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 21 

Abstract 22 

Identification of plant parasitic nematode species is usually achieved following 23 

morphobiometric analysis, which requires a certain level of expertise and remains 24 

time consuming. Moreover, molecular and morphological discrimination of a number 25 

of emergent or cryptic species is sometimes difficult. Finding a way to achieve 26 

morphological characterisation quickly and accurately would greatly advance 27 

nematology science. Here, we developed a complete method in order to identify the 28 

two quarantine nematode species Globodera pallida and Globodera rostochiensis. 29 

First, we chose discriminative metrics on the stylet of nematodes that are able to be 30 

used by algorithms in order to build an automated process. Second, we used a 31 

custom computer vision algorithm (CCVA) and a convolutional neural network (CNN) 32 

to measure our metrics of interest. Third, we compared the CCVA and CNN 33 

predictions and their discriminative power to distinguish closely related species. 34 

Results show accurate identification of G. pallida and G. rostochiensis with the two 35 

methods, despite small-scale divergence (one to five µm depending on the metric 36 

used). However, the error rate is higher for Globodera mexicana, suggesting that the 37 

algorithms are too specific. Nonetheless, these methods represent a promising novel 38 

approach to automated morphological identification of nematodes and Globodera 39 

species in particular. 40 

 41 
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nematode; nematode taxonomy 43 

  44 



1. Introduction 45 

 46 

Plant parasitic nematodes (PPNs) are important pests because of their feeding 47 

habits and the role they play in spreading viruses and disease. Over 4 100 species of 48 

plant‐parasitic nematodes have been described to date (Decraemer and Hunt, 2006), 49 

and several represent a serious constraint for delivery of global food security (Nicol et 50 

al., 2011). The worldwide economic burden of PPNs has increased annually over the 51 

last period and reached 358 billion USD in 2013 (Abd-Elgawad and Askary, 2015; 52 

Bernard et al., 2017). Consequently, some PPN species are regulated at the 53 

European (Council directive 2016/2031/EC, 2016) and/or international levels. 54 

Implementing these specific regulations requires epidemiological monitoring in order 55 

to apply the possibly associated mandatory management measures. This 56 

epidemiosurveillance requires identification of the species involved. 57 

Cyst nematodes (Heterodera and Globodera spp.) ranked second in the ‘top 58 

10’ list of plant parasitic nematodes (Jones et al., 2013), and potato cyst nematodes 59 

(PCNs) were clearly highlighted as one of the most damaging groups of species in 60 

these genera in the same study. PCNs are believed to have originated in the Andean 61 

region of Peru and Bolivia (Grenier et al., 2010). Today, PCNs occur on all 62 

continents, in the temperate, tropical or southern tropical zones, both at sea level and 63 

at higher altitudes corresponding to the Andes montains. All PCN species belong to 64 

the Globodera genus. At this time, at least five Globodera species parasitizing 65 

Solanaceae have been identified (Subbotin et al., 2020). All these species are able to 66 

develop on tomato, but potato is not a host for two of them (G. tabacum and G. 67 

mexicana). Among the remaining three are the well-known G. pallida and G. 68 

rostochiensis quarantine species. Globodera rostochiensis is currently reported in 75 69 



countries (EPPO 2020-06-15). Globodera rostochiensis seems to have originated in 70 

Bolivia, where the highest genetic diversity was observed (Boucher et al., 2013; 71 

Subbotin et al., 2020). Globodera pallida, also known as the pale potato cyst 72 

nematode, is found in 53 countries (EPPO 2020-06-15), mostly in temperate regions. 73 

Following a phylogeographic study carried out on G. pallida populations sampled 74 

along the Andean Cordillera in Peru, it was shown that the South of Peru seems to 75 

be the origin of this species, and that all the populations found in Europe originated 76 

from a very limited geographical area in South Peru (Plantard et al., 2008). 77 

Following isolation of the nematodes after an extraction process, their 78 

identification to the genus and species level is usually achieved by nematologists 79 

using morphobiometric techniques. Species identification by genome sequencing or 80 

molecular testing is possible but not always available, especially for new quarantine 81 

species or emergent nematodes. In the case of G. pallida and G. rostochiensis, 82 

several molecular tests exist for their identification but morphobiometric techniques 83 

are often associated or can also be implemented alone. Furthermore, as skills in 84 

nematology are less common than those used in more widely known disciplines, 85 

such as bacteriology, mycology, virology and entomology, morphobiometric 86 

characterisation in nematology can become critical. In fact, discrimination between 87 

species by measurement of morphological criteria through quantitative and qualitative 88 

aspects requires a particular level of expertise and remains time consuming and 89 

repetitive for nematologists. The morphological identification of PCNs is based on 90 

observations and measurements taken on the cyst form stage and/or on second-91 

stage juveniles. Some of the most useful criteria concerning cysts are: Granek’s ratio 92 

(ratio between the distance from the nearest edge of vulval basin to anus and the 93 

diameter of vulval basin), the distance between the vulva and anus, or the number of 94 



ridges between the vulva and anus. On second-stage juveniles, corresponding to the 95 

infective stage that will hatch from the cysts, the most useful criteria are: the body 96 

length, the distance from the tail to the excretory pore, the length of the hyaline part 97 

of the tail, the length of the stylet, and the shape of the stylet basal knobs (Perry et 98 

al., 2018).  99 

The so-called 'traditional morphometrics” uses sets of measurements of the 100 

size or length of anatomical parts. It can also concern the proportions and relative 101 

positions of these parts, i.e. the analysis of the shape. In morphometrics, shape is 102 

defined as what remains invariant to rotation, translation and homothety (Kendall, 103 

1989), which are usually represented by sets of landmarks that can be located 104 

precisely on all forms, and establish a clear one-to-one correspondence between all 105 

specimens included in a study. A morphometric study may even combine shapes 106 

with other complex features, like quantitative descriptors of the colour or texture of an 107 

anatomical part. However, independently from measurement complexity, the first step 108 

in any morphometric study is digital imaging of the biological specimens with 109 

controlled illumination and contrasting background. As such, modern morphometrics 110 

can be thought of as a features detection approach using robust digital image 111 

processing (Gonzalez et al., 2004). Historically, there have been numerous image 112 

processing algorithms to measure human morphology that have been used for a 113 

particular purpose such as face detection (Viola and Jones, 2001), or biometrics for 114 

security (Cintas et al., 2016) and medical purposes (Dai et al., 2019). The usual 115 

course of events is that methods are then adapted to other species, leading for 116 

example to a series of applications of advanced image processing for morphometrics 117 

in entomology (Akintayo et al., 2018; Palaniswamy et al., 2010; Porto and Voje, 118 

2020; Vandaele et al., 2018). The use of computer vision has many advantages: (i) it 119 



usually comes with a formal quantification of measurement errors, (ii) it enables 120 

better control over repeatability for instance over time, and (iii) it transforms the effort 121 

of training staff into that of deploying specialised software on computing resources. 122 

Yet we will still need experts, at least for building training sets. However, automating 123 

species identification with computer based approaches can ease identification for 124 

non-experts. An interesting fact about automatic morphometric measurement is that it 125 

is a proxy for many different scientific questions. While image-based insect 126 

classification within or among species is quite popular (Martineau et al., 2017), 127 

it serves only one purpose. Automatic generation of landmarks or measurements, on 128 

the other hand, can help in a variety of questions including regressions on 129 

(environmental) covariates, studies of shape-covariations, evaluation of phylogenetic 130 

signals and, of course, classification. 131 

Deep learning methods were recently found to achieve good results to 132 

automatically extract features from images. Over the past ten years, in most image-133 

processing applications, the use of neural networks has been tested and the results 134 

have been compared to those obtained with classical algorithms. Although neural 135 

networks require huge amounts of data and large computing resources to be 136 

efficient, one of their advantages is that case-specific pre-processing operations, 137 

such as segmentation, are not required. They have exhibited good results in image 138 

recognition-classification (Krizhevsky et al., 2012), language recognition (Mikolov et 139 

al., 2011), and face detection (Li et al., 2015). Concerning landmark identification, we 140 

can cite a few examples of applications on human faces: Cintas et al. (2016) have 141 

defined a network to predict landmarks on human ears, Zhang et al. (2018) to 142 

discover landmarks on the face, and Le et al. (2020) for landmarks on beneficial 143 

insects. A review of facial landmark detection can also be found in Wu and Ji (2019). 144 



 In this context, it would be useful to develop an automated morphometric 145 

analysis tool, based on classical computer vision or deep learning, in order to identify 146 

the two quarantine nematode species, G. pallida and G. rostochiensis, as a model for 147 

further development to Globodera species identification. First, we chose metrics that 148 

can be used by algorithms with the aim of developing an automated process. We 149 

checked whether these metrics are useful to distinguish G. rostochiensis from G. 150 

pallida. In a second step, in order to automatically measure our metrics of interest, 151 

we used and compared a custom computer vision algorithm (CCVA) and a 152 

convolutional neural network (CNN), based on previous work on morphometrics for 153 

carabids (Le et al., 2020).   154 

 155 

 156 

2. Materials and methods  157 

 158 

2.1. Biological material and image acquisition 159 

Fourteen populations from Peru, Europe and Mexico were studied and are 160 

listed in Table 1. All are from the IGEPP/INRAE laboratory collection and were 161 

multiplied on the potato cultivar “Désirée.” For each population, 30 individuals (J2 162 

stage) were randomly chosen and each individual was processed between slide and 163 

slip cover. Slides were exposed using a Firlabo hot plate to a temperature of 45°C for 164 

few seconds to kill the J2 suddenly and have the J2 in a similar elongated shape to 165 

help standardise image acquisition. Individuals were photographed using a Sony 166 

XCD-U100CR camera (6.3 zoom) fitted to a Wild Leitz model DAPLAN microscope. 167 

We took one image for each individual’s head with 40X zoom. For all images, a pixel 168 

corresponds to a square of 0.18 µm per side. The total image set was subsequently 169 



divided into a training set (composed of 300 images corresponding to four 170 

populations of G. rostochiensis and six populations of G. pallida), a test set 171 

(composed of 60 images corresponding to one population of G. rostochiensis and 172 

one population of G. pallida), and a species test set (composed of two populations of 173 

G. mexicana) (Table 1). The test set was used to test the predictive power of the 174 

image processing algorithms (images from these populations were not used during 175 

the algorithm training step), while the species test set was used to test the predictive 176 

power of the algorithms on images of a different but closely related species that 177 

never seen by any parts of our process 178 

2.2. Manual landmarks and observed metrics  179 

Landmarks were placed thanks to Fiji software (Schindelin et al., 2012) and 180 

the Landmarks package (Longair and Jefferis, 2006). Metrics used for this study were 181 

chosen to make image processing easier because they are metrics on objects easy 182 

to spot on the image’s scene. In short, two metrics were tested in this study, the 183 

“basal knobs width” (BKW) and the “basal knobs to head length” (BKTH) (Figure 1). 184 

BKTH is a measure similar to the stylet length but which will consider the distance 185 

from the basal knobs to the head instead of to the stylet tip. We hypothesised that 186 

relaxation of the muscle appending the stylet when killing the J2 would be 187 

homogeneous across individuals, thus allowing us to standardise J2 measurements. 188 

Landmarks to extract BKW and BKTH metrics were set by hand in all the images 189 

corresponding to the training set. BKW is a rarely used metric. It was referenced in 190 

the European and Mediterranean Plant Protection Organisation (EPPO) bulletin 191 

(2017) and by Subbotin et al. (2011), but this metric is absent in most J2 identification 192 

keys. This is also true for BKTH which was referenced by Ponce (1977) but is absent 193 

in all nowadays J2 identification keys.  194 



 195 

2.3. Automatic extraction of morphological metrics 196 

All processes used in this study are summarised in Figure 2. In order to 197 

measure our metric of interest, we used two different types of algorithms: one was a 198 

CCVA based on well-known steps (Gonzalez et al., 2004), and the other was a deep 199 

neural network based on previous work on morphometrics for carabids (Le et al., 200 

2020) using a CNN. 201 

For the CCVA, we first isolated each individual’s head from the image 202 

background using a simple combination of contour detection and mathematical 203 

morphology (Gonzalez et al., 2004). We then detected the best ellipsoidal 204 

approximation to the basal knobs by using an elliptical Hough transform on the 205 

head’s inner contour (Xie and Ji, 2002). This enabled us to compute BKW as the 206 

radius of the major axis of this ellipse. So, for BKW we expected a prediction twice 207 

lower than the observed metrics. To compute BKTH, we searched for the extremum 208 

of the head’s outer contour relative to its orientation (i.e. the tip of the curved head). 209 

We then computed BKTH as the Euclidean distance between the centre of the BKW 210 

detected ellipse and the detected head tip. The most important hyperparameters for 211 

BKTH are the sigma of Canny in the first detection of contour, the morphology square 212 

used for dilated and eroded images with the aim of cleaning the background, and the 213 

minimum and maximum size of the desired ellipse. We fixed the ellipse size thanks to 214 

knowledge of morphometry on the two-target species and all other hyperparameters 215 

using a sparse grid search.  216 

For the CNN computation, we used an EB-Net architecture based on the 217 

concept of elementary block (EB) (Le et al., 2020). An EB (see Annex 1) contains a 218 

convolution layer to extract features from the input images, a max pooling operation 219 



to reduce the number of parameters, and a drop-out layer to prevent overfitting in the 220 

training process (Srivastava et al., 2014). The EB-Net configuration used for our 221 

purposes contained three EBs. The sequences of the EBs ended with three full 222 

connected layers to output eight values, corresponding to the coordinates of the four 223 

landmarks used on the head. To define a CNN, several hyperparameters must be set 224 

as the number of epochs or the learning rate; for this application, we set the number 225 

of epochs to 5 000 and the learning rate 0.03 to 0.0001. hyperparameters has been 226 

set after several experiments on another biological model (Lé et al., 2020).  The root 227 

mean square error (RMSE) was used as the loss function because the output values 228 

are quantitative. To process a CNN, the size of the “training set” must be enlarged. 229 

This was obtained by extraction of colour channels to create new images as 230 

described in Le et al. (2020). The final number of images considered was 14 490 for 231 

training and validation (with a ratio of 80% for training and 20% for validation). A total 232 

of 30 initial images were kept for the testing step; these images were not yet seen by 233 

the network before this step. Implementation of the network used the Lasagne 234 

framework (Dieleman et al., 2015) and can be found at 235 

https://github.com/linhlevandlu/EBNet_nematodes. We trained the network from 236 

scratch using K-fold cross-validation, i.e. training on 9 out of 10 of the populations 237 

and predictions on the individuals of the remaining population. Hence, each 238 

population was predicted at only one timepoint (not trained upon) and we used these 239 

predictions to extract BKW and BKTH as Euclidean distances between the 240 

corresponding predicted landmarks. For populations without manual landmarks 241 

(Ecosse, Chavornay, Tlaxcala and Santa Anna), we trained a network on all the 242 

populations of the training set, and then predicted based on these four landmarks. 243 

 244 



2.4. Statistical classification of individuals and populations into species 245 

We used a binomial regression, as a generalised linear model (Nelder and 246 

Wedderburn, 1972), to predict the species of each individual based on the BKW and 247 

BKTH measurements. We defined the population with manual landmarks as a 248 

training set, and the populations without as a test set (de Vienne et al., 2013). In 249 

order to assess the predictive power of our regressions, we used leave-one-out 250 

cross-validation on the training set (de Vienne et al., 2013), and prediction on the test 251 

set. We predicted the assignment of each individual to one species or the other. 252 

Measuring the predictive power of our regression using accuracy (the ratio between 253 

the number of correct prediction and the number of individuals in the population) and 254 

kappa index. The kappa index coefficients used to measure the degree of agreement 255 

among raters (in our case human versus algorithms), taking into count the possibility 256 

of said agreement occurring by chance (Cohen, 1960). For the assignment of a 257 

population to a species, we used a majority vote, i.e. the population belongs to the 258 

species of most of its individuals. 259 

 260 

3. Results 261 

 262 

3.1. Predicted versus observed metrics  263 

First, we observed that G. pallida and G. rostochiensis were significantly 264 

differentiated using the observed measurements based on the manual landmarks 265 

(Figure 3 A, B): G. pallida had longer BKW and BKTH than G. rostochiensis, as 266 

expected. From the 300 images constituting the training set, the CNN extracted 267 

measurements from all images and the CCVA from 81% of them. Most of the 268 

remaining 19% is due to slightly blurry images. Measurements from the CCVA, CNN 269 



and manual landmarks were compared by simple mean comparison (T. test, Figure 3 270 

A, B). For both metrics, there were no significant differences between measurements 271 

predicted by the CNN and the observed measurements based on the manual 272 

landmarks (Figure 3 A, B). However, the situation appeared to be different regarding 273 

the CCVA predicted metrics. For BKW, measurements predicted by the CCVA were 274 

significantly smaller than the manual landmarks, but this is clearly linked to the fact 275 

that BKW metrics for the CCVA correspond to only the radius of the ellipse. 276 

Nonetheless, the two species are still distinguishable (Figure 3A). For BKTH, 277 

measurements predicted by the CCVA were also found to be smaller and we 278 

hypothesised that this was due to the approximation of the basal knobs position 279 

using the centroid of the predicted ellipse, and not the bottom of the ellipse. 280 

Nonetheless, a difference between G. pallida and G. rostochiensis was still observed, 281 

and was consistent with the observed metrics. Correlations between predicted and 282 

observed measurements were high for all metrics and algorithms, except the 283 

prediction of BKTH by CCVA (R2 = 0.28). In most cases, segregation between G. 284 

pallida and G. rostochiensis was clear, although for some individuals, G. pallida 285 

always had higher measurements and prediction than G. rostochiensis (Figure 3 C, 286 

D, E, F). Nonetheless, there is still an overlap between the two species for the 287 

metrics studied: extreme cases are clear, but mean cases are more confusing. 288 

Therefore, there is a need for classifier tools in order to identificate species.  289 

Time needed to process the CNN was about seven hours for the learning step 290 

and 30 minutes to extract measurements on the whole training set. Time needed by 291 

CCVA was about 35 minutes to extract measurements on the whole training set, but 292 

building the CCVA took several weeks. Compared to the respective 30 and 35 293 



minutes needed by the CCVA and the CNN, landmarking on the same set of images 294 

required at least four hours.  295 

 296 

3.2. Classification using the training set 297 

     At the individual scale, the classifier running with observed metrics showed 298 

an accuracy of 0.96 and a Kappa index of 0.91 (Table 2). Comparatively, the 299 

classifier running with the predicted CNN and CCVA metrics showed an accuracy of 300 

0.83 and 0.85, respectively and a kappa index of 0.65 and 0.74, respectively. All 301 

populations were not predicted with the same accuracy. For example, population 302 

P273/2016 is the most poorly predicted population with a 17% error rate using the 303 

observed landmark, 32% using the CCVA predicted metrics, and 24% using the CNN 304 

predicted metrics. Nonetheless, the rank among population predictions is conserved 305 

throughout the entire set, as populations that showed a high error rate using the 306 

observed landmarks also showed a high error rate using the CNN and CCVA 307 

predicted metrics. The sole exception was population Dunkerque which showed a 308 

perfect prediction score using the observed landmarks, but lower accuracy using the 309 

CNN predicted metrics (23% error rate) or the CCVA predicted metrics (24% error 310 

rate). Nonetheless, at the population scale, with a decision rule of the majority of 311 

individuals predicted in a class, we have perfect accuracy with no errors, regardless 312 

of the data set or the algorithms (CNN or CCVA) used (Table 2). 313 

 314 

3.3. Classification using the test set 315 

Prediction on the test set showed contrasting results (Table 2). Using metrics 316 

predicted by CCVA, prediction scores (accuracy of 0.83 and kappa index of 0.71) 317 

were similar to the prediction scores observed using the training set. Prediction 318 



scores from CNN metric extraction (accuracy of 0.71 and kappa index of 0.43) were 319 

significantly lower than those obtained using the training set. This is mainly due to the 320 

incorrect prediction observed for population Ecosse, which was predicted as G. 321 

pallida, while it was in fact G. rostochiensis. This is the only false prediction between 322 

G. pallida and G. rostochiensis observed on the whole image set.    323 

 324 

3.4. Classification using the species test set 325 

There were few differences between the three species that we worked on for 326 

the two metrics studied when measurements were done with manual landmarks 327 

(Figure 4 A). Globodera mexicana showed significantly larger BKW than G. pallida, 328 

but we observed no significant difference between these two species for the BKTH 329 

metric. Importantly, the observed mean difference between G. mexicana and G. 330 

pallida was only 2.5 pixel (0.45 µm) for BKW. BKW was statistically different between 331 

the three species studied (Figure 4 A). For the two metrics studied, G. rostochiensis 332 

had the lower measurements. 333 

The prediction by CNN (Figure 4 B) gave the same result for BKTH 334 

(measurements for G. pallida and G. mexicana were not significantly different and 335 

measurements for G. rostochiensis were significantly different from the other two 336 

species), but the significant difference previously observed between G. mexicana and 337 

G. pallida for BKW was not observed using CNN predictions. For both metrics, CNN 338 

predicted measurements that were statistically similar for G. mexicana and G. pallida, 339 

and significantly lower measurements for G. rostochiensis. With CCVA, 340 

measurements were extracted for 75% of the individuals. Surprisingly, predictions by 341 

CCVA (Figure 4 C) yielded a significantly smaller BKW for G. mexicana than for G. 342 

pallida, and a similar BKW for G. mexicana and G. rostochiensis. For BKTH, 343 



prediction by CCVA was similar to observed metrics and CNN predictions, meaning 344 

similar prediction for G. pallida and G. mexicana, and lower prediction for G. 345 

rostochiensis. Including G. mexicana in our dataset showed that the predictions could 346 

yield a different ranking depending on the metric and method used. In fact, even 347 

though BKTH was always measured or predicted with the same ranking between 348 

species (Figure 4, second line), BKW was measured differently, predicted by CNN 349 

and predicted by CCVA (Figure 4, first line). 350 

The following results indicate the mean ± SD (standard deviation) for both 351 

metrics and species studied. For BKTH, the observed range of variation (G. 352 

mexicana: mean = 27.86 µm ± 0.94; G. rostochiensis: mean = 24.49 µm ± 1.02; G. 353 

pallida: mean = 26.49 µm ± 0.83) was similar to the range of variation predicted by 354 

CNN (G. mexicana: mean = 25.77 µm ± 0.85; G. rostochiensis: mean = 24.84 µm ± 355 

0.75; G. pallida: mean = 26.08 µm ± 0.73). These values are smaller than the range 356 

of variation predicted by CCVA (G. mexicana: mean = 24.71 µm ± 2.15; G. 357 

rostochiensis: mean = 23.04 µm ± 2.13; G. pallida: mean = 25.07± 1.59). The means 358 

were always lower in the predictions by CCVA due to the approximation of the ellipse 359 

centre, used as a proxy in the CCVA for the bottom of the basal knobs.  360 

For BKW, the observed range of variation (G. mexicana: mean = 5.00 µm ± 361 

0.38; G. rostochiensis: mean = 3.94 µm ± 0.31; G. pallida: mean = 4.74 µm ± 0.31) 362 

was similar to the range of variation predicted by CNN (G. mexicana: mean = 4.42 363 

µm ± 0.25; G. rostochiensis: mean = 4.10 µm ± 0.27; G. pallida: mean = 4.51 µm ± 364 

0.25) and by CCVA (G. mexicana: mean = 2.44 µm ± 0.25; G. rostochiensis: mean = 365 

2.21 µm ± 0.27; G. pallida: mean = 2.89 µm ± 0.33). BKW means for CCVA 366 

predictions were always lower due to our prediction of the ellipse radius (and not the 367 

ellipse diameter) for the basal knob width. However, it must be highlighted that BKW 368 



estimated by CCVA was overestimated for G. pallida, as it was more than half of the 369 

measurements done with manual landmarks. It is probable that this overestimation 370 

observed solely for G. pallida was the reason why BKW estimated by CCVA allowed 371 

the distinction between G. pallida and G. mexicana. 372 

The species test set contains 60 images and CCVA extract measurement for 373 

45 images. the classifier using CCVA prediction showed an accuracy of 91% for the 374 

species test set. Using the measurements based on landmarking and the CNN 375 

predicted metrics, the classifier showed accuracy of 0.85 and 0.5, respectively. 376 

 377 

4. Discussion and conclusions 378 

 379 

4.1. Usefulness of the metrics for Globodera taxonomy 380 

We described here a complete framework, from image acquisition to species 381 

identification. There have been very few attempts to develop automated 382 

measurement in nematology. Stylet detection has already been explored (de la 383 

Blanca et al., 1992), but results were not sufficiently convincing, mostly due to image 384 

quality and difficulties related to background extraction. Another project attempted to 385 

approach species identification using a similarity coefficient (Fortuner and Ahmadi, 386 

1986; Fortuner and Wong, 1983). To our knowledge, a complete process, such as 387 

the one described here, has never been explored in nematology. Moreover, several 388 

improvements to the process proposed in this study could be put forward, especially 389 

the possibility of guidelines in image acquisition and pre-treatment. Of note, all 390 

images that we processed were oriented in the same direction due to manual re-391 

orientation before image processing. To decrease the time needed for image 392 

acquisition, the option of taking more than one larva on images should be explored. 393 



Conventionally, distinction between G. pallida and G. rostochiensis needs at 394 

least three criteria, Granek’s ratio (calculated on the cyst), the stylet length, and a 395 

criterion on basal knob shape (EPPO, 2017). One of the two metrics used in this 396 

study, BKW, is a poorly used metric, and BKTH uses in its construction the stylet 397 

length metric, commonly used in Globodera taxonomy. Stylet length variation is 398 

known to range between 19 µm and 23 µm for G. rostochiensis, and 22.5 µm and 25 399 

µm for G. pallida (Perry et al., 2018). Even though the mean of our measurements 400 

was always higher, the range observed for BKTH was at the same scale, meaning 401 

that BKTH variation is due to length stylet variation. Also, this similar range of 402 

variation compared to stylet length metrics published in the literature (Perry et al., 403 

2018) allowed us to validate our standardisation process of image acquisition 404 

assuming that the stylet “rest” position is similar across all individuals. The variation 405 

observed for BKW between G. pallida and G. rostochiensis was about 0.67 µm, while 406 

within each species the variation range remained < 0.5 µm. Both the BKW and BKTH 407 

metrics appear to be relevant in terms of species identification and could, in time, be 408 

incorporated into a revised species identification key. Moreover, the automatisation of 409 

process delete the “observer effect” that could bias measure. Thus, the 410 

automatization gave more reproducibility in measurements.  411 

Globodera pallida has more rounded knobs and G. rostochiensis more 412 

flattened ones. The basal knob shape criterion requires some expertise in 413 

nematology to be accurately defined and could be subjective. The BKW metric could 414 

make it possible to avoid this subjective and difficult criterion. Moreover, it shows very 415 

good discriminative power between G. pallida and G. rostochiensis. Surprisingly, 416 

CCVA overestimates this metric for G. pallida and we could hypothesise that this is 417 

linked to the knob form. Importantly, basal knobs are a 3D structure and when 418 



images were taken, we reduced them to a 2D image. Thus, the shapes of basal 419 

knobs, on 2D images are more or less rounded depending on the species observed. 420 

As a consequence, the ellipse estimated by CCVA will fit differently on the real shape 421 

of basal knobs and induce a bias compared to reality. Nonetheless, it was surprising 422 

that this bias was observed only for G. pallida and not for G. mexicana, which is also 423 

described as a species displaying prominent rounded knobs.   424 

Results from the species test set show us that the process could be extended 425 

to other species, with an adaptation of the metrics studied. Only the BKTH metric is 426 

well predicted by CNN and CCVA. The poor prediction for the BKW metric supports 427 

the fact that knowledge of taxonomy, systematics and morphology is still essential for 428 

species discrimination. Automation of the process can only be done with the help of 429 

an expert. However, we could also consider that the prediction of BKW by CCVA may 430 

reflect knob form differentiation. It is important to test this metric on an extended set 431 

of populations and individuals for G. mexicana to also take into account the genetic 432 

and phenotypic diversity in this species. Since there are few descriptions of G. 433 

mexicana in the literature, only described in a thesis (Campos-Vela, 1967), it could 434 

be useful to continue to describe this species more precisely with an automated 435 

process, and by developing other metrics adapted to image computing. We are 436 

already able to detect the body length metric (data not shown) currently used for 437 

species identification in nematology. Increasing the number of useful metrics and 438 

further exploring computing imagery methods are essential to develop automation of 439 

species identification in nematology. This would partially relieve the lack of specific 440 

skills for nematode identification, but more importantly, it should allow us to save time 441 

and process far more individuals or samples for accurate and robust identification. 442 



This kind of automated tool could also decrease the cost of analyses compared to 443 

molecular tests, where some of the required consumables are expensive.  444 

We have shown that we are able, mostly with data predicted by CCVA, to 445 

predict the species class of an individual and more accurately of a population. 446 

Nonetheless, the procedure used to classify individuals in this work will necessarily 447 

yield an answer between proposed choices (i.e in the species test set, between G. 448 

pallida, G. rostochiensis and G. mexicana). The classifier builds edges between each 449 

class with given data, with the aim of choosing between them, but does not build a 450 

high boundary of class. This means that we are not able to detect other species. With 451 

the aim of species detection, it would be essential to build the boundaries of each 452 

species to allow us to determine whether an unknown specimen belongs to one of 453 

the studied classes or to none of them.   454 

 455 

4.2. Comparison between the two methods tested 456 

In this study, we compared two types of algorithms to predict metrics for the 457 

purpose of classification. Firstly, the two methods used showed good classification 458 

results at the individual scale. Using the training set, all populations were correctly 459 

affiliated with their species; nonetheless, species affiliation using CNN measurements 460 

seems to be less accurate than using CCVA measurements. Species affiliation using 461 

observed data was always more accurate than using the other two methods, 462 

meaning that there is always a loss of accuracy of the measurements when 463 

automation is performed. The CCVA propensity to filter poor quality images seems to 464 

improve its accuracy. This is supported by the fact that the case where the classifier 465 

using CNN measurements led to incorrect prediction at the population scale also 466 

corresponds to the case where the CCVA removed 15 images on the species test 467 



set, mostly in the G. rostochiensis population. The choice of population was done to 468 

incorporate broad genetic diversity, and results from the classifier showed that 469 

despite this diversity, we were able to discriminate G. pallida from G. rostochiensis, 470 

even for CCVA on the test set. This gave us confidence about the robustness of the 471 

metrics chosen and the methods. 472 

The point of this study was not to choose between CNN and CCVA, because 473 

these two methods could be complementary. One of the most important points 474 

regarding CNN is its short building time and flexibility. The CNN learns alone and 475 

provides results independently of image quality, while the CCVA took more time to be 476 

built and appears to be more species-specific.  477 

As both CCVA and CNN are supervised learning algorithms, one could think 478 

about using unsupervised learning algorithms instead. There is a recent trend 479 

towards unsupervised methods for automated landmarking, where landmarks are 480 

learnt from the actual data  (Jakab et al., 2018; Li et al., 2020; Thewlis et al., 2019). 481 

This type of approach could fit our needs well, for example by learning landmarks 482 

based on inter-intra population consistencies. The main drawback is that the 483 

algorithms require large sample sizes to generate landmarks. To go further, it would 484 

be interesting to search automatically for novel morphometric descriptors, not only 485 

landmarks. To a certain extent, at least semi-automatically, one could rely on 486 

algorithms to interpret machine learning predictions (Lundberg and Lee, 2017), 487 

analysing the interpreted predictions in order to derive new morphological 488 

descriptors. 489 

 490 



4.3. Interest for systematics in the Globodera genus 491 

More than simply testing algorithms and classifying organisms, extracting 492 

morphobiometric data on certain organisms will provide information for systematics, 493 

in genera suffering from unresolved taxonomy, i.e. species complexes. Effectively, 494 

the systematics and taxonomy of Globodera are still under discussion (Subbotin et 495 

al., 2020; Subbotin et al., 2011). For example, at this time in the species complex 496 

known as the tobacco cyst nematode complex, there is little evidence for 497 

morphobiometric differentiation (Mota and Eisenback, 1993), even though some 498 

genetic differentiation has been reported (Madani et al., 2010; Subbotin et al., 2020). 499 

Providing evidence for morphobiometric differentiation will help to understand 500 

speciation in this complex. Recently, the synonimisation of G. bravoae (Franco et al., 501 

2000) and G. mexicana (Campos-Vela, 1967) was proposed based on molecular 502 

data (Subbotin et al., 2020). It would be interesting to determine whether 503 

morphological characterisation of these two species with the algorithms proposed in 504 

this study supports this proposal. Automated measurement extraction could also be 505 

of great value in the study of newly discovered species. A potential new species of 506 

PCN has been identified genetically in the south of Peru and in Chile (Thevenoux et 507 

al., 2020), but for now there is no evidence that it is morphologically different from G. 508 

pallida and G. mexicana. In these cases, the contribution of automated extraction of 509 

measurements could be dual. First, the time spent to study a population is lower than 510 

when using manual measurements, which makes it possible to work with more 511 

individuals to strengthen the statistical power and the conclusions. Second, it could 512 

allow us to create new metrics, like in this study, potentially more useful and easier 513 

for morphological differentiation. As a result, automation of the identification process 514 



appears to be a real interface between taxonomy, systematics, and image 515 

computing.  516 

 517 
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Figure 1. Illustration of the two new metrics developed for this study. In orange, the length 

between the base of basal knobs and the head (BKTH). In green, the width of basal knobs 

(BKW). 













 

 

Population 
Population 

code 
Species  Origin 

Number of 

individuals 
Data set 

Dunkerque Dunk G. rostochiensis France 30 Training set 

Nimes Nimes G. rostochiensis France 30 Training set 

P282 P282 G. rostochiensis Peru 30 Training set 

P312 P312 G. rostochiensis Peru 30 Training set 

Ecosse Ecos G. rostochiensis Scotland 30 Test set 

Lindley Lind G. pallida UK 30 Training set 

P260 P260 G. pallida Peru 30 Training set 

P273/2016 P273/2016 G. pallida Peru 30 Training set 

P285 P285 G. pallida Peru 30 Training set 

P308 P308 G. pallida Peru 30 Training set 

Rookmaker Rook G. pallida Netherlands 30 Training set 

Chavornay Chav G. pallida Switzerland 30 Test set 

Tlaxcala TXL G. mexicana Mexico 30 Species test set 

Santa Anna Stan G. mexicana Mexico 30 Species test set 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Name, geographic origin and characteristics of all populations used. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pop Reality Prediction from 

observed measurements 
CCVA 

Prediction CNN prediction 

Dunk G. rostochiensis 0.00 0.24 0.23 
Lind G. pallida 1.00 1.00 0.86 

Nimes G. rostochiensis 0.06 0.09 0.20 
P260 G. pallida 0.96 0.92 0.80 

P273/2016 G. pallida 0.83 0.68 0.76 
P282 G. rostochiensis 0.10 0.20 0.36 
P285 G. pallida 1.00 0.96 1.00 
P308 G. pallida 1.00 1.00 0.93 
P312 G. rostochiensis 0.00 0.14 0.10 
Rook G. pallida 0.96 0.95 0.90 

Total on training set Accuracy: 0.96 Accuracy: 0.88 Accuracy: 0.83 
Chav G. pallida  0.83 0.96 
Ecos G. rostochiensis  0.12 0.53 

Total on testing set  Accuracy: 0.85 Accuracy: 0.71 

Table 2. Prediction scores obtained at the population scale by using a majority rule 

assignation. Numbers are the normalised score for the whole population computed on 

available individuals predicted as G. pallida. Therefore, scores less than 0.5 stand for G. 

rostochiensis, conversely, scores greater than 0.5 stand for G. pallida. A score of 0.5 means 

that half of the individuals are predicted as G. pallida and half as G. rostochiensis.  

Correct prediction at population scale 

Incorrect prediction at population scale 




