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1. Introduction 1 

 2 

Eucalyptus spp. is one of the most planted tree species worldwide and plays a major role in the 3 

pulpwood supply chain due to the increasing yields of the new commercial plantations and genetically 4 

improved clones (Payn et al., 2015; Turnbull, 1999). Brazil is the second-largest producer of cellulose 5 

pulp in the world, owing to the high productivity of the selected tree clones and the short rotation terms 6 

of these species under tropical climate conditions (Binkley et al., 2017; Colodette et al., 2014; Gonçalves 7 

et al., 2013; Pöyry, 2019). In 2018 alone, the planted forest sector contributed with US$ 22.5 billion to 8 

the Brazilian gross domestic product (GDP), representing 6.9% of the industrial GDP (Pöyry, 2019). 9 

During the last decade, the eucalypt planted area for pulp and paper production has grown 15% 10 

annually, boosted by the increasing local demand for raw material by paper mills (Colodette et al., 2014; 11 

IBÁ, 2017). Western Brazil encloses a large fraction of these fast-growing commercial forests, where 12 

the newly planted stands increase around 20% every year (70,000 ha yr-1; Souza et al., 2020). This rapid 13 

expansion is transforming vast plains of savanna-type vegetation into intensive forest systems (Lapola et 14 

al., 2014).  15 

Wildfires are currently the main threat to eucalyptus plantations in Brazil (Booth, 2013; Matthews et 16 

al., 2012). Human-induced alterations in the wildlands (i.e., the native vegetation replacement by 17 

intensive forests, agricultural lands, and urban development areas), in conjunction with extreme fire-18 

weather projections, may boost wildfire activity across the Brazilian savanna in the near future (Bedia et 19 

al., 2015; Jolly et al., 2015; Mistry, 2002; Silva et al., 2019). Burning alters the wood chemistry, causing 20 

serious issues for the pulp mills, which have zero-tolerance for charcoal or damaged timber. Charred 21 

lumber devalues the paper quality on an industrial scale because the low-density burned particles are 22 

exceedingly difficult to wash away during the purification process and, thus, contaminate the bleached 23 

pulp (Gomes et al., 1996). Hence, burned stands are not used regardless of the wildfire (Araki, 1999; 24 

Dyson, 1999; Gomes et al., 1996). Although the sorting and aggressive debarking can minimize the 25 

negative fire effects on the wood quality, burned stands are often replaced with pulpwood purchased in 26 

local markets (Watson and Potter, 2004), usually at a higher cost (Siry et al., 2006). In Brazil, eucalypt 27 

plantations are affected by around 1,150 fires annually (1998 to 2002; Santos et al., 2014). These events 28 

account for 30% of fire ignitions and 16% of the burned area across the monitored extent in Brazil 29 

(Santos et al., 2014). Nevertheless, most recent studies focus on the Brazilian Amazon basin (Daldegan 30 

et al., 2019; de Oliveira et al., 2019), and little is known about the wildfire incidence in commercial 31 

eucalypt plantations (Santos et al., 2014; White et al., 2016a, 2016b). 32 

Long-distance spreading fires account for most economic, social, and environmental impacts (Odion 33 
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et al., 2004). These events are often driven by extreme weather conditions (Bowman et al., 2017; 34 

Rodrigues et al., 2020; Tedim et al., 2018). A better understanding of large wildfire behavior is essential 35 

to anticipate the disaster and design preemptive risk mitigation strategies (Ager et al., 2011). Wildfire 36 

risk is the expectation of loss to valued resources and assets and integrates wildfire exposure with the 37 

potential effects at different burning intensity levels (Finney, 2005). In this context, wildfire simulation 38 

has been extensively used in wildfire risk assessments at multiple scales (Bar Massada et al., 2009; 39 

Goodrick and Stanturf, 2012; Guedes et al., 2020; Haas et al., 2013; Mistry and Berardi, 2005; Salis et 40 

al., 2013). The broadly accepted simulation paradigm accounts for the most hazardous fire weather 41 

conditions during the wildfire season plus historically based ignition patterns (Alcasena et al., 2017; Bar 42 

Massada et al., 2011; Salis et al., 2015). Ultimately, exposure metrics constitute the baseline to design 43 

and implement effective management initiatives to mitigate undesired impacts from wildfires over 44 

extensive areas (Calkin et al., 2011). Likewise, the substantial variability that fire exposure may display 45 

across regions encourages spatial-explicit valuations of the impacts, which are essential towards 46 

effective risk mitigation programs. This quantitative fire risk assessment framework has been widely 47 

used in North-American, European, and Australian fire-prone areas (Ager et al., 2011; Alcasena et al., 48 

2016; Bar Massada et al., 2009; Bradstock et al., 2012). However, previous works assessing exposure 49 

and risk in other regions, such as the South-American wildlands (Guedes et al., 2020), are scarce. 50 

Besides a recent study assessing the economic losses due to wildfires in the timber production sector 51 

across the Brazilian Amazon (de Oliveira et al., 2019), the risk assessment quantitative method has not 52 

yet been implemented in eucalypt plantations for pulp production. In this work, we assessed wildfire risk 53 

to commercial eucalypt plantations at the Mato-Grosso do Sul State of western Brazil. We assumed 54 

extreme weather conditions observed during the wildfire season to model burn probabilities across the 55 

landscape. The economic loss was then estimated, considering a total loss of stand value given fire burns 56 

the eucalypt plantation. Specifically, the objectives in this study were to (i) model wildfire likelihood 57 

across the study area and (ii) map stand-level conditional economic losses, to ultimately (iii) assess 58 

expected losses in commercial eucalyptus plantations. Our approach not only constituted an advance in 59 

exposure assessment for the study region but also integrated annual losses in forest management plans.  60 

 61 

2. Materials and methods 62 

 63 

2.1. Study area 64 

 65 

We conducted this study in the Mato-Grosso do Sul state, a savanna enclave in western Brazil (Fig. 1). 66 

The region extends over 79,991 km2 out of which 8,495 km2 correspond to eucalypt plantations, roughly 67 
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15% of the national eucalypt plantation area (IBÁ, 2017). The relief is mostly flat, with elevation ranging 68 

between 253 and 785 m.a.s.l. (meters above the sea level) and the climate is mainly tropical with dry 69 

winter (Alvares et al., 2013). The main vegetation types include pastures, grasslands, open woodland, 70 

natural riparian forests, agricultural lands, and eucalypt plantations (Table 1). Although the commercial 71 

eucalypt forests cover less than 7% of the study area, the large plantation blocks are the dominant 72 

vegetation type in the eastern portions of the region. The intensive eucalypt forests are usually planted in 73 

dense and clustered plots (≥ 1,600 trees ha−1) to facilitate the management of short rotation (6 to 8 yr ) of 74 

even-aged stands and reduce the operation costs (Colodette et al., 2014; Gonçalves et al., 2013). Eucalypt 75 

clonal plantations of interspecific hybrids of Eucalyptus grandis are the most commonly planted species 76 

due to their high yields. Eucalyptus grandis grows about 40 m3 ha-1 of roundwood per year, ranging from 77 

25 to 60 m3 ha-1 yr-1 depending on the managerial technology and the local environmental conditions 78 

(Binkley et al., 2017; Gonçalves et al., 2013).  79 
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 80 

Fig. 1. Land cover (A), eucalypt stand age (B), and topography (C) of the study area in Mato-Grosso do 81 

Sul State of Brazil.  82 

 83 

The fire season in the study area extends from July to October and concentrates 85% of the annual 84 

burned area (3,329 ha; Augusto et al., 2018). Large fires (>100 ha) are common across the commercial 85 

plantations. For instance, a single wildfire in 2017 destroyed more than 1,300 hectares of eucalypt 86 

plantations, causing an estimated economic loss of 5 million US$, and threatening several communities 87 

across the studied extent (Galdiole, 2017). Fire is culturally used to clear and open large areas for 88 

agriculture and extensive livestock breeding; thus, humans are responsible for most fire ignitions (Eva 89 

and Lambin, 2000; Galizia and Rodrigues, 2019; Jepson, 2005; Mistry, 2002). The region is characterized 90 
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by low population density (4.8 inh km-²) with a predominance of rural settlements (IBGE, 2012). 91 

However, the population in the region has grown 2% per year during the last decade, mainly due to the 92 

economic growth associated with the expansion of commercial forest plantations (IBGE, 2012). 93 

 94 

2.2. General workflow 95 

 96 

The overall procedure was based on the integration of landscape-scale wildfire behavior simulation 97 

with the estimated value of eucalypt plantations (Fig. 2). We combined a historically-based fire ignition 98 

pattern with landscape data to model large fire spread under extreme weather conditions and assess the 99 

annual burn probability. Required wind and fuel moisture content data were derived from 30-years 100 

weather records. Then, we combined assembled standard fuel models with custom fuels for eucalypt 101 

forests to model fire spread. Stand-level yields were estimated at different successional stages using a 102 

forest growth model calibrated for eucalypt plantations in Brazil. Finally, we combined the annual burn 103 

probability with stand-level conditional economic losses to assess the wildfire risk.  104 

 105 

 106 
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Fig. 2. General workflow for modeling the wildfire risk, including input datasets, MTT algorithm 107 

(Finney, 2002), economic evaluation, and expected losses to eucalypt plantations in western Brazil.  108 

 109 

2.3. Landscape data  110 

 111 

We assembled the required gridded input data for wildfire simulation (i.e., surface fuel models and 112 

topography) in a landscape file (LCP) at 100 m resolution (Ager et al., 2011). The surface fuel model 113 

grid was built, assigning standard fuel models to the 2014 land cover map (Scott and Burgan, 2005; 114 

Souza et al., 2020). Nonetheless, we assigned custom fuel model types to the eucalypt stands based on 115 

the structure by growth stage (Fernandes, 2009; Mistry and Berardi, 2005), which is the main wildfire 116 

hazard causative factor hazard (Agee and Skinner, 2005; González et al., 2006). We used stand-age 117 

interval classes as a consistent reference for the eucalypt forest structure because these equally managed 118 

fast-growing plantations are not only regular stands but also coetaneous (Almeida et al., 2004; Binkley 119 

et al., 2020). Specifically, we considered 5 classes representing homogeneous forest structures at 120 

different growth stages considering the canopy cover (closed or open), canopy height (low or tall), and 121 

stand age (Table 1). Note that we used different fuel models to distinguish commercial plantations from 122 

non-commercial eucalypt forests (Appendix A). The stand age was retrieved from remote sensing data at 123 

30 m spatial resolution based on annual land cover change maps from 2000 to 2014 (Petersen et al., 124 

2016; Souza et al., 2020). Topographic data including elevation (m.a.s.l.), aspect (azimuth degree) and 125 

slope (degrees) were obtained from a 30 m resolution digital elevation model (de Morisson Valeriano 126 

and de Fátima Rossetti, 2012). Eucalypt forest canopy metrics (i.e., canopy base height (m), canopy 127 

height (m), canopy bulk density (kg m−3) and canopy cover (percent)) were estimated with a forest 128 

growth model (3-PG; Landsberg and Waring, 1997), specifically calibrated for E. grandis plantations in 129 

Brazil (Almeida et al., 2004). The canopy metrics for natural forest and open woodland savanna were 130 

retrieved from Mistry (2002) and Mistry and Berardi (2005).  131 
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Table 1. Main vegetation types, coverage, and fuel model assignments for wildfire simulation modeling in the study area. Eucalypt plantations 132 

were classified by fuel load, structure, and stand age: open and low (OL), closed and low (CL), closed and tall (CT), open and tall (OT), very open 133 

and tall (VT), and non-commercial eucalypt (NC) (Fernandes, 2009; Mistry and Berardi, 2005). Other land-cover classes were classified as the 134 

following standard fuel types GR (grass), GS (grass-shrub), SH (shrub), and NB (non-burnable) (Scott and Burgan, 2005). See fuel model 135 

parameters in Appendix A. We derived the 97th percentile fuel moisture content from the historic fire-weather index data (Viegas et al., 2001; 136 

Wotton, 2009). 137 

 138 
Land cover class Area (ha) Incidence (%) Fuel model 

type 

Fuel moisture content (%) 

1 h (%) 10 h (%) 100 h (%) Live herbaceous (%) Live woody (%) 

Eucalypt (0-1 yr) 126,413 1.56% OL  5 6 7 - 124 

Eucalypt (1-3 yr) 196,127 2.41% CL  5 6 7 - 124 

Eucalypt (3-8 yr)  147,347 1.81% CT  5 6 7 - 90 

Eucalypt (8-12 yr) 3,680 0.05% OT  5 6 7 - 90 

Eucalypt (> 12 yr)  1,512 0.02% VT  5 6 7 80 90 

Non-commercial eucalypt 63,792 0.79% NC  5 6 7 - 90 

Mosaic agriculture  437,031 5.38% GR2  4 5 6 60 - 

Natural forest 936,871 11.53% TU3  5 6 7 80 90 

Pasture and grassland 4,947,698 60.89% GR3  4 5 6 60 - 

Perennial crop 37,257 0.46% SH3  4 5 6 - 90 

Savanna 540,264 6.65% GS3  4 5 6 60 90 

Urban   5,593 0.08% NB94  - - - - - 

Open water 680,916 8.38% NB98  - - - - - 

 139 
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2.4. Ignition pattern 140 

 141 

We used an ad hoc fire occurrence model to obtain a fire ignition probability grid (IP) and derive 142 

the fire ignition pattern as required for wildfire simulation modeling. The fire occurrence model was 143 

calibrated using the Random Forest algorithm, combining historical ignitions with human-related 144 

wildfire drivers (e.g., accessibility, proximity to agricultural lands, or human activities, among others) 145 

to estimate the ignition probability across the study region (Rodrigues and De la Riva, 2014). The 146 

eucalypt forest expansion was also integrated into the fire occurrence model as a critical driver for 147 

predicting ignition locations. Model outcomes suggested that fire occurrence was mainly explained by 148 

the proximity to agricultural and urban interface areas. See Galizia and Rodrigues (2019) for further 149 

details about the methods and model performance. Based on the aforementioned ignition probability 150 

grid, we generated a set of spatially-balanced 50,000 ignition points over burnable areas to saturate 151 

the landscape with wildfire (Stevens and Olsen, 2004). This fire ignition dataset was then used as 152 

input for the wildfire simulation modeling in each fire-weather scenario. 153 

 154 

2.4. Fire weather scenarios 155 

 156 

We retrieved the weather data from the Copernicus Climate Change Service (C3S; 157 

climate.copernicus.edu). We used daily noontime records from 30 years (1987 to 2007) to characterize 158 

the weather conditions during the wildfire season (July to October). Specifically, we determined the 159 

extreme weather scenarios (97th percentile) in terms of dominant winds and fuel moisture content 160 

conditions. The prevailing wind directions (frequency > 8%) in the study area during the wildfire season 161 

were 30°, 60º, 90º, and 120º azimuth (n = 4 fire-weather scenarios), with respective probabilities of 24%, 162 

28%, 32%, and 16% (Fig. 3). We derived the wind fields (U and V wind components) from the 31 km 163 

resolution ERA-5 raw reanalysis data (ECMWF; Dee et al., 2011). The directional wind U-V 164 

components were transformed into wind speed (km h-1) by calculating the module of the vector from the 165 

U (zonal velocity, i.e. the component of the horizontal wind towards east) and V (meridional velocity, 166 

i.e. the component of the horizontal wind towards north) components.  167 

We used the Fine Fuel Moisture Code (FFMC) and Drought Code (DC) Fire Weather Index 168 

(FWI; Van Wagner and Forest, 1987) data to derive the fuel moisture content (Table 1). The 97th 169 

percentile of FFMC and DC were calculated using the FWI data for the whole temporal span (Vitolo 170 

et al., 2019). First, the fine fuel moisture content was estimated as described by Wotton (2009): 171 

 172 
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 (1) 173 

where 1h is the 1-hour fuel size moisture content as a percentage, and the FFMC is the fine fuel 174 

moisture code index value for desired fire-weather conditions (i.e., 97th percentile FFMC). We 175 

assumed 1-h dryer moisture content conditions for herbaceous fuel types rounding the predicted value 176 

to the lowest unit. We then estimated the live woody fuel moisture using a model developed for 177 

eucalypt forests at similar weather conditions observed in the region under study, as presented in 178 

Viegas et al. (2001): 179 

 180 

  (2) 181 

 182 

where the LW is the live woody fuel moisture content as a percentage, and DC is the drought code 183 

index value for desired fire-weather conditions (i.e., 97th percentile DC).   184 
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 185 

Fig. 3. Wind speed grids (97th percentile) for the dominant wind directions and wind rose (speed and 186 

direction) in the study area. Dominant scenarios during wildfire season included (A) 30º, (B) 60º (C), 90º, 187 

and (D) 120º directions.  188 
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2.5. Wildfire modeling 189 

 190 

We simulated wildfire spread using the minimum travel time algorithm (MTT; Finney, 2002) as 191 

implemented in FlamMap 6.0 (Finney, 2006). The MTT algorithm has been widely used to model fire 192 

spread and behavior over complex terrain landscapes with different vegetation types worldwide (Guedes 193 

et al., 2020; Jahdi et al., 2020; Lozano et al., 2017; Palaiologou et al., 2018; Salis et al., 2015). We 194 

focused our modeling efforts on large fires because these events account for the bulk of the burned area 195 

and losses (Franco et al., 2014; Tedim et al., 2018). We modeled 50,000 fires at 100 m resolution under 196 

extreme fire-weather conditions (97th percentile) for each wind direction scenario. We used a different 197 

wind speed grid for each scenario instead of considering a constant value for the whole fire modeling 198 

domain (Fig. 3). The fire spread duration was set to 9.5 hours, the blow-up event duration providing 199 

modeling outputs similar to the observed historical fire size distribution in the study area (Andela et al., 200 

2019). The total number of modeled fires (n= 200,000) burned all pixels at least once and more than 201 

twenty times on average. The total burned area from modeled fires was equivalent to more than 35,000 202 

wildfire seasons. We set a 0.25 spot probability to enable showering ember emission and the jump of 203 

narrow non-burnable linear barriers (e.g., small rivers and secondary roads) by the heading fires as 204 

observed in the study area during extreme events.   205 

Modeled outputs consisted of pixel-level conditional burn probability (BP) grids for each wind 206 

direction scenario. The BP value is the ratio between the number of times a pixel burned (i.e., modeled 207 

fire perimeter overlay) and the total number of simulated fires per run  (Finney, 2005; Salis et al., 2015). 208 

In this study, the BP represents the likelihood of a pixel burn given a fire occurs within the study area 209 

based on the ignition probability grid. We then estimated the annual burn probability as:   210 

 211 

     (3) 212 

 213 

where the aBPxy is the annual burn probability for the pixel xy, N is the number times a xy pixel burned, 214 

and ns is the total number of modeled wildfire seasons or years (Dillon et al., 2015; Short et al., 2020). 215 

Specifically, we obtained N from the conditional burn probability outputs assuming a modeled burned 216 

area equivalent to 35,000 years and computed the aBP grid for each fire-weather scenario. These grids 217 

were then assembled into the final aBP map considering the wildfire season frequency for each scenario 218 

(i.e. 30°=24%, 90°=28%, 60°= 32%, 120°=16%; Fig. 3). 219 

 220 

2.6. Economic evaluation 221 
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 222 

Wildfire-induced economic losses in the eucalypt plantations were quantified in terms of forest 223 

value (FV), accounting for expected changes on the potential financial return of the affected commercial 224 

stands. We used the FV to assess the overall stand-level economic value considering: (i) the forest 225 

management cash flow, (ii) a predetermined forest cycle timeline, (iii) the land use for a new activity 226 

that would start after the harvest and its economic value, and (iv) the occurrence of unexpected events 227 

such as wildfires (Prata and Rodriguez, 2014). We assumed a perpetual timber production for eucalypt 228 

plantations to assess the expected land value, which can be obtained from the land expectation value 229 

(LEV) as (Chang, 1998; Faustmann, 1849):  230 

   (4) 231 

where LEV is the land expectation value in US$ ha-1, NPV is the net present value of a plantation (age 0), 232 

which is taken to its future value at the end of the cycle at age T (yr), and r is the interest rate as a 233 

percentage. Wood revenues were estimated based on the local market price for pulpwood (R7, 2017), 234 

which ranged between 11.30 and 12.10 US$ m3. Then, the FV was estimated at pixel-level using the 235 

model from Prata and Rodriguez (2014) as: 236 

   (5) 237 

where FV is the forest value in US$ ha-1, RT is the total plantation cycle revenue at age T in US$ ha-1, Ct 238 

is the plantation cost management at age t, j is the year of the hazard that interrupts the forest rotation, 239 

and r is the interest rate. Management costs include all necessary forest operations over the plantations' 240 

cycle (Table 2). Specifically, we considered the implementation of a mechanical treatment at the final 241 

stage of the rotation to masticate the surface fuels in the understory. This treatment improves operational 242 

conditions in both the quality and productivity of subsequent forest harvesting and logistic operations, 243 

thus lowering the total operating (Malinovski et al., 2006; Moreira et al., 2004). We considered an 244 

interest rate of 8% per year on the FV calculation, which represented an intermediate value over the last 245 

3 years (BCB, 2019).  246 

 247 

Table 2. Eucalypt plantation management costs applied for the pulp and paper industries in the studied 248 

region (adapted from Prata and Rodriguez 2014). 249 

Forest management   Operation Stand age (yr) Cost (US$ ha-1) 

Site establishment  
Soil preparation, planting, irrigation, fertilization, 

and pest control 
0 - 1 1483 

Stand maintenance  Weed control, pest control, fertilization 1 - 3 441 
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Stand maintenance  Weed control 3 - 5 38 

Stand maintenance  Weed control, pest control 5 - 8 78 

Harvest and clearing  Weed control and mechanical mastication 8 - 12 58 

 250 

2.7. Risk assessment 251 

 252 

We quantified wildfire risk in terms of stand-level expected economic losses combining wildfire 253 

likelihood (aBP) with the economic value (FV) of the eucalyptus plantations for paper-pulp production 254 

(Alcasena et al., 2016; Finney, 2005), as: 255 

 256 

                       (6) 257 

where eLj is the expected economic loss of eucalyptus pulpwood on the stand (US$ ha-1 per yr) at j-th 258 

successional stage (i.e., young, intermediate, and mature), aBP is the stand-level annual burn probability 259 

from Eq. 3, and FV is the forest value at j-th successional stage from Eq. 5. In this case study, there are 260 

no benefits from wildfires, and we considered a total loss regardless of the burning i-th fire intensity 261 

level. The eucalypt pulpwood in the study area is used to supply local paper mills, and the charred wood 262 

is usually discarded to elaborate the pulp. In this work, we assumed the charred wood replacement with 263 

pulpwood from general markets.  264 

 265 

3. Results 266 

 267 

3.1. Wildfire likelihood  268 

 269 

The fire spread modeling outputs evidenced complex wildfire likelihood patterns related to ignition 270 

probability, fuel type, stand growth stage, and wind speed distribution across the study area (Fig. 4). The 271 

mid-eastern zone attained the highest exposure levels (aBP > 0.1), which gradually decreased while 272 

moving west (aBP < 0.05). In general, we observed a decline in aBP from the young to the mature 273 

eucalypt stands (Fig. 5). Intermediate-age and mature stands (> 4 yr) were less likely to burn (mean aBP 274 

≈ 0.023), while young stands (< 2 yr) showed the highest aBP (mean ≈ 0.034), peaking in newly planted 275 

areas (first yr).  276 

The wildfire likelihood was the highest in grasslands and savanna-like land cover types (mean aBP ≈ 277 

0.05), closely followed by agricultural lands (mean aBP ≈ 0.04) and eucalypt plantations (mean aBP ≈ 278 
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0.03) (Fig. B.1). Fine-scale modeling outcomes revealed substantial differences between ignition (IP) 279 

and burn probability (aBP). The northern and southwestern regions (i.e., Água Clara and Ribas do Rio 280 

Pardo municipalities) presented both low wildfire likelihood and low fire ignition (IP); hence, they were 281 

the least exposed to fire (low aBP). Conversely, the southern and southeastern regions (i.e., Santa Rita 282 

do Pardo, Brasilândia, Três Lagoas, and Selvíria municipalities) showed higher IP and aBP. 283 

Nonetheless, most of the study area showed strong dissimilarities between IP and aBP. These differences 284 

were especially evident in the eastern regions with a great human pressure and a high IP (>0.8) but a low 285 

aBP (< 0.03).  286 

 287 

 288 

Fig. 4.  (A) Wildfire ignition probability (IP; Galizia and Rodrigues, 2019), and (B) annual burn 289 

probability (aBP) at 100 m resolution across the study area.  290 

 291 
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 292 

Fig. 5. Violin and boxplot representation of the annual burn probability (aBP) of the eucalypt stands 293 

according to the stand age. Boxplot represents the descriptive statistics (e.g. median and interquartile 294 

ranges), and the violin plot shows the aBP probability density distribution (Kernel density estimation). 295 

The color scale shows the transition of the aBP means over the plantations’ age classes. 296 

 297 
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Fig. 6. Changes in eucalypt plantation's forest value (FV in US$ ha-1) over one cycle. FV was quantified 298 

by means of potential economic return (Eq. 5).  299 

3.2. Economic evaluation 300 

 301 

The economic evaluation of eucalypt stands showed a linear increase during the plantation cycle, 302 

with an FV ranging from 1,485 US$ ha-1 in year 1 to 7,982 US$ ha-1. The FV presented an average 303 

annual growth of 614 US$ ha-1. In other timber products, the market value per volume is substantially 304 

higher for larger logs, but this is not the case in the paper pulp industry. As expected, the highest 305 

economic value (mean = 5,524; std. dev. = 943 US$ ha-1) was found in the mature stage stands (> 8 306 

yr), due to the higher wood volume and greater resources spent during the plantation cycle (Fig. 6). 307 

The plantation's FV spatial distribution showed that the most valuable stands concentrate in the 308 

center-eastern zone of the study area (i.e., Brasilândia, Três Lagoas, and Selvíria municipalities), 309 

closer to the urban areas (forest industries) and, consequently, to the local market (Fig. 7). On the 310 

other hand, low-value eucalypt stands were spread around the mature plantations, representing the 311 

most recent eucalypt’s expansion in the study area.   312 

 313 

3.3. Risk assessment 314 

 315 

The total annual loss from wildfires in the eucalypt plantations was equivalent to 19,961,115 US$ 316 

yr-1, approximately 1.75% of total FV. The spatial pattern of expected economic losses (eEL) broadly 317 

matches burn probability distribution across the study area (Fig. 7). Even though pixel-level eEL was 318 

highly variable throughout the study area, the highest expected loss was found in the mature stands (> 319 

8 yr) on the mid-eastern and southeastern zones, also with the highest aBP values of the study area. 320 

The areas with a high aBP and a low eEL (e.g., the central part of the study area), were mainly 321 

occupied by young plantations with a low FV (< 1,800 US$ ha-1). These young plantations were 322 

dominant in the outer edge of eucalypt plantation clusters of the study area. Not surprisingly, we 323 

observed an overall increase in the eEL from young to mature eucalypt stands (Fig. 8) as with the 324 

conditional losses (i.e., FV). Mean values for expected economic losses between stand age classes 325 

ranged between 45 and 95 US$ ha-1 per yr. Stand-level wildfire risk profiles within the different age 326 

classes (Fig. 8) presented a much wider dispersion than in the wildfire likelihood estimates (Fig. 7). 327 

 328 
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 329 

 Fig. 7. (A) Expected economic loss (eEL) from wildfires across the eucalypt plantations stands and 330 

(B) eucalypt plantations economic value (FV) across the study area.  331 

   332 

 333 
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Fig. 8. Expected economic loss (eEL) by plantation age. Boxplot represents the descriptive statistics, and 334 

the violin plot shows the eEL probability density distribution (Kernel density estimation). The color scale 335 

shows the transition of the eEL means over the plantations’ age classes 336 

    5.         Discussion   337 

In this work, we extended the current understanding of eucalypt plantations’ wildfire risk 338 

assessing the expected economic losses (US$ ha-1 yr-1) in a fire-prone region of Brazil. We leveraged 339 

wildfire simulation modeling and a novel forest valuation approach to conduct a spatially explicit and 340 

economically detailed risk assessment in a vast landscape. Our study considered the 'worst case' fire-341 

weather conditions (97th percentile) to model fire spread and neglected early suppression effects. 342 

Although it might lead to overestimating the large fires' contribution to the burned areas compared to 343 

the historical fire size distributions, we considered a widely accepted opportunistic suppression 344 

scenario where firefighting is only effective under mild weather conditions (Martell, 2006; Reed and 345 

McKelvey, 2002).  346 

Despite the large variability observed in forest value (FV) due to the existing differences in stand 347 

age, the wildfire likelihood (aBP) was the most crucial factor modulating the economic loss across the 348 

region. We found the highest exposure levels in the central-eastern and southeastern regions, closely 349 

mirroring the observed distribution of young (< 2 yr) versus intermediate-age to mature (> 4 yr) 350 

eucalypt stands. Young eucalypt stands presented the highest aBP among eucalypt forest types (Fig. 351 

5), despite their low fine fuel load in the 1-h dead class (Table A.1). The spatial arrangement of newly 352 

planted stands may explain this outcome, which are very often placed in clusters surrounding and 353 

enclosing preexisting (thus older) stands. Given that most fires start along human-related interfaces 354 

(e.g., agricultural lands, urban development, and main roads; Galizia and Rodrigues, 2019), wildfires 355 

will likely burn first the youngest stands located on the edge of the plantation clusters. In addition, 356 

recent studies also found that extreme weather conditions plus fuel rearrangement are the most 357 

relevant factors explaining wildfire occurrence and intensity in wildfires burning eucalypt woodlands 358 

(Cawson et al., 2020).  359 
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 360 

Fig. 9. Inset view of IP (A), aBP (B), FV (C), and eEL (D) in a eucalypt plantation cluster located in the 361 

southeast of the study area. 362 

We estimated a total expected annual loss disregarding the economic value of charred wood. 363 

Assessing the potential revenue from charred wood was exceedingly complex for the purpose of this 364 

study. Moreover, changes in the overall economic assessment would lead to non-significant 365 

differences since charred wood is discarded to elaborate the pulp. We believe that low economic loss 366 

is related mostly to the eucalypt age distribution in stands across the study area. Young stands hold 367 

the lowest FV and are the most widespread (48% of the total plantation area). In general, mature 368 

stands with the highest in FV located in low burn probability zones, but the exceptions showed the 369 

largest economic losses (> 400.00 US$ ha-1 yr-1). We demonstrated that the aBP was the main 370 

causative factor explaining the economic losses across eucalypt plantations (Fig. 9). Managed mature 371 

stands may restrict large fire spread and reduce aBP due to higher moisture content and a high canopy 372 
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structure (i.e. less likely to crown fire) (Fernandes et al., 2019; Silva et al., 2009). Guedes (2020) also 373 

found that commercial eucalypt plantations imposed slight fire protection (lower BP) to natural forests 374 

in southeast Brazil. These plantations are frequently managed intensively and present firebreaks, 375 

patrolling fire brigades during the wildfire season, and wildfire detection towers to allow a rapid 376 

initial attack. On a broader scale, Fernandes (2019) concluded that the expansion of eucalypt 377 

plantations had no effect on the increment of the burned area observed in Portugal in the last three 378 

decades. Although future impacts on the fire regime should not be excluded, fire incidence was lower 379 

in eucalypt stands than in the remaining forest types. 380 

Based on our aBP outcomes, it would be feasible to design prevention plans to minimize future 381 

wildfire impacts by means of fuel load reduction, forest management, or alternative solutions like 382 

prescribed burning around productive areas. Fuel reduction programs, including mechanical 383 

treatments along plantation edges (especially around young stands) plus slash mastication after 384 

harvesting on the high burn probability areas may help reduce the exposure level. Likewise, 385 

controlled burnings around plantations´ interfaces will contribute to modifying fuel structure and 386 

decrease fuel loads (Ager et al., 2011). Wildfire exposure reduction should also include breaking the 387 

fuel continuity (horizontally and vertically), as well as increasing the diversity of age-classes among 388 

the eucalypt stands (Soares, 2014). Other measures, including ignition prevention, rapid response on 389 

fire source hot-spots (Fig. 4A), would likely present a solution for reducing fire transmission to 390 

eucalypt plantations.  391 

Forest cooperatives, such as REFLORE (regional cooperative in Mato Grosso do Sul), may play 392 

an important role in fire risk mitigation. This type of organization reflects the collective interests of 393 

the associated forest producers and may facilitate the early detection of wildfires, the firefighting 394 

resources sharing and the integration of risk management plans beyond the boundaries of properties. 395 

Furthermore, Brazil’s government must develop an effective strategy to mitigate wildfire risk in the 396 

fire-prone regions, considering, educational programs about the correct fire usage and environmental 397 

protection policies. Environmental agencies should effectively control fire usages following the 398 

federal legislation (such as the 2012 Brazilian Forest Code), which prohibits the use of fire in natural 399 

vegetation, without prior authorization. National wildfire prevention programs like PREVFOGO 400 

(Brazilian fire prevention program) should be reinforced to be able to hire and train firefighters to 401 

effectively control the fire spread at risk periods. Public-private partnerships may be an alternative to 402 

collect resources for wildfire prevention and environmental law enforcement in high-value zones at 403 

risk.  404 

Eucalypt plantations are steadily progressing through the study region and future projections 405 

suggest the planted area will keep expanding, driven by the increasing demand for bioproducts 406 
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(d’Annunzio et al., 2015; Payn et al., 2015). Changes in the plantation management due to enhancing 407 

the industrial process (e.g., shortening of plantations cycle), plant diseases, or climate changes may 408 

foster more extreme fire behavior in the near future (Elli et al., 2020; Lozano et al., 2017; Urbieta et 409 

al., 2015). Studies like ours may help in preparing for such eventualities. Considering both aBP and 410 

FV as spatial-temporal factors that drive the economic losses across the plantations, our risk 411 

assessment framework would allow extrapolations of potential economic losses. By addressing 412 

different stand stages, for instance, it would be possible to predict the future economic losses of a 413 

specific stands. Likewise, more hazardous weather conditions can be simulated. Even though we 414 

already accounted for the most extreme fire weather conditions, those were still retrieved from 415 

historical weather data. Hence, new weather scenarios based on unprecedented situations may require 416 

further investigation (Bedia et al., 2015; Jolly et al., 2015; Raftery et al., 2017; Silva et al., 2019). 417 

Nevertheless, modeling efforts are still required to achieve more precise assessments. The wildfire 418 

spread model accuracy could be improved with the refinement of spatial precision of canopy-related 419 

features. For example, canopy metrics (such as height or bulk density) can be derived from LiDAR 420 

data (Marino et al., 2016; Moran et al., 2020) which were unavailable in the study area. Furthermore, 421 

specific fuel spread models (e.g. eucalypt plantations, tropical savanna) and the initial fuel moisture 422 

estimation (e.g. custom models) must be calibrated in the region (Cruz et al., 2018; White et al., 423 

2016a). The development and integration of species-specific mortality models in future studies would 424 

allow assessing fire effects based on fire intensity levels and provide a valuable information to 425 

improve the accuracy of wildfire risk assessments in eucalypt plantations (Catry et al., 2010).. In 426 

addition, the refinement of the economic evaluation of each pulp and paper industry, including stand-427 

specific management and logistics costs may improve the economic figures and, for instance, support 428 

the decision-making process of each company individually.   429 

 430 

4. Conclusions 431 

 432 

This work presents the first attempt to quantify potential economic losses from wildfires in 433 

eucalypt plantations in a fire-prone region of Brazil. Our modeling framework provides clear 434 

guidance for fire risk management, providing valuable information for outlining critical areas for 435 

wildfire mitigation and risk management planning at the landscape scale. In addition, future scenarios, 436 

including climate change and land cover changes, may be simulated within this framework in order to 437 

assess changes in risk patterns across the study area.  438 

Our findings suggest that local forest managers should account for 1.75% of expected annual 439 
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losses in terms of raw material provision volume equivalent to 19,961,115.00 US$ yr-1. Eucalypt 440 

plantations' economic losses showed high variability across the study areas, with intermediate age to 441 

mature stands (> 4 yr) more likely to experience economic loss. Special attention should be given on 442 

the young eucalypt plantation stands, due to its potential risk to burn and mature stands, due to its 443 

potential economic losses. Forest managers may also benefit from the spatial-explicit risk assessment 444 

implemented here to refine forest management plans.  445 

Fuel reduction programs on the high burn probability areas plus ignition prevention and rapid 446 

response on fire source hot-spots would reduce risk to eucalypt plantations. Protective measures to 447 

mitigate the risk should include breaking the fuel continuity (horizontally and vertically), as well as 448 

increasing the diversity of vegetation cover (fuel type), among the eucalyptus´ stands. Fire preventive 449 

measures should be integrated into pasture and grasslands, due to its high potential of fire 450 

transmissions and its important role as a booster of fire ignitions across the studied landscape. Forest 451 

cooperatives may enable the integration of risk management plans beyond the boundaries of 452 

properties. In addition, the development of policies such as ignition mitigation programs directed 453 

toward farmers, and followed by effective inspection and application of penalties in cases of 454 

inappropriate fire usages could mitigate the risk.  455 

Future studies using high-quality datasets and specific fuel spread models would refine the 456 

modeling and provide further insights on wildfire risk management across the South American 457 

tropical savanna. 458 
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