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Abstract  13 

Conversely to many other woody perennial crops, the Vitis vinifera grapevine does not display 14 

self-supporting and limited-in-space aerial architectures, but rather develops extended shoot 15 

systems relying on external mechanical supports. This behavior results from both structural 16 

factors, i.e. stem anatomy, bud and phytomer organisation, and also specificities in the 17 

modulation of primary growth and branching, i.e. phyllotaxis, apical dominance and acrotony. 18 

To mitigate the most limiting biological properties for cultivation, the grapevine domestication 19 

need a range of practices to facilitate plant management and improve agronomic performances. 20 

The structure and the functioning of the shoot system regulate not only the potential of biomass 21 

accumulation and source/sink balance and but also the canopy microclimate with effects on 22 

fruit quality and organ fungus susceptibility. This paper reviews the main biological processes 23 

and management practices that regulate grapevine shoot system architecture and development, 24 

revisiting the associated terminology. 25 

 26 

Keywords: shoot primary growth, branching, winter bud, acrotony, apical dominance, 27 

prolepsis, syllepsis 28 

 29 

1. Introduction 30 

Woody perennial crops ensure year-to-year sustainability through several biological 31 

mechanisms (Palonen and Buszard, 1997). Among them, the lignification of supporting tissues 32 

and the development of a specialized bark are essential to protect vascular tissues and cambiums 33 

during winter. Another important process is the differentiation of winter buds that are protected 34 

by lignified scales to postpone primary meristematic activities to next crop cycles. But 35 

sustainability at plant and species level also requires an adapted strategy of propagation and 36 

reproduction, and especially a fine tuning of the assimilation and the partitioning either organic 37 
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(e.g. N and C derivatives) or inorganic (e.g. cations) compounds between vegetative and 38 

reproductive organs, with the management of carbon biomass playing a central role. This 39 

necessarily implies a regulation of the structure and the functioning of the shoot system 40 

development (Albani and Coupland, 2010).  41 

Vegetative structure characteristics result from both primary and secondary growths through a 42 

specific spatio-temporal patterning (Costes, 2019). All stem organs result from the 43 

organogenetic activity of specific cell territories called caulinary meristems that are dedicated 44 

to cell division and morphogenesis (Greb and Lohmann, 2016). In comparison to most of 45 

perennial fruit crops, grapevine, which initially develops as a liana, presents very peculiar 46 

biological behaviors (Bugnon and Bessis, 1968). The domestication of the grapevine and 47 

especially the management of the mechanization, require specific cultivation practices to 48 

control vegetative architecture. Actually, grapevine is one of the temperate perennial fruit crops 49 

for which pruning is the most critical practice to control the quantitative and qualitative 50 

development of the vegetation and fruiting (Smart, 1995; Naor et al., 2002). 51 

The structure of the shoot system results from a number of mechanisms concerning a range of 52 

plant organs, at several levels of organization, from cells to organs and from axes to branching 53 

systems (Barthelemy and Caraglio, 2007; Costes, 2019). The optimization of the shape and the 54 

functioning of the shoot system has led to a great diversity of traditional vegetative architectures 55 

(Carbonneau and Cargnello, 2003). However, canopy management systems are now rapidly 56 

evolving to facilitate the mechanisation (winter pruning, shoot positioning, chemical spraying 57 

and fruit harvest) and/or to limit pruning wounds, a source of contamination by phytophagous 58 

fungi.  59 

The understanding of regulatory mechanisms of the shoot organization is essential either to 60 

optimize the use of energy resources and nutrients or to ensure some stability and sustainability 61 

of the yield, but also to decrease the dependence to phytosanitary inputs by limiting disease 62 
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susceptibility (Costes et al., 2013). This review presents the main biological processes that 63 

determine the vegetative architecture and its interplay with reproductive parts in grapevine, 64 

revisiting associated terminology. 65 

 66 

2. Structural and functional determinants of the shoot system structure 67 

2.1. Origin and type of vegetative meristems 68 

Except for the meristems deriving from adventive organogenesis or somatic embryogenesis 69 

(Torregrosa, 1995), all the meristems of an adult vine derive from the caulinary meristem of the 70 

zygotic embryo, called the gemmule (Bugnon and Bessis, 1968; Mullins et al., 1992). A better 71 

understanding of the complex interactions existing between hormone signals, transcriptional 72 

regulation and chromatin remodeling factors in the regulation of the activity of the vegetative 73 

meristems is progressively emerging in plants (Costes, 2019; Gaillochet and Lohmann, 2015). 74 

As for other plants, grapevine zygotic caulinary meristem develops an epicotyl, which actually 75 

is the first shoot of a new genotype obtained from sexual propagation (Bernard, 1980). This 76 

first vegetative axis is composed of neoformed phytomers, the minimal growth unit, that are 77 

repeated to ensure the development of the stem. In an adult plant of V. vinifera, a phytomer is 78 

composed of one internode (metamer) and a node (Fig. 1). Each node bears a leaf disposed 79 

following an alternate distichous phyllotaxis (angle of 1/2 at each full rotation) with the petiole 80 

base protected by two sheating stipules. Oppositifoliated organs (tendrils or inflorescences) are 81 

distributed following a ternary frequency (see section 2.2). In V. vinifera ssp. sativa, each 82 

phytomer carries several axillary buds from which the plant will develop perennially. From this 83 

filiation, 3 essential notions arise: 84 

i) The first stem meristem (gemmule), which integrates the allelic combinations from both 85 

parents, develops into diploid somatic tissues by mitosis to form all subsequent organs, 86 

including new vegetative meristems. All plants generated from axillary buds by vegetative 87 
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propagation (cutting or grafting) will have the same biological properties (Torregrosa et al., 88 

2011); theoretically the lifespan of a genotype is underterminate; 89 

ii) Due to the structure of their caulinar meristem (Doerner, 1999; Nougarède, 2001; Torregrosa 90 

et al., 2011), higher plants vegetatively-propagated as grapevine, can accumulate different 91 

non-lethal somatic mutations in the different bud meristematic layers (L1/L2/L3 territories). 92 

If located in the initial cells of a bud meristems, this allows to establish somaclonal variants 93 

by vegetative propagation (cutting or grafting); 94 

iii) To challenge environmental fluctuations, an adult plant needs to develop a range of axillary 95 

meristems with different structures and functions. 96 

 97 

Figure 1 - Structure of the Vitis vinifera grapevine shoot. A) General view of a growing 98 

shoot.  B) Details of the phytomer organisation. 99 

 100 

In perennial higher plants, primary growth starts from winter buds, an organ that include 101 

protective organs and tissues to postpone growing capacities to further vegetative cycles. A 102 

bud, which is a complex structure including an apical meristem overlying several phytomer 103 

primordia is therefore considered as an embryonic shoot (van der Schoot et al., 2014). At 104 

budburst, leaf primordia expand, whereas leaves are not yet photosynthetically active and are 105 
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therefore dependent on the plant's reserves. In grapevine, the primary growth is not limited to 106 

the development of preformed phytomers of the winter bud. Indeed, after budburst, shoot apical 107 

meristems resume organogenesis adding new growing units to the preformed ones. Stem 108 

primary growth will be determined by the resources available at plant level and the level of 109 

competition between growing shoots. According to environmental conditions and production 110 

targets, the practices can balance the development of the different categories of meristems to 111 

optimize the shape and functioning of the shoot system. In the grapevine, 8 types of buds or 112 

stem meristems can be identified, with 6 being present on an adult plant.  113 

Meristem Resulting 

Order Position Function Common name stem name 

R0 
End of the growing 
axe 

Growth, Organogenesis, 
Primary anatomy 

Apex, SAM (Shoot 
Apical Meristem) 

Main shoot or cane 

R1 Axillary to R0 leaf Immediate ramification Lateral meristem Lateral shoot 

R2  
Axillary to R1 pre-
leaf 

Delayed ramification Winter or latent bud 
Main shoot (at the 
next crop cycle) 

R3 

Axillary to R2 
scales & leaf 
primordia 

Delayed ramification 
Secondary winter or 
latent buds 

Secondary 
shoots 

Unknown Main shoot base Delayed ramification Basal bud Basal shoot 

Unknown Arms and Trunk Regeneration Old wood's bud Sucker 

N/A 
Intercotyledonary 
tissues 

Growth, Organogenesis, 
Primary anatomy 

Caulinary meristem Epicotyl 

N/A Epidermis Bud neoformation Adventitious bud Neoformed shoot 

R0 corresponds to the primary meristem, R1 axillary meristems initiated by R0, R2 axillary meristems initiated by R1 and R3 114 
axillary meristems initiated by R2. 115 

Table 1 - The different types of meristems or buds of the Vitis vinifera grapevine. At each 116 

crop cycle, the ranks of the shoot apical meristem are reset to R0. In italic, caulinar meristems 117 

that are not present on an adult plant grown in field conditions. 118 

 119 

These meristematic structures have complementary properties to ensure the different facets of 120 

the development of the vine and its adaptation to environmental conditions (Table 1): 121 
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The shoot apical meristem (R0) - This is the tip of the main growing stem. It develops all the 122 

organs of the stem including axillary meristems, and the tissues of the primary anatomy 123 

(Fournioux, 1995).  124 

The lateral shoots (R1) - There are the first lateral meristems formed by R0, axillary to each 125 

leaf and of each node (Bugnon, 1953; Bugnon and Bessis, 1968; Deloire et al., 2020). Except 126 

in the case of excessive vigor or early shoot tipping (trimming), this axis develops only a few 127 

centimeters without lignification. At the end of the ongoing vegetative cycle, it undergoes an 128 

abscission that leaves a scar on the R0 main stem (Fig. 2A). The phyllotaxis of R1 is orthogonal 129 

to R0. In general, no attempt is made to encourage the development of lateral shoots because 130 

they degrade plant microclimate by increasing leaf density while they produce little bunches 131 

late to ripe. 132 

 133 

Figure 2 - External (A) an internal (B) views of the Vitis vinifera winter bud (WB). A) 134 

Presence of the scars of the leaf petiole and of the lateral shoot at the base of the WB. B) 135 

Longitudinal section of a WB in the R2 plan of phyllotaxis. At the end of the R2 axis, in positions 136 

4 and 5, two primordia of inflorescences are visible; at the base of the R2, two secondary WB 137 

axes (R3) are present. 138 

 139 

The winter buds (R2+R3) - R2 are the first axillary meristems formed by the lateral shoots. 140 

This meristem is initiated axillary to the first R1 pre-leaf (Carolus, 1970) which form the first 141 

scale of the R2 winter bud (Fig. 2B). This structure evolves into a complex of buds (the gemmary 142 
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complex). Indeed, the meristem of R2 axis will develop up to 10 preformed phytomers and also 143 

secondary buds R3 (Fig. 2b). All types of vegetative (stipules, leaves, tendrils, secondary 144 

meristems) and reproductive (inflorescences) organs can be initiated during winter bud 145 

organogenesis but their expansion only take place at budburst when a new crop cycle starts 146 

(Rivals, 1965). Indeed, R2 expansion and development is first inhibited by the apical dominance 147 

of the R0 and R1 meristems, then by dormancy (see section 5). The phyllotaxis of R2 is 148 

orthogonal to R1, therefore parallel to R0 (Fig. 3).  149 

 150 

Figure 3 - Organization of the axillary meristem complex of the Vitis vinifera grapevine 151 

(adapted from Bugnon, 1953). Main shoot (R0), lateral shoot (R1), main winter bud meristem 152 

(R2), secundary winter bud meristems (R3), leaf (L). 153 

 154 

The phyllotaxis of R3 is orthogonal to R2 and R0, allowing an easy identification at budburst by 155 

observing the position of young leaves of the shoots arising from winter buds (Supplementary 156 

material n°1 - Fig. S1). Inter-annual growth and reproductive organ production is based on the 157 

development of successive generations of R2. Structures R3 only develop when R2 is destroyed, 158 

e.g. by winter or spring frost or after primary bud necrosis (Collins and Rawnsley, 2005; 159 

Cherubino et al., 2020) or in case of excessive vigor (Champagnol, 1984). 160 
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 161 

Supplementary material n°1 - Figure S1 - Symmetry of the phyllotaxis of the R2 and R3 162 

latent axes of the winter bud of the Vitis vinifera grapevine. A) The shoot from R2 develops 163 

in the same phyllotaxis plan of the bearing axis. B) The phyllotaxis of R3 is orthogonal to the 164 

plan of bearing axis.  165 

 166 

The basal buds - They are rudimentary buds, deriving from the axillary meristems of the R0 167 

scales, located at the junction between annual and perennial structures. These buds only develop 168 

if the number of R2 of the main stem is too low, e.g. due to a very severe pruning, and the plant 169 

has excess vegetative strength (see section 2.5). 170 

The old buds - As basal buds, they are very rudimentary present beneath the bark and incapable 171 

of fruiting. They give rise to shoots named suckers whose development cannot be controlled 172 

nor in number or in position. Because the formation of adventitious buds has never been 173 

observed in adult vines (Torregrosa, 1995), they are supposed to derive from previous basal 174 

buds left after pruning, which end up being embedded in the deep tissues. whose number 175 

decreases with the age of the vine. They have a natural regenerative potential in case of a major 176 

vegetative accident (winter frost, mechanical trauma or pathogenes) which is used to renew the 177 

aerial structures to limit the expansion of wood diseases. 178 

 179 
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2.2. Shoot system architecture: sympod vs. monopod 180 

The fairly recent development of architectural analysis of plants (Barthelemy and Caraglio, 181 

2007) has allowed a better understanding of the endogenous processes of the shoot system 182 

organisation. The observation of the primary growth mode and its dynamics is one of the 183 

essential points to interpret aerial vegetative architecture (Vernoux et al., 2000; Barthelemy and 184 

Caraglio, 2007; Serrano-Mislata and Sablowski, 2018). 185 

In higher plants, dynamics of primary growth may be continuous or rhythmic. Continuous 186 

growth is mainly observed in plants growing in tropical environments. In the absence of marked 187 

climatic variations, the main axis of some species display a continuous phyllochron 188 

(Barthelemy and Caraglio, 2007). Other models show alternating phases of extension of the 189 

main axis and growth slowing down or interruption. Whereas past growing rhythms can be 190 

visualized by the distribution of scale scars on the stems, this is not possible in grapevine due 191 

to the thickness of the secondary bark (rhytidome). In temperate climate, primary growth phases 192 

can be multiple during one season (polycyclism) or single and then corresponds to a cycle of 193 

annual growth.  In some cases, the continuous growth of a species may be masked by 194 

environmental conditions that require growth to be stopped. This is the case of the grapevine, 195 

which can develop a continuous organogenesis and growth in tropical conditions, whereas, in 196 

temperate climates, growth rate is slowed down by water (summer) and/or carbon (autumn) 197 

and/or temperature (winter) deficits that eventually lead to the abscission of the portion of the 198 

axis which is not lignified.    199 

On a vegetative axis continuing its development during several vegetative cycles, the position 200 

of the buds that ensure the resumption of growth defines another important descriptive element 201 

of shoot system. Indeed, in higher plants, architectural models are classified in two basic 202 

systems of organization (Bell, 1991):  203 
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The sympodial model: In this system, at the end of a growth cycle, terminal meristems of 204 

vegetative axes shift to reproductive organs or undergoes a natural abscission, interrupting the 205 

primary growth. The resumption of the growth of the main axis can only be continued by 206 

axillary buds which determine new shoot apical meristems (determinate primary growth). 207 

The monopodial model: Here, the terminal meristem does not stop organogenesis until a 208 

terminal bud is formed at the end of a growth cycle. This terminal bud will resume the growth 209 

of the bearing axis by setting up one or more new growth units (indeterminate primary growth). 210 

According to this classification, the domesticated V. vinifera follows the sympodial model in 211 

temperate climate. Non-hardened tips do support the maintenance of apical buds to ensure the 212 

continuity of growth from a cycle-to-cycle (Fig. 4). During the latent period, all buds enter in 213 

dormancy (see section 5) and the structure will remain frozen until the next growing cycle. 214 

Further development of the previous main stem R0, will only be possible from axillary 215 

meristems. As mentioned before, as lateral branches R1 do not generally lignify, R2 winter buds 216 

of the bearing axis normally resume the growth. If R2 is damaged, R3 (and in some cases R4) 217 

meristems can take over to establish a new R0 and continue branch development. 218 

 219 
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Figure 4 - The sympodial Vitis vinifera grapevine model. A) At the end of a growth cycle, 220 

phyllochron first slows down, then apex becomes necrotic and drop down. B) At the next cycle 221 

winter buds will resume the growth of the nearing axe by lateral development. SAM (Shoot 222 

Apical Meristem). X indicates the position of the abscission of the SAM when primary growth 223 

ceases. 224 

 225 

2.3. Ternary rhythm organization of the adult grapevine stem 226 

During primary growth, the length of the phytomers is not constant. After first short phytomers 227 

(Assaf, 1966), metamers increase in length before gradually shorten until shoot tip (Fig. 5A). 228 

The 3 to 5 first phytomers of the proximal section of the main shoot (also called proleptic shoot, 229 

see section 2.5) are composed of rudimentary phytomers with imperfect leaves and no 230 

oppositifoliated organs. Then, the morphology and structure of the phytomers follows a ternary 231 

rhythm (Zimmermann, 1954; Bouard, 1966): i.e. the repetitive succession of 3 types of 232 

phytomers. A first phytomer (P0), terminated by a node without oppositifoliated organs (N0), is 233 

followed by 2 phytomers P1 and P2, bearing oppositifoliated organs. This structural rhythm 234 

(P0/P1/P2)n also impacts on internode lengths, leaf area and lateral shoots (also called sylleptic 235 

shoots, see section 2.5) lengths (Bouard, 1966; Carbonneau, 1976; Louarn, 2005). In general, 236 

within a series of 3 successive phytomers, the length of metamer of P1 is often the shortest and 237 

that of P2 the longest (Fig. 5A), the lateral shots carried by the P0 nodes is regularly the longest 238 

(Fig. 5B). This ternary regularity of the phytomer morphology is also observed in most other 239 

Vitis species (Bernard, 1980).  240 
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 241 

Figure 5 - Ternary rhythmic organization of the phytomers (P0-P1-P2) of the Vitis vinifera 242 

grapevine. A) The distribution of the phytomer length from the base to the top of a stem of the 243 

variety Carignan after growth arrest, showing a maximum metamer length in medial sector of 244 

the vegetative axis, with locally, P2 phytometer to be the longest. B) The distribution of the 245 

lateral shoot length on a vigorous main stem of the variety Ugni Blanc, showing that branches 246 

from P0 phytomers are regularly the longest (adapted from Bouard, 1966). 247 

 248 

2.4. Origin of the ternary rhythm and the three leaf helices 249 

At juvenile stage (seedling), the stem meristem, which does not form oppositifoliated organs 250 

and has only one territory of vegetative organ differentiation, displays leaves following a single 251 

helix according to an alternate spiral model of phyllotaxis (foliar angle of 2/5). In adult vines, 252 

the apical meristem, which can develop oppositifoliated organs (tendrils or inflorescences), has 253 

three distinct territories of vegetative organ differentiation, display leaves arranged according 254 

to an alternate distichous model of phyllotaxis (foliar angle of 1/2). Oppositifoliated organs are 255 

distributed along three leaf helices resulting in the previously described ternary rhythm of 256 

organogenesis. However, under extreme growth intensity, in tropical climates for instance, this 257 

structure is disturbed due to a position shift of the leaf and the tendril or bunch (Supplementary 258 

material n°2 - Fig. S2), revealing the reality of the construction of the shoot architecture in 3 259 
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different leaf helices (Carbonneau, 2010). Within the stem secondary anatomy, vascular 260 

structures are established according to 2 orthostics dividing the stem into 2 halves that remains 261 

relatively independent (Fournioux and Bessis, 1979). This vascular organisation facilitates the 262 

conduction of the sap over long distances, which corresponds to a common botanical behavior 263 

within liana species in comparison to trees (Zimmermann and Milburn, 1982; Cruiziat et al., 264 

2002). 265 

 266 

Supplementary material n°2 - Figure S2 - Anomalies of the ternary cycle. Vigorous Vitis 267 

vinifera grapevine plants growing in a tropical context (Northeastern of Brazil). A shift of the 268 

position of the inflorescence which is no longer oppositifoliated on the node is observable. 269 

White arrow shows the normal position of a bunch on the main shoot, red arrow the current 270 

insertion. 271 

 272 

2.5. Nature of vegetative axes: Syllepsis vs. Prolepsis 273 

For fruit perennials, the branching along the main axis is of great importance for rapidly 274 

expanding the colonization of the environment and increasing light interception capacities. The 275 

branching is dependent on the differentiation of axillary meristems (see section 2.1). The 276 

development of secondary axes concomitantly with the main axis growth gives rise to branches 277 

called sylleptic (Hallé et al., 1978; Barthelemy and Caraglio, 2007) or immediate (Champagnat, 278 
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1954) shoots. In grapevine, lateral shoots initiated from R1 meristems are typical illustrations 279 

of this type of branches (Fig. 1, Fig. 6). However, the most frequently used branching system 280 

in cultivated grapevines is developed from axillary meristem (R2) of the winter buds (Fig. 2). 281 

These axes are known as proleptic or delayed branches because primary growth requires to be 282 

stopped before it can be developed. 283 

 284 

Figure 6 - External view of proleptic and sylleptic axes' base of the Vitis vinifera grapevine. 285 

A) A proleptic axis displaying phyllotaxis parallel to the bearing spur with the first phytomers 286 

been very short. The base present scales scars and several rudimentary basal buds (BB). B) A 287 

sylleptic shoot displaying phyllotaxis orthogonal to the bearing stem and a long hypopodium. 288 

 289 

A number of morphological features differentiate sylleptic from proleptic shoots (Table 2). The 290 

most obvious appear at the base of the axes. In proleptic shoots, first phytomers emerging at 291 

budburst and located in the proximal section are very short (Fig. 5a) with rudimentary caulinary 292 

organs (Bernard, 1980). Conversely, sylleptic shoots which develop at the same time with the 293 

bearing phytomer, present a first long basal internode (hypopodium) and develop perfect 294 

caulinar organs in their proximal sections. Also, while the junction between R2 axes and 295 

previous structures shows scale scars and basal buds, the connection between R1 and R0 is clear 296 

without any basal buds and scale scars (Fig. 6). 297 
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 298 

 Type of shoot 

Characteristics Proleptic Sylleptic 

Common name Main shoot (R0) Lateral shoot (R1) 

Bearing axe Cane or trunk Shoot 

Meristematic origin R2,3,4 winter buds  R1 axillary meristem 

Pre-formed phytomers Yes (3-12) No, only neoformation 

Delayed development Yes (next cycle min) No  

Scale scars Yes No 

Length of first internodes Shorts Regular (long hypopodium) 

Status of basal organs Absent or rudimentary Regular 

Phyllotaxis/bearing axe 180° / previous R0 90° / previous R0 

Growth/bearing axe Similar Lower (if SAM maintained)  

Lignification Systematic Depending of available vigor 

Function 
Delay growth and fruit 
development to next 
cycle  

Restart growth if SAM 
removed 
Increase biomass if extra 
resources 

Table 2 - Main morpho-functional properties of proleptic and sylleptic shoots of the Vitis 299 

vinifera. 300 

 301 

The morphological differences between proleptic and sylleptic shoots have two main 302 

consequences in the implementation of winter pruning. The first concerns the management of 303 

basal buds. Indeed, the pruning of proleptic has to be done very close to the wheelbase to avoid 304 

a transfer of growth to basal buds which have a limited fruiting capacity and are not well 305 

vascularly connected to the plant. This induces wounding close perennial structures leading to 306 

the development of deep necrosis in the arms and the trunks, increasing the susceptibility to 307 

fungus wood diseases (Gramaje et al., 2018). In the case of a sylleptic shoots, as there are no 308 

basal buds at the junction point with previous axes, the pruning can be done at some distance 309 

from the base anywhere within the hypopodium. 310 

 311 
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The second consequence concerns the management of the vascular tissue architecture. As 312 

mentioned above, internal anatomy of the grapevine stem follow a dorsiventral symmetry 313 

(Fournioux and Bessis, 1979). Winter buds of the main axes are systematically preferred to 314 

those of sylleptic axes, as the lineage of successive R2 meristems follows the same plan of 315 

phyllotaxis. This has two interests: i) to maintain optimized vascular continuity between stems 316 

of different ages limiting the complexity of the sap pathways and ii) to localize pruning wounds 317 

and resulting wood necrosis in same phyllotaxis plan (Supplementary material n°3 - Fig. S3). 318 

But the non-respect of this rule is not fatal as grapevine has a good capacity to bypass the sap 319 

circuits damaged by pruning wounds (Zhang and Carbonneau, 1987). 320 

 321 

Supplementary material n°3 - Figure S3 - Distribution of pruning wounds on old Vitis 322 

vinifera grapevine plants. A) Position of the pruning wounds following the same phyllotaxis 323 

over several years. B) In very old vines, pruning wounds may coalesce to form fairly deep 324 

necrosis without preventing the dorso-ventral vascular continuity. 325 

  326 

2.6. Priority of shoot development: Apical dominance vs. acrotony 327 

The growth of vegetative meristems (main and lateral shoots, winter buds) are subjected to two 328 

main rules of prioritization, i.e. apical dominance and acrotony (Fournioux and Bessis, 1990; 329 
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Fournioux, 1995). These two mechanisms are often confused in grapevine literature as both 330 

support axis extension vs. branching. 331 

The apical dominance arbitrates the distribution of the development, during the growth, 332 

between a shoot apical meristem (SAM) and axillary meristems it initiated (Cline, 2000). In 333 

grapevine, apical dominance occurs at two scales: i) at stem level, the SAM (R0) inhibits the 334 

development of sylleptic shoots (R1) which always remains shorter than the bearing axis, ii) at 335 

phytomer level, the meristem of the lateral shoot (R1) inhibits the growth of winter buds R2 axes 336 

(Fig. 7A). Thus, during stem growth, the SAM has priority over the lateral shoots, which 337 

themselves prevent the development of winter buds. Similarly, within the winter bud, the main 338 

axis (R2) has priority over the secondary latent axes (R3).  339 

 340 

Figure 7 - Diagram of the combined effects of apical dominance, acrotony and vigor on 341 

vegetative development of the Vitis vinifera grapevine. A) During the season, the apical 342 

dominance prioritizes the growth according to the rank of the meristems with the gradient 343 

R0>R1>R2. B) The acrotony and the bearing shoot vigor favour the distal meristems when 344 

growth resumes: on the left, during the vegetation cycle for the sylleptic shoots (R1) after apex 345 

(R0) removal; on the right, at the next vegetative cycle, after winter buds (R2) budburst 346 

establishing new proleptic axes. 347 
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 348 

The acrotony determines the distribution of the branching when growth resumes. In higher 349 

plants, this rule is declined in 3 behaviors: i) Acrotony, sensu stricto, when the priority in 350 

branching is given to the shoot distal zone, ii) mesotony, when branching preferably merges 351 

from the shoot medial zone, and iii) basitony when the branching is more intense in the shoot 352 

proximal zone. Grapevine model exhibits a strong acrotony that acts in 2 forms (Fig. 7B): i) 353 

when the SAM is removed by trimming during the season, lateral shoots (R1) develop in priority 354 

in the distal region close to the cut end of the main shoot, ii) at bud budburst after a rest period, 355 

distal winter buds (R2) develop first exhibiting a higher vigor than basal winter buds.  356 

In the grapevine, the combination of apical dominance and acrotony (Fig. 8) associated with 357 

the expression of vegetative vigor explains the general pattern of branching. During the 358 

vegetative cycle, without apex trimming, grapevine develops long shoots with short lateral 359 

sylleptic branches (R1). When SAM is trimmed, growth potential is immediately transferred to 360 

lateral shoots (R1) in the distal part of the main stem to continue the elongation. Due to apical 361 

dominance and mechanisms of nutritional competition exerted by the growing shoots (Renton 362 

et al., 2012; Mason et al., 2014), anticipated budburst of winter buds (R2) is inhibited (He et al., 363 

2012; Beauvieux et al., 2018, Fadon et al., 2020). Leaves adjacent to axillary buds also have an 364 

effect on the maintenance of winter bud rest (He et al., 2012). The regulation of axillary bud 365 

dormancy (see section 5) intensity at the topological level on the main axis partly determines 366 

the intensity of acrotony expression, which varies over time. Winter buds are first maintained 367 

latent until the end of summer by correlative inhibitions. 368 
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 369 

Figure 8 - Combination over 2 growth cycles of apical dominance, acrotony and correlative 370 

inhibitions, that condition the primary growth and branching of the Vitis vinifera grapevine 371 

stem. 372 

 373 

Later, during the season, correlative controls are progressively replaced by unfavorable plant 374 

growth regulators' balance. Then, growth is no longer possible, even after pruning of the main 375 

axis or secondary shoots. During winter, the vegetative architecture stay frozen due to physical 376 

factors (temperature, water availability) until dormancy break and environmental conditions to 377 

become favorable to growth. At the next growing cycle, new proleptic axes are formed from 378 

the distal winter buds of the pruned branches. Despite its general organisation as a sympodial 379 

model, apical dominance and acrotony both cooperate to privilege primary stem elongation 380 

avoiding excessive branching. Viticulture practices need to consider these rules to control the 381 

vegetative architecture and avoid excessive vegetative developments (Supplementary material 382 

n°4 - Fig. S4). In winter, the reduction of the length of bearing axes by pruning and the 383 

modification of correlative inhibitions between winter buds by cane arching, are both practices 384 

to limit acrotony effects (Fig. 9). During the season, shoot positioning which is implemented to 385 

delay SAM trimming aim prolonging apical dominance to inhibit lateral branching.  386 
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 387 

Supplementary material n°4 - Figure S4 - Trunk extension of a very old Vitis vinifera 388 

grapevine plant managed through spur pruning in the South of France. Despite a constant 389 

control of the acrotony by spur pruning the perennial structures elongate. 390 

 391 

 392 

Figure 9 -  Effect of acrotony on axes spur-pruned of the Vitis vinifera grapevine. A) In a 393 

temperate climate (Montpellier, France), shoots from winter buds ranked 2 and 3 are more early 394 

in bursting than the winter bud from the base. B) In a sub-tropical altitude climate (Pocos de 395 

Caldas, Minas Gerais, Brazil), at the end of the vegetative cycle, the proleptic axis from winter 396 

bud ranked 2 is more developed than the one developed from rank 1. 397 
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 398 

2.7. Other parameters impacting the vegetative structure 399 

2.7.1. Morphological factors  400 

Several morphological factors modulate the shoot system shape: the length and the diameter of 401 

the metamers, the proportion of secondary tissues and the precocity and intensity of the 402 

lignification. The primary anatomical structure (Bernard, 1980) which doesn't include strong 403 

supporting tissues, includes massive collenchyma bundles in the cortex and small pericyclic 404 

fiber patches in the central cylinder. This anatomical arrangement (Swanepoel et al., 1984) 405 

allows a great flexibility of the apexes, whose direction of growth is very plastic. As for other 406 

liana species, grapevine SAM directional growth is strongly dependent on grapitropism with 407 

interactions with thigmotropism (mechanosensory movement responses) and phototropism 408 

(Trevisan-Scorlas and Dornelas, 2011). 409 

As other perennial plants, the grapevine develops secondary tissues by successively 410 

differentiating vascular (VC) and subero-pellodermic (SPC) cambiums, the last been also called 411 

phellogen or cork cambium (Bernard, 1980). Located in the deepest layers of the cortex and 412 

developing poorly lignified cells (Pratt, 1974), the grapevine SPC plays a modest role in shoot 413 

architecture. On the other hand, VC, totally reconfigures the internal anatomy of the grapevine. 414 

VC produce several kinds of secondary tissues, in particular secondary xylem which will 415 

progressively become the main tissue of the stem (Fournioux, 1995). While the stem primary 416 

anatomy is rich in water and has little mechanical resistance to lateral deformations, secondary 417 

tissues gradually becomes rigid due to lignification (Bouard, 1966). In grapevine, there is some 418 

diversity in the length of the phytomers (Huglin, 1958) and in diameter of the metamers (Galet, 419 

1990). Variability has also been mentioned for the ratio between supporting tissues and vascular 420 

and filling parenchyma, especially the balance between the pith and secondary xylem, which 421 

potentially influences the rigidity of the vegetative axes. Combined, all these factors play on 422 
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the shape of the shoots of scion and rootstock varieties, which varies from erect to curved forms 423 

(Galet, 1990). 424 

2.7.2. Environmental factors 425 

The amount of resources available for each vegetative point strongly influences the architecture 426 

of the stems. This is due to 2 main effects: the variation of the length of the main axes and the 427 

intensity of the branching. 428 

As the final number of phytomers is not pre-determined in winter buds, after budburst, an 429 

indefinite number of neo-formed growing units can be added by the R2 SAM to proleptic axes. 430 

Under temperate climates, the number of pre-formed and neoformed are generally balanced 431 

(Bernard, 1975) with a maximum of metamer length in the medial zone of the stem (Assaf, 432 

1966). However, in vigorous situations, the number and size of phytometers can increase 433 

dramatically. The simple variation in the number of buds maintained after pruning (bud load) 434 

can modulates stem fresh biomasses by a factor of 5 (Freeman et al., 1979) with consequences 435 

on the mechanical constraints that apply to vegetative axes. Thus, a variety known to display 436 

regular upright-bearing shoots may present a lying down vegetation shape in highly vigorous 437 

situations. 438 

Sylleptic branching is first related to the influence of apical dominance on the development of 439 

lateral shoots (R1). In the absence of SAM trimming, in non-vigorous situations, the greatest 440 

intensity for sylleptic branching is found in the medial sector of the bearing axis. This region is 441 

also the one where metamer growth is more intense, as observed in various perennial plants 442 

(Assaf, 1966; Génard et al., 1994; Costes et al., 2006). In grapevine, lateral shoots which are 443 

poorly developed (<20cm) generally do not lignify. However, if extra resources are available 444 

and/or the apical dominance is early suppressed, lateral shoots can develop to display same 445 

types of caulinary organs as prolopetic axes, including reproductive structures (see section 4), 446 

and finally lignify becoming perennial (Fig. 10).  447 
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 448 

Figure 10 - Intensity of sylleptic branching of the Vitis vinifera grapevine. A) In the absence 449 

of SAM tipping and in non-vigorous situation, a moderate development of sylleptic shoots in 450 

the medial zone of the bearing axis. B) Lignification and fructification of the lateral shoots in a 451 

vigorous situation. 452 

 453 

Moreover, intra-shoot trophic competition can modify lateral shoot development (Pallas et al. 454 

2008). While, phytomer production on the primary axis and the probability and timing of 455 

proleptic axes is not affected by trophic competition, the development duration and phyllochron 456 

of sylleptic shoots are locally reduced by the presence of bunches on fertile phytomers. 457 

Environmental factors, such as climatic accidents, can also modify the vegetative architecture: 458 

e.g. destroying R2 within winter buds winter frosts can increase bushing, causing a range of 459 

mechanical trauma, hail or lightning can dramatically modify the initial organizational pattern 460 

of the vegetative architecture (Branas, 1974). 461 

2.7.3. Cultivation practices: plant biomass strength vs. shoot vigor 462 

All practices influencing the potential of biomass accumulation can modify the vegetative 463 

architecture of the V. vinifera grapevine (Branas, 1975; Champagnol, 1984; Keller M, 2020; 464 

Carbonneau et al., 2020). Nevertheless, winter pruning is probably the most powerful tool to 465 

modify the vigor of grapevine vegetative axes, in particular as a result of effect on plant 466 

source/sink balance. Indeed, bud load directly regulate the level of the trophic competition 467 

between proleptic axes: vigor is an inverse function of the number of bud maintained at pruning 468 

(Freeman et al., 1979). Another important aspect is in relation to the type of buds selected 469 
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(Huglin, 1958). As the potential of fruitfulness of winter buds varies with their position along 470 

bearing axes (see section 4.1), the quantity of fruit per vegetative axis is dependent of the type 471 

of buds maintained at pruning (Fig. 11). 472 

 473 

Figure 11 - Main factors to regulate plant biomass strength and shoot vigor of the Vitis 474 

vinifera grapevine. 475 

 476 

Plant biomass strength and shoot vigor are two quantifiable important parameters used for 477 

grapevine growing management. Dry matter content of lignified shoots is rather constant, i.e. 478 

50% (Pouget, 1963; Bouard, 1966) and variations between annual and perennial compartments 479 

are well correlated in a specific condition (Hunter, 1998). Then the plant biomass strength can 480 

be estimated from the annual biomass accumulated in pruning wood and in the harvest. In 481 

viticulture, it is common to estimate the source/sink balance using the Ravaz's index (1903) that 482 

corresponds to fresh pruning wood/yield ratio, both expressed in kg per plant (Carbonneau and 483 

Deloire, 2020). The vigor of a shoot vigor can be assessed by measuring primary growth rate 484 

or lateral shoot branching during the season and also by dimensional parameters at the end of 485 

the cycle (lignified stem fresh or dry weight and length, metamer diameter). Plant biomass 486 

strength and shoot vigor are parameters that can be modulated independently, leading to 4 487 

possible extreme configurations in grapevine (Fig. 12). 488 
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 489 

Figure 12 - The 4 extreme cases of the ratio plant biomass strength/shoot vigor of the Vitis 490 

vinifera grapevine: A) A powerful vine managed by hand pruning, displaying vigorous shoots. 491 

B) A powerful vine managed through minimal pruning with little vigorous shoots. C) A weak 492 

hand pruned vine with weak shoots. D) A young vine, with a low total biomass strength 493 

displaying very vigorous shoots. 494 

 495 

2.7.4. Biotic factors 496 

In a vineyard, various types of organisms can modulate the plant biomass strength and/or shoot 497 

vigor through direct or indirect effects. For example, the presence of weeds or cover grass 498 

impact on nutrient and water supply (Celette and Gary, 2013) with significant effects on 499 

development of the vines (Carbonneau et al., 2020; Morlat et al., 1993). The same with a range 500 

of pests and diseases that influence the assimilation of carbon or mineral resources. For 501 

example, leaf fungal diseases (e.g. downy or powdery mildew) reduce the quantity of the 502 

biomass assimilated by limiting the performance of carbon assimilation. Soil-borne rots also 503 
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can reduce growth of the vines until a significant decline by affecting the development or the 504 

functioning of the root system (Branas, 1974; Galet, 1977; Wilcox et al., 2006). 505 

Many pathogens have direct non-specific effects on the vegetative architecture of the grapevine. 506 

For example, fungi such as anthracnosis (Gleosporium ampelophagum) or phomopsis 507 

(Phomopsis viticola) or bacterial diseases such as Agrobacterium sp. or Xylophilus ampelinus 508 

can cause local shoot necrosis with some impact on the vegetative architecture. Some pathogens 509 

cause very specific modification of the shoot morphology: e.g. the Grapevine Fanleaf Virus 510 

(GFlV) which shortens internodes and deregulates apical dominance, Eutypiosis which 511 

miniaturizes all caulinary organs, Yellows (Phytoplasma) or Pierce's disease (Xylella 512 

fastidiosa) which limit the lignification of the stem accentuating shoot curving (Galet, 1977; 513 

Wilcox et al., 2006). 514 

 515 

3. Inter-annual plant development 516 

3.1. In the wild context 517 

The non-domesticated Vitis vinifera spp. silvestris covers the perimeters of the Mediterranean 518 

basin and the Middle East, occupying large forest areas (Zohary and Spiegel-Roy, 1975). The 519 

domestication of the V. vinifera grapevine is thought to have taken place in Transcaucasia, at 520 

the intersection of the Lesser Caucasus region and the northern curve of the fertile crescent. It 521 

can be hypothesized that, after picking grapes from wild grapevines, humans started to cultivate 522 

vines, initially without modifying the vegetative architecture. During this period, grapevine 523 

plants were probably present in 'Neolithic gardens' comparable to the Indian orchards 524 

discovered in North America (Carbonneau, 1997). The first step of viticulture was probably 525 

based on the selection of the best fruit-bearing individuals from spontaneous crossbreeding: 526 

selection of hermaphroditic, fertile vines with larger bunches and berries. Thus, the wild vine 527 

evolved from a state of liana (Supplementary material n°5 - Fig. S5) where the reproductive 528 
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apparatus is present only as a help for the survival of the species (dioecious vine with a large 529 

predominance of males) to a domesticated liana where the fruits became an increasing 530 

physiological sink. Another important step of the domestication was the pruning which was 531 

implemented to get bigger grapes and to stabilize the yield. This viticultural know-how remains 532 

in perpetual evolution (Carbonneau, 2002), the most recent technical improvement being a 533 

return to the wild form with "minimal pruning" or "no pruning" approaches (Carbonneau et al., 534 

2003). 535 

 536 

Supplementary material n°5 - Figure S5 - Monumental wild Vitis vinifera ssp. sylvestris 537 

grapevine plant near the ancient Lycian site of Kaunos (near Antalya on the south coast of 538 

Turkey). In the creek, the vegetation covers various shrubs and multiple trunks climb to a pine 539 

tree. With a minimum of 400 m of perennial structure, the biomass strength of this vine is 540 

exceptional. 541 

 542 

3.2. In cultivated systems 543 
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Grapevine is one of the perennial fruit crop for which the "reformatting" operation of pruning 544 

is the more critical. Indeed, winter pruning will decrease bud load to 10-20 buds per plant, 545 

whereas a grapevine use to develop more than 100 new winter buds a year in standard 546 

conditions. Pruning is performed manually or mechanically (i.e. precision and minimal 547 

pruning) to limit the effects of acrotony and to balance the growing potential between winter 548 

buds. Winter pruning is often complemented with green operations with some of which (shoot 549 

positioning, SAM trimming) that modulate apical dominance to reduce the intensity of 550 

secondary branching (Smart and Robinson, 1991; Wolf et al., 1986; Poni et al., 2014). Winter 551 

pruning and green operations generally rely on a mechanical supporting system (trellising) to 552 

manage vegetative growth (Carbonneau and Cargnello, 2003) and facilitate the mechanization.  553 

The recent development of the minimal pruning training system highlighted the capacity of 554 

self-regulation of the grapevine (Carbonneau et al., 2020). The vine develops naturally as a 555 

bush hanging from tree branches or from the ground, with branches of increasingly higher order 556 

with age. When pruned in minimal pruning, vines respond to the bud overload by adjusting 557 

throughout the vegetative cycle at the level of the whole plant, vegetative growth and yield to 558 

available resources. This phenomenon is called self-regulation, as opposed to the situation of 559 

the pruned vine where farmers tends to impose a specific balance between vegetative and 560 

reproductive organs. Self-regulation consists, in chronological order of: i) reducing budburst 561 

rate by reinforcing acrotony, decreasing shoot vigor then winter bud fertility, ii) reducing fruit 562 

set and size, and finally iii) delaying ripening period (Zheng et al., 2016). Despite the limitation 563 

of individual shoot fruitfulness, grapevines managed in minimal pruning tend to be more 564 

productive (around + 30%) because of the increased number of developing shoots. This relative 565 

overproduction is not detrimental in the face of a risk of exhaustion because vine regulates itself 566 

to ensure its sustainability. Finally, it should be noted that unpruned vines present less wood 567 
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diseases (Travadon et al., 2016) in relation to the limitation of the wounds caused to perennial 568 

vegetative structures. 569 

 570 

Figure 13 - Plants of the Vitis vinifera microvine line V3xG5, carrying the Vvgai1 mutation 571 

(Torregrosa et al., 2019) and the MrRpv1/Run1 (Feecham et al., 2013) loci both being at 572 

heterozygous status. The plant on the right was manually defoliated to facilitate the 573 

visualization of the distribution of the reproductive organs. 574 

 575 

4. Number and position of the fruits 576 

Most of the reports about grapevine fruiting wrongly specify that the reproductive cycle 577 

requires two successive vegetative cycles to be completed. This assertion is not true as, during 578 

a single of growing cycle, lateral shoots, which are strictly neoformed sylleptic structures, are 579 

fully able to display inflorescences and fruits (Olivain and Bessis, 1987). Moreover, somaclonal 580 

variants of V. vinifera carrying the Vvgai1 mutation and their derivatives (Fig. 13) which 581 
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produce a non-functional form of the DELLA GAI1 protein (Torregrosa et al., 2019), display a 582 

dwarf phenotype with a continuous conversion of the tendrils into inflorescences (Boss and 583 

Thomas, 2001; Chaib et al., 2010; Pellegrino et al., 2019). Finally, it was shown that the 584 

application of CCC (Chloroformequat Chloride) allows the conversion of newly formed tendrils 585 

into inflorescences (Coombe, 1967). Therefore, the assertion that the grapevine reproductive 586 

cycle lasts 2 years only applies to proleptic axes developed under temperate climates. 587 

4.1. Fructification of proleptic axes 588 

The dynamics of inflorescence primordia differentiation in winter buds have been described 589 

many times in detail (Pratt, 1971, Srinivasan & Mullins, 1981; Cheema et al. 1996, Li-Mallet, 590 

2016). The position of inflorescences on the main axis is directly determined by the ontogeny 591 

of winter buds during their development. In general, bunches are carried on the 4-6th phytomers 592 

from the stem base, i.e. in the pre-formed section of proleptic shoots (Carolus, 1970, Cheema 593 

et al., 1996). The pattern of inflorescences disposition corresponds to a complete cycle of 594 

oppositifoliated organs (Bouard, 1971; 1987). The number and the size of the clusters are also 595 

dependant on environmental conditions at bud burst up to flowering time (Pouget, 1981; 596 

Guilpart et al., 2014).  597 

During the primary growth of the main shoot, once a tendril has been formed, no more 598 

reproductive organs can be differentiated by higher ranked phytomers. This is true for the wild 599 

and domesticated genotypes, except for Vvgai1 mutants (microvines and derivatives) which 600 

display a continuous flowering behavior regardless of the position and type of axes (Pellegrino 601 

et al., 2019). 602 

In the non-dwarf genotypes, the potential of fruitfulness, i.e. the number and size of 603 

inflorescences primordia, of proleptic axes vary according to their position along bearing axes. 604 

In the V. vinifera grapevine, under temperate climate, the number of bunches per R2 proleptic 605 

varies from 1 to 3, exceptionally 4. The maximum fruitfulness is observed for the proleptic axes 606 
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developed in the medial zone of the bearing stem, i.e. for 5-15th phytomers from the stem base 607 

(Huglin and Schneider, 1998). The fruitfulness of R3 proleptic axes is 5-10 times lower than 608 

that R2 stems but the distribution of clusters is not modified. Proleptic shoots developed from 609 

old wood buds are infertile the first year, but they develop a new generation of winter buds 610 

which display the same fruitfulness as the shoot arising from regular winter buds (Huglin and 611 

Schneider, 1998). 612 

At plant and stem levels (Lavee et al., 1981), the fruitfulness of the winter buds is positively 613 

impacted by any conditions (severe pruning, water and nutrient supplies) increasing biomass 614 

plant strength and shoot vigor (Huglin, 1958; Sanchez and Dokoozlian 2005; Guilpart et al., 615 

2014). Another important aspect is the distribution of the buds maintained at pruning which to 616 

determine the position of the grapes inside the vegetative architecture. At pruning, a careful 617 

selection of the distribution of the bud load can determine the fructification zone to help in 618 

mechanical harvesting and to regulate the microclimate of the fruits. 619 

4.2. Fructification of sylleptic axes 620 

As proleptic axes, the reproductive organs of sylleptic are the first oppositifoliated organs. 621 

Fruiting intensity of the lateral shoots is dependent on both, the resources available at axis level 622 

and the correlative inhibitions undergone by R1 meristem at local level (Olivain and Bessis, 623 

1987). In low or moderate conditions of vigor, in the absence of early SAM trimming, lateral 624 

shoots remain weak (<20cm) and exhibit a low fruitfulness (Olivain and Bessis, 1987). Olivain 625 

and Bessis (1988a, b) showed that the suppression of apical dominance can modify both the 626 

distribution and intensity of lateral shoot fruiting. Indeed, the potential of fruitfulness is 627 

decreasing with the insertion rank, which corresponds to a distribution of the potential fertility 628 

very different from that observed in non-trimmed vegetative axes. These observations firstly 629 

reported with the variety Pinot Noir in Burgundy by Olivain and Bessis (Fig. 14A), were 630 
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confirmed with the variety Carignan in Montpellier by Prof. D. Boubals (personal 631 

communication) (Fig. 14B). 632 

 633 

Figure 14 - Effect of the date and level (first proximal position=0) of apex trimming on 634 

sylleptic shoots' fruitfulness in the Vitis vinifera grapevine (redraw from Olivain and Bessis, 635 

1988a,b and Boubals D., personal communication). 636 

 637 

Another interesting observation (Olivain and Bessis, 1988a, b), to control the intensity of the 638 

lateral shoot fruitfulness is on the effect of the date of SAM trimming. Indeed, whatever the 639 

severity (position of the section along the main axis) of the trimming, the period around 640 

flowering is the most prone to boost the development and the fruiting of lateral shoots. This 641 

period, which corresponds to the maximum primary growth rate in temperate climate (Bernard, 642 

1980), is thus a critical phase to control the architecture of the annual shoot and the development 643 

and the fruiting of sylleptic axes. 644 

 645 

5. Seasonal effects: dormancy 646 

In temperate climates, the grapevine primary growth is rhythmic and synchronized by cycles of 647 

favorable and unfavorable phases. Towards the end of a growth cycle, when the annual stem 648 

develops a primary bark, winter buds progressively lose their growing capacities due to 649 

dormancy effects (Pouget, 1963). The dormancy is a generic term that breaks down into 3 650 
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successive stages (Fadon et al., 2020): i) The pre-dormancy (para-dormancy), during which 651 

the development of the winter buds is prevented by correlative inhibitions (apical dominance 652 

of R0 and R1) and external physiological factors (limitation of the resources to growth at plant 653 

level, competition with reproductive organs during fruit maturation). During this period, an 654 

anticipated R2 winter bud development can only be obtained after R0 SAM trimming and all 655 

lateral shoot (R1) removing (Gu et al., 2012; Pou et al. 2019); ii) Dormancy or endo-656 

dormancy, which is mainly regulated by bud internal physiological factors (plant growth 657 

regulator balance). The release of endo-dormancy progresses gradually under the influence of 658 

cold temperatures (Nigond, 1966) or other abiotic stresses; iii) Eco-dormancy, which is only 659 

dependent of environmental factors, particularly to temperature regime (Camargo et al., 2017). 660 

After budburst, proleptic axis growth rate is determined by temperature and nutrient resources 661 

(plant biomass strength and vigor). 662 

5.1. Temperate climates (with a winter and temperatures below +10°C) 663 

Under temperate climate, grapevine performs a single cycle of vegetative and reproductive 664 

development per year. Pruning is performed during the vegetative resting phase to regulate the 665 

number, the position and the average fruitfulness potential of the winter buds for the next crop 666 

cycle (Champagnol, 1984). If performed during eco-dormancy, the date of pruning impact little 667 

the timing of winter bud budburst. V. vinifera grapevine plants follows the phases of dormancy 668 

as detailed above, with low temperatures breaking the endo-dormancy. In grapevine, cold 669 

requirements are low compared to other perennial fruit species from temperate regions, such as 670 

apple (Williams et al., 1979). An exposition to a few days of temperatures below +10°C is 671 

enough to alleviate dormancy (Pouget, 1963; Nigond, 1961, 1966, 1967). Since the end of the 672 

dormancy and the rate of budburst are dependent on the sum of positive temperatures, 673 

phenological models make possible to predict the date of budburst with a precision of a few 674 

days (Pouget, 1988; Camargo et al., 2017). After budburst, the organogenesis of proleptic 675 
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shoots is thermal-time dependent (Lebon et al., 2004). Late pruning after budburst induces 676 

significant phenological shifts of shoot development until the flowering. This can be useful to 677 

escape to spring frost period, but unfortunately has limited impact on the timing of grape 678 

ripening (Ravaz, 1912; Gatti et al., 2016). 679 

5.2. Subtropical climates (with a winter and temperatures above +10°C) 680 

It is generally possible to perform 2 vegetative cycles per year but two issues complicate the 681 

cropping with V. vinifera varieties. The first one concerns the insufficiency of low temperatures 682 

to get a complete breaking of the bud dormancy. Hopefully, as bud dormancy in V. vinifera is 683 

not very deep, dormancy is generally broken by a combination of abiotic stresses that naturally 684 

occur or can be implemented at the end of a a crop cycle: water deficit, high temperature, leaf 685 

removal and the use of plant growth regulators (e.g. ethylene, cyanamid-derivatives). 686 

Nevertheless, these effects are difficult to regulate and a residual dormancy can remain, with 687 

consequences in the distribution of the vegetative growth and fruiting. 688 

The second issue is related to the adequacy of subtropical climate with the requirements of the 689 

proleptic shoot fruiting which last onto 2 vegetative cycles. Indeed, the differentiation of 690 

inflorescence primordia in winter buds which requires specific light and temperature conditions 691 

(Sanchez and Dokoozlian, 2005), that are not always suitable during one of the two possible 692 

vegetative cycle. Another aspect is in relation to the susceptibility of V. vinifera grapes to a 693 

range of fungi, which require a massive and costly use of pesticides to get healthy grapes if the 694 

summer cycle is humid. Morever, to produce qualitative red wine grapes require cool night, i.e. 695 

with temperatures below +15/20°C conditions (Tonietto and Carbonneau, 2004), conditions 696 

that are not frequent during sub-tropical summers. 697 

To challenge this issues, by controlling the date of pruning, a first production cycle is positioned 698 

during the (dry) winter, which is suitable to grape quality but not to the development of fruitful 699 

winter buds (Cherubino-Ribeiro et al., 2020). After harvest, the vines are pruned again for a 700 
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second vegetative cycle during summer to develop fertile winter buds for the next cycle (de 701 

Almeida et al., 2019). During this second growing cycle, inflorescences are removed because 702 

it will be too challenging to get qualitative table, juice or wine grapes. Then, 2 vegetative cycles 703 

a year are performed but only one is useful to get fruits (Ahmed et al., 2019). 704 

5.3. Tropical climates (no winter and temperature rarely below 20°C) 705 

Two or even 3 vegetative cycles can be performed because a complete vegetative cycle from 706 

budburst to ripe fruits is around 120 days (+/- 20 days depending on the variety and the level of 707 

sugar targeted at harvest). However, the cultivation of V. vinifera varieties, which is a temperate 708 

species, is complicated due to problems of dormancy break management and/or fungal pressure 709 

during the wet period. In most tropical climates (Brazil, India, Thailand), vine growing is 710 

preferably established with interspecific hybrids (Galet, 1990; Yamada and Sato, 2016). 711 

However, the cultivation of V. vinifera is often possible by practicing two vegetative cycles for 712 

one production cycle which will be positioned during the driest season if a humid season has to 713 

be avoided. Even if theoretically 3 cycles could be obtained, only 2 cycles per plot are 714 

implemented to allow the vines to accumulate carbon reserves in the perennial organs. Actually, 715 

after a harvest, vinegrowers maintain the vegetation for 45 days before pruning again and 716 

starting a new production cycle. If the overall climate is dry over year and in absence of 717 

radiative deficit, such as in the north of Brazil (e.g. Petrolina in the Pernambuco state), the two-718 

yearly cycles of production per plot can be staggered to spread the production of grapes 719 

throughout the year. 720 

With V. vinifera varieties, the main problem is the absence of dormancy breaking due to 721 

insufficient low temperatures (Sudawan et al., 2016). The regulation of the vegetative 722 

architecture and the fruiting cannot be naturally established. A range of practices can be 723 

implemented to reduce bud endo-dormancy: severe water stress, defoliation with contact 724 

herbicides, or sprayings of urea, ethephon or garlic extracts (Kubota et al., 2000). More recently 725 
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Chervin and Fennel (2019) proposed to applying low concentration of ethanol. However, these 726 

measures are difficult to monitor or to implement and are of variable effectiveness in field 727 

conditions. To date, the most effective treatment to force bud dormancy break (Shulman et al., 728 

1983; Or et al., 1999) and synchronize proleptic shoots' development is the spraying of calcium 729 

(CH2Ca) or hydrogen (CH2N2) cyanamide. This treatment that is done just after pruning induces 730 

a complete bud burst within a period of 2-4 weeks. Nevertheless, these molecules are dangerous 731 

for applicators (Inamdar et al., 2015) and the environment as well and alternatives are still 732 

studied, as tropical viticulture is expanding, especially for table grape and grape juice 733 

production. 734 

 735 

6. Consideration of shoot architectural features for improvement 736 

The shoot architecture is a major determinant of the potential of production (Carbonneau et al., 737 

2020), the level of light interception (Louarn et al., 2008) and the whole-canopy gas exchanges 738 

(Prieto et al., 2020). Understanding the biological and environmental factors that modulate 739 

shoot and its interactions with reproductive organs is essential to optimize not only the 740 

regulation of the carbon allocation between vegetative and reproductive organs but also the 741 

microclimate of the canopy. However, modelling shoot system architecture is a complex matter 742 

as many factors interact at local, shoot ant plant level (Lebon et al., 2004; 2006). An approach 743 

integrating sink strength variation and the local effects of sink proximity was proposed to 744 

complement current models based on organogenesis mechanistic and thermal time (Pallas et 745 

al., 2008). 746 

Because of the diversity for stem architecture (Louarn et al., 2007), it is important to identify 747 

the genetic traits controlling primary growth, branching and shoot system shape. In higher 748 

plants, several studies have demonstrated the implication of genetic determinants in the control 749 

of plant vegetative architecture. Based on the analysis of tropical tree structures, Hallé and co-750 
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authors (Hallé and Oldeman, 1970; Hallé et al., 1978) proposed architectural models combining 751 

traits of primary and secondary growth and flowering distribution. When architecture was 752 

broken down into elementary processes, many of them were found genetically controlled in 753 

apple trees (Segura et al., 2008). In the grapevine, QTLs of vegetative development traits have 754 

already been identified: metamer length and phyllochron (Houel et al. 2015), leaf area (Coupel-755 

Ledru et al., 2014), primary growth rate (Bert et al., 2013; Coupel-Ledru et al., 2016) or above-756 

ground biomass (Tandonnet et al., 2018). Moreover, functional studies identified genes 757 

regulating organogenesis mechanisms, such a winter bud para-dormancy (He et al., 2012) or 758 

tendril differentiation (Diaz-Riquelme et al., 2014; Arro et al., 2017). Nevertheless, we are still 759 

far to have a clear picture of the genetic determinants of shoot system organization and data are 760 

still too fragmentary for marker-assisted selection. 761 

The only criterion that is considered in grapevine breeding is shoot bearing with two options: 762 

i) erected shoots to facilitate the trellising of the vegetation, or ii) curved down shoots to manage 763 

descending vegetation and minimal pruning. However, in the absence of a comprehensive 764 

understanding of the G and GxE factors that determine shoot architecture traits, the assessment 765 

of phenotypic values of elite genotypes can only be performed through empirical approaches. 766 

Within V. vinifera and more generally the genus Vitis, which is the current botanical perimeter 767 

for grapevine breeding, studies are thus needed to characterize the genotypic and phenotypic 768 

diversity and plasticity existing for shoot architecture traits. These advances are a prerequisite 769 

to implement efficient selections of either scion or rootstock genotypes not only more easy to 770 

manage, but also better adapted to abiotic and biotic stresses than current varieties. 771 
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