (0, δ). Therefore it admits a maximum in (0, δ), which is assumed to be unique.
A characterization of the growth functions for which this uniqueness is satis�ed can be found in
[30].

Proposition 9. Assume that for any Sin > λ(a), the maximum of D 7→ Gchem(Sin, D) is
unique, and de�ne D(Sin) ∈ (0, δ), such that

Gchem
(
Sin, D

(
Sin
))

= max
D≥0

Gchem
(
Sin, D

)
.

Then, the dilution rate D = D
(
Sin
)
is the solution of the equation Sin = g(D), where the

function g : [0,m− a) 7→ R is given by

g(D) := λ(D + a) +Dλ′(D + a)). (57)

Proof. For any Sin > λ(a) and D ∈ (0, δ), we have

∂Gchem
∂D (Sin, D) = V

(
Sin − λ(D + a)−Dλ′(D + a)

)
(58)

Therefore, ∂Gchem
∂D (Sin, D) = 0 if and only if Sin = g(D), where g is de�ned by (57).
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Notice that the function g de�ned by (57) is the same as the function g, de�ned by (19),
which was obtained as the limit, when r tends to 1, to the function gr, de�ned by (9). Recall
that Γ is the curve of equation Sin = g(D), see (22). This curve is depicted in Fig. 11(c). It is
the set of operating conditions given the higher biogas of the single chemostat. More precisely,
for any Sin > λ(a), the maximum D = D(Sin) of the biogas satis�es the condition (Sin, D) ∈ Γ.
Therefore, a su�cient condition for the uniqueness of D(Sin) is that the mapping g is increasing.
If, in addition, f is C2, then, deriving (58) with respect of D, we have

∂2Gchem
∂D2 (Sin, D) = −V g′(D).

Hence, a su�cient condition for Assumption 4 to be satis�ed is that g′(D) > 0 for D ∈ [0,m−a).

This last condition if satis�ed whenever f ′′ ≤ 0 on (λ(a),+∞), or
(

1
f−a

)′′
> 0 on (λ(a),+∞),

see Lemma 1 in [30]. Therefore we can make the following remark.

Remark 3. Linear and Monod growth functions satisfy Assumption 4, since they satisfy f ′′ ≤ 0

on (0,+∞). On the other hand the Hill function satisfy Assumption 4, since it satis�es
(

1
f−a

)′′
>

0 on (λ(a),+∞), as shown in Proposition 8.

B The serial con�guration

We consider a slight extension of system 59 with di�erent mortality rates in the two tanks.
Indeed, we assume that the growth environment di�ers from one tank to another one. This can
lead to two di�erent mortality rates in the tanks. We denote by a1 and a2 the mortality rates.
The mathematical model is given by the following equations.

Ṡ1 = D
r (Sin − S1)− f(S1)x1

ẋ1 = −D
r x1 + f(S1)x1 − a1x1

Ṡ2 = D
1−r (S1 − S2)− f(S2)x2

ẋ2 = D
1−r (x1 − x2) + f(S2)x2 − a2x2.

(59)

The following result is classical in the mathematical theory of the chemostat.

Lemma 7. For any nonnegative initial condition, the solution of system (59) (S1(t), x1(t), S2(t), x2(t))
is nonnegative for any t > 0 and positively bounded.

Proof. Since the vector �eld de�ned by (59) is C1, the uniqueness of the solution to an initial
value problem holds. From (59) and using f(0) = 0, we have:

for i = 1, 2, Si = 0 =⇒ Ṡi > 0,
x1 = 0 =⇒ ẋ1 = 0

x1 ≥ 0 and x2 = 0 =⇒ ẋ2 ≥ 0

Therefore, for i = 1, 2, Si(t) ≥ 0 and xi(t) ≥ 0, for all t ≥ 0, for which they ar de�ned, provided
Si(0) ≥ 0 and xi(0) ≥ 0, for i = 1, 2, see Prop. B.7 in [38]. This proves that the solutions of
nonnegative initial conditions are always nonnegative. Let zi = Si + xi, i = 1, 2. From system
(59), we have

ż1 = D
r (Sin − z1)− a1x1, ż2 = D

1−r (z1 − z2)− a2x2.

Consequently, we have the di�erential inequality

ż1 ≤ D
r (Sin − z1),

It follows by comparison that

z1(t) ≤ Sin + (z1(0)− Sin)e−
D
r
t
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Therefore, z1(t) ≤ Z1, where Z1 = max(Sin, z1(0)). Then, we also have the di�erential inequality

ż2 ≤ D
1−r (Z1 − z2).

It follows by comparison that

z2(t) ≤ Z1 + (z2(0)− Z1)e−
D

1−r
t

Therefore, z2(t) ≤ Z2, where Z2 = max(Z1, z2(0)). Hence, the solutions of (59) are positively
bounded. Therefore, they are de�ned for all t ≥ 0.

For the description of the steady states, we need to de�ne the auxiliary function h given by:

h (S2) = D+(1−r)a2
1−r

S∗1−S2

b−S2
,

where S∗1 = λ
(
D
r + a1

)
, b =

D(Sin−S∗1 )
D+ra1

+ S∗1 .
(60)

This function satis�es the following property.

Lemma 8. Assume that D/r + a1 < f(Sin). The function h is decreasing from h(0) > 0 to
h(S∗1) = 0, where h(0) is given by

h (0) = D+(1−r)a2
1−r

(D+ra1)S∗1
DSin+ra1S∗1

. (61)

Proof. From the condition D/r + a1 < f(Sin) it is deduced that S∗1 < Sin. Note that

b =
DSin+ra1S∗1

D+ra1
.

Hence, b is a convex combination of Sin and S∗1 , and we have S∗1 < b < Sin. Therefore, the
vertical asymptote S2 = b of h is at right of S∗1 . The derivative of h is

h′(S2) = D+(1−r)a2
1−r

S∗1−b
(b−S2)2

.

Hence, we have h′(S2) < 0 for all S2 < b. Therefore, h is de�ned on the interval (0, S∗1) and is
decreasing from h(0), given by (61) to h(S∗1) = 0.

Therefore, if D/r + a1 < f(Sin), equation f(S2) = h (S2) admits a unique solution, denoted
by S∗2(Sin, D, r), as shown in Fig. 12(a). This solution satisfy the following property.

Lemma 9. For all 0 ≤ D < f(Sin)− a, one has

lim
r→1

S∗2(Sin, D, r) = λ(D + a).

Proof. Let 0 ≤ D < f(Sin)− a. Using (5), the condition h(S2) = f(S2) is equivalent to

(D + (1− r)a)(S∗1 − S∗2) =

(1− r)
(

D
D+ra(Sin − S∗1) + S∗1 − S∗2

)
f(S∗2).

(62)

As S∗1 |r=1 = λ(D + a) and limr→1 f(S∗2) < +∞ then, (62) gives

D(λ(D + a)− lim
r→1

S∗2(Sin, D, r)) = 0.

Consequently, one has limr→1 S
∗
2(Sin, D, r)) = λ(D + a).

The existence and stability of steady states of (59) are given by the following result.

Theorem 3. Assume that Assumption 1 is satis�ed. The steady states of (59) are:
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D
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y = f(S2)
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(a)
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S∗
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2

y = f(S2)

y = h2(S2)

y = h1(S2)

(b)

Figure 12: (a) Existence and uniqueness of the solution S∗2 of equation f(S2) = h(S2). (b)
Graphical illustration of Proposition 10: S∗2 decreases when Sin increases.

• The washout steady state E0 = (Sin, 0, Sin, 0) which always exists. It is GAS if and only if

D ≥ max{r(f(Sin)− a1), (1− r)(f(Sin)− a2)}. (63)

It is LES if and only if

D > max{r(f(Sin)− a1), (1− r)(f(Sin)− a2)}.

• The steady state E1 = (Sin, 0, S2, x2) of washout in the �rst chemostat but not in the second
one with

S2 = λ
(

D
1−r + a2

)
, x2 = D

D+(1−r)a2
(
Sin − S2

)
. (64)

It exists if and only if D < (1− r)(f(Sin)− a2). It is GAS if and only if

r(f(Sin)− a1) ≤ D and D < (1− r)(f(Sin)− a2). (65)

It is LES if and only if

r(f(Sin)− a1) < D < (1− r)(f(Sin)− a2).

• The steady state E2 = (S∗1 , x
∗
1, S
∗
2 , x
∗
2) of persistence of the species in both chemostats with

S∗1 = λ
(
D
r + a1

)
, x∗1 = D

D+ra1
(Sin − S∗1), (66)

x∗2 = D
D+(1−r)a2

(
D

D+ra1
(Sin − S∗1) + S∗1 − S∗2

)
(67)

and S∗2 = S∗2(Sin, D, r) is the unique solution of the equation h(S2) = f(S2) with h de�ned
by (60). This steady state exists and is positive if and only if D < r(f(Sin) − a1). It is
GAS and LES whenever it exists and is positive.

Proof. The 4-dimensional system of ODEs (59) has a cascade structure of two planar systems of
ODEs, whose mathematical analysis is easy and well known in the mathematical theory of the
chemostat [16, 38]. Using this cascade structure, the global behavior of the system is deduced
from the global behaviour of planar systems and Thieme's theory of asymptotically autonomous
systems.

For the convenience of the reader the details of the proof are given in Appendix D.1.

Proposition 10. The function Sin 7→ S∗2(Sin, D, r) is decreasing.

Proof. D and r are �xed. Let Sin,1 > Sin,2 and hi de�ned by (60), with Sin = Sin,i, i = 1, 2.
Let S∗i2 , the solution of equation f(S2) = hi(S2), i = 1, 2. Using Lemma 8, hi is a decreasing
hyperbola from hi(0) de�ned by (61), with Sin = Sin,i, to hi(S

∗
1) = 0. Since h1(0) < h2(0), we

have h1(S2) < h2(S2) for all S2 ∈ (0, S∗1). Therefore, S∗12 < S∗22 , see Fig. 12(b).
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This result means that the e�uent steady state concentration of substrate decreases when
the in�uent concentration of substrate increases. This behavior is very di�erent from the single
chemostat, where the e�uent steady state substrate concentration is independent of the in�uent
substrate concentration.

(a) 0 < r < r, a1 < a2

Sin

D

0λ(a1)λ(a2)

I0(r)

I1(r)

I3(r)

I2(r)

Φ1
r

Φ2
1−r

(b) r < r < 1, a1 < a2

Sin

D

0λ(a1)λ(a2)

I0(r)

I3(r)

I2(r)

Φ2
1−r

Φ1
r

(c) 0 < r < 1
2 , a1 = a2

Sin

D

0 λ(a1)

I0(r)

I1(r)

I2(r)

Φ1
r

Φ2
1−r

(d) 1
2 < r < 1, a1 = a2

Sin

D

0 λ(a1)

I0(r)

I3(r)

I2(r)

Φ2
1−r

Φ1
r

(e) 0 < r < r, a1 > a2

Sin

D

0λ(a2)λ(a1)

I0(r)

I1(r)

I2(r)

Φ1
r

Φ2
1−r

(f) r < r < 1, a1 > a2

Sin

D

0λ(a2)λ(a1)

I0(r)

I3(r)

I1(r)

I2(r)

Φ1
r

Φ2
1−r

Figure 13: The operating diagram of (59). The asymptotic behaviour in each region is depicted
in Table 3.

C Operating diagram

For the chemostat model, the operating diagram has as coordinates the input substrate con-
centration Sin and the dilution rate D, and shows how the solutions of the system behave for
di�erent values of these two parameters. The regions constituting the operating diagram corre-
spond to di�erent qualitative asymptotic behaviors. Indeed, the main interest of an operating
diagram is to highlight the number and stability of the steady states for a given pair of param-
eters (Sin, D). The input substrate concentration Sin and the dilution rate D are the usual
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Table 3: The regions Ik(r), k = 0, 1, 2, 3 of the operating diagram of (59) and asymptotic
behaviour in these various regions.

Regions

I0(r) =
{

(Sin, D) : max{r(f(Sin)− a1), (1− r)(f(Sin)− a2)} ≤ D
}

I1(r) =
{

(Sin, D) : r(f(Sin)− a1) ≤ D and D < (1− r)(f(Sin)− a2)
}
,

I2(r) =
{

(Sin, D) : 0 < D < min{r(f(Sin)− a1), (1− r)(f(Sin)− a2)}
}
,

I3(r) =
{

(Sin, D) : (1− r)(f(Sin)− a2) ≤ D and D < r(f(Sin)− a1)
}
.

I0(r) I1(r) I2(r) I3(r)

E0 GAS U U U
E1 GAS U
E2 GAS GAS

parameters manipulated by the experimenter of a chemostat. Apart from these parameters, and
the parameter r that can be also chosen by the experimenter but not easily changed as Sin and
D, all other parameters have biological meaning and are �tted using experimental data from real
measurements of concentrations of micro-organisms and substrates. Therefore the operating dia-
gram is a bifurcation diagram, quite useful to understand the possible behaviors of the solutions
of the system from both the mathematical and biological points of view.

Here, we �x r ∈ (0, 1) and we depict in the plane (Sin, D) the regions in which the solution
of system (59) globally converges towards one of the steady state E0, E1 or E2. From the results
given in Theorem 3, it is seen that these regions are delimited by the curves Φ1

r and Φ2
1−r de�ned

by:

Φ1
r :=

{
(Sin, D) ∈ R2

+ : D = r(f(Sin)− a1)
}
, (68)

Φ2
1−r :=

{
(Sin, D) ∈ R2

+ : D = (1− r)(f(Sin)− a2)
}
. (69)

When a1 = a2 = 0, as we have shown in [7], these curves meet only at one point (the origin)
and merge when r = 1/2. Therefore, in this case the curves Φ1

r and Φ2
1−r separate the operating

plane (Sin, D), in only three regions, see [7, Figure 5]. This property continue to hold when
a1 = a2, that is to say, the curves intersect only at (λ(a1), 0) and merge when r = 1/2. In
this case the curves Φ1

r and Φ2
1−r separate the operating plane (Sin, D), in only three regions,

see Figure 13 (c) and (d). The novelty when a1 and a2 are di�erent and non null, is that the
intersection of the curves Φ1

r and Φ2
1−r can lie outside the Sin axis. Therefore there can be four

regions in the operating plane, as depicted in Figure 13 (a) and (f). For the description of the
intersection of the curves Φ1

r and Φ2
1−r, we need some de�nitions and notations. Let r ∈ (0, 1)

be de�ned by

r := m−a2
2m−a1−a2 . (70)

Note that if a1 < a2 then r < 1/2, and if a1 > a2 then r > 1/2. For a1 < a2 and 0 < r < r (or
a1 > a2 and r < r < 1), we de�ne the point P =

(
SinP , DP

)
of the operating plane by:

SinP := λ
(
ra1−(1−r)a2

2r−1

)
, DP := r(1−r)(a2−a1)

1−2r . (71)

Note that SinP > 0 and DP > 0. With these notations we can state the following result:

Proposition 11. 1. If a1 < a2 then for all r ∈ (0, r), the curves Φ1
r and Φ2

1−r intersect at
the point P and Φ1

r is strictly below [resp. above] Φ2
1−r for S

in > SinP [resp. Sin < SinP ], see
Figure 13 (a). For all r ∈ (r, 1), Φ1

r is strictly above Φ2
1−r, see Figure 13 (b).

2. If a1 > a2 then for all r ∈ (r, 1), the curves Φ1
r and Φ2

1−r intersect at the point P and Φ1
r

is strictly above [resp. below] Φ2
1−r for S

in > SinP [resp. Sin < SinP ], see Figure 13 (f). For
all r ∈ (0, r), Φ1

r is below Φ2
1−r, see Figure 13 (e).
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3. If a1 = a2 then, for r = 1/2, Φ1
r = Φ2

1−r. Moreover, if r < 1/2 then Φ1
r is strictly below

Φ2
1−r, see Figure 13 (c) and, if r > 1/2 then Φ1

r is strictly above Φ2
1−r, see Figure 13 (d).

Proof. For 0 < r < 1 and Sin > λ(ai) we de�ne the function ϕi, i = 1, 2, by

ϕ1(Sin, r) = r(f(Sin)− a1),
ϕ2(Sin, r) = (1− r)(f(Sin)− a2).

(72)

The curves Φ1
r and Φ2

1−r, de�ned respectively by (68) and (69), intersect if and only if there
exists r ∈ (0, 1) and Sin > max (λ(a1), λ(a2)) such that ϕ1(Sin, r) = ϕ2(Sin, r), that is to say

f(Sin) = A(r), with A(r) := ra1−(1−r)a2
2r−1 . (73)

This equation has a solution Sin > max (λ(a1), λ(a2)) if and only if

max (a1, a2) < A(r) < m, (74)

where m = sup(f), as in (2). When these conditions are satis�ed, the solution of (73) is given
by Sin = λ(A(r)), where λ is the inverse function pf f , i.e. the break-even concentration de�ned
by (3). Hence, Sin = SinP , given in (71). The corresponding intersection point of Φ1

r and Φ2
1−r is

given by DP = r
(
f(SinP )− a1

)
, which is the value given in (71).

Let us determine now for which value of r, the conditions (74) are satis�ed. The function A
is a homographic function. Its graphical representation is a hyperbola, whose vertical asymptote
is r = 1/2. Its derivative is given by

A′(r) =
a2 − a1

(2r − 1)2
. (75)

Note that A(r) = m if and only if r = r, where r is de�ned by (70). Therefore if a1 < a2 then,
according to (75), A is increasing. Since A(0) = a2, A(r) = m, and r < 1/2, the condition (74)
is satis�ed if and only if 0 < r < r. Similarly, if a1 > a2, then, according to (75), A is decreasing.
Since A(1) = a1, A(r) = m and r > 1/2, the condition (74) is satis�ed if and only if r < r < 1.
Finally, if a1 = a2 then A(r) = a1 and the condition (74) cannot be satis�ed.

Suppose that a1 < a2. Note that for 0 < r < 1/2, the condition f(Sin) > A(r) [resp.
f(Sin) < A(r)] is equivalent to ϕ1(Sin, r) < ϕ2(Sin, r) [resp. ϕ1(Sin, r) > ϕ2(Sin, r)]. Thus:

• If r ∈ (0, r), then f(Sin) < A(r) if and only if Sin < SinP , where SinP is de�ned by (71).
Hence, the curves Φ1

r and Φ2
1−r intersect at P = (SinP , DP ) and the curve Φ1

r is strictly
below [resp. above] the curve Φ2

1−r, for all S
in > SinP [resp. Sin < SinP ].

• If r ∈ [r, 1/2) then f(Sin) < A(r) for all Sin > 0, so that the curve Φ1
r is strictly above the

curve Φ2
1−r.

• If r ∈ [1/2, 1), then, using r ≥ 1−r and a1 < a2, one has ϕ1(Sin, r) > ϕ2(Sin, r). Therefore,
the curve Φ1

r is strictly above the curve Φ2
1−r.

If a1 > a2, the proof is similar to the case a1 < a2.
If a1 = a2 then ϕ1(Sin, r) = ϕ2(Sin, r) is equivalent to r(f(Sin)− a1) = (1− r)(f(Sin)− a1).

Therefore, r = 1− r, that is r = 1/2. In this case the curves Φ1
r and Φ2

1−r merge. In addition, if
r < 1/2 [resp. r > 1/2] then r < 1− r [resp. r > 1− r] and the curve Φ1

r is strictly below [resp.
above] the curve Φ2

1−r. This ends the proof of the proposition.

For any r ∈ (0, 1), the curves Φ1
r and Φ2

1−r, de�ned by (68) and (69), respectively split the
plane (Sin, D) in the regions denoted I0(r), I1(r), I2(r) and I3(r) and de�ned in Table 3. These
regions are depicted in Fig. 13 in the cases a1 < a2, a1 = a2 and a1 > a2.

The behavior of the system in each region, when it is not empty, is given in Table 3. Notice
that E1 exists in both regions I1(r) and I2(r), but is stable only when (Sin, D) is �xed in I1(r).

When a1 = a2 = 0 then λ(a1) = λ(a2) = 0 and the curves Φ1
r and Φ2

1−r of the operating
diagram start from the origin of the plane (Sin, D) and merge for r = 1/2. Therefore, the

32



diagrams shown in panels (a), (b), (c), (d), (e) and (f) of Fig. 13 are reduced to only two
di�erent cases characterized by 0 < r < 1/2 and 1/2 < r < 1, as shown in Figure 5 of [7]. There
is no changes in the stability of the steady states and in the number of the regions depicted in
the operating diagram.

This result reveals an interplay between spatial heterogeneity (the ratio r of volume distri-
bution between tanks) and the mortality heterogeneity (di�erence between a1 and a2). Indeed,
panels (a) and (f) of Fig. 13 bring a particular feature when mortality rates are di�erent: do-
mains I1(r) and I3(r) can appear or disappear playing only with the spatial distribution r, a
phenomenon which does not happens when mortality is identical in each tank. This shows that
the existence of domains I1(r) and I3(r) is controlled by a relative toxicity in the tanks, and
not only the spatial distribution as it is the case for identical mortality. This feature can have
interest when practitioners can adjust pH or other abiotic parameters having impacts on the
mortality rate, independently in each tank. Given operating parameters Sin, D and r, panels
(a) and (f) of Fig. 13 show that it is theoretically possible to pass from domain I3(r) to I2(r)
when mortality parameter is diminished only in the second tank. In practice, being in domain
I2(r) might be more desirable than I3(r) with respect to some dysfunctioning of the �rst tank
that can drop suddenly its biomass to zero. Indeed, in I2(r), the second tank is no conducted to
the wash-out di�erently to the I3(r) case.

When a1 = a2 = a, which is the case corresponding to the system (1) considered in Section
2, only panels (c,d) of Fig. 13 are encountered, as shown in Fig. 2. We describe hereafter the
bifurcations that occur in this particular case. The general case i.e. when a1 6= a2 is similar.

Remark 4. Transcritical bifurcations occur in the limit cases D = r(f(Sin) − a) and D =
(1 − r)(f(Sin) − a), for system (1). If 0 < r < 1/2 then, we have a transcritical bifurcation
of E0 and E1 when D = (1 − r)(f(Sin) − a) and a transcritical bifurcation of E1 and E2 when
D = r(f(Sin)− a). If 1/2 < r < 1 then, we have a transcritical bifurcation of E0 and E1 when
D = (1− r)(f(Sin)−a) and a transcritical bifurcation of E0 and E2 when D = r(f(Sin)−a). If
r = 1/2 and D = (f(Sin) − a)/2 then, we have transcritical bifurcations of E0 and E1, and E0

and E2, simultaneously.

D Proofs

D.1 Proof of Theorem 3

We begin by the existence of steady states. The steady states are the solutions of the set of
equations Ṡ1 = 0, ẋ1 = 0, Ṡ2 = 0, ẋ2 = 0. From equation ẋ1 = 0, it is deduced that x1 = 0 or
f(S1) = D/r + a1. Suppose �rst that x1 = 0. Then, from equation Ṡ1 = 0 it is deduced that
S1 = Sin and from equation ẋ2 = 0 it is deduced that x2 = 0 or f(S2) = D/(1 − r) + a2. If
x2 = 0, then from equation S2 = 0 it is deduced that S2 = Sin. Hence we obtain the steady
state E0 = (Sin, 0, Sin, 0), which always exist. On the other hand, if f(S2) = D/(1 − r) + a2,
then S2 = S2, de�ned in (64). From equation Ṡ2 = 0, it is deduced that x2 = x2,de�ned in (64).
Hence we obtain the steady state E1 = (Sin, 0, S2, x2). This steady state exists if and only if
Sin > S2, that is D < (1− r)(f(Sin)− a2).

Suppose now that f(S1) = D/r+ a1. Then S1 = S∗1 , de�ned in (66). From equation Ṡ1 = 0,
it is deduced that x1 = x∗1, de�ned in (66). From equation Ṡ2 + ẋ2 = 0, it is deduced that

x2 =
D

D + (1− r)a2
(S∗1 + x∗1 − S2). (76)

Replacing x2 by this expression in the equation Ṡ2 = 0, it is deduced that f(S2) = h(S2),
where h is de�ned by (60). Hence S2 = S∗2 , which is the unique solution of the equation
f(S2) = h(S2), as shown in Figure 12 (a). Replacing S2 by S∗2 in (76) gives x2 = x∗2, de�ned
by (67). Consequently, we obtain the steady state E2 = (S∗1 , x

∗
1, S
∗
2 , x
∗
2). This steady state is

positive if and only if Sin > S∗1 , which is equivalent to D < r(f(Sin)− a1).
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Let us now study the local stability. Since the system has a cascade structure, the stability
analysis reduces to the study of square 2 × 2 matrices. Indeed, the Jacobian matrix associated

to system (59) is the lower triangular matrix by blocs, J =

(
A 0
B C

)
where B is the diagonal

matrix whose diagonal elements are D/(1− r), and A and C are given by:

A =

(
−D

r − f ′(S1)x1 −f(S1)

f ′(S1)x1 −D
r + f(S1)− a1

)
,

C =

(− D
1−r − f ′(S2)x2 −f(S2)

f ′(S2)x2 − D
1−r + f(S2)− a2

)
,

Hence, the eigenvalues of J are the ones of A and C.
For E0, the eigenvalues are −D/r, −D/r + f(Sin) − a1, −D/(1 − r) and −D/(1 − r) +

f(Sin)− a2. They are negative if and only if D > r(f(Sin)− a1) and D > (1− r)(f(Sin)− a2).
Therefore, E0 is LES if and only if the condition in the theorem is satis�ed.

For E1, the eigenvalues of A are −D/r + f(Sin) − a1 and −D/r. The �rst eigenvalue is
negative if and only if D > r(f(Sin) − a1). On the other hand, since the determinant of C is
positive, and its trace is negative, the eigenvalues of C are of negative real parts. Therefore, E1

is LES if and only if the condition in the theorem is satis�ed.
For E2, the determinant of A is positive and its trace is negative. On the other hand, using

the notation CE2 for the matrix C evaluated at E2, we have

det(CE2) =
(
− D

1−r − f ′(S∗2)x∗2
)(
− D

1−r − a2 + f(S∗2)
)

+ f(S∗2)f ′(S∗2)x∗2,

tr(CE2) = −2 D
1−r − a2 − f ′(S∗2)x∗2 + f(S∗2).

Note that h(S2) < D/(1 − r) + a2 for all S2 ∈ (0, S∗1). Therefore, from (60), we have f(S∗2) =
h(S∗2) < D/(1 − r) + a2. Consequently, det(CE2) and tr(CE2) are respectively positive and
negative. Therefore, E2 is LES whenever it exists, that is D < r(f(Sin)− a1).

For the study of the global stability we use the cascade structure of the system (59) and
Thieme's Theorem (see Theorem A1.9 of [16]). In the rest of the proof, we denote by (S1(t), x1(t), S2(t), x2(t))
the solution of (59) with the initial condition (S0

1 , x
0
1, S

0
2 , x

0
2). Then, (S1(t), x1(t)) is the solution

of system

Ṡ1 = D
r (Sin − S1)− f(S1)x1

ẋ1 = −D
r x1 + f (S1)x1 − a1x1

(77)

with initial condition (S0
1 , x

0
1) and (S2(t), x2(t)) is the solution of the non-autonomous system of

di�erential equations

Ṡ2 = D
1−r (S1(t)− S2)− f (S2)x2

ẋ2 = D
1−r (x1(t)− x2) + f (S2)x2 − a2x2

(78)

with the initial condition (S0
2 , x

0
2). The system (77) is the classical model of a single chemostat.

Its asymptotic behaviour is well known (see, for instance, Proposition 2.2 of [16]). This system
admits the steady states:

e1
0 =

(
Sin, 0

)
and e1

1 = (S∗1 , x
∗
1) (79)

where S∗1 and x∗1 are de�ned by (66). Two cases must be distinguished.
Firstly, if λ (D/r + a1) ≥ Sin, that is D ≥ r(f(Sin) − a1) then, e1

0, de�ned in (79), is GAS
for (77) in the nonnegative quadrant. Hence, for any non-negative initial condition (S0

1 , x
0
1),

lim
t→+∞

(S1(t), x1(t)) = (Sin, 0). (80)

Therefore, the system (78) is asymptotically autonomous with the limiting system
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Ṡ2 = D
1−r (Sin − S2)− f (S2)x2

ẋ2 = − D
1−rx2 + f (S2)x2 − a2x2.

(81)

Recall that the solutions of (78) are positively bounded. Therefore, we shall use Thieme's results
which apply for bounded solutions.

The system (81) represents the classical model of a single chemostat. It admits the two
steady states e2

0 = (Sin, 0) and e2
1 = (S2, x2), with (S2, x2) de�ned by (64). Two subcases must

be distinguished

• If λ (D/(1− r) + a2) ≥ Sin, that is D ≥ (1−r)(f(Sin)−a2) then, e2
0 is GAS in the nonneg-

ative quadrant. Using Thieme's Theorem, we deduce that for any nonnegative (S0
2 , x

0
2), the

solution (S2(t), x2(t)) of (78) converges towards e2
0 = (Sin, 0). Using (80) we deduce that,

when D ≥ max(r(f(Sin)−a1), (1− r)(f(Sin)−a2)), the solution (S1(t), x1(t), S2(t), x2(t))
of (59) converges towards E0 = (Sin, 0, Sin, 0), which proves (63).

• In contrast, if λ(D/(1 − r) + a2) < Sin, that is D < (1 − r)(f(Sin) − a2) then, both
steady states e2

0 and e2
1 exist and e2

1 is GAS in the positive quadrant. Although system
(78) has the saddle point e2

0, no polycyle can exist. Using Thieme's Theorem, for any
positive (S0

2 , x
0
2), the solution (S2(t), x2(t)) of (78) converges towards e2

1 = (S2, x2). Using
(80) we deduce that, if r(f(Sin)−a1) ≤ D and D < (1− r)(f(Sin)−a2), then the solution
(S1(t), x1(t), S2(t), x2(t)) of (59) converges towards E1 =

(
Sin, 0, S2, x2

)
, which proves

(65).

Secondly, if λ (D/r + a1) < Sin, that is D < r(f(Sin)− a1) then, e1
1, de�ned in (79), is GAS

for (77) in the positive quadrant. Hence, for any positive initial condition (S0
1 , x

0
1)

lim
t→+∞

(S1(t), x1(t)) = (S∗1 , x
∗
1) . (82)

Therefore, the system (78) is asymptotically autonomous with the limiting system

Ṡ2 = D
1−r (S∗1 − S2)− f (S2)x2

ẋ2 = D
1−r (x∗1 − x2) + f (S2)x2 − a2x2.

(83)

The system (83) represents the classical model of a single chemostat with an input biomass.
In this case, there is no washout and the system (83) always admits one LES steady state
e2 = (S∗2 , x

∗
2) with positive biomass de�ned by (67) and S∗2 the unique solution of h(S2) = f(S2).

Let us show that this steady state is GAS for (83). Assume that x2 > 0. Consider the change
of variable ξ = ln(x2). The system (83) becomes as

Ṡ2 = D
1−r (S∗1 − S2)− f (S2) eξ

ξ̇ = D
1−r (x∗1e

−ξ − 1) + f (S2)− a2.
(84)

The divergence of the vector �eld

ψ(S2, ξ) =

[ D
1−r (S∗1 − S2)− f (S2) eξ

D
1−r (x∗1e

−ξ − 1) + f (S2)− a2

]
associated to (84) is divψ(S2, ξ) = − D

1−r (1 + x∗1e
ξ) − f ′(S2)eξ. It is negative. Thus, using

Bendixon-Dulac criterion, system (84) cannot have a periodic solution. Hence, system (83) has
no cycle in the positive quadrant. For any non negative initial condition (S0

2 , x
0
2), the solution of

(83) is bounded. Hence, the ω-limit set of (S0
2 , x

0
2), denoted ω(S0

2 , x
0
2), is non-empty and included

in the positive quadrant. If e2 6∈ ω(S0
2 , x

0
2) then, using Poincaré-Bendixon Theorem, ω(S0

2 , x
0
2)

is a limit cycle, but the system does not present any, due to the divergence property. One then
deduces e2 ∈ ω(S0

2 , x
0
2) and, as e2 is LES, then ω(S0

2 , x
0
2) = {e2}. Consequently, e2 is GAS for

(83) in the positive quadrant.
Using again Thieme's Theorem, for any positive (S0

2 , x
0
2), the solution (S2(t), x2(t)) of (78)
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converges towards e2 = (S∗2 , x
∗
2). Using (82) we deduce that, if D < r(f(Sin) − a1), then the

solution (S1(t), x1(t), S2(t), x2(t)) of (59) converges towards E2 = (S∗1 , x
∗
1, S
∗
2 , x
∗
2). This ends the

proof of the theorem.

D.2 Proof of Lemma 4

Let us �x Sin such that δ := f(Sin) − a > 0. The proof consists in showing that the function
(D, r) 7→ G2(Sin, D, r) can be formally extended as a C2 function for values of r larger than 1
(although such values have no physical meaning). Recall �rst that for any D ∈ (0, δ), one has
G2(Sin, D, 1) = Gchem(Sin, D). As G2(Sin, D(1), 1) > 0 and G2(Sin, 0, 1) = 0, there exists by
continuity of the function G2, numbers D ∈ (0, D(1)), r ∈ (0, 1) such that

G2(Sin, D, r) < max
d∈(0,rδ)

G2(Sin, d, r), (D, r) ∈ [0, D]× [r, 1] (85)

Let ε > 0 be such that

Dε := ε

(
a+ max

s∈[0,Sin]
f ′(s)(Sin − s)

)
< D (86)

and consider the domain

Dε :=

{
(D, r); D ∈ (Dε, δ), r ∈

(
max

(
r,
D

δ

)
, 1 + ε

)}
Note that for any (D, r) ∈ Dε, the number λ(D/r + a) = f−1(D/r + a) is well de�ned. Posit
the function

ϕ(S2, D, r) = (D + (1− r)a) (λ(D/r + a)− S2)− (1− r)f(S2)
(
DSin+raλ(D/r+a)

D+ra − S2

)
,

where (S2, D, r) ∈ (0, Sin)×Dε. As f is C2, ϕ is C2 on (0, Sin)×Dε.
For r < 1 and (D, r) ∈ Dε, one has

ϕ(S2, D, r) = (1− r)
(
DSin + raλ(D/r + a)

D + ra
− S2

)
.

(h(S2)− f(S2))

where h is the function de�ned in (5). According to Lemma 8, h is positive decreasing on
(0, λ(D/r + a), and h − f admits an unique zero S?2 = S?2(Sin, D, r) on (0, λ(D/r + a). Then,
one can write

∂S2ϕ
∣∣∣
S2=S?

2

= (1− r)
(
DSin + raλ(D/r + a)

D + ra
− S2

)
.(

∂S2h− f ′
) ∣∣∣
S2=S?

2

< 0

For r ∈ [1, 1 + ε) and (D, r) ∈ Dε, on has

∂S2ϕ =− (D + (1− r)a)

− (1− r)f ′(S2)
(DSin + raλ(D/r + a)

D + ra
− S2

)
+ (1− r)f(S2),
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which is negative for any S2 ∈ (0, Sin) thanks to condition (86). As ϕ(0, D, r) > 0 and
ϕ(Sin, D, r) < 0, we deduce the existence of a unique S?2 = S?2(Sin, D, r) in (0, Sin) such that
ϕ(S?2 , D, r) = 0, which also veri�es ∂S2ϕ < 0 at S2 = S?2 .

Then, by the Implicit Function Theorem, the function (D, r) 7→ S?2(Sin, D, r) is C2 on Dε.
Recall that for r < 1 and D < rδ, on has the expression G2(Sin, D, r) = V D(Sin−S?2(Sin, D, r))
(see Proposition 44). We extend now the function (D, r) 7→ G2(Sin, D, r) with this last C2 ex-
pression on Dε. As G2(Sin, D, 1) = Gchem(Sin, D) for any D ∈ (0, δ), one deduces, by continuity
of the partial derivatives of G2 with respect to D and property (85), the existence of VD, Vr
as neighborhoods respectively of D(1) and 1 with VD × Vr ⊂ Dε such that for any r ∈ Vr, the
function D 7→ G2(Sin, D, r) possesses the following properties

1. it is strictly concave on VD,

2. it is increasing on (Dε, D(1)) \ VD and decreasing on (D(1), rδ) \ VD,

3. its maximum over (0, rδ) is not reached for D ≤ Dε.

We thus deduce that D 7→ G2(Sin, D, r) admits a unique maximum D(r) on (0, rδ), for any
r ∈ Vr.

Finally, for any r ∈ Vr, D(r) is characterized as the zero of the map D 7→ F (D, r) where F
is the C1 function

F (D, r) := ∂DG2(Sin, D, r)

From property 1. above, one obtains

∂DF (D(r), r) = ∂2
DDG2(Sin, D(r), r) < 0, r ∈ Vr

and by the Implicit Function Theorem, there exists a neighborhood V1 ⊂ Vr of 1 such that D is
C1 on V1, which ends the proof of the lemma.

D.3 Proof of Proposition 6

Sin being �xed, we shall drop the Sin dependency in the expressions of S∗i , x
∗
i (i = 1, 2) and G2.

Thus, let us de�ne

G(D, r) := G2(Sin, D, r),
Fi(D, r) := f(S∗i (D, r))x∗i (D, r), i = 1, 2,

as functions of D ≥ 0 and r ∈ V1 ∩ {r < 1}. Remark from the expression of F1, that it is well
de�ned as well as its partial derivatives at r = 1. In addition, for the limiting case r = 1, using
Lemma 9, for all D ≥ 0, one has

S∗2(D, 1) = S∗1(D, 1) = λ(D + a)

x∗2(D, 1) = x∗1(D, 1) = D
D+a(Sin − λ(D + a)).

(87)

Thus, for all D ≥ 0, one has

F1(D, 1) = F2(D, 1), (88)

and F2 is also well de�ned for r = 1. Thus, according to (37), for all D ≥ 0 and r ∈ V1∩{r ≤ 1},
one has

G(D, r) = rF1(D, r) + (1− r)F2(D, r),

and from Lemma 4, for r ∈ V1 ∩ {r < 1}, one has

G(r) = G(D(r), r), (89)
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with G de�ned by (42). For convenience, for a function E of (D, r) that is di�erentiable, we
shall de�ne the three following functions: E(r) := E(D(r), r) and

∂rE(r) := ∂E
∂r (D(r), r), ∂DE(r) := ∂E

∂D (D(r), r).

Therefore, the function G writes

G(r) = rF 1(r) + (1− r)F 2(r), for r ∈ V1 ∩ {r < 1}. (90)

As the functions Fi are di�erentiable and as D(r) is a maximizer of D 7→ rF1(D, r) + (1 −
r)F2(D, r) on the interior of the interval [0, f(Sin)− a], one has

r∂DF1(r) + (1− r)∂DF2(r) = 0, for r ∈ V1 ∩ {r < 1}, (91)

and ∂DF1(1) = 0. As f is C2 and D is assumed to be di�erentiable on V1 ∩ {r < 1}, G is
di�erentiable and from (90), for all r ∈ V1 ∩ {r < 1}, one has

G
′
(r) = F 1(r)− F 2(r) + r∂rF1(r) + (1− r)∂rF2(r)

+(r∂DF1(r) + (1− r)∂DF2(r))D
′
(r),

and with (91), for all r ∈ V1 ∩ {r < 1}, one has simply

G
′
(r) = F 1(r)− F 2(r) + r∂rF1(r) + (1− r)∂rF2(r). (92)

Let us now determine the limits of the terms of the right side of this last equality when r
tends to 1. Firstly, according to (88), one has in particular

F 1(1) = F 2(1). (93)

Secondly, remark that the dynamics of the �rst tank is parameterized by the single dilution
rate D1 = D/r, the other parameters being �xed (see the expression (66)). The function F1

takes then the form F1(D, r) = F̃1 (D/r) where F̃1 is a smooth function. Therefore, one has

∂DF1(r) = − r

D(r)
∂rF1(r). (94)

As ∂DF1(1) = 0 then one deduces

∂rF1(1) = 0. (95)

Finally, from Ṡ2 = 0, for all r ∈ V1 ∩ {r < 1}, one gets

F2(D, r) = D
1−r (S∗1(D, r)− S∗2(D, r)). (96)

Di�erentiating (96) with respect to r gives

∂F2
∂r (D, r) = D

1−r

(
∂S∗1
∂r (D, r)− ∂S∗2

∂r (D, r)
)

+ D
(1−r)2 (S∗1(D, r)− S∗2(D, r))

which can be written equivalently as

(1− r)∂F2
∂r (D, r) = D

(
∂S∗1
∂r (D, r)− ∂S∗2

∂r (D, r)
)

+ F2(D, r).

Thus, for D = D(r), one has

(1− r)∂rF2(r) = D(r)(∂rS
∗
1(r)− ∂rS∗2(r)) + F 2(r).

Notice that for D = D(r), (96) gives

F 2(r) = D(r)
1−r (S

∗
1(r)− S∗2(r)), for all r ∈ V1 ∪ {r < 1}. (97)

Using L'Hôpital's rule in (97) when r tends to 1, one gets
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F 2(1) = lim
r→1−

D
′
(r)(S

∗
1(r)−S∗2(r))+D(r)(∂rS∗1 (r)−∂rS∗2 (r))

−1

and using (87) and (93), one obtains

F 1(1) = lim
r→1−

−D(r)(∂rS
∗
1(r)− ∂rS∗2(r)).

Consequently, one has

lim
r→1−

(1− r)∂rF2(r) = 0. (98)

With (93), (95) and (98), expression (92) gives the existence of the limit of G
′
when r tends to

1 with r < 1, which is

G
′
(1−) = 0. (99)

Note that G
′′
(1−) exists if and only if limr→1−

G
′
(r)−G′(1)
r−1 exists. Using (99) and (92), one has

G
′
(r)−G′(1−)
r−1 = −G

′
(r)

1−r = −F 1(r)−F 2(r)+r∂rF1(r)+(1−r)∂rF2(r)
1−r (100)

On the one hand, using L'Hôpital's rule, one has

lim
r→1−

F 1(r)−F 2(r)
1−r = lim

r→1−
F
′
1(r)−F ′2(r)
−1 .

Recall that ∂rF1(1) = 0 and thus one has F
′
1(1) = 0. Consequently, one has

lim
r→1−

F 1(r)−F 2(r)
1−r = lim

r→1−
F
′
2(r) = lim

r→1−
∂rF2(r) + ∂DF2(r)D

′
(r). (101)

On the other hand, using (91) and (94), one has

r
1−r∂rF1(r) = D(r)

r ∂DF2(r). (102)

Thus, according to (100), (101) and (102), one gets

lim
r→1−

G
′
(r)−G′(1−)
r−1 = lim

r→1−
−2∂rF2(r)−

(
D(r)
r +D

′
(r)
)
∂DF2(r). (103)

Let us show now that the limit of ∂DF2(r) is 0 when r tends to 1. One has

∂F2
∂D = f ′(S∗2)

∂S∗2
∂D x

∗
2 + f(S∗2)

∂x∗2
∂D .

Let use the expression G(D, r) = D(Sin − S∗2(D, r)) given by Proposition 4. As D(r) is a
maximizer then one has

∂DG(r) = Sin − S∗2(r)−D(r)∂DS
∗
2(r) = 0.

Using (87), one then deduces

∂DS
∗
2(1−) =

Sin−λ(D(1)+a)
D(1)

.

In addition, using expressions (67) and (87), one gets

∂Dx
∗
2(1−) = − D(1)

(D(1)+a)
2

(
Sin − λ

(
D(1) + a

))
,

and hence the limit of ∂DF2 when r tends to 1 exists:

∂DF2(1−) =
Sin−λ(D(1)+a)

D(1)+a
f ′
(
λ
(
D(1) + a

))
A,
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where A = Sin − λ
(
D(1) + a

)
− D(1)

f ′(λ(D(1)+a))
. Thus, one has

∂DF2(1−) =
Sin−λ(D(1)+a)

D(1)+a
f ′
(
λ
(
D(r) + a

)) (
Sin − g

(
D(1)

))
,

with g de�ned by (57). According to Proposition 9, one has Sin − g
(
D(1)

)
= 0. Consequently,

one has ∂DF2(1−) = 0.
Finally, it remains to calculate the limit of ∂rF2(r) when r tends to 1. One has

∂F2
∂r = f ′(S∗2)

∂S∗2
∂r x

∗
2 + f(S∗2)

∂x∗2
∂r .

Let use again the expression G(D, r) = D(Sin − S∗2(D, r)). According to (90), one has

G
′
(r) = ∂rG(r) + ∂DG(r)D

′
(r)

where ∂DG(r) = 0. According to (99), we have ∂rG(1−) = 0, and thus ∂rS
∗
2(1−) = 0. Using

expression (67), one gets

∂rx
∗
2(1−) = −aD(1)

Sin−λ(D(1)+a)
(D(1)+a)

2 ,

and then the limit of ∂rF2 when r tends to 1 exists:

∂rF2(1−) = −aD(1)
Sin−λ(D(1)+a)

D(1)+a
.

As D
′
is assumed to be bounded on V1 ∪ {r < 1}, we thus obtain from (103) the existence of

G
′′
(1−) with

G
′′
(1−) = −2∂rF2(1−)

which is given by expression (43).
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