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Abstract

Landmarks are one of the important concepts in morphometry analysis. They are anatomical points that can be

located consistently (e.g., corner of the eyes) and used to establish correspondence or divergence among morphologies

of biological or non-biological specimens. Currently, the landmarks are mostly positioned manually by entomologists

on numerical images. In this work, we propose a method to automatically predict the landmarks on entomological

images based on Deep Learning methods, more specifically by using Convolutional Neural Network (CNN). We

propose a CNN architecture, EB-Net, which is built in a modular way the concept of “Elementary Blocks”, each

made up of usual layer types of CNN. After using a custom data augmentation procedure, the network has been

trained and tested on a data set of different anatomical part of carabids (pronotum, head and elytra). In this

numerical experiment, we have generated two strategies to evaluate the network and to improve the obtained

results: training from scratch or applying a fine-tuning step. The predicted landmark coordinates have been

compared to the coordinates of the manual landmarks provided by the biologists. The statistical analysis of the

distances between predicted and manual coordinates has shown that our predictions can replace efficiently manual

landmarking and allows to propose automatization of such operation.

Keywords: Landmarks, Morphometry, Deep learning, Convolutional Neural Network

1. Introduction

In the context of ecosystem services, there is an interest in examining complex interactions between the evolution

of insect populations and environmental factors affecting their functions. In order to assess specifically pest-

regulating services and in line with studies pointing to shape traducing function [1], there are more and more

researches about beneficial insect morphometrics [2, 3]. In such morphometric studies, it is common to analyze5

subject’s shape independently of their poses and sizes [4]. Since the late 20th century [5], rooted in a strong statistical

background, geometric morphometrics address the study of such biological shapes [6]. It is an effective set of methods

with several specialised softwares readily available [7, 8]. Geometric morphometrics uses a configuration of landmarks

to describe shape, open curve or outline; and a landmark being a two or three-dimensional anatomically-relevant

point. In order to investigate the possibility to automatize landmarking on beneficial insects, we chose to focus on10
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one of the most common and ubiquitous beneficial insect of north-western France, Poecilus cupreus (Carabidae).

It is considered a polyphagous predator [9] beneficial to agriculture, being able to consume a large variety of

agricultural pests including weed seeds, slugs and aphids [10]. As a Coleoptera, its morphological variability is

usually measured on exoskeleton structures such as the head, pronotum and elytra (see Figure 2) [11].

Commonly, the first step in any morphometric geometrics study is the digital imaging of the biological specimens15

with controlled illumination and contrasting background. As such, morphometric landmark detection and position-

ing can be thought as a particular problem of features detection and solved using robust digital image processing

[12]. In the recent years, the term “deep learning” emerged describing class of computational models composed

of multiple processing layers learning representations of data with multiple levels of abstraction [13]. Each layer

extracts the representation of the input data from the previous layer and computes a new representation for the next20

layer. In the hierarchy of model, the lower layers take care of the primary features whereas the higher layers care

for the abstract features to enlarge the aspect of input for the computational task (classification, regression, etc.)

and to suppress irrelevant variations. Deep learning algorithms have proved to be very efficient in a wide variety of

domains, notably computer vision [14, 15, 16, 17, 18], speech recognition [19, 20, 21], question answering [22] and

language translation [23, 24]. Within deep learning, Convolutional Neural Networks (CNNs) are well known for25

their success in many computer vision tasks such as image classification [14, 15] and objects recognition [17, 18].

Recent success of this algorithm in human biometry [25] lead us to believe in its potential for insect morphometrics.

1.1. Related works

Landmark-based geometric morphometrics has been applied to a variety of research questions and applications

in biology. The applications can be ranged from fossil human/dinosaurs [26, 27] to butterfly/fly wings [28], zebrafish30

skeletogenesis [29], flower shapes [30]. They have been also concerned on medical imaging, e.g., cephalometry aims

at analyzing the human cranium for orthodontic diagnosis and treatment planning [31, 32].

Geometric morphometry analysis based on landmarks is mainly beginning by positioning the landmarks in

two-dimensional images, which is typically achieved manually. Landmarks are then compared by employing various

statistical methods to distinguish landmark variations or the changing of shape in large populations, e.g., Procrustes35

analysis. Depending on applications, the number of landmarks varies, it could be ranged from several to dozens

of landmarks, for example, 15 landmarks have been defined in a study on drosophila wing [33] or 25 landmarks

have been used in a research on zebrafish [29, 34]. Manual setting landmarks is time-consuming and difficult to

reproduce. A solution that can automatically provide landmarks could be useful in these studies.

Recently, automatic prediction of landmarks has appeared in many applications of various domains: In computer40

vision, landmark localization is usually studied on human faces where we identify some points corresponding to

significant parts on face, e.g., nose, eyes, mouth region [35, 36]. In biology, the landmark identification problem has

been appeared in the studies to analyse shape and size on the organisms [33, 37], e.g., analyzing the corolla shape

variation. In biomedical field, the problem of automatic landmark positioning has been addressed in cephalometry

[32, 38]. The familiar methods in these domains are based on the combination of template matching and prior45

knowledge information after a step of the segmentation of interesting objects. Lowe et al. [39] have proposed SIFT

method to find the corresponding keypoints between two images. Palaniswamy et al. [33] have proposed a method
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based on probabilistic Hough Transform to automatically identify the landmarks in digital images of Drosophila

wings. In previous work [40], we have proposed a method which was extended from Palaniswamy’s method, to

determine landmarks on beetle images. The experiments have been done on two sets of mandibles images which50

have an ordinary shape and are easy to segment. The obtained results were satisfying when comparing to the

landmark’s coordinates of the manual setting. Unfortunately, this method could not be provided the landmarks to

other parts of beetles as pronotum, head, and elytra. The reasons have been found down that these pictures are not

simply as mandible ones. They do not only contain the considered objects but also other parts of beetle because

they have been captured before dissection. Also, shape segmentation has been a trap for our method.55

In recent years, deep learning has been widely used in computer vision. Using Convolutional Neural Network

(CNN) to determine the landmarks on 2D images has achieved good results. As was common, the CNN inputs raw

pixels of the image, then it analyzes the relations between the pixels to predict the coordinates of landmarks. These

operations are performed by a sequence of layers. It is worth to note we do not recognize the appearance of the

segmentation step in the process. Thus, CNN has offered an effective solution to face images that have difficulty60

in segmentation. In the landmarking context, Yi Sun et al. [41] have proposed cascaded convolutional neural

networks (three-levels) to predict the facial points of interest on the human face. Each level considers the face from

global to local regions to determine the landmarks. Zhanpeng Zhang et al. [42] proposed a Tasks-Constrained Deep

Convolutional Network to optimize facial landmarks detection. The model determines the facial landmarks with a

set of related tasks such as head pose estimation, gender classification, age estimation, face recognition, or facial65

attribute inference. Cintas et al. [25] has introduced a network to predict the landmarks on human ears. After

training, the network has the ability to predict 45 landmarks on human ears. In biology field, Porto et al. [43]

have proposed a machine-learning-based high-throughput pipeline to collect high-dimensional morphometric data

in two-dimensional images of semi-rigid biological structures. Based on our knowledge, CNNs have been widely

used in biological applications but not to provide the landmarks. In this work, we proposed a CNN architecture to70

predict the landmarks on biological images, specific beetle’s images.

1.2. Contributions

In this article, we detail a CNN architecture that we have designed to automatically set landmarks on beetle

images, so-called Elementary Block Network (EB-Net). The prediction has been evaluated by comparing to the

ground truth manually provided by biologists. We describe how we have applied data augmentation to remedy the75

problem of using machine learning algorithms on the small dataset. We will also outline how performance can be

improved by using transfer learning from another dataset like human facial points.

2. Material and Methods

In this section, we first present the dataset that we have used in this study, as well as the strategies to pre-process

the data. Then, we describe the designed network architecture to predict the landmarks in the beetle images.80

2.1. Dataset and preprocessing

In order to provide the experimental data, we have selected the Brittany lands (North-West of France) to collect

the samples. After collecting in three months, a collection of 293 beetles has been established (147 males and 146
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females/ 155 organic and 138 conventional agriculture) (Figure 1). As usual, images of beetles have been chosen

to be studied instead of using real objects for practical reasons. For each beetle, five images corresponding to five85

parts of beetles have been taken into account: elytra, pronotum, head, left and right mandibles. The pictures of

each body parts were captured under a trinocular magnifier at ≈ 300 pixels per 1 millimeter (pixels/mm) for elytra,

≈ 600 pixels/mm for pronotum and head, 1500 pixels/mm for mandibles. One can note that the head, pronotum,

and elytra parts have been captured before dissection. The left and right mandibles have been separated from

the beetle’s body before taking the photos. All the images have been taken with the same camera under same90

conditions to release in the RGB color mode with a size of 3264 × 2448 pixels.

12 mm

Figure 1: An illustration of the beetle.

In the next step, morphological landmarks were first set manually on the dorsal views of each body part of the

beetles (head, pronotum, elytra, right and left mandibles). The morphology of each body part was processed and

analyzed separately in order to limit variation resulting from their relative positions due to articulation. Landmarks

were chosen according to the ease and the precision of their location on each specimen (Figure 2). Replicability95

analyses were performed to confirm the accuracy of landmarks positioning. They were positioned on each picture

with TPSDig2 software (version 2.17) (Rohlf, 2013a). In some individuals, mandibles could not be processed because

they were lacking or missing. For each specific part, a set of number of landmarks has been provided, for example,

8 landmarks for pronotum, 10 landmarks for head, 11 landmarks for elytra, 16 and 18 landmarks for left and right

mandibles, respectively (Figure 2). In the context of this study, these manual landmarks have been used as ground100

truth to evaluate the output of our method.

The success stories [14, 15, 16] have proved that CNN models have to be trained on a large dataset with an

enormous number of data samples before using the trained model to perform on testing data. Training the model

with a big dataset can help the model able to learn more different cases and to improve the learning ability of

the network. Unfortunately, providing a large dataset is too costly or even impossible in several domains, e.g., in105

biology, archaeology, medicine. However, a dataset has less than one thousand images is a typical size, and it is

possible to do Deep Learning on such sample size thanks to data augmentation. In our case, we have only 293

images for each part of the beetles. This number is large from the point of view of manual operations, but it is far

from the thousand images. So, we have applied data augmentation to face this problem.
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(a) . Pronotum. (b) . Head. (c) . Elytra. (d) . Left mandible. (e) . Right mandible.

(f) . Pronotum. (g) . Head. (h) . Elytra. (i) . Left mandible. (j) . Right mandible.

Figure 2: The sample images in our dataset (top), the 5 parts and their landmarks defined manually by biologists (bottom).

Most often in deep learning applications, dataset augmentation uses operations such as translation, rotation,110

scaling, shearing or cropping, which are well-known efficient to generate new versions of existing images [14, 44].

However, it exists some CNNs that are inherently invariant to rotation/ translation/ scaling, etc. [44]. In order to

select the right method for our application, we have done some tests by moving the object in the image. In each

time, we have quickly gone to the over-fitting in the training step. Consequently, we have preferred other ways to

produce misshapen images by operating on the image’s color channels. We have proposed two strategies to augment115

the number of images as inputs for our model.

(a) . Add a constant to each channel. (b) . Split the channels of image.

Figure 3: The two strategies to augment the number of images in pronotum set.a) illustrate the augmentation channel per channel by

adding a constant value to each pixel on the corresponding channel. b) illustrate how to extract 3 different images from only one by

selecting a color channel each time.
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The first strategy has been applied to change the value of each channel in the original image. According to

this, a constant have been added to a channel of RGB image for each time. We chose a constant over a random

draw from a distribution so that we always add a sufficient disturbance over the original image but not too much

disturbance so that the network don’t learn “noise”. For example, if we add a constant c = 10 to the red channel120

from an original RGB image, we will obtain a new image with the values at red channel by greater than the red

channel of original image a value of 10. By this way, we can generate three new RGB images from a RGB image.

The second procedure was to split the channels of RGB images in order to create three gray-scale images. This

work seems promising because the network model works on single-channel images. At the end, we have generated

six versions from an image. In total, we have obtained 293 × 7 = 2051 images for each set of images. Figure 3125

illustrates the two described strategies.

To perform the objective, we have observed the input size of the several CNN models [14, 15, 25, 41] and noticed

that most often their input sizes were limited to 256 pixels. One can note that our images were released with the

size of 3264×2448, as mentioned in Section 2.1. This size is a bit heavy for training the network. Consequently, we

have down-sampled (scaled) our images to a new size of 256 × 192 to respect the ratio between width and height.130

Of course, coordinates of landmarks have been down-sampled to the new size of images. Practically, convergence is

usually faster if the average of each input variable over the training set is close to zero [45]. So, the brightness of

the image is normalized to [0, 1].

2.2. Network architecture

As mentioned in Section 1, CNNs are well-known for tasks on computer vision. The layers parameters which135

usually use to set up the layers in a CNN, as well as the hyper-parameter setting could be easy found in the literature

[13, 46] or in the short glossary2. Our initial trials were inspired by AlexNet architecture [14]. The model has been

designed by combining in sequence the classical layers, e.g., convolutional (CONV), max pooling (POOL) and

fully-connected (FC) layers. Unfortunately, over-fitting effects appearance very quickly. In deep learning, Dropout

(DROP) layer is well-known to prevent over-fitting [47] and usually used in the last steps of the procedures. We140

will present now the Elementary Block (EB) model which includes all these layer types and is the core of our model

architecture.

Figure 4: The components of an Elementary Block. Orange, yellow and green boxes contain the operations, blue boxes are the data.

2https://developers.google.com/machine-learning/glossary
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Figure 4 illustrates the order of the layers in an EB item. It is defined as a sequence of a CONV layer, a

maximum POOL layer, and a Dropout layer. In an Elementary Block, the convolution layer is used to extract the

high-level features by applying different filters on the input. Setting POOL layer after the CONV layer towards to145

reduce the dimension of the representation to decrease the number of parameters and also reduce the computing

time. The DROP layer, usually inserted between the FC layers to prevent over-fitting [13, 14], is included in our

model in the extracting feature blocks to produce some kinds of image noise augmentation. The DROP layer

randomly drops some connections during the training process. It makes the network thinner than the original one

(fewer parameters), so training a network with dropout layer is equivalent to train a set of thinner networks.150

Three Elementary Blocks have been then assembled to create the whole network architecture, called Elementary

Blocks Network (EB-Net). The used parameters of layers in EBs have been set as follows: the depths of CONV

layers are set to (32, 64, 128) with a small kernel (3 × 3, 2 × 2, 2 × 2) from the first to the third block, respectively.

The POOL layers in all three blocks have been designed with a filter of 2 × 2 and a stride of 2 pixels. With these

parameter values, the spatial size of the image will be halved after every block. The probabilities of the dropout155

layers are set increasing: 0.1, 0.2, and 0.3, respectively. In order to extract the global relationship between the

features and to provide the prediction, three fully-connected layers have been added after the combination of three

EBs. The first FC layer takes all features from the last block as the input for computing. The last FC layer

outputs the coordinates prediction of landmarks. The number of outputs at each FC layers is set to 1000, 1000,

and X, respectively. The number X is equal to twice the number of landmarks that we want to predict (x, y160

coordinates). For example, to predict 8 landmarks on pronotum, the number of outputs of the last FC layer is set

at 16. Additionally, a dropout layer with the probability equals to 0.5 has been inserted between the first and the

second fully-connected layers as usual [48]. Figure 5 resumes the EB-Net architecture.

Figure 5: Elementary Blocks Network (EB-Net) architecture obtained from a composition of 3 Elementary Blocks and ended by 3

Fully-Connected layers.

In a CNN model, besides the model-specific parameters which involve the structure of the network (e.g., the

number of layers or parameter values of each layer), the optimized hyper-parameters are also important to design165

a CNN model. These variables are related to the training of the network model, for example, the loss function, the

number of epochs, the batch size, and the initialized value of learning rate. Practically, the range of the possible

values is explored through empirical observations depending on the task and the dataset. In our application, we

have chosen the most common optimization algorithm, Stochastic Gradient Descent (SGD) combined with back-

propagation. In order to apply SGD, two relevant parameters need to be provided: learning rate and momentum.170

In our application, the learning rate begins from 0.03 and stops at 0.00001, and the momentum rate is updated from

0.9 to 0.9999. During the training, learning rate and momentum are adjusted to fit with the number of epochs. For
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example, the learning rate and momentum at the first/the third epoch are 0.03/0.029994 and 0.9/0.90001, respec-

tively. Besides, the Root Mean Squared Error (RMSE) has been chosen as loss function because it is employed for

regression problems where outputs represent quantitative values as in the case of coordinates of landmarks. The175

EB-Net has been implemented by using Lasagne framework [49, 50], and trained in 5000 epochs on Linux system

by using a NVIDIA GPU (Titan X) card.

2.3. Setting and training EB-Net

In order to provide the predicted landmarks for all images, we have applied cross-validation technique K-fold

with k = 9, to select the test images. We will call a selection step, a round. For each round, we take 260 images for180

training and validation processes, the 33 remaining images will be kept for testing step and these images are never

seen by the model. It is worth to note that the set of 260 images has been augmented by the strategies described in

Section 2.1, to provide 1820 (260 × 7) images for training and validation steps. The cross-validation step has been

achieved after 9 rounds in total.

During the training and validation step, the 1820 images are randomly divided into training and validation sets185

with a ratio of 60% : 40%. At each training step, the pair of image and its manual landmarks is inputted to train

the network model. In the testing step, we input the image only to the trained model in order to predict landmarks.

In our case, the manual landmarks have been given by the biologists. So, they are used as ground truth to train

the network, as well as to evaluate the predicted ones.

2.4. Statistical evaluation of predicted shapes190

The quality of landmarks predicted by the network must be assessed in view of the desired usage for these

predictions. It is quite frequent in geometric morphometrics to use the landmarks for subsequent Procrustes re-

gression [51] which is a method to quantify the relative amount of shape variations (among specimens) attributable

to one or more factors in a linear model. Before the regression step, a generalized Procrustes analysis [51] trans-

lates all specimens related landmarks to the origin, scales them to unit-centroid size, and optimally rotates them195

until the coordinates of corresponding points align at best. The resulting aligned coordinates represent the shape

of each specimen. Afterward, the Procrustes distance between specimens (i.e., sum-of-squared distance between

corresponding landmarks) can be used for regression purpose [52]. The crucial step that we can take to ensure the

validity of using predicted landmarks for Procrustes regression is a measure of shape covariation between predicted

and manual landmarks [53]. This problem is related to the construction of a latent variable of shape deforma-200

tion, i.e., estimating how landmarks move as a group. Of course, this goes further than studying, independently,

each landmark correlation between predicted versus manual. At the very least it means we are interested, for L

landmarks, in the whole L× L correlation matrix not just in its diagonal.

3. Results

3.1. The first evaluation205

EB-Net has been firstly trained and tested on the pronotum images. Figure 6 shows the losses of training and

validation processes in one round on pronotum images. The blue curve is the training loss, and the green curve
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is the validation one. As we can notice, learning is effective and over-fitting does not appear because validation

loss reaches to the same performance as training loss. We can see that EBs with the help of dropout layers have

properly worked to prevent the over-fitting.210

Figure 6: The losses during training EB-Net on pronotum images.

As mentioned, we have used RMSE as loss value. It was computed based on the distances between manual and

predicted landmarks, so we tried to minimize the RMSE values during the training and validation processes. Table

1 shows the losses of the 9 rounds of EB-Net training on pronotum images. We can observe that although the

image dataset changes through each round, the loss values remain stable and always under 3× 10−3. Based on the

success of EB-Net on pronotum images, we have employed it on the two sets of head and elytra images with the215

same result qualities.

Round 1 2 3 4 5 6 7 8 9

Training loss 0.00018 0.00019 0.00019 0.00021 0.00021 0.00019 0.00018 0.00018 0.00020

Validation loss 0.00019 0.00021 0.00026 0.00029 0.00029 0.00018 0.00018 0.00021 0.00027

Table 1: The losses during the training of EB-Net on pronotum images

The performances of a CNN is most often measured from the loss or the accuracy. But in this work, we also need

to appreciate correctly where the estimated landmarks are positioned by the network. So, the trained model of each

round has been used to predict the landmarks in images of the corresponding testing set. Then, the coordinates

of outputted landmarks are evaluated by comparing with the manual ones. Figure 7 illustrates the landmarks on220

the three parts of beetles. The red/yellow points present the predicted/manual landmarks. One can note that even

some predicted landmarks are close to the manual ones, we have also some predicted coordinates that are far from

the expected results.

In order to provide a global evaluation, the distances (in pixels) have been calculated between the manual

landmarks and the corresponding predicted ones, and the average value at each position has been taken into225

account. Table 2 shows the obtained average distance for pronotum, head and elytra. With the image’s size of

256 × 192, we can consider that an error around 1% of image size (≈ 2 pixels) could be accepted. Unfortunately,
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(a) . Pronotum (b) . Head (c) . Elytra

Figure 7: The landmarks on three parts of beetle. The red/ yellow points present the predicted/ manual landmarks.

our results exhibit the average distances from 4 to 5 pixels (≈ 2% of error).

Landmark 1 2 3 4 5 6 7 8 9 10 11

Pronotum 4.00 4.48 4.3 4.39 4.29 5.36 4.64 4.94 - - -

Head 5.53 5.16 5.38 5.03 4.84 4.45 4.79 4.53 5.14 5.06 -

Elytra 3.87 3.97 3.92 3.87 4.02 4.84 5.21 5.47 5.27 4.07 3.99

Table 2: The average distances per landmark on images of each set.

It is worth to note that an average value could reflect several different cases, for example, the values closed

together (small dispersion) or two sets of values very far (large dispersion). In order to see in which situation we230

are, Figure 8 shows the distribution of distances between the manual and predicted landmarks of all images for the

best and the worst average values (corresponding to the green and red values in the Table 2). Each point presents

the distance between the points (landmarks) of an image. The lines (blue/red) illustrate the average distance in

each case. In both of two cases (the best and the worst), the distances mostly stayed in the region from 0 to the

average value. Regarding these figures, it is clear that even a large number of points remains inside the range from235

0 to average value, some points are widespread between the average and 15 or 25 pixels. The question is: is it

possible to lower the mean and to lower the dispersion above the mean value?

3.2. Transfer learning to improve performances

Working with deep learning generally requires not only to design a good architecture but also to provide a

huge dataset to train and test the model. Practically, this is a potential problem in some application domains as in240

biology, and we have to augment the number of samples before using it to train the model. However, the augmented

dataset is far away from several hundred thousand images. In this case, knowledge transfer or transfer learning

between tasks is another solution to deal with this problem, and it could be an additional solution to improve the

prediction.

Transfer learning is a technique in deep learning to re-purpose a model which has been designed for a specific245

task (source task) on another related task (target task) [54, 55]. Choosing which strategy of transfer learning to
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(a) . The 1st landmark (pronotum) (b) . The 6th landmark (pronotum)

(c) . The 6th landmark (head) (d) . The 1st landmark (head)

(e) . The 1st landmark (elytra) (f) . The 8th landmark (elytra)

Figure 8: The distribution of distances for the best and the worst cases of the three parts

apply depending on the relationship between two tasks, as well as the size of database. Practically, transfer learning

is often targeted on 2 strategies:

• Use CNN as a fixed feature extractor: Taking a CNN pre-trained on a large dataset, then removing

the last (or several) fully-connected layers and using the rest layers of CNN as a fixed extractor for the new250

dataset.

• Fine-tuning a CNN: This strategy replaces the fully-connected layers (the last one or some layers) as the

first strategy has done. However, it does not only replace and retrain the last layer but also fine-tunes the

weights of the pre-trained model by extending the backpropagation. One can note that to reuse a pre-trained

model, the parameters have to be adapted between the two tasks. These parameters could be the size of input255

images, the number of outputs, or the parameters of each layer.

In deep learning community, ImageNet is known as a large dataset with more than 14 million images of thousands
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of categories [56]. Notable models have employed ImageNet as training data to solve different tasks [14, 57]. These

pre-trained models have been widely shared in deep learning community as a source to re-use the features of

ImageNet dataset. As a preliminary work, we have tested several well-known models, e.g., AlexNet [14], VGG-16260

[57] that have been trained on ImageNet [56]. Unfortunately, the features from ImageNet seem to be not relevant

for our application because the image features mainly concern the detection of global shape of the objects whereas

landmarks can be considered as local features [58]. Fortunately, searching for landmarks is explicitly defined in

other applications like face recognition, or facial key-points detection. Consequently, we have decided to continue

with EB-Net to improve the quality of predicted landmarks coordinates.265

3.2.1. Pre-train EB-Net on facial keypoint dataset

In recent years, several competitions 3 have been organized for predicting facial keypoints on human face, the

training datasets have been freely published. We have decided to choose such facial keypoints dataset to pre-train

EB-Net and then to transfer the parameters values to fine-tune them for beetle’s images.

The selected dataset to pre-train EB-Net has been published for a challenge4 on the Kaggle website. It includes270

2140 images of human faces (96×96 pixels). For each image, 15 landmarks have been defined: 6 landmarks for eyes,

4 landmarks for eyebrows, 4 landmarks for the mouth, and 1 landmark for nose tip. Figure 9 shows 4 examples of

face images and their landmark positions in the dataset.

Figure 9: The samples (face and manual landmarks) in the dataset on Kaggle that we have used to pre-train EB-Net.

In order to use EB-Net on this dataset, we have adapted the parameters of the input and the output layers to

match with the face images size and the landmark number. The new parameter values are 96 × 96 for the input275

size, and 30 for the number of outputs of the last FC layer (corresponding to 15 landmarks). For hyper-parameters,

just the number of epochs have changed to reach the value of 10000 epochs. In table 3, we show the RMSE score

and the comparison of the effectiveness between EB-Net and the three best ones that have been published for the

challenge.

Team Olegra Trump Enes EB-Net

RMSE score (in pixels) 1.2824 1.4004 1.4026 1.497

Table 3: RMSE comparison between our score and top three of challenge.

3Deepfake Detection Challenge/ Facial Keypoints Detection
4https://www.kaggle.com/c/facial-keypoints-detection
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It is worth to note that the three scores have been obtained by testing the models on a private set of images280

that are not freely available. To do the test, we have had to use some images getting from the public data set, 100

images have been chosen to do that. Comparing with these scores, the three models present better results than

ours but we are very close. The RMSE score is around 1 pixel that is an acceptable error to display the landmarks

on the images. Consequently, the pre-training of EB-Net is considered as correct and we have decided to re-use the

pre-trained parameters values to fine-tune the model for beetle images.285

3.2.2. Fine-tuning on beetle images

As we have mentioned, fine-tuning is a strategy of transfer learning that could boost the efficiency of a model

on a target task. Technically, the weights of a CNN model can be fine-tuned by continuing the backpropagation,

and it exists two ways to perform fine-tuning process: frozen and unfrozen.

• Frozen scenario: the parameters of lower layers (close to the input layer) will be fixed, we fine-tune only the290

higher ones (close to the output layer).

• Unfrozen scenario: allows continuing to update the parameter values of all layers in the model.

In order to fine-tune EB-Net on beetle images, we have gone with unfrozen process to continue updating the

parameter values. One can note that the sizes of images in the two datasets are different: the beetle images have a

size of 256×192 pixels; whereas the size of facial images is 96×96 pixels, far from the beetle images. Consequently,295

adjustments are needed to match the two tasks.

First of all, reducing the resolution of the beetle images to 96×96 could be lead to a loss of essential information.

As our images contain a background band, it is easy to suppress it with a pre-processing operation, we have chosen

to remove a part of the background region (without any beetle’s parts) instead of down-sampling our pictures. So,

the new beetle images are finally set to 192×192 pixels. The EB-Net parameters will be settled to take into account300

the differences of the values between the pre-training and fine-tuning steps. To declare the modification, we set the

stride value of the first convolutional layer to 2 (as the usual way to do [55]).

3.2.3. Fine-tuning results

We present all the obtained results for the three beetle parts: pronotum, head and elytra, in the same way

than in the previous results in order to provide an explicit comparison. Tables 4, 5, 6 show the comparison at each305

position between the average distances provided by the two processes (training from scratch and fine-tuning) on

pronotum, head, and elytra, respectively. The first row presents the landmark number; From scratch row reminds

the previously average distances when EB-Net has been trained from scratch; Fine-tune row presents the new

average distances; the last row presents the improvement percentage between the two processes. The green and

red values are respectively the best and the worst values in each process. All distances are given in pixel unity. In310

all these tables, all the average distances have decreased between 1 and 1.5 pixels in both of three sets of images.

Clearly, the fine-tuning process has improved the landmark prediction for each group. The best-predicted positions

(green ones) have changed but it exists a group of well-predicted landmarks in each set of images, such as:

• For pronotum: the 1st, 3rd, and 7th landmark.
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• For head: the 6th, 7th, 8th, and 10th landmark.315

• For elytra: the 1st − 5th, 10th, and 11th landmark.

At the opposite side, the worst cases remain the same positions as previously: the 6th, 1st, and 8th landmark

on pronotum, head, and elytra, respectively.

Landmark 1 2 3 4 5 6 7 8

From scratch 4.00 4.48 4.3 4.39 4.29 5.36 4.64 4.94

Fine-tune 2.99 3.41 2.98 3.54 3.37 4.06 2.93 3.64

% of impr. 25.25 24.01 30.56 19.18 21.55 24.28 36.85 26.16

Variance 3.27 4.99 4.26 5.92 5.16 6.70 3.94 6.16

IR (Interquartile Range) 2.11 2.52 2.16 2.81 2.45 2.96 2.45 3.10

Min 0.23 0.17 0.22 0.16 0.1 0.17 0.23 0.16

Max 14.25 18.41 19.21 22.89 17.46 14.07 14.09 15.46

Table 4: Average distances comparison on pronotum images and other scores. The landmarks number 1 and 7 remain the best

estimation after fine-tunning, the number 6 is the worst one.

Landmark 1 2 3 4 5 6 7 8 9 10

From scratch 5.53 5.16 5.38 5.03 4.84 4.45 4.79 4.53 5.14 5.06

Fine-tune 4.82 4.21 4.73 4.11 4.18 3.5 3.92 3.4 4.17 3.94

% of impr. 12.83 18.43 12.15 18.42 13.69 21.43 18.29 24.94 18.88 22.01

Variance 8.55 8.62 8.51 8.48 7 8.05 6.4 6.47 6.43 7.26

IR 3.91 2.94 3.73 2.89 3.25 2.71 2.84 2.65 2.89 2.65

Min 0.37 0.21 0.27 0.19 0.27 0.24 0.21 0.15 0.44 0.15

Max 21.18 23.94 19.12 21.65 20.23 22.68 21.03 21.23 22.03 20.72

Table 5: Average distances comparison on head images and other scores. The landmarks number 6 and 8 obtain the best estimation

and the number 8 is the worst one.

Considering on each landmark position, the level of improvement is different depending on the difficulty of its

location (surrounding area). But, all cases have been improved even they are the best or the worst cases. With320

the help of fine-tuning, the predictions have gained from 36.85%/24.94%/18.36% to 19.18%/12.15%/12.82% on

pronotuom, head, and elytra, respectively.

As we have mentioned before, the mean value hides different situations. So, we have checked again these

distribution of distances. Figure 10, 11, 12 shows the distribution of distances on two samples in each set of images:

pronotum, head, and elytra, respectively. In these charts, the x-axis and y-axis present the image number (id) and325

the distance (in pixel). Each point in the chart represents a distance between manual and predicted landmarks,

respectively. The blue/red lines in charts present the average values. We can observe from the figures that the
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Landmark 1 2 3 4 5 6 7 8 9 10 11

From scratch 3.87 3.97 3.92 3.87 4.02 4.84 5.21 5.47 5.27 4.07 3.99

Fine-tune 3.21 3.28 3.2 3.22 3.31 4.21 4.54 4.76 4.55 3.39 3.29

% of impr. 17.04 17.34 18.36 16.61 17.66 13.13 12.82 12.96 13.69 16.68 17.54

Variance 9.39 10.26 9.03 9.62 10.24 11.23 12.3 11.93 10.75 9.2 9.11

IR 2.2 2.33 2.37 2.32 2.38 2.82 3.2 3.54 3.46 2.19 2.07

Min 0.13 0.16 0.08 0.15 0.12 0.21 0.35 0.47 0.27 0.18 0.05

Max 32.67 34 31.09 33.15 35.8 35.3 34.74 32.17 28.35 29.92 32.36

Table 6: Average distances comparison on elytra images and other scores. The landmarks number 1 and 3 obtain the best estimation

and the number 8 is the worst one.

distance values are very different from the two processes (training from scratch and fine-tuning). The distances

have been reduced with the help of fine-tuning process whatever they were the low or the high values in the case of

training from scratch. We have gained more points (in the chart) in the range from zero to the average distance,330

and the number of extreme values have been decrease too. For example, in the worst case of pronotum (the 6th

landmark), we do not see any point greater than 15 pixels with the fine-tuning process. However, it exists some

difficult cases that the model could not optimize in the head or the elytra parts. These cases could be noted as the

outlier values in our dataset.

(a) . 1st landmark (from scratch) (b) . 1st landmark (fine-tuning)

(c) . 6th landmark (from scratch) (d) . 6th landmark (fine-tuning)

Figure 10: A comparison of distances distribution of the 1st landmark and the worst case (6th landmark) on pronotum images.
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(a) . 6th landmark (from scratch) (b) . 6th landmark (fine-tuning)

(c) . 1st landmark (from scratch) (d) . 1st landmark (fine-tuning)

Figure 11: The distribution of distances of all head images on 1st landmark and 6th landmark.

(a) . 1st landmark (from scratch) (b) . 1st landmark (fine-tuning)

(c) . 8th landmark (from scratch) (d) . 8th landmark (fine-tuning)

Figure 12: The distribution of distances of all elytra images on 1st landmark and 8th landmark.
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To illustrate the results, Figure 13 shows both predicted (in red) and manual (in yellow) landmarks on three335

random images from the three sets of images. Clearly, the predictions have been improved, they are more closer to

the manual ones.

(a) . Pronotum (b) . Head (c) . Elytra

Figure 13: The location of predicted/manual landmarks in one case of each part.

The red/yellow points represent the predicted/manual landmarks.

3.2.4. Predicted shapes : comparing ’from-scratch’ to fine-tuning

We have measured shape covariations between predicted landmarks and manual ones [53], assessing the per-

formance of fine-tuned and ‘from scratch’ networks (described previously) on each anatomical parts. The shape340

covariation is expressed as a correlation coefficient and an associated p-value.

From scratch Fine-tune

cor p-value cor. p-v.

Pronotum 0.4118 0.001 0.7424 0.001

Head 0.5145 0.001 0.7337 0.001

Elytra 0.2513 0.407 0.3025 0.069

Table 7: Shape covariation between predicted and manual landmarks: shape covariation as a correlation coefficient (cor.) and an

associated p-values (p-v.)

We can see from table 7 that shape correlations varies between 0.2513 and 0.7424 and that 4 out of 6 of them

are statistically significant (i.e., p-value < 0.001). For all the anatomical parts, the fine-tuning improved the shape

correlations and its statistical significance. Best results are obtained for fine-tuned networks predicting pronotum’s

and head’s landmarks with high significant correlations, 0.7224 and 0.7337 respectively. Fine-tuning enhanced345

predictions on Elytra but not enough to make them usuable. We end up with a majority ( 2
3 ) of anatomical parts

where the predicted landmarks are good candidate for replacing manual ones in any procrustes regressions.
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4. Discussion and perspectives

In this article, we have presented a convolutional neural network, EB-Net, for automatically predict the land-

marks on entomological images. It is based on three times the repetitions of a generic block followed by fully350

connected layers. The block consists of a convolutional layer, a max-pooling layer, and a dropout layer. In the

first step, the EB-Net has been separately trained on each part of the beetles. In order to improve the results, the

fine-tuning process has been added by pre-training EB-Net on a facial key-points dataset before transferring the

parameter values to fine-tune on each set of images.

The results have been evaluated by calculating the distances between manual and predicted landmarks. These355

results have shown that using CNN to predict the landmarks on biological images leads to satisfying results without

need for the complex pre or post processing steps on the studied objects. These predictions are statistically

significant to replace manual landmarks in procrustes regression studies, which are fairly common in morphometric

studies e.g., two classic methodological papers on the subject[52, 59] have, respectively, direct citations of over one

thousand and over a hundred 5.360

This work has addressed a complex task in computational biology: automatic landmark digitalization. The

interest in this topic is not new, but the relevant algorithms and computational power have only been available

fairly recently [60, 61, 62, 63]. Even so most methods are seldom used by biologist and even so by entomologist.

Maybe it is because the software tools are too complex and the necessary datasets not always available (e.g., too few

training images and related manual landmarks). We show here that a neural network with a relevant architecture365

can provide a high quality of results in only a few methodological steps. We took care of constructing this network

using standard software tools to ease any technological transfer. Also, our model, EB-Net, can easily work with a

limited number of images and improve its prediction results by fine-tuning the parameter values obtained from pre-

training on another dataset. Another interesting trait about automatic landmark digitalization is that it’s a proxy

to many different questions. While image-based insect classification (within or among species) [64] serves a singular370

purpose, automatic generation of landmarks can help a variety of questions including regressions on (environmental)

covariates, studies of shape-covariations, evaluation of phylogenetic signals and, of course, classification.

One can note that the elementary block that we used to build EB-Net, is generic so it’s easy to adjust the suitable

number of blocks for ones applications depending on the computing resources, as well as the expected results. For

example, we have tried to add a new elementary block to EB-Net. The experiments have shown that the results375

have been slightly improved, but we have spent more resources and computing times to reach this improvement.

The average distances have been improved by 0.5 pixels. However, this change was statistically insignificant (data

not shown). Consequently, we need to note that it exists a balance between the depth of the model, the accuracy

of outputs and the cost to compute. This elementary block approach is not, formally, a neural architecture search

[65] i.e., a method for automating the design of a CNN, but it is an easy way to implement practical solution.380

In this paper, we focused on a carabid species which is linked to studies in agroecology and conservation ecology.

But EB-Net has the potential to be applied to other insects and invertebrates as well. In [66], a bibliographic survey

5Source Web of ScienceTM accessed on 04/24/2020.
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of articles published between 2000 and 2015 resulted in finding 472 publications that used geometric morphometric

methods to describe the shape of insects, with a linear 20 fold increase of publications over the period and a

bias toward a few orders of insects: Diptera, Coleoptera (as is the case here) and Hymenoptera. These 3 orders385

encompass of wide range of insects from pests (e.g., flies) to pollinators (e.g., bees). The range of applications for

EB-Net is hence quite wide. In the near future, we also plan to test our model on datasets linked with sanitary issues

notably invasive and quarantine species of nematods ([67]) that are affecting Europe (Bursaphelenchus xylophilus)

in the midst of the COVID-epidemics. To ease the use of our model, all the implementations, EB-Net model and

EB-Net parameters, are available as open-source software6, so it should be possible to reuse EB-Net parameters for390

another landmark setting application and to apply transfer learning. We plan also to export EB-Net architecture

to other application domains in biomedical imaging most notably MRI images analysis.
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