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Abstract: Severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) infection, the
causative agent of COVID-19, now represents the sixth Public Health Emergency of International
Concern (PHEIC)—as declared by the World Health Organization (WHO) since 2009. Considering
that SARS-CoV-2 is mainly transmitted via the mucosal route, a therapy administered by this same
route may represent a desirable approach to fight SARS-CoV-2 infection. It is now widely accepted
that genetically modified microorganisms, including probiotics, represent attractive vehicles for oral
or nasal mucosal delivery of therapeutic molecules. Previous studies have shown that the mucosal
administration of therapeutic molecules is able to induce an immune response mediated by specific
serum IgG and mucosal IgA antibodies along with mucosal cell-mediated immune responses, which
effectively concur to neutralize and eradicate infections. Therefore, advances in the modulation of
mucosal immune responses, and in particular the use of probiotics as live delivery vectors, may
encourage prospective studies to assess the effectiveness of genetically modified probiotics for SARS-
CoV-2 infection. Emerging trends in the ever-progressing field of vaccine development re-emphasize
the contribution of adjuvants, along with optimization of codon usage (when designing a synthetic
gene), expression level, and inoculation dose to elicit specific and potent protective immune re-
sponses. In this review, we will highlight the existing pre-clinical and clinical information on the use
of genetically modified microorganisms in control strategies against respiratory and non-respiratory
viruses. In addition, we will discuss some controversial aspects of the use of genetically modified
probiotics in modulating the cross-talk between mucosal delivery of therapeutics and immune system
modulation.

Keywords: coronavirus; SARS-CoV-2; COVID-19; probiotics; vaccines; mucosal immunization

1. Introduction

The end of 2019 was marked with the beginning of the COVID-19 outbreak caused
by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [1]. As of March
2021, more than 115 million cases and 2.5 million SARS-CoV-2-associated deaths have been
reported worldwide (WHO COVID-19 Disease Dashboard, 2020). SARS-CoV-2 is a positive-
sense, single stranded RNA virus that replicates in the cytoplasm and encodes several
structural and non-structural proteins with a genome size of around 29.9 kb (accession
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code MN908947) [2]. The high rates of SARS-CoV-2 transmission between humans [3],
and the current lack of fast-paced, comprehensive vaccination strategies to contain the
spread of this infection, make this pandemic a major international public health concern [4].
Therefore, studies are ongoing to find effective drugs to treat and prevent COVID-19. It is
generally accepted that vaccination is the most effective approach to control the spread of
SARS-CoV-2 transmission [5].

The four major structural proteins of SARS-COV-2 are the spike (S) glycoprotein,
and the nucleocapsid (N), membrane (M) and envelope (E) proteins [6]. The S protein is
responsible for attachment to the host cell following recognition of the human angiotensin-
converting enzyme 2 (hACE2) receptor, which plays a pivotal role in provoking the immune
response during the progression of disease and is targeted by host neutralizing antibod-
ies (Figure 1) [7,8]. Therefore, the S protein serves as a key target in the assessment of
SARS-CoV-2-reactive IgG antibodies, as well as the development of COVID-19 vaccines.
Additional studies have identified a number of CD4+ and CD8+ T-cell epitopes within the
amino acid sequences of the S protein, stressing their potential roles in inducing T-cell
responses [9–11]. In addition, current studies suggest that the N protein of SARS-CoV-2 is
also a suitable candidate for vaccine development given its high potential to trigger both a
humoral and a T-cell immune response in humans [12,13].

Vaccines 2021, 9, x 2 of 20 
 

 

positive-sense, single stranded RNA virus that replicates in the cytoplasm and encodes 

several structural and non-structural proteins with a genome size of around 29.9 kb (ac-

cession code MN908947) [2]. The high rates of SARS-CoV-2 transmission between humans 

[3], and the current lack of fast-paced, comprehensive vaccination strategies to contain the 

spread of this infection, make this pandemic a major international public health concern 

[4]. Therefore, studies are ongoing to find effective drugs to treat and prevent COVID-19. 

It is generally accepted that vaccination is the most effective approach to control the 

spread of SARS-CoV-2 transmission [5]. 

The four major structural proteins of SARS-COV-2 are the spike (S) glycoprotein, and 

the nucleocapsid (N), membrane (M) and envelope (E) proteins [6]. The S protein is re-

sponsible for attachment to the host cell following recognition of the human angiotensin-

converting enzyme 2 (hACE2) receptor, which plays a pivotal role in provoking the im-

mune response during the progression of disease and is targeted by host neutralizing an-

tibodies (Figure 1) [7,8]. Therefore, the S protein serves as a key target in the assessment 

of SARS-CoV-2-reactive IgG antibodies, as well as the development of COVID-19 vac-

cines. Additional studies have identified a number of CD4+ and CD8+ T-cell epitopes 

within the amino acid sequences of the S protein, stressing their potential roles in inducing 

T-cell responses [9–11]. In addition, current studies suggest that the N protein of SARS-

CoV-2 is also a suitable candidate for vaccine development given its high potential to trig-

ger both a humoral and a T-cell immune response in humans [12,13].  

 

Figure 1. Schematic representation of the structure of important SARS-CoV-2 proteins, targeting the 

ACE2 receptors and promoting viral entry in infected cells. The SARS-CoV-2 spike (S) protein me-

diates membrane fusion by binding to these cellular receptors (retrieved from https://app.bioren-

der.com/biorender-templates (access date: 06 March 2021)): “SARS-CoV-2 Targeting of ACE2 Receptor 

and Entry in Infected Cell”). 

Unlike the S and N proteins, the M and E proteins are poorly immunogenic and are 

not targeted by immune responses against coronaviruses, possibly owed to their small 

ectodomains and small overall molecular sizes [14], as was demonstrated in animal mod-

els adoptively transferred with sera from donors vaccinated with a virus vector delivering 

these proteins [15]. 

Figure 1. Schematic representation of the structure of important SARS-CoV-2 proteins, targeting
the ACE2 receptors and promoting viral entry in infected cells. The SARS-CoV-2 spike (S) protein
mediates membrane fusion by binding to these cellular receptors (retrieved from https://app.
biorender.com/biorender-templates (access date: 6 March 2021)): “SARS-CoV-2 Targeting of ACE2
Receptor and Entry in Infected Cell”).

Unlike the S and N proteins, the M and E proteins are poorly immunogenic and are
not targeted by immune responses against coronaviruses, possibly owed to their small
ectodomains and small overall molecular sizes [14], as was demonstrated in animal models
adoptively transferred with sera from donors vaccinated with a virus vector delivering
these proteins [15].
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The essential roles of the upper respiratory and/or gastrointestinal tracts as the main
routes of SARS-CoV-2 transmission in humans strongly suggest that mucosal delivery of
SARS-CoV-2 antigens may represent an attractive and effective strategy for the develop-
ment of a mucosal vaccine to control COVID-19. Lactic acid bacteria (LAB) are a group of
Gram-positive bacteria widely used in industrial food fermentation processes. The most
studied genera belonging to LAB are Lactobacillus, Lactococcus, Streptococcus, Enterococcus,
and Pediococcus [16]. Thus, these microorganisms are Generally Recognized As Safe by
health authorities, earning a GRAS status by the FDA (USA) [17] and a qualified presump-
tion of safety (QPS) by the EFSA (Europe) [18]. When these microorganisms are ingested
live in adequate amounts, they can survive in the host digestive tract, where they are
likely to exert various beneficial actions on the host, an effect known as probiotic [19,20]. In
addition, some genera, such as lactobacilli, are commensal bacteria and considered thus as
part of the intestinal microbiota [21].

The ability of these microorganisms to survive and colonize the host mucosal surfaces
and their immunomodulatory capabilities (i.e., probiotic effects) make them promising
vehicles for the delivery of heterologous antigens via mucosal routes [22–25]. In addition,
these vectors, which are easier and safer to administer and cheaper to produce than
traditional, injectable vaccines, could be well suited to mass vaccination campaigns in
developing countries [26–28]. Over the last two decades, research on the use of LAB
as live vectors in the development of mucosal vaccines has focused on the construction
of genetically modified (or recombinant), strains of the species: Lactobacillus plantarum,
Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus delbrueckii, and Lactococcus lactis
able to produce numerous respiratory and non-respiratory virus-derived antigens (among
others) (Table 1). Based on these pioneering studies, we can envisage that recombinant
LAB-based vaccines may be an attractive option to deliver SARS-CoV-2 antigens to mucosal
surfaces and evoke a protective immune response. However, despite numerous reports on
the use of recombinant LAB and their demonstrated potential in inducing mucosal immune
responses and the prevention of respiratory viral infections, to our knowledge no studies to
date have explored the use of recombinant probiotics in the development of vaccines to treat
SARS-CoV-2 infections and help control the COVID-19 outbreak. Certainly, more research
is needed to demonstrate the full potential of recombinant probiotics. Here, we will discuss
the potential antiviral efficiency of a recombinant probiotics-based vaccine, with a special
emphasis on SARS-CoV-2 infection. Our goal is to provide a global overview on the use
of recombinant LAB in vaccine development, which includes a full understanding of the
mechanisms involved in the crosstalk between mucosally delivered therapeutics and the
host immune system. This knowledge will be key in the design of future in vitro and
preclinical studies as well as subsequent clinical trials.
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Table 1. Pre-clinical and clinical studies of probiotic-based vaccines against respiratory and non-respiratory viruses.

Probiotic Virus Host/Inoculation Route Pathways of Immune System Induction Number Dosage Reference

L. acidophilus Avian
influenza virus H5N1 Mouse/Oral

Induction of anti-HA1 IgA antibody,
anti-HA1 IgG, lymphocyte proliferative

reaction, and IL-4
6 times 1 × 1010 CFU/mL

[22]
L.

delbrueckiisubsp.
lactis

Avian
influenza virus H5N1 Mouse/Oral

Induction of anti-HA1 IgA antibody,
anti-HA1 IgG, lymphocyte proliferative

reaction, and IL-4
6 times 1 × 1010 CFU/mL

L. casei
Porcine rotavirus Mouse/Oral Induction of serum IgG and mucosal IgA 9 times 1 × 109 CFU/mL [23]

Infectious pancreatic
necrosis virus (IPNV) Rainbow trouts/Oral Induction of specific IgM anti-pIPNV, and

reduction of viral loads 2 times 5 × 108 pfu/200 µL [26]

L. lactis Human papillomavirus
type 16 (HPV-16) Healthy women/Oral

Induction of E7-specific IgG and SIgA
antibody and, E7-specific IFN-γ-secreting

CD8+ T cell immune response
20 times 1 × 109, 5 × 109, and

1 × 1010 CFU/mL
[27]

L. plantarum Influenza virus H9N2 Mouse/Oral Induction of IgG, sIgA, HI antibodies,
and CD8+ T cell immune response 7 times 1 × 109 CFU/mouse [28]

L. lactis Influenza virus H1N1 Mouse/Oral Induction of specific serum IgG and IgA,
and sIgA 9 times 1 × 1010 and 5 × 1010 CFU/mL [29]

L. casei Severe acute respiratory
syndrome (SARS) Mouse/Oral and nasal Induction of serum IgG and mucosal IgA For oral: 20 times

For nasal: 8 times
For oral: 5 × 109 cells/100 µL
For nasal: 2 × 109 cells/20 µL

[30]

L. plantarum Newcastle disease virus
(NDV) Chicken/Oral

Induction of sIgA, CD3+CD4+T, T
lymphocytes proliferation and increasing

survival rates
9 times 109 CFU/0.2 mL [31]

L. lactis Human papillomavirus
type 16 (HPV-16) Mouse/Oral

Induction of E7-specific antibody and
E7-specific CD4+ Th and CD8+ T cell

precursors, specific IL-2- and
IFN-γ-secreting T cells

9 times 1 × 108, 1 × 109, and
1 × 1010 CFU/mL

[32]
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Table 1. Cont.

Probiotic Virus Host/Inoculation Route Pathways of Immune System Induction Number Dosage Reference

L. plantarum

Influenza A virus H1N1 Mouse/Oral

Induction of Peyer’s patch (PP) DC, PP
B220+IgA+, sIgA, growth centers (GCs) in

PPs, T immune response, CD8+IFN-γ+

cells, and reduction viral load

6 times - [33]

Goose parvovirus (GPV) Mouse/Oral Induction of CD11c+, CD3+CD4+,
CD3+CD8+, IFN-γ+ and TNF-α, and sIgA 14 times 2 × 109 CFU/mL [34]

Avian influenza virus Chicks/Oral
Induction of specific humoral, mucosal,
and T cell-mediated immune responses,

and reduction viral load
6 times 2 × 109 CFU/300 µL [35]

Avian influenza virus
H9N2 Mouse/Oral

Induction of specific mucosal antibody
responses and B and T cell responses,

specific CD8 T cells, and antigen specific
cytotoxicity

6 times 1 × 109 CFU/mouse [36]

L. casei

Mouse/Oral and nasal Induction of serum IgG, mucosal IgA,
and cell-mediated immune response

For oral: 10 times
For nasal: 8 times

For oral: 1 × 1010 CFU/100 µL
For nasal: 1 × 109 CFU/20 µL

[37]

Influenza A viruses Mouse/Oral and nasal

Induction of serum IgG and their isotypes
(IgG1 & IgG2a), mucosal IgA, sM2- or
HA2-specific cell-mediated immunity,

IFN-g, and IL-4

For oral: 8 times
For nasal: 6 times

For oral: 1 × 1010 CFU/100 µL
For nasal: 1 × 109 CFU/20 µL

[38]

Transmissible
gastroenteritis virus

(TGEV)

Mouse and pregnant
sow/Oral and nasal Induction of IgG and sIgA For oral :20 times

For nasal: 8 times

For oral:
5 × 109 CFU/mL

For nasal: 2 × 109 CFU/mL [39]

Human papillomavirus
type 16 (HPV-16) Mouse/Oral Induction of L2-specific serum IgG and

vaginal IgG, and IgA 30 times 5 × 109 cells/mL [40]

Transmissible
gastroenteritis

coronavirus (TGEV)
Oral/Piglet

Induction of systemic and mucosal
immune responses, cellular immunity,

switching from Th1 to Th2-based
immune responses

1–48 h 1 × 1010 CFU/mL [41]
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Table 1. Cont.

Probiotic Virus Host/Inoculation Route Pathways of Immune System Induction Number Dosage Reference

L. casei

Classical swine fever
virus (CSFV) and porcine

parvovirus (PPV)
Pig/Oral

Induction of mucosal and systemic
CSFV-specific CD8 CTL responses,

anti-PPV-VP2 serum IgG, and mucosal
IgA

6 times 1 × 1010 CFU/mL [42]

Infectious pancreatic
necrosis virus (IPNV)

Juvenile rainbow
trouts/Oral

Induction of IgM and IgT, IL-1β, IL-8,
CK6, MHC-II, β-defensin, TNF-1α, and

reduction in viral load.
2 times 1 × 109 CFU/mL [43]

Human papillomavirus
type 16 (HPV-16) Human/Oral Induction of E7-specific humoral, cellular,

and mucosal immune response 20 times 500, 1000, and 1500 mg/day [44]

L. lactis Human papillomavirus
type 16 (HPV-16) Healthy women/Oral

Induction of E6-specific IgG and SIgA
antibody and, E6-specific IFN-γ-secreting

CD8+ T cell immune response
20 times 1 × 109, 5 × 109, and

1 × 1010 CFU/mL
[45]

L. acidophilus
Human

immunodeficiency virus
1 (HIV-1)

Mouse/Oral

TLR5-stimulating activity, maturation
and cytokine responses of DCs, induction
of gamma interferon-producing cells, and

Gag-specific IgA-secreting cells

Three daily doses on
weeks 0, 2, and 4 2 × 109 CFU/mL [46]

L. lactis Streptococcus
pneumoniae Mouse/Nasal

Induction of PspA-specific IgG and IgA
antibodies, and Th1-mediated immune

response
3 times 1 × 109 CFU/mL [47]

L. casei Porcine epidemic
diarrhea virus (PEDV) Mouse/Oral

Induction of mucosal and systemic
immune responses,

IL-4, and IFN-γ
9 times 2 × 109 cell/0.1 mL [48]

L. lactis

Avian influenza virus Mouse/Oral Induction of specific anti-HA1 IgA and
IgG antibodies, IL-4, and IFN-γ 6 times 1 × 1010 CFU/mL [49]

Avian Influenza
(HA1) Virus Mouse/Oral

Induction of HA-specific serum IgG and
fecal IgA, CD8+ T cell proliferation, and

IFN-γ+
13 times 1 × 1010 CFU/mL [50]

L. plantarum Influenza virus H9N2 Mouse/Oral

Induction of CD3+CD4+IL-4+,
CD3+CD4+IFN-γ+ and CD3+CD4+IL-17+

T cells, CD3+CD8+IFN-γ+ T cells, serum
IFN-γ, IgA, sIgA, and increasing survival

rate

9 times 109 CFU/0.1 mL [51]



Vaccines 2021, 9, 466 7 of 21

Table 1. Cont.

Probiotic Virus Host/Inoculation Route Pathways of Immune System Induction Number Dosage Reference

L. lactis

Hepatitis E virus (HEV) Mouse/Oral Induction of ORF2-specific mucosal IgA
and serum IgG, and cellular immunity 6 times 1 × 1010 CFU/mL [52]

Human papillomavirus
type 16 (HPV-16) Mouse/Oral

Induction of specific IgA and IgG, specific
IL-2- and IFN-γ-secreting lymphocytes,

and increasing survival rate
9 times 1 × 109 CFU/mL [53]

L. casei Human papillomavirus
type 16 (HPV-16) Human/Oral Induction of cellular and mucosal

immune response

1, 2, 4, or 6
capsules/day at

weeks 1, 2, 4, and 8
250 mg/ capsule [54]

L. lactis

Dengue (DEN) virus Mouse/Oral and nasal Induction of anti-EDIII antibody
responses 6 times For oral: 1 × 1010 CFU/mL

For nasal: 1 × 108 CFU/mL
[55]

Human
immunodeficiency virus

(HIV)
Mouse/Oral

Induction of HIV-specific serum IgG,
fecal IgA, and Cell-mediated immune

responses
5 times 1 × 108 CFU/mL [56]

L. plantarum

SARS-CoV-2 - - - - [57]

Avian influenza virus
H9N2 Mouse and chicken/Oral Induction of HI antibodies and T cell

immune responses 6 times
For mouse:1 × 108 CFU/200 µL

For chicken: 5 × 108 CFU/
500 µL

[58]

L. casei Human papillomavirus
type 16 (HPV-16) Oral/Mouse

Induction of E7-specific mucosal
IFNγ-producing cells and mucosal Th1

immune response
16 times 1 × 105 cells/head [59]

L. lactis

Rotavirus Mouse/Oral and nasal Induction of Anti-rotavirus IgG and IgA
antibodies, and reduction viral load

For oral: 27 times
For nasal: 3 times 30 µg/dose [60]

New influenza A H1N1 Mouse/Oral Induction of anti-HA1 sIgA antibodies
and humoral response 9 times 1 × 1010 CFU/mL [61]

Porcine transmissible
gastroenteritis virus

(TGEV)
Mouse/Oral Induction of IgG and IgA antibodies and

local mucosal immune responses. 9 times 1 × 109 CFU/mL [62]

L. plantarum Spring viremia of carp
virus (SVCV) Craps/Oral Induction of IgM and reduction of viral

loads 27 times 1 × 109 CFU/gr [63]
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Table 1. Cont.

Probiotic Virus Host/Inoculation Route Pathways of Immune System Induction Number Dosage Reference

L. paracasei Rotavirus-induced
diarrhea Mouse/Oral

Reduction of infection in cell cultures,
shortened disease duration, severity, and

viral load
4 times 1 × 107, 1 × 108, and

1 × 109 CFU/mL
[64]

L. lactis

Rotavirus Mouse/oral Induction of sIgA and IgG 9 times 1 × 109 CFU/mL [65]

Human papillomavirus
type 16 (HPV-16) Mouse/Nasal

Induction of E7-specific cytotoxic
T-lymphocyte response, antigen-specific

immune response, high survival rate
3 times 1 × 109 CFU/mL [66]

Avian influenza virus Chicken/Nasal Induction of specific serum IgG 9 times 4 × 1010 CFU/100 µL [67]

L. pentosus
Transmissible

gastroenteritis virus
(TGEV)

Mouse/Oral Induction of serum IgG and mucosal IgA 9 times 2 × 109 CFU/100 µL [68]

B. longum SARS-CoV-2 Human/Oral Ongoing project; the final results will be
made available on 28 February 2022. Single dose 1 × 109, 3 × 109, and

10 × 109 CFU
NCT number:
NCT04334980
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2. Recombinant Probiotics as Inducers of Humoral Immune Responses

Mucosal vaccination is advocated in several extensive studies as one of the most
effective approaches to control and prevent respiratory viral infections [28–30]. In view of
the fact that the mucosal surfaces of the respiratory tract are the major portal of entry and
initiation of respiratory viral infections, it would be desirable to design a vaccine able to
elicit specific functions of the mucosal immune system, such as the production of secretory
IgA (sIgA) dimers. sIgA are a critical component of mucosal immunity in the respiratory
tract, in that they can inhibit the entrance and proliferation of respiratory viruses in the
airway mucosa [69,70]. In fact, detailed and in-depth research studies found that sIgA play
a more critical role than IgG antibodies in the prevention of viral infections in the upper
respiratory tract, including the nose and trachea, due to their ability to decrease virus
attachment and avoid virus internalization at the mucosal surfaces [31,71,72]. Besides their
role in the prevention of infection, recent work also suggests a putative role of sIgA in the
maintenance of microbiota homeostasis [73]. Therefore, stimulation of mucosal immunity
has received particular attention in the development of strategies to fight pathogenic
microorganisms. Among the different formulations for mucosal immunization, genetically
modified LAB have been explored as effective vehicles for antigen delivery due to their
safety. Among these, L. lactis, L. plantarum, and L. casei have received special attention due
to their superior effects relative to other LAB strains in comparative studies [32,33,74–76].

Several L. plantarum-based model vaccines against viral disease have been constructed
and tested in animal studies, such as L. plantarum carrying the hemagglutinin–neuraminidase
protein (HN) of Newcastle disease virus (NDV) [31], the hemagglutinin (HA) gene of H9N2
avian influenza virus (AIV) [28,34], and different proteins of influenza virus [33,35,36],
all of which effectively inducing measures of mucosal immunity (sIgA) as well as serum
IgG antibody responses, indicating an encouraging gut-lung axis for orally administered
vaccines to combat respiratory viral infections.

More recently, L. lactis was also extensively used to develop various oral-based mu-
cosal vaccines. In vivo studies showed that oral administration of L. lactis displaying various
viral antigens can stimulate robust mucosal and systemic immunity. In addition, several
studies have demonstrated that oral immunization with a recombinant probiotic could re-
sult in the secretion of sIgA at sites besides the gastrointestinal tract, as these were detected
in bronchoalveolar lavage fluids (BALF), ophthalmic and vaginal washings, consistent with
acquired resistance to respiratory, gastrointestinal, and genital tract infections [22,29,77,78].

Subsequent studies focused on the induction of mucosal immune responses by another
probiotic, L. casei. A surface antigen display system was designed using anchoring matrix
such as poly-γ-glutamate synthetase A (pgsA) protein of Bacillus subtilis, which could
effectively express different viral antigens at the surface of L. casei, including conserved
matrix protein 2 of divergent influenza subtypes [37], HA2 and sM2 influenza antigens [38],
N protein of TGEV [39], and HPV-16 L2 protein [40]. Oral and/or nasal administration of
these recombinant L. casei preparations in mice resulted in stronger induction of serum IgG
as well as sIgA against the displayed antigens. Similar results were observed in mice and
other animal models following oral administration of recombinant L. casei harboring major
protective antigen VP4 of porcine rotavirus [23], recombinant protein of TGEV [41], or co-
expressing epitopes of porcine parvovirus (PPV) and classical swine fever virus (CSFV) [42],
indicating an efficient induction of protective immunity against various viral infections.
In light of the valuable insights provided by these studies with genetically engineered L.
casei carrying viral antigens, more in vivo studies focused on the expression of VP2 protein
from infectious pancreatic necrosis virus (IPNV) in recombinant L. casei, which resulted in
the stimulation of systemic and local mucosal immune responses, high-level production of
IgM and IgT, and reduction of viral load in orally immunized rainbow trouts [26,43].

Three human clinical trials in support of these pre-clinical findings were launched, in
which oral immunization of recombinant L. lactis and L. casei carrying HPV-16 antigens
induced high levels of specific serum IgG and vaginal IgA in volunteers who completed the
vaccination schedules [27,44,45]. Interestingly, oral administration in mice of L. acidophilus
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carrying Gag antigen from human immunodeficiency virus 1 (HIV-1) [46] or protein HA1
from highly pathogenic avian influenza (HPAI) virus (H5N1) [22] could only stimulate
local sIgA production in the digestive tract, while expression of protein HA1 of HPAI virus
by recombinant L. delbrueckii subsp. lactis could provoke a mucosal immune response in
both the gastrointestinal and the respiratory tract [22]. The first-in-human study of an orally
delivered probiotic-based SARS-CoV-2 vaccine, called bacTRL-Spike-1, has been designed
by Symvivo Corp. (Melbourne, Victoria, Australia), which makes use of engineered
Bifidobacterium longum to deliver plasmids harboring a full-length S protein gene (Figure 2).
To functionally characterize the safety, tolerability, and immunogenicity of the vaccine for
the prevention of COVID-19 in healthy adults, three different oral doses of live recombinant
Bifidobacterium longum, 1 billion (Group 1), 3 billion (Group 2) or 10 billion (Group 3) colony-
forming-units (cfu), will be evaluated in subjects 18 years of age and older during a Phase
1, randomized, observer-blind, placebo-controlled trial (NCT number: NCT04334980). The
final results of this trial will be made available on 28 February 2022.
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Figure 2. Diagram illustrating the development of the first oral COVID-19 vaccine candidate based on recombinant
Bifidobacterium longum which has been engineered to deliver plasmids containing synthetic DNA encoding spike protein
from SARS-CoV-2 (adapted from https://app.biorender.com/biorender-templates (access date: 6 March 2021)).

3. Recombinant Probiotics as Inducers of Cell-Mediated Immune Responses

In recent years, it has become clear that studies aimed at addressing the induction
of T cell-mediated immune responses combined to the humoral immune response could
offer a much broader scope of protection against invading pathogens such as respiratory
viruses. Major progress has been made to define the potential of recombinant probiotic
vaccines in the stimulation of T cell-mediated immune responses in addition to IgG and
sIgA production, which, combined, could open up new opportunities in the fight against
viral infection [47,79,80]. Therefore, uncovering the ability of recombinant probiotics to
elicit T cell-mediated immune responses of proper sign and intensity might help predict
their likely impact on the ongoing COVID-19 pandemic.

3.1. T Helper

CD4+ T cells exposed to diverse pathogens can express diverging effector pheno-
types, the best studied of which are characterized by predominant production of the
cytokines, interferon (IFN)-γ or interleukin (IL)-4 and have been termed T helper (Th)
1 and Th2 cells, respectively. Substantial production of Th2-type (IL-4) and Th1-type
(IFN-γ) cytokines was reported in response to mucosal administration of L. casei and L.

https://app.biorender.com/biorender-templates
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lactis carrying viral antigens in immunized mice, variably contributing to host defense
against viral infection [37,48–50]. In agreement with earlier studies, oral vaccination of mice
with recombinant Lactobacillus strains and L. lactis expressing viral antigens could induce
IL-4 production and provoke a proliferative response of splenic lymphocytes, raising the
possibility that common mucosal immunization might stimulate Th2-like cell-mediated
immunity [22,51,52]. However, it is well known that IFN-γ, produced by NK cells and T
lymphocytes, and tumor necrosis factor (TNF)-α, produced by T lymphocytes and mono-
cytes, play major roles in antiviral immunity. It has long been known that IFN-γ plays an
important role in promoting phagocytic activity against viral and bacterial infection and
TNF-α is a major mediator of inflammatory responses [34,81]. Production of TNF-α and
IFN-γ by Th1 cells has a significant role in the activation antiviral responses via stimulating
macrophages and cells associated with cell-mediated cytotoxicity [36,82]. In fact, IFN-γ and
TNF-α levels could significantly increase in mice receiving L. plantarum, L. casei, and L. lactis
expressing viral genes, implying that recombinant probiotics could modulate adaptive
immunity by up-regulating the effector responses of CD8+ T cytotoxic cells and CD4+ Th
cells [27,34,48]. Consistent with this, in vivo administration of recombinant L. plantarum
expressing influenza virus H9N2 protein resulted in the generation of protective immune
responses through the expansion of IFN-γ-expressing CD8+ T cells and Th1 cells [28,34,36]
(Figure 3).
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Figure 3. Schematic representation of the stimulation of immune responses with genetically modified probiotics expressing
therapeutic factors in the gut and the lung. The crosstalk and the reciprocal interaction of the gut and lung mucosa
(gut-lung axis) is mediated by immune cells moving between the two districts via the bloodstream and the lymphatic
ducts, leading to modulation of the immune response in both sites. Delivery of antigen via recombinant probiotic to
antigen-presenting cells in Peyer’s patches causes the stimulation of naive B and T cells and induction of several immune
factors, such as Th1 and Th2 cytokines. As a result, cells and immune factors migrate to the thoracic duct and the BALT
through circulation and enhance the production of secretory IgA and the activation of effector CD4+ and CD8+ T cells,
preventing the onset and progression of respiratory viral infections. IgA, immunoglobulin A, IL-4: interleukin-4, IFN-γ:
interferon-gamma, Th1: T-helper cell type 1, Th2: T-helper cell type 2, BALT: bronchi-associated lymphoid tissue (adapted
from https://app.biorender.com/biorender-templates (access date: 24 November 2020).
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3.2. T Killer

Studies in mice orally administered with L. lactis expressing HPV-16 antigens showed
the expansion of specific IL-2-secreting CD4+ T cells and IFN-γ-secreting CD8+ T cells
in the intestinal mucosa, and of vaginal and splenic lymphocytes, resulting in protective
and therapeutic anti-tumoral responses against challenge with an E6/E7-expressing tu-
mor cell line (TC-1) [32,53]. Recent findings also show that expansion of IFN-γ-secreting
CD4+ and CD8+ T cells, and stimulation of mucosal Th1 immune responses by recom-
binant L. casei could elicit confer a substantial level of protection against viral infections
in humans [44,54]. Clinical studies found that oral vaccination with recombinant L. lactis
containing viral antigens could stimulate production of high amounts of IFN-γ at the
intestinal mucosal inductive sites (Peyer’s patches). By contrast, the poor ability of re-
combinant L. lactis to induce systemic immunity has been documented elsewhere [27,45].
Together, these observations suggest that mucosal T cells stimulated by recombinant L.
lactis in the gut, while initially moving to the peripheral circulation, will eventually home
and settle in the specific mucosa. In any instance, these studies strongly point to the role of
CD8+ cytotoxic T lymphocytes (CTLs) induced by recombinant probiotics in promoting
viral clearance. For instance, recombinant L. casei can efficiently stimulate CSFV-specific
CD8+ CTL responses to protect pigs against CSFV challenge [42]. This notion is further
confirmed in studies showing that recombinant L. plantarum could provoke the expansion
of CD8+ CTLs conferring protection and increased survival against lethal influenza virus
challenge [36]. Additionally, we found preclinical evidence that recombinant L. casei and
L. lactis expressing viral antigens could sustain long-lasting immune responses, which
were observed at least 2–6 months after the last vaccine boost [37,38,55]. These data are
supported by clinical evidence showing long-term specific CTL responses against HPV-16
during 6-month follow-ups in healthy females, further demonstrating that recombinant
LAB can elicit long-lasting immunity against viral pathogens [27,45].

3.3. Dendritic Cells (DCs)

Dendritic cells (DCs) were characterized as the bridge between host innate and adap-
tive immunity. DCs can efficiently trap self and foreign antigens and present them to naïve
T cells in secondary lymphoid tissues. DCs isolated from mucosal tissues and the spleen
could favorably stimulate Th2 and Th1 responses, respectively [34,83]. The potential role
of DCs in promoting strong cellular immunity toward genetically modified L. lactis and
L. plantarum-derived antigens was shown in some in vivo studies. Consistent with this, it
was long believed that the oral administration of these strains could induce Peyer’s patch
(PP) DCs activation [33,56]. Compelling evidence in animal studies shows DC stimulation
in the small intestine mucosa and the mesenteric lymph nodes (MLNs) by probiotic strains,
which would support pathogen’s killing. Owing to the distinct ability of DCs to elicit an
immune response, DC targeting strategies have received more attention in vaccinology.
A specific DC-targeting peptide (DCpep) was utilized in some studies to enhance the
robustness of immune responses [31,36]. For example, Wang et al. fused the S gene of
SARS-CoV-2 with DCpep and reported the successful expression of recombinant S protein
on the surface of L. plantarum [57]. As a result, a significant increase in the percentages
of CD4+ T cells was observed in the spleen and peripheral blood of mouse and chicken
models after immunization with L. plantarum expressing DCpep fused with viral antigens.
In contrast, such a response was not observed in animals immunized with recombinant L.
plantarum not expressing DCpep. Along the same line, the few in vivo studies conducted to
date showed that L. plantarum expressing viral antigens attached to DCpep could effectively
stimulate DCs activation in PPs, MLNs, and the small intestine. These findings indicate the
potential usefulness of DCpep fusion antigens to provide an effective immune adjuvant
in the development of a mucosal vaccine [36,58,84]. Building on these studies, Jiang et al.
have provided evidence of an association between DC activation and the promotion of
T-cell differentiation, both contributing to pathogen clearance in animal models [31]. More-
over, probiotics-based vaccines can regulate the elicited immune responses by interacting
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with Toll-like receptors (TLRs) on macrophages and DCs [85]. As well, one in vivo study
indicated that inhibiting TLR expression could be achieved by a Lactobacillus-vaccine; thus
neutralization of viruses will occur [41].

4. Optimization of the Immune Response Induced by Recombinant Probiotic-Based
Vaccines

Studies performed to date show that heterologous proteins in some recombinant probi-
otics may be expressed at low levels, likely due to the intrinsic low-copy number of a shuttle
vector. Given this limitation, the appearance of weak signals in the subsequent IFA tests
and/or Western blot experiments would be the main drawback of recombinant probiotic-
based vaccines [24,86]. Attempts have been made to produce higher recombinant protein
levels by optimizing nutrients, such as protein or sugar sources, in a fermenter/bioreactor
under controlled pH conditions to prevent batch-to-batch variability [87]. In some cases
production of recombinant proteins was increased by optimizing the temperature at the
induction point to prevent protein degradation in probiotics [48,88,89]. Codon optimiza-
tion in probiotics such as L. casei and L. lactis has been shown to be an important factor to
optimize the translational efficiency of heterologous proteins and dramatically enhance
the overall yield of recombinant proteins [90–92]. These measures dramatically reduce the
number of non-matching genes containing native codons, which enables to select codons
corresponding to those of the probiotic hosts which generate a higher level of recombi-
nant expression of the protein [93]. It is documented that recombinant L. lactis harboring
codon-optimized oncogenes of HPV-16 had an improved inhibitory effect on tumor size
progression and tumor growth, thus resulting in better survival rates in vivo compared
to those with native codons [32,52]. Using a similar approach, successful expression of
influenza virus genes was reported in L. casei in vitro [24,91]. These optimized responses
were postulated to result from substantial enhancement in humoral and cellular immunity
elicited after administration of recombinant probiotics.

Data collected over the past decade indicate that optimizing vaccine dose during
dose-escalation studies may be considered one of the most important factors to properly
stimulate a mucosal immune response in animals and humans [59,94]. This point was
supported in a few clinical studies showing that the number of viable colonies (colony-
forming units: CFU) of recombinant probiotics correlates with the efficacy of immune
responses. Consistently, Mohseni et al. and Taghinezhad et al., in a Phase I, proof-of-
concept clinical trial, showed that the induction of humoral and cell-mediated immune
responses in volunteers who received 5,000,000,000 CFU/mL of recombinant L. lactis were
more robust than in those receiving 1,000,000,000 CFU/mL, a parameter clearly depending
on the dose of this strain administered for mucosal immunization [27,45]. Nevertheless, no
studies have systematically investigated the impact of dose escalation on the expression of
respiratory viral genes in probiotics and the ensuing immune responses to fight off these
pathogens. Clearly, additional studies will be needed to confirm this theory.

This information would also assist greatly in interpreting the effects of specific ad-
juvants on the robustness of protective responses [35]. Concerning this aspect, different
adjuvants have been used to properly enhance the immune response to recombinant probi-
otics. A number of adjuvants have been used in these studies, including heat-labile toxin B
subunit (LTB) [23,42], heat-labile toxin LT (R192G/L211A) [60], FliC [46], CTA1 [38], Gram-
positive enhancer matrix (GEM) [95,96], AcmA [29], DC-targeting peptides (DCpep) [31],
the nontoxic B subunit of cholera toxin (CTB) [36,50], MDP, and tuftsin [41]. In addition,
results from other studies suggest that the provision of definite amounts of IL-2, IL-18,
IL-1, and IL-10 as adjuvants may further improve the elicited immune response [97,98].
However, it is essential to emphasize that LAB possess inherent adjuvant characteristics,
sufficient to properly induce the host immune system thanks to their intrinsic immunomod-
ulatory properties [34,99,100]. The potential adjuvant effects of LAB could be attributed
to the systemic release of specific cytokines which stimulate innate immunity [101–103].
According to this paradigm, striking results from in vitro and in vivo studies provide evi-
dence that probiotic strains could exert their adjuvant functions by up-regulating DC and
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Th1 cytokines and down-regulating Th2 activity [104,105]. However, the exact mechanisms
mediating these functions are not fully elucidated.

5. Discussion

Experience in the past decades have clearly demonstrated that a shift from traditional
needle-based immunization to a needle-free one can overcome a number of limitations,
thus accelerating large vaccination programs, particularly in resource-limited developing
countries. In particular, studies within this area of investigation have led to discover that
mucosal immunization, which entails the delivery of heterologous proteins to mucosal
surfaces, is one of the few needle-free approaches that can exert significant prophylactic and
therapeutic effects [106–108]. Mucosal vaccines have rapidly raised considerable practical
and conceptual interest due to their easy administration, low cost, the ability to provoke
mucosal, humoral, and systemic immune responses, the negligible risk of blood-borne
infections, and the convenient distribution, not requiring a cold chain [109–111]. Intensive
efforts have been carried out by many groups over the past years to develop mucosal
vaccines against an expanding range of pathogens, and their results indicate that deliv-
ery of immunogenic molecules to the mucosa via recombinant probiotics administered
through nasogastric or orogastric routes is a promising non-invasive way for protection
against various infections by improving humoral, mucosal and T-cell-mediated immune
responses [44,45,49]. These discoveries sparked a raised level of attention from the scientific
community, leading to an ever expanding bulk of studies aimed at defining the best strate-
gies for efficient, high-level expression of heterologous proteins in probiotics to improve the
therapeutic effects of probiotic-based vaccines [79,88,89]. Along this line, studies conducted
over the last few years have brought substantial insights into the efficacy of prophylactic or
therapeutic probiotic-based vaccines against respiratory and non-respiratory viral agents.
Vaccines based on LAB, especially L. plantarum, L. casei, and L. lactis, have shown promising
beneficial effects, in particular when administered to overcome infections from emerging
respiratory viruses, including SARS and influenza viruses [112,113].

Increasing evidence indicates that the cellular localization of viral antigens plays a
crucial role in the susceptibility of antigens to environmental control and proper recog-
nition by the immune system [32,114]. Heterologous proteins harbored in recombinant
probiotics can be expressed in the cytoplasm, anchored to the cell wall, or secreted. It
is documented that the expression on the cell wall can generally stimulate more robust
host immune responses following immunization with recombinant probiotics compared
to preparations resulting in cytoplasmic or secreted expression [115,116]. Several meth-
ods exist for anchoring proteins to probiotics, of which the inclusion of a LPXTG anchor
motif and poly-γ-glutamic acid synthetase A (pgsA) have been the most commonly used
for producing viral antigens [30,38,40,61]. Theoretically speaking, exposure of bioactive
protein molecules on the surface of probiotics could resist harsh conditions such as pro-
teolysis, improve the antigen’s stability, facilitate antigen presentation, and subsequently
provide an effective means for eliciting protective immune response, thus ensuring a higher
therapeutic efficacy in challenge experiments than intracellular antigens [116,117].

Due to the increasing challenges regarding the safety of probiotic-based vaccines for
human health, several studies suggest that a biological containment system represents the
best way to prevent the survival of probiotic-based vaccines in the environment outside
the host [118,119]. This concept is reinforced by the results obtained in human clinical
trials using recombinant probiotic-based vaccines against viruses, which confirm that these
vectors have no side effects in humans [27,45,120–122]. It is also generally accepted that
the use of heat-attenuated probiotic-based vaccines can decrease the spread of antibiotic-
resistance genes in humans and in the environment, but this assumption is still awaiting
definitive evidence [54,123].

Pre-clinical and clinical studies document that among different routes for mucosal
immunization, oral immunization offers several advantages, including facilitated stimu-
lation of gut-associated lymphoid tissue (GALT), enhanced production of anti-viral IgA,
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effective overall induction of mucosal immune responses, decreased risk of contamination,
cost-effectiveness, easy self-administration or administration to animals, and antigen access
to a larger mucosal area for a prolonged duration [22,23,27,45,50]. It has been speculated
that oral vaccination, compared to the nasal route, can significantly increase DC activa-
tion, specific sIgA production, CD8+ T-cell induction, and cross-protection against viral
challenge in vivo [36]. In line with this view, in vivo studies showed that oral intake of
recombinant LAB can provide higher neutralizing antibody activities compared to in-
traperitoneal injection [55,62]. Moreover, oral immunization with recombinant Lactobacillus
is more effective than the intranasal route in eliciting neutralizing antibodies, including
sIgA, in the respiratory tract [124]. It is worth emphasizing that the elicited antibodies
in these models exerted potent neutralizing activities against SARS pseudoviruses [30].
By contrast, some of the advantages of intranasal administration relative to oral vaccina-
tion would include a reduced frequency of administration, lower inoculation dose, and
administration in the same location as the natural infection [106,125]. Using this route
to expose immune cells to high concentrations of vaccine would contribute to inhibiting
viral colonization in the respiratory tract by effectively inducing sIgA production. In fact,
intranasal administration can also induce greater quantities of IgG in serum and of some
cytokines in epithelial cells in the lung alveoli than oral administration, thus increasing
the speed of the immune and antibody response to viral antigens. These elements may
therefore lead to conclude that intranasal inoculation could be a more efficient route for
mucosal immunization [35,37,38]. In the end, it is generally accepted that oral immuniza-
tion could be particularly beneficial for extensive immunization of farm animals where
the recombinant probiotic could be administered in drinking water or food. Conversely,
since the main infection route of respiratory viruses is nasal, and nasal immunization is
more likely to induce high titers of specific antibody titers (mainly sIgA), it is currently
reasonable to opt for nasal administration of recombinant probiotics to combat respiratory
viral infections.

In the face of extensive studies in different infection models, still little is known about
the potential effect of a probiotic-based vaccine against SARS-CoV-2. However, during
the COVID-19 outbreak, all therapeutic options tested against this disease originated
mainly from indirect observations and previous knowledge generated in studies of the
new influenza A (H1N1) virus, the middle east respiratory syndrome (MERS), and the
severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), among others. Lessons
learned from earlier studies of recombinant probiotics to treat other viral infections (both
in vitro and in preclinical models), allow us to infer that similar strategies might be devised
for the development of a probiotic-based SARS-CoV-2 vaccine. Therefore, it is likely that
mucosal immunization, mainly through the nasal route, with a probiotic-based vaccine
may strongly inhibit SARS-CoV-2 infection. In conclusion, future efforts are warranted in
this area of investigation, in the setup of aptly designed pre-clinical and clinical studies,
to explore the potential benefits of mucosal delivery of therapeutics in the fight against
COVID-19 pandemic.
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