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This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art
bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27+UK). We integrate
recent emission inventory data, ecosystem process-based model results and inverse modeling estimates over
the period 1990–2017. BU and TD products are compared with European national greenhouse gas inventories
(NGHGIs) reported to the UN climate convention UNFCCC secretariat in 2019. For uncertainties, we used for
NGHGIs the standard deviation obtained by varying parameters of inventory calculations, reported by the mem-
ber states (MSs) following the recommendations of the IPCC Guidelines. For atmospheric inversion models (TD)
or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or
model-specific uncertainties when reported. In comparing NGHGIs with other approaches, a key source of bias
is the activities included, e.g., anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separa-
tion between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions.
Over the 2011–2015 period, which is the common denominator of data availability between all sources, the an-
thropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 TgCH4 yr−1 (EDGAR
v5.0) and 19.0 TgCH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9± 1.7 TgCH4 yr−1. The es-
timates of TD total inversions give higher emission estimates, as they also include natural emissions. Over the
same period regional TD inversions with higher-resolution atmospheric transport models give a mean emis-
sion of 28.8 TgCH4 yr−1. Coarser-resolution global TD inversions are consistent with regional TD inversions,
for global inversions with GOSAT satellite data (23.3 TgCH4 yr−1) and surface network (24.4 TgCH4 yr−1).
The magnitude of natural peatland emissions from the JSBACH–HIMMELI model, natural rivers and lakes
emissions, and geological sources together account for the gap between NGHGIs and inversions and account
for 5.2 TgCH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and
GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 TgN2Oyr−1, respectively, agreeing with
the NGHGI data (0.9± 0.6 TgN2Oyr−1). Over the same period, the average of the three total TD global and
regional inversions was 1.3± 0.4 and 1.3± 0.1 TgN2Oyr−1, respectively. The TD and BU comparison method
defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets
both at the EU+UK scale and at the national scale. The referenced datasets related to figures are visualized at
https://doi.org/10.5281/zenodo.4590875 (Petrescu et al., 2020b).

1 Introduction

The global atmospheric concentration of methane (CH4)
has increased by 160 % and that of nitrous oxide (N2O)
by 22 % since the pre-industrial period (WMO, 2019), and
they are well documented as observed by long-term ice-
core records (Etheridge et al., 1998; CSIRO). According
to the NOAA atmospheric data (https://www.esrl.noaa.gov/
gmd/ccgg/trends_ch4/, last access: June 2020) the CH4 con-
centration in the atmosphere continues to increase and, after a
small dip in 2017, has an average growth of 10 ppbyr−1, rep-
resenting the highest rate observed since the 1980s1 (Nisbet
et al., 2016, 2019). This increase was attributed to anthro-
pogenic emissions from agriculture (livestock enteric fer-
mentation and rice cultivation) and fossil-fuel-related activi-
ties, combined with a contribution from natural tropical wet-
lands (Saunois et al., 2020; Thompson et al., 2018; Nisbet
et al., 2019). The recent increase in atmospheric N2O is more
linked to agriculture in particular due to the application of
nitrogen fertilizers and livestock manure on agricultural land
(FAO, 2020, 2015; IPCC, 2019b; Tian et al., 2020).

1The rapid development of the gas industry in the 1980s in the
former USSR.

National greenhouse gas inventories (NGHGIs) are pre-
pared and reported on an annual basis by Annex I countries2

based on IPCC Guidelines using national activity data and
different levels of sophistication (tiers) for well-defined sec-
tors. These inventories contain annual time series of each
country’s greenhouse gas (GHG) emissions from the 1990
base year3 until 2 years before the year of reporting and
were originally set to track progress towards their reduc-
tion targets under the Kyoto Protocol (UNFCCC, 1997).
Non-Annex I countries provide some information in bien-
nial update reports (BURs) as well as national communica-

2Annex I Parties include the industrialized countries that were
members of the OECD (Organization for Economic Co-operation
and Development) in 1992 plus countries with economies in transi-
tion (the EIT Parties), including the Russian Federation, the Baltic
states, and several central and eastern European states (UNFCCC,
https://unfccc.int/parties-observers, last access: February 2020).

3For most Annex I Parties, the historical base year is 1990.
However, parties included in Annex I with an economy in transi-
tion during the early 1990s (EIT Parties) were allowed to choose
1 year up to a few years before 1990 as reference because of a
non-representative collapse during the breakup of the Soviet Union
(e.g., Bulgaria, 1988; Hungary, 1985–1987; Poland, 1988; Roma-
nia, 1989; and Slovenia, 1986).
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tions (NCs), but neither BURs nor NCs report annual time
series or use harmonized formats. The IPCC tiers represent
the level of sophistication used to estimate emissions, with
Tier 1 based on global or regional default values, Tier 2 based
on country-specific parameters, and Tier 3 based on more
detailed process-level modeling. Uncertainties in NGHGIs
are calculated based on ranges in observed (or estimated)
emission factors and variability of activity data, using the er-
ror propagation method (95 % confidence interval) or Monte
Carlo methods, based on clear guidelines (IPCC, 2006).

NGHGIs follow principles of transparency, accuracy, con-
sistency, completeness and comparability (TACCC) under
the guidance of the UNFCCC (UNFCCC, 2014). Method-
ological procedures are taken from the 2006 IPCC Guide-
lines (IPCC, 2006). The IPCC 2019 Refinement (IPCC,
2019a), which may be used to complement the 2006 IPCC
Guidelines, has updated sectors with additional sources and
provides guidance on the possible and voluntary use of at-
mospheric data for independent verification of GHG inven-
tories. Complementary to NGHGIs, research groups and in-
ternational institutions produce estimates of national GHG
emissions, with two families of approaches: atmospheric
inversions (top-down, TD) and GHG inventories based on
the same principle as NGHGIs but using different methods
and input data (bottom-up, BU). These complementary ap-
proaches are necessary. First, TD approaches act as an inde-
pendent check on BU approaches and facilitate a deeper un-
derstanding of the scientific processes driving different GHG
budgets. Second, NGHGIs only cover a subset of countries,
and it is therefore necessary to construct BU estimates in-
dependently for all countries. The BU estimates are often
used as input data for TD estimates and to track emissions
over time, either globally or on the country level, such as in
the UNEP Emissions Gap Report (UNEP, 2019). There is no
guideline to estimate uncertainties in TD or BU approaches.
The uncertainties are usually assessed from the spread of
different estimates within the same approach, though some
groups or institutions report uncertainties for their estimates
using a variety of methods – for instance, by varying parame-
ters or input data. However, this gets complicated when deal-
ing with complex process-based models.

NGHGI official numbers are not always straightforward
to compare with other independent estimates. Independent
estimates often have different system boundaries and a dif-
ferent focus. BU estimates often have a lot of overlap in
terms of methods and other input data, and through harmo-
nization the differences between BU estimates and NGHGIs
can be bridged. On the other hand, TD estimates are much
more independent and provide the best independent check on
NGHGIs. While NGHGIs go through a review process, the
UNFCCC procedures do not incorporate mandatory indepen-
dent, large-scale observation-derived verification but allow
the use of atmospheric data for external checks within the
data quality control, quality assurance and verification pro-
cess (2006 IPCC Guidelines, chap. 6: QA/QC procedures).

So far, only a few countries (e.g., Switzerland, the UK, New
Zealand and Australia) have used atmospheric observations
(TD) to complement their national inventory data (Bergam-
aschi et al., 2018a).

A key priority in the current policy process is to facili-
tate the global stocktake exercise of the Paris Agreement, the
first one coming in 2023, and to assess collective progress to-
wards achieving the near- and long-term objectives, consider-
ing mitigation, adaptation and means of implementation. The
global stocktake is expected to create political momentum
for enhancing commitments in nationally determined contri-
butions (NDCs) under the Paris Agreement. Key components
of the global stocktake are the NGHGIs submitted by coun-
tries under the enhanced transparency framework of the Paris
Agreement. Under the framework, for the first time, develop-
ing countries will be required to submit their inventories and
also commit to provide regular reports to UNFCCC, along-
side developed countries, which will continue to submit also
on an annual basis. Some developing countries will face chal-
lenges to provide and then update inventories.

The work presented here represents dozens of distinct
datasets and models, in addition to the individual coun-
try submissions to the UNFCCC for all European countries
(NGHGIs), which while following the general guidance laid
out in IPCC (2006) still differ in specific approaches, models
and parameters, in addition to differences underlying activ-
ity datasets. A comprehensive investigation of detailed differ-
ences between all datasets is beyond the scope of this paper,
though attempts have been previously made for specific sub-
sectors (e.g., agriculture, Petrescu et al., 2020) and in ded-
icated gas-specific follow-ups to this paper. As this is the
most comprehensive comparison of NGHGIs and research
datasets (including both TD and BU approaches) for the Eu-
ropean continent to date, we focus here on the following rich
set of questions that such a comparison raises without neces-
sarily offering detailed solutions. How can we compare the
detailed sectoral NGHGI to the observation-based estimates?
Which new information are the observation-based estimates
likely to bring (mean fluxes, trend, ensemble variability)?
What can we expect from such a complex study and how
do we proceed going forward?

We compare official anthropogenic NGHGI emissions
with research datasets and wherever needed harmonize re-
search data on total emissions to ensure consistent com-
parisons of anthropogenic emissions. We analyze differ-
ences and inconsistencies between emissions and make rec-
ommendations towards future actions to evaluate NGHGI
data. While NGHGIs include uncertainty estimates, individ-
ual spatially disaggregated research datasets of emissions of-
ten lack quantification of uncertainty. Here, we use the me-
dian4 and minimum/maximum (min/max) range of different

4The reason for using the median instead of mean for the ensem-
bles is because there is a large spread between global inversions, and
we do not want to be biased by outliers/extremes.
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Table 1. Sectors used in this study and data sources providing estimates for these sectors.

Anthropogenic (BU)a CH4 and
N2O

Naturalb (BU) CH4 Naturalc (BU) N2O TD (CH4 and N2O)

1. Energy (NGHGIs,
GAINS, EDGAR v5.0)

No sectoral split – total emis-
sions:
FLEXPART
(FLExKF-TM5-
4DVAR)_EMPA;
TM5-4DVAR;
FLEXINVERT_NILU;
CTE-CH4;
InTEM-NAME;
InGOS inversions;
GCP-CH4 2019 anthropogenic
partition from inversions;
GCP-CH4 2019 natural parti-
tion from inversions;
GN2OB 2019.

2. Industrial processes and
products in use (IPPU)
(NGHGIs, GAINS,
EDGAR v5.0)

3. Agricultured (NGHGIs,
CAPRI, GAINS,
EDGAR v5.0, FAOSTAT,
ECOSSE, DayCent)

4. LULUCF total emissions
(NGHGIs Figs. 1, 2, 4,
5, and B2a for CH4 and
Figs. 6, 7 , 9, and B2b for
N2O)

5. Waste (NGHGIs, GAINS,
EDGAR v5.0)

Peatlands, inland waters (lakes
and reservoirs) and geological
fluxes (JSBACH–HIMMELI,
non-wetland waters_ULB;
Hmiel et al., 2020;
Etiope et al., 2019)

Inland water (lakes, rivers and
reservoirs) fluxes (non-wetland
inland waters_ULB)

a For consistency with the NGHGIs, here we refer to the five reporting sectors as defined by the UNFCCC and the Paris Agreement decision (18/CMP.1), the IPCC Guidelines
(IPCC, 2006) and their 2019 Refinement (IPCC, 2019a), with the only exception that the latest IPCC refinement groups together the agriculture and LULUCF sectors in one sector
(agriculture, forestry and other land use – AFOLU). b The term “natural” here refers to unmanaged natural CH4 emissions (wetlands, geological, inland waters) not reported under
the UNFCCC LULUCF sector. c Anthropogenic (managed) agricultural soils can also have a level of natural emissions. d Natural soils (unmanaged) can have both natural and
anthropogenic emissions.

research products of the same type to get a first estimate of
uncertainty.

2 CH4 and N2O data sources and estimation
approaches

We analyze CH4 and N2O emissions in the EU27+UK from
inversions (TD) and anthropogenic emissions from various
BU approaches that cover specific sectors. These data (Ta-
ble 2) span the period from 1990 and 2017, with the same
data available for shorter time periods. The data are from
peer-reviewed literature and from unpublished research re-
sults from the VERIFY project (Table 1 and Appendix A).

They are compared with NGHGI official submissions up to
2017 and supplemented by the UNFCCC-NRT inventory to
capture 2018 estimates (near real time, EEA 2019). Refer-
ences are given in Table 2 and the detailed description of all
products in Appendices A1–A3.

For both CH4 and N2O BU approaches, we used in-
ventories of anthropogenic emissions covering all sectors
(EDGAR v5.0 and GAINS) and inventories limited to agri-
culture (CAPRI and FAOSTAT). For CH4 we used one bio-
geochemical model of natural peatland emissions (JSBACH–
HIMMELI), as well as literature data for geological emis-
sions on land (excluding marine seepage) (Etiope et al.,
2019; Hmiel et al., 2020) and for lakes and reservoirs (Del

Earth Syst. Sci. Data, 13, 2307–2362, 2021 https://doi.org/10.5194/essd-13-2307-2021
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Table 2. Data sources for CH4 and N2O emissions used in this study.

Method Name CH4 N2O Contact/lab References

CH4 and N2O bottom-up anthropogenic

UNFCCC
NGHGI
(2019)

UNFCCC CRFs CH4 emissions
1990–2017

N2O emissions
1990–2017

MS
inventory
agencies

UNFCCC CRFs
https://unfccc.int/process-and-meetings/
transparency-and-reporting/
reporting-and-review-under-the-convention/
greenhouse-gas-inventories-annex-i-parties/
national-inventory-submissions-2019
(last access: January 2021)

UNFCCC UNFCCC
MS-NRT

t−1 proxy estimate for
2018

t−1 proxy estimate for
2018

EEA EEA report, Approximated EU GHG
inventory: proxy GHG estimates for 2018
(https://www.eea.europa.eu/publications/
approximated-eu-ghg-inventory-proxy,
last access: November 2020).

BU EDGAR v5.0 CH4 sectoral emissions
1990–2015

N2O sectoral emissions
1990–2015

EC-JRC Crippa et al. (2019)
Crippa et al. (2020)
Janssens-Maenhout et al. (2019)
Solazzo et al. (2020)

BU CAPRI CH4 agricultural emis-
sions 1990–2013

N2O agricultural emis-
sions 1990–2013

EC-JRC Britz and Witzke (2014)
Weiss and Leip (2012)

BU GAINS CH4 sectoral emissions
1990–2015

N2O sectoral emissions
1990–2015
(every 5 years)

IIASA Höglund-Isaksson (2012)
Höglund-Isaksson (2017)
Höglund-Isaksson et al. (2020)
Gomez-Sanabria et al. (2018)
Winiwarter et al. (2018)

BU FAOSTAT CH4 agriculture and
land use emissions
1990–2017

N2O agricultural emis-
sions 1990–2017

FAO Tubiello et al. (2013)
FAO (2015, 2020)
Tubiello (2019)

BU ECOSSE Direct N2O emissions
from agricultural soils
2000–2015

UNIABDN Bradbury et al. (1993)
Coleman and Jenkinson (1996)
Jenkinson and Rayner (1977)
Jenkinson et al. (1987)
Smith et al. (1996, 2010a, b)

BU DayCent N2O emissions from
direct agricultural soils
average 2011–2015

EC-JRC Orgiazzi et al. (2018)
Lugato et al. (2018, 2017)
Quemada et al. (2020)

CH4 and N2O bottom-up natural

BU JSBACH–
HIMMELI

CH4 emissions from
peatlands
2005–2017

FMI Raivonen et al. (2017)
Susiluoto et al. (2018)

BU Non-wetland in-
land waters

One average value for
CH4 fluxes from lakes
and reservoirs with
uncertainty
2005–2011

N2O average value for
emissions from lakes,
rivers, reservoirs
Average of 2010–2014

ULB Maavara et al. (2017, 2019)
Lauerwald et al. (2019)
Deemer et al. (2016)
Del Sontro et al. (2018)
Mccauley et al. (1989)

BU Geological emis-
sions, including
marine and
land geological

Total pre-industrial-era
geological CH4
emissions

Hmiel et al.
(2020)
Etiope et al.
(2019)

Hmiel et al. (2020)
https://www.nature.com/articles/
s41586-020-1991-8
(last access: September 2020)
Etiope et al. (2019)
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Table 2. Continued.

Method Name CH4 N2O Contact/lab References

CH4 and N2O top-down inversions

Regional inversions over Europe (high transport model resolution)

TD FLEXPART
(FLExKF-TM5-
4DVAR)_EMPA

Total CH4 emissions
from inversions with
uncertainty
2005–2017

EMPA Brunner et al. (2012)
Brunner et al. (2017)
Background concentrations from
TM5-4DVAR, Bergamaschi et al. (2018a)

TD TM5-4DVAR CH4 emissions from in-
versions, split into total,
anthropogenic and nat-
ural 2005–2017

EC-JRC Bergamaschi et al. (2018a)

TD FLEXINVERT_
NILU

CH4 total emissions
from inversions
2005–2017

N2O total emissions
2005–2017

NILU Thompson and Stohl (2014)

TD CTE-CH4 Total CH4 emissions
from inversions for Eu-
rope with uncertainty
2005–2017

FMI Brühl and Crutzen (1993)
Howeling et al. (2014)
Giglio et al. (2013)
Ito and Inatomi (2012)
Janssens-Maenhout et al. (2013)
Krol et al. (2005)
Peters et al. (2005)
Saunois et al. (2020)
Stocker et al. (2014)
Tsuruta et al. (2017)

TD InTEM-NAME CH4 emissions only
plotted for the UK

Met Office
UK

Jones et al. (2007)
Cullen (1993)
Arnold et al. (2018)

TD InGOS
inversions

Total CH4 emissions
from inversions
2006–2012

EC-JRC
and InGOS
project
partners

Bergamaschi et al. (2018a)
TM5-4DVAR: Meirink et al. (2008), Bergam-
aschi et al. (2010, 2015)
TM5-CTE: Tsuruta et al. (2017)
LMDZ-4DVAR: Hourdin and Armengaud
(1999), Hourdin et al. (2006)
TM3-STILT: Trusilova et al. (2010), Gerbig
et al. (2003), Lin et al. (2003), Heimann and
Koerner (2003)
NAME: Manning et al. (2011), Bergamaschi
et al. (2015)
CHIMERE: Berchet et al. (2015a, b), Menut
et al. (2013), Bousquet et al. (2011)
COMET: Eisma et al. (1995), Vermeulen et al.
(1999), Vermeulen et al. (2006)

Global inversions from the Global Carbon Project CH4 and N2O budgets (Saunois et al., 2020; Tian et al., 2020)

TD GCP-CH4 2019
anthropogenic
partition from
inversions

22 models for CH4
inversions, both SURF
and GOSAT
2000–2017

LSCE and
GCP-CH4
contribu-
tors

Saunois et al. (2020) and model-specific refer-
ences in Appendix B, Table B4

TD GCP-CH4 2019
natural partition
from inversions

22 models with
optimized wetland
CH4 emissions
2000–2017

LSCE Saunois et al. (2020) and model-specific refer-
ences in Appendix B, Table B3

TD Inverse N2O emis-
sions:
PYVAR (CAMS-N2O)
TOMCAT
MIROC4-ACTM
1998–2016

GN2OB
2019 and
contributors

Thompson et al. (2019)
Tian et al. (2020)
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Sontro et al., 2018). Emissions from gas hydrates and ter-
mites are not included as they are close to zero in the
EU27+UK (Saunois et al., 2020). Biomass burning emis-
sions of CH4 from the land use, land use change and forestry
(LULUCF) sector account for 3 % of the total emissions in
the EU27+UK. These estimates are described in Sect. 2.2.
From TD approaches, we used both regional and global in-
versions, with the latter having a coarser spatial resolution.
These estimates are described in Sect. 2.3.

For N2O emissions, we used the same global BU inven-
tories as for CH4 and natural emissions from inland waters
(rivers, lakes and reservoirs) (Maavara et al., 2019; Lauer-
wald et al., 2019). In this study, about 66 % of the N2O emit-
ted by Europe’s natural rivers is considered anthropogenic
indirect emissions, caused by leaching and runoff of N fertil-
izers from the agriculture sector. We did not account for nat-
ural N2O emissions from unmanaged soils (Tian et al., 2019,
estimated pre-industrial soil emissions in Europe at a third of
the level of the most recent decade – emissions that in pre-
industrial times may have been influenced by human man-
agement activities or based on natural processes that have
been abolished since). For N2O inversions, we used one re-
gional inversion (FLEXINVERT_NILU) and three global in-
versions (Friedlingstein et al., 2019; Tian et al., 2020). Agri-
cultural sector emissions of N2O were presented in detail by
Petrescu et al. (2020). In this current study these emissions
come from the CAPRI model and FAOSTAT, with the lat-
ter additionally covering non-CO2 emissions from biomass
fires in LULUCF. Fossil-fuel-related and industrial emissions
were obtained from GAINS (see Appendix A1). Table A2 in
Appendix A presents the methodological differences of the
current study with respect to Petrescu et al. (2020).

The units used in this paper are metric tonnes (t)
(1 kt= 109 g; 1 Mt= 1012 g) of CH4 and N2O.
The referenced data used for the figures’ repli-
cability purposes are available for download at
https://doi.org/10.5281/zenodo.4590875 (Petrescu et al.,
2020). Upon request, we can provide the codes necessary
to plot precisely the style and/or layout of the figures.
We focus herein on the EU27+UK. In the VERIFY
project, we have constructed in addition a web tool which
allows for the selection and display of all plots shown
in this paper (as well as the companion paper on CO2,
Petrescu et al., 2021) not only for the regions but for
a total of 79 countries and groups of countries in Eu-
rope. The data, located on the VERIFY project website
(http://webportals.ipsl.jussieu.fr/VERIFY/FactSheets/, last
access: February 2021) are free but accessible with a
username and password distributed by the project. Figure 1
includes also data from countries outside the EU but located
within geographical Europe (Switzerland, Norway, Belarus,
Ukraine and the Republic of Moldova).

2.1 CH4 and N2O anthropogenic emissions from
NGHGIs

UNFCCC NGHGI (2019) emissions are country estimates
covering the period 1990–2017. They were kept separate to
be compared with other BU and TD data. We supplemented
the NGHGI estimates with the member state (MS) near-real-
time inventory (MS-NRT; EEA, 2019) to capture one addi-
tional year with preliminary estimates5. MS-NRT represents
the approximated GHG inventory (also referred to as “proxy
estimates”) with an early estimate of the GHG emissions for
the preceding year, as required by Regulation (EU) 525/2013
of the European Parliament and of the Council.

Anthropogenic CH4 emissions from the four UNFCCC
sectors (Table 1, excluding LULUCF) were grouped to-
gether. As anthropogenic NGHGI CH4 emissions from the
LULUCF sector are very small for the EU27+UK (2.6 %
in 2017 including biomass burning), we exclude them in
Fig. 4 but include them in the total UNFCCC estimates
from Figs. 1–3, 5 and 6. Only a few countries6 under the
NGHGIs volunteered to report wetland emissions, follow-
ing the recommendations of the 2014 IPCC wetlands supple-
ment (IPCC, 2014), and these emissions were not included
in the NGHGI total, following the IPCC (2006) Guidelines
as the reference for NGHGIs and in the absence of a de-
tailed description of what they cover. According to NGHGI
data between 2008 and 2017, the wetland emissions in the
EU27+UK reported under LULUCF (CRF Table 4(II) ac-
cessible for each EU27+UK country7) include only man-
aged wetlands which represent one-fourth of the total wet-
land area in the EU27+UK (Giacomo Grassi, personal com-
munication, 2019) and sum up to 0.1 Tg of CH4 (Petrescu
et al., 2020a).

Anthropogenic N2O emissions are predominantly related
to agriculture (for the EU27+UK, 69 % in 2017) but are also
found in the other sectors (Tian et al., 2020). In addition, N2O
has natural emissions, which are defined as the pre-industrial
background, that is, before the use of synthetic N fertilizers
and intensive agriculture, and derive from natural processes
in soils but also in lakes, rivers and reservoirs (Maavara et al.,
2019; Lauerwald et al., 2019; Tian et al., 2020).

5t − 1 refers to an early estimate of the GHG emissions for the
preceding year, as required by Regulation (EU) 525/2013 of the Eu-
ropean Parliament and of the Council.

6Denmark, Finland, Germany, Ireland, Latvia, Sweden, France,
Estonia and Spain – in total these nine countries report in
2017 11.2 kt of CH4 from managed wetlands (UNFCCC 2019,
CRF Table4(II)D: https://unfccc.int/documents/194946, last access:
September 2020).

7https://unfccc.int/process-and-meetings/transparency-and-
reporting/reporting-and-review-under-the-convention/greenhouse-
gas-inventories-annex-i-parties/national-inventory-submissions-
2019 (last access: January 2021)
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2.2 CH4 and N2O anthropogenic and natural emissions
from other bottom-up sources

We used four global CH4 and N2O BU anthropogenic emis-
sions inventories: CAPRI, FAOSTAT, GAINS and EDGAR
v5.0 (Tables 2 and 3). These estimates are not completely in-
dependent from NGHGIs (see Fig. 4 in Petrescu et al., 2020a)
as they integrate their own sectorial modeling with the UN-
FCCC data (e.g., common activity data and IPCC emission
factors) when no other source of information is available.

Anthropogenic emissions from these datasets follow and
can be matched to Table 1 sectors. The CH4 biomass and
biofuel burning emissions are included in NGHGIs under the
UNFCCC LULUCF sector, although they are identified as
a separate category by the Global Carbon Project CH4 bud-
get synthesis (Saunois et al., 2020). For both CH4 and N2O,
CAPRI (Britz and Witzke, 2014; Weiss and Leip, 2012) and
FAOSTAT (FAO, 2020) report only agricultural emissions.
None of the BU inventories reported uncertainties, except for
the 2015 values of EDGAR v5.0 (Solazzo et al., 2021) and
for an earlier FAOSTAT dataset only up to 2010 (Tubiello
et al., 2013, and Appendix B).

The CH4 natural emissions belong to “peatlands” and
“other natural emissions”, with the latter including geo-
logical sources and inland waters (lakes and reservoirs),
following Saunois et al. (2020). For peatlands, we used
the JSBACH–HIMMELI framework and the ensemble of
13 monthly gridded estimates of peatland emissions based on
different land surface models as calculated for Saunois et al.
(2020), all described in Appendix A2. In EU27+UK, geo-
logical emissions were calculated by scaling up the regional
emissions from Etiope et al. (2019) (37.4 TgCH4 yr−1) to
the global ratio of emissions from Hmiel et al. (2020)
(see Appendix A2, geological fluxes), obtaining an esti-
mate of 1.3 TgCH4 yr−1 (marine and land geological). Ma-
rine seepage emissions were excluded. This rescaled geolog-
ical source represents 24 % of the total EU27+UK natural
CH4 emissions. Inland waters (lakes and reservoirs, based
on Lauerwald et al., 2019, and Del Sontro et al., 2018)
(Appendix A2) are the largest natural component (48 %),
with the rest (28 %) being attributed to peatlands. Overall,
in the EU27+UK the natural emissions thus accounted for
5.2 TgCH4 yr−1.

The N2O anthropogenic emissions from BU datasets be-
long predominantly to two main categories, as presented
in Table 2: (1) direct emissions from the agricultural sec-
tor where synthetic fertilizers and manure were applied, as
well as from manure management; and (2) indirect emis-
sions on non-agricultural land and water receiving anthro-
pogenic N through atmospheric N deposition, leaching and
runoff (also from agricultural land). Furthermore, emissions
from industrial processes are declining over time but orig-
inate from fossil fuel combustion, air pollution abatement
devices, specific chemical reactions, wastewater treatment
and land use change. In this study, we do not consider the

natural emissions from soils, since these emissions are rel-
atively small for temperate regions, including Europe, and
cannot be singled out in landscapes largely dominated by hu-
man activities. Therefore, the only “natural” fluxes consid-
ered in this study are emissions from inland waters (lakes,
rivers and reservoirs, Maavara et al., 2019; Lauerwald et al.,
2019, Appendix A3) even if more than half of the emis-
sions (56 % globally, Tian et al., 2020, and 66 % for Europe
this study) are due to eutrophication following N fertilizer
leaching to inland waters. Emissions from natural soils in
this study are considered anthropogenic because, according
country-specific national inventory reports (NIRs), all land in
the EU27+UK is considered to be managed, except 5 % of
France’s EU territory.

2.3 CH4 and N2O emission data from top-down
inversions

Inversions combine atmospheric observations, transport and
chemistry models, and estimates of GHG sources all with
their uncertainties to estimate emissions. Emission estimates
from inversions depend on the dataset of atmospheric mea-
surements and the choice of the atmospheric model, as well
as on other settings (e.g., prior emissions and their uncer-
tainties). Inversion outputs were taken from original publi-
cations without evaluation of their performance through spe-
cific metrics (e.g., fit to independent cross-validation atmo-
spheric measurements (Bergamaschi et al., 2013, 2018; Patra
et al., 2016). Some of the inversions solve explicitly for sec-
tors; others solve for all fluxes in each grid cell and separate
sectors using prior grid-cell fractions (see details in Saunois
et al., 2020, for global inversions).

For CH4, we use 9 regional TD inversions and 22 global
TD inversions listed in Table 2. These inversions are not
independent from each other: some are variants from the
same modeling group, many use the same transport model
and most of them use the same atmospheric data. Differ-
ent prior data are generally used in models, which produce a
greater range of posterior emission estimates (Appendix B3,
Table B4). The subset of InGOS inversions (Bergamaschi
et al., 2018a) belongs to a project where all models used
the same atmospheric data over Europe covering the period
2006–2012. The global inversions from Saunois et al. (2020)
were all updated to 2017.

The regional inversions generally use both higher-
resolution a priori data and higher-resolution transport mod-
els, and, e.g., TM5-JRC runs simultaneously over the global
domain at coarse resolution and over the European domain
at higher resolution, with atmospheric CH4 concentration
boundary conditions taken from global fields. For CH4, 11
global inversions use GOSAT for the period 2010–2017, 8
global inversions use surface stations (SURF) since 2000, 2
global inversions use SURF since 2010 and 1 global inver-
sion uses SURF since 2003 (see Appendix 4 Table in Saunois
et al., 2020, and Table 2 below). All regional inversions use
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observations from SURF stations as a base of their emission
calculation.

For N2O, we use one regional inversion (FLEXIN-
VERT_NILU for 2005–2017 period) and three global inver-
sions for the period 1998–2016 from Thompson et al. (2019),
listed in Table 2. These inversions are not completely inde-
pendent from each other since most of them use the same
input information (Appendix B, Table B4). The regional in-
version uses a higher-resolution transport model for Europe,
with atmospheric N2O concentration boundary conditions
taken from global fields. As all inversions derived total rather
than anthropogenic emissions; emissions from inland wa-
ters (lakes, rivers and reservoirs) estimated by Maavara et al.
(2019) and Lauerwald et al. (2019) were subtracted from the
total emissions. Note that the estimates of Maavara et al.
(2019) and Lauerwald et al. (2019) include anthropogenic
emissions from N fertilizer leaching accounting for 66 %
of the inland water emissions in the EU27+UK. In 2016,
emissions from rivers represent 2.2 % of the total UNFCCC
NGHGI (2019) N2O emissions. The natural N2O emissions
are small but should be better quantified in the future to allow
for a more accurate comparison between BU (anthropogenic
sources only) and TD estimates.

The largest share of N2O emissions comes from the agri-
cultural soils (direct and indirect emissions from the ap-
plications of fertilizers, whether synthetic or manure) con-
tributing in 2017 69 % of the total N2O emissions (exclud-
ing LULUCF) in the EU27+UK. Table B3 in Appendix B1
presents the allocation of emissions by activity type cover-
ing all agricultural activities and natural emissions, following
the IPCC classification. We notice that each data product has
its own particular way of grouping emissions and does not
necessarily cover all emissions activities. Main inconsisten-
cies between models and inventories are observed with ac-
tivity allocation in the two models (ECOSSE and DayCent).
ECOSSE only estimates direct N2O emissions and does not
estimate downstream emissions of N2O, for example indirect
emissions from nitrate leached into water courses, which also
contributes to an underestimation of the total N2O emissions.
Field burning emissions are also not included by most of the
data sources.

3 Results and discussion

3.1 Comparing CH4 emission estimates from different
approaches

3.1.1 Estimates of European and regional total CH4
fluxes

We present results of the total CH4 fluxes from the
EU27+UK and five main regions in Europe: north, west,
central, east (non-EU) and south. The countries included in
these regions are listed in Appendix A, Table A1. Figure 1
shows the total CH4 fluxes from NGHGIs for both the base

year 1990 and mean of the 2011–2015 period. This period
was the common denominator for which data were available,
including 2 years of the Kyoto Protocol first reporting period
(2011/12) and reaching the year of the Paris Agreement was
adopted. We aim with the selection of this period to bring to-
gether all information over a 5-year period for which values
are known in 2018. In fact, this can be seen as a reference
for what we can achieve in 2023, the year of the first global
stocktake, where for most UN Parties the reported invento-
ries will be known until 2021. Given that the global stocktake
is only repeated every 5 years, a 5-year average is clearly of
interest.

The total NGHGI estimates include emissions from all
sectors, and we plot and compare them with fluxes from
global datasets, BU models and inversions. We note that
for all five regions, the NGHGI-reported CH4 emissions de-
creased by 21 % in southern Europe, by up to 54 % in eastern
Europe and by 35 % for the European Union with respect to
the 1990 value. This is encouraging in the context of meeting
EU commitments under the PA (at least 50 % and towards
55 % compared with 1990 levels stated by the amended pro-
posal for a regulation of the European Parliament and of
the council on establishing the framework for achieving cli-
mate neutrality and amending Regulation (EU) 2018/1999
(European Climate Law) (https://ec.europa.eu/clima/sites/
clima/files/eu-climate-action/docs/prop_reg_ecl_en.pdf, last
access: November 2020) and reaching carbon neutrality by
2050). It also shows that the emissions from BU (anthro-
pogenic and natural) and TD estimates agree well with re-
ported NGHGI data despite the high uncertainty observed in
the TD models not only at the EU27+UK level but also at
the regional European level. This uncertainty is represented
here by the variability in the model ensembles and denotes
the range of the extremes (min and max) of estimates within
each model ensemble. From Fig. 1 we clearly note that north-
ern Europe is dominated by natural (wetlands) emissions
while western, central and southern European emissions are
dominated by anthropogenic sectors (e.g., agriculture).

The EDGAR v5.0 estimate for northern Europe is twice
as high when compared to NGHGI and GAINS, and this is
because of CH4 emissions from the fuel production and dis-
tribution (IPCC sector 1B) and waste sectors. Most Scandi-
navian countries rely for their power and heat supply on bio-
genic fuels, which introduces more uncertainty in the use of
activity data and emission factors. The allocation of auto-
producers as explained in Sect. 3.2 could be another rea-
son for differences. The waste sector emissions for Norway,
Sweden, Finland and Estonia are different but still consistent
with the landfill emissions from EDGAR v4.3.2, which are
known to be up to twice as high as the nationally reported
value (Janssens-Maenhout et al., 2019). For eastern Europe
we note that BU anthropogenic estimates have the same mag-
nitude as the TD. One possible explanation is linked to the
fact that for TD estimates (i.e., using atmospheric inversions)
the fluxes are strongly constrained by the density of observa-

https://doi.org/10.5194/essd-13-2307-2021 Earth Syst. Sci. Data, 13, 2307–2362, 2021

https://ec.europa.eu/clima/sites/clima/files/eu-climate-action/docs/prop_reg_ecl_en.pdf
https://ec.europa.eu/clima/sites/clima/files/eu-climate-action/docs/prop_reg_ecl_en.pdf


2316 A. M. R. Petrescu et al.: European synthesis of CH4 and N2O emissions for the EU27 and UK: 1990–2017

Figure 1. Five-year-average (2011–2015) total CH4 emission estimates (including LULUCF) for the EU27+UK and five European regions
(north, west, central, south and east non-EU). The eastern European region does not include European Russia, and the UNFCCC uncertainty
for the Republic of Moldova was not available. Northern Europe includes Norway. Central Europe includes Switzerland. The data belong to
the UNFCCC NGHGI (2019) submissions (grey) and base year 1990 (black star), two BU inventories (GAINS and EDGAR v5.0), natural
unmanaged emissions (sum of peatland, geological and inland water emissions), and three TD total estimates (regional European inversions
– excluding InGOS unavailable for 2013–2015 – and GOSAT and SURF estimates from global inverse models). The relative error on the
UNFCCC value represents the UNFCCC NGHGI (2018) reported uncertainty computed with the error propagation method (95 % confidence
interval): 9.3 % for the EU27+UK, 10 % for eastern Europe non-EU, 7.8 % for northern Europe, 10.9 % for southern Europe, 16.1 % for
western Europe and 11 % for central Europe. The uncertainty for EDGAR v5.0 was calculated for 2015 and represents the 95 % confidence
interval of a lognormal distribution.

tions. Where there are few or no observations, the fluxes in
the inversion will stay close to the prior estimates, since there
is little or no information to adjust them.

In line with Bergamaschi et al. (2018a) we highlight the
potential significant contribution from natural unmanaged
sources (peatlands, geological and inland water), which for
the EU27+UK accounted for 5.24 TgCH4 yr−1 (Fig. 1).
Taking into account these natural unmanaged CH4 emissions
and adding the to the range of the anthropogenic estimates
(19–21 TgCH4 yr−1), the total BU estimates become broadly
consistent for all European regions with the range of the TD
estimates (23–28 TgCH4 yr−1).

3.1.2 NGHGI sectoral emissions and decadal changes

According to the UNFCCC (2019) NGHGI estimates, in
2017 the EU27+UK emitted GHGs totaling 3.9 GtCO2 eq.
(including LULUCF); of this total, CH4 emissions ac-
counted for ∼ 11 % (0.4 GtCO2 eq. or 18.1 MtCH4 yr−1)
(Appendix B2, Fig. B1a) with France, the UK and Germany
contributing together 36 % of the total CH4 emissions.

The data in Fig. 2 show anthropogenic CH4 emissions and
their change from one decade to the next, from UNFCCC
NGHGI (2019), with the contribution from different UN-
FCCC sectors. In 2017, NGHGIs report CH4 from agricul-
tural activities to be 52 % (± 10 %) of the total EU27+UK

CH4 emissions, followed by emissions from waste, 27 %
(± 23 %). The large share of agriculture in total anthro-
pogenic CH4 emissions also holds at the global level (IPCC,
2019a). Between the 1990s and the 2000s, the net −17.7 %
reduction originates largely from energy and waste, with
IPPU (metal and chemical industry) and LULUCF having
negligible change. Between the 2000s and 2010–2017, the
−15.5 % reduction is distributed more evenly across sec-
tors, with waste having the largest contribution and industry
showing no change. The two largest sectors composing total
EU27+UK emission are the agriculture and waste sectors,
but the energy and waste sectors have shown higher reduc-
tions over the last decade.

The reduction observed in the waste sector is partly due
to the adoption of the first EU methane strategy published in
1996 (COM(96), 1996). EU legislation addressing emissions
in the waste sector proved to be successful and brought about
the largest reductions. Directive 1999/31/EC on the landfill
of waste (also referred to as the Landfill Directive) required
the members states (MSs) to separate waste, minimizing the
amount of biodegradable waste disposed untreated in land-
fills, and to install landfill gas recovery at all new sites. Based
on the 1999 directive, the new 2018/1999 EU regulation on
the governance of the Energy Union requires the European
Commission to propose a strategic plan for methane, which
will become an integral part of the EU’s long-term strategy.
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Figure 2. The contribution of changes (%) in CH4 anthropogenic emissions in the five UNFCCC sectors to the overall change in decadal
mean, as reported to UNFCCC NGHGI (2019). The three stacked columns represent the average CH4 emissions from each sector during
three periods (1990–1999, 2000–2009 and 2010–2017), and percentages represent the contribution of each sector to the total reduction
percentages (black arrows) between periods.

In the waste sector, the key proposal included the adoption
of EU legislation requiring the installation of methane recov-
ery and use systems at new and existing landfills. Other sug-
gested actions included measures aimed at the minimization,
separate collection and material recovery of organic waste
(Olczak and Piebalgs, 2019).

3.1.3 NGHGI estimates compared with bottom-up
inventories

The data in Fig. 3 present the total anthropogenic
CH4 emissions from four BU inventories and UNFCCC
NGHGI (2019) excluding those from LULUCF. Accord-
ing to NGHGIs, anthropogenic emissions from the total
EU27+UK of the four UNFCCC sectors (Table 1, exclud-
ing LULUCF) amounted to 18.2 Tg of CH4 in the year 2017,
which is 10.7 % of the total GHG emissions in CO2 eq.
In Fig. 3a, we observe that EDGAR v5.0 and GAINS
show consistent trends with NGHGIs (excluding LULUCF),
but GAINS reports consistently lower estimates (10 %) and
EDGAR v5.0 consistently higher estimates (8 %) compared
to NGHGIs. In contrast to the previous version, EDGAR
v4.3.2, which was found by Petrescu et al. (2020a) to be
consistent with NGHGI (2018) data, EDGAR v5.0 reports
higher estimates but within the 9.4 % UNFCCC uncertainty
range. The trends in emissions agree better between the two
BU inventories and NGHGIs over 1990–2015, with linear
trends of −1.5 %yr−1 in NGHGIs compared to −1.5 %yr−1

in GAINS and −1.4 %yr−1 in EDGAR v5.0.
Sectoral time series of anthropogenic CH4 emissions (ex-

cluding LULUCF) and their means are shown in Fig. 3b–

e. For the energy sector (Fig. 3b), both EDGAR v5.0 and
GAINS match the NGHGI trend well thanks to updated
methodology that derives bottom-up emission factors and
accounts for country-specific information about associated
petroleum gas generation and recovery, venting, and flaring
(Höglund-Isaksson, 2017). After 2005, GAINS reports con-
sistently lower emissions than UNFCCC due to a phasedown
of hard coal production in the Czech Republic, Germany,
Poland and the UK; a decline in oil production in particular
in the UK; and declining emission factors reflecting reduced
leakage from gas distribution networks as old town gas net-
works are replaced. The consistently higher estimates (+6 %
compared to the UNFCCC mean) of EDGAR v5.0 might be
due to the use of default emission factors for oil and gas
production based on data from the US (Janssens-Maenhout
et al., 2019). Next to that, several other reasons could be the
cause for the differences (e.g., use of Tier 1 emission fac-
tors for coal mines, assumptions for material in the pipelines
(in the case of gas transport) and the activity data). EDGAR
v5.0, for example, uses the gas pipeline length as a proxy for
the activity data; however, this may not be appropriate for
the case of the official data, which could consider the total
amount of gas being transported or both methods according
to the countries. Using pipeline length may overestimate the
emissions because the pipeline is not always at 100 % ca-
pacity; thus, a larger amount of methane is assumed to be
leaked. For coal mining, emissions are a function of the dif-
ferent types of processes being modeled.

The IPPU sector (Fig. 3c), which has only a small share of
the total emissions, is not reported in GAINS, while EDGAR
v5.0 estimates are less than half of the emissions reported
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Figure 3. Total anthropogenic CH4 emissions (excluding LULUCF): (a) of the EU27+UK and total sectoral emissions as (b) energy,
(c) IPPU, (d) agriculture and (e) waste from UNFCCC NGHGI (2019) submissions and MS-NRT 2018 compared to global bottom-up
inventory models for agriculture (CAPRI, FAOSTAT) and all sectors excluding LULUCF (EDGAR v5.0, GAINS). CAPRI reports one
estimate for Belgium and Luxembourg. The relative error on the UNFCCC value represents the UNFCCC NGHGI (2018) MS-reported
uncertainty computed with the error propagation method (95 % confidence interval): 9.4 % for the total EU27+UK, 23 % for energy and
waste, 27 % for IPPU and 10 % for agriculture. The uncertainty for EDGAR v5.0 was calculated for 2015, and the min/max values for
all sectors are as follows: EU27+UK total 15/16, energy 33/37, IPPU 39/34, agriculture 18/18 and waste 32/38; it represents the 95 %
confidence interval of a lognormal distribution. The mean values on the right-hand side reflect the values for the common overlapping period
1990–2015. The last reported year in this study refers to 2017 (UNFCCC and FAOSTAT), 2015 (EDGAR v5.0 and GAINS) and 2013
(CAPRI).

by NGHGI 2019 in this sector. The discrepancy for this
sector has a negligible impact on discrepancy for the total
CH4 emission. However, we identified that the low bias of
EDGAR v5.0 could be explained by fewer activities included
in EDGAR v5.0 (e.g., missing solvent, electronics and other
manufacturing goods), accounting for 5.5 % of the total IPPU
emissions in 2015 reported to UNFCCC. The reason for the
remaining difference could be explained by the allocation of
emissions from auto-producers8 in EDGAR v5.0 to the en-
ergy sector (following the IPCC 1996 guidelines), while in
NGHGIs they are reported under the IPPU sector (following
the 2006 IPCC Guidelines).

As CAPRI and FAOSTAT just report emissions from agri-
culture, we only included them in Fig. 3d. The data show
that the four data sources (EDGAR v5.0, GAINS, CAPRI
and FAOSTAT) show good agreement, with CAPRI at the
lower range of emissions (Petrescu et al., 2020a) and on aver-
age 3 % lower than UNFCCC and EDGAR v5.0 at the upper
range. The reason for EDGAR v5.0 having the highest esti-
mate (contrary to Petrescu et al., 2020a, where NGHGIs were
the highest and EDGAR v4.3.2 the second highest) is likely
due to the activity data updates in EDGAR v5.0 based on
FAOSTAT values, compared to EDGAR v4.3.2. When look-

8Auto-producers of electricity and heat: cogeneration by indus-
tries and companies for housing management (central heating and
other services) (Olivier et al., 2017, PBL report).

ing at the time series mean, EDGAR v5.0, GAINS and FAO-
STAT show a similar value, +5 % higher than the NGHGI.
This shows good consistency between the three BU esti-
mates and UNFCCC likely due to the use of similar activity
data and emission factors (EFs); cf. Fig. 4 in Petrescu et al.
(2020a).

For the waste sector (Fig. 3e) EDGAR v5.0 shows con-
sistent higher estimates compared to the NGHGI data, while
GAINS emissions have an increasing trend after 2000 (mean
1990–2015 value 6 % higher than NGHGIs). The two inven-
tories, EDGAR v5.0 2020 update for landfills and GAINS,
used an approach based on the decomposition of waste into
different biodegradable streams, with the aim of applying the
methodology described in the 2019 Refinement to the 2006
IPCC Guidelines for National Greenhouse Gas Inventories
and the IPCC waste model (IPCC, 2019b) using the first-
order-decay (FOD) method. The main differences between
the two datasets come from (i) sources for total waste gen-
erated per person, (ii) assumption for the fraction composted
and (iii) the oxidation. The two inventories may have used
different strategies to complete the waste database when in-
consistencies were observed in the EUROSTAT database or
in the waste trends in UNFCCC.
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Figure 4. (a) Comparison of the total CH4 emissions from top-down regional inversions with UNFCCC NGHGI (2019) data and inland
water (lakes_reservoirs_ULB, pink), peatland (from JSBACH–HIMMELI, green) and geological emissions (yellow); (b) comparison of
anthropogenic CH4 emissions from top-down regional inversions with UNFCCC NGHGI (2019) data. Anthropogenic emissions from these
inversions are obtained by removing natural emissions shown in Fig. 4a. The MS-NRT LULUCF estimate does not include the following
countries: Austria, Belgium, Estonia, Croatia, Hungary, Luxembourg, Latvia, Malta and Slovenia. UNFCCC NGHGI (2018) reported the
uncertainty computed with the error propagation method (95 % confidence interval) is 9.29 % and represents the UNFCCC NGHGI (2018)
MS-reported uncertainty for all sectors (including LULUCF). The time series mean was computed for the common period 2006–2012.

3.1.4 NGHGI estimates compared to atmospheric
inversions

Regional inversions

Figure 4 compares TD regional estimates with NGHGI an-
thropogenic data for CH4 and with natural BU emissions.
We present TD estimates of the total emissions (Fig. 4a) as
well as estimates of anthropogenic emissions only (Fig. 4b),
which are calculated by subtracting the natural emissions
from the total inversions.

The TD estimates of European CH4 emissions of Fig. 4
use four European regional models (2005–2017) and an en-
semble of five different inverse models (InGOS, Bergam-
aschi et al., 2015) for 2006–2012.

For the common period 2006–2012, the four inverse
models give a total CH4 emissions mean of 25.8 (24.0–
27.4) TgCH4 yr−1 compared to anthropogenic total of
20.3± 1.9 TgCH4 yr−1 in NGHGIs (Fig. 4a). The large pos-
itive difference between TD and NGHGIs suggests a po-
tentially significant contribution from natural sources (peat-
lands, geological sources and inland waters), which for the
same period report a total mean of 5.2 TgCH4 yr−1. How-
ever, it needs to be emphasized that wetland emission es-
timates have large uncertainties and show large variability
in the spatial (seasonal) distribution of CH4 emissions, but
for Europe their inter-annual variability is not very strong
(mean of 13 years from JSBACH–HIMMELI peatland emis-
sions 1.4± 0.1 TgCH4 yr−1). Overall, they do represent an
important source and could dominate the budget assessments

https://doi.org/10.5194/essd-13-2307-2021 Earth Syst. Sci. Data, 13, 2307–2362, 2021



2320 A. M. R. Petrescu et al.: European synthesis of CH4 and N2O emissions for the EU27 and UK: 1990–2017

in some regions such as northern Europe (Fig. 1). We also
note that the TD trends do not necessarily match those of
NGHGIs, and this might be due to strong seasonality of emis-
sions coming from the natural fluxes used as input to the in-
versions (Saunois et al., 2020).

The natural emissions from inland waters (based on
Lauerwald et al., 2019; see Appendix A2) contribute
2.53 TgCH4 yr−1, or 48 % of the total natural CH4 emissions
(sum of lake and reservoir, geological, and peatland emis-
sions). Peatlands (Raivonen et al., 2017, and Susiluoto et al.,
2018) account for 1.38 TgCH4 yr−1, i.e., 27 % of the total
natural CH4 emissions, and geological sources sum up to
1.27 TgCH4 yr−1, i.e., 25 % of the total natural CH4 emis-
sions. It should be noted that geological emissions are an
important component of the EU27+UK emissions budget,
although not of concern for climate warming if their source
strength has not changed since pre-industrial times (Hmiel
et al., 2020). According to the 2006 IPCC Guidelines (IPCC,
2006) CH4 emissions from wetlands are reported by the MS
to the NGHGIs under the LULUCF sector and considered
anthropogenic. They are included in the total LULUCF val-
ues (Figs. 1, 2, 4 and 5), and in 2017 only eight EU coun-
tries (Germany, Denmark, Spain, Estonia, Finland, Ireland,
Latvia and Sweden) reported CH4 emissions from wetlands,
accounting only for 11.2 ktCH4 yr−1.

In an attempt to quantify the anthropogenic CH4 com-
ponent in the European TD estimates, in Fig. 4b we sub-
tract from the total TD emissions the BU peatland emis-
sions from the regional JSBACH–HIMMELI model and
those from geological and inland water sources. It re-
mains however uncertain to perform these corrections due
to the prior inventory data allocation of emissions to dif-
ferent sectors (e.g., anthropogenic or natural), which can
induce uncertainty of up to 100 % if for example an in-
ventory allocates all emissions to natural emissions and the
correction is made by subtracting the natural emissions.
The inversion that simulates the closest anthropogenic es-
timate to the UNFCCC NGHGI (2019) is FLExKF-TM5-
4DVAR_EMPA. In 2017, it reports 19.4 TgCH4 yr−1, while
NGHGIs report 18.5 TgCH4 yr−1. Regarding trends, only
FLExKF-TM5-4DVAR_EMPA shows a linear decreasing
trend of −2.1 %yr−1, compared to the NGHGI data trend of
−1.3 %yr−1 over their overlap period of 2005–2017, while
other inversions show no significant trend. From this attempt
we clearly note that few of the inversions showed the clear
decline of NGHGIs. As NGHGI emissions are dominated by
anthropogenic fluxes and decline by almost 30 % compared
to 1990, this should also be seen in the corrected anthro-
pogenic inversions. Therefore, we need to further investigate
how well the NGHGIs reflect reality or how well the TD es-
timates capture the trends.

Global inversion estimates

Figure 5 compares TD global estimates with NGHGI data
and gives information on the wetland emissions from global
wetland models (Saunois et al., 2020). We present TD esti-
mates of the total emissions (Fig. 5a) as well as estimates
of anthropogenic emissions (Fig. 5b). The global inversion
models were split according to the type of observations used,
with 11 of them using satellites (GOSAT) and 11 using
surface stations (SURF). Wetlands emissions provided by
22 global TD inversions from the Global Methane Budget
(Saunois et al., 2020) are post-processed with prior ratio es-
timates for wetland CH4 emissions (Appendix B, Table B4).

For the common period 2010–2016 for the EU27+UK,
the two ensembles of regional and global models give a
total CH4 emission mean (Fig. 5a) of 22.6 TgCH4 yr−1

(GOSAT) and 23.7 TgCH4 yr−1 (SURF) compared to
19.0± 1.7 TgCH4 yr−1 for NGHGIs (Fig. 5a). The mean of
the natural wetland emissions from the global inversions is
1.3 TgCH4 yr−1 and partly explains the positive difference
between total emissions from inversions and NGHGI anthro-
pogenic emissions.

In an attempt to quantify the European TD anthropogenic
CH4 component, in Fig. 5b we subtract from the total TD
CH4 emissions once again the peatland emissions from the
regional JSBACH–HIMMELI model and those from geolog-
ical and inland water sources. The reason for correcting both
regional and global inversions with the European peatland
emissions from the JSBACH–HIMMELI model lies in the
fact that they are in the range of the global wetland emis-
sion estimates for Europe (Saunois et al., 2020). Their me-
dian for all years (1.43 TgCH4 yr−1, averaged over 2005–
2017) is close to the BU estimates of peatland emissions from
the JSBACH–HIMMELI model (1.44 TgCH4 yr−1, averaged
over 2005–2017).

For the 2010–2016 common period, the two ensem-
bles of regional and global models give an anthro-
pogenic CH4 emission mean (Fig. 5b) of 17.4 TgCH4 yr−1

(GOSAT) and 23.7 TgCH4 yr−1 (SURF) compared to
19.0± 1.7 TgCH4 yr−1 for NGHGIs (Fig. 5b). For the same
period, total CH4 emissions (Fig. 5a) from the SURF and
GOSAT ensemble decrease by 0.5 % and 4.6 %, respectively.
For anthropogenic CH4 emissions (Fig. 5b), the SURF and
GOSAT ensemble show a decrease of 1.1 % and 6.3 %, re-
spectively, compared to 7.3 % for the NGHGIs from 2010 to
2016.

In 2017, the TD ensemble that simulates the closest an-
thropogenic estimate (Fig. 5b) to the UNFCCC NGHGI
(2019) is GOSAT, with the median of GOSAT inversions
(16.4 TgCH4 yr−1) falling within the uncertainty range of
UNFCCC (18.4± 1.7 TgCH4 yr−1).
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Figure 5. (a) Total CH4 emissions from TD global ensembles based on surface stations (SURF) (yellow) and satellite concentration observa-
tions (GOSAT) (green) from 22 global models compared with UNFCCC NGHGI (2019) data (including LULUCF); (b) anthropogenic CH4
emissions from top-down global inversions based on surface stations (SURF) (yellow) and on satellite concentration observations (GOSAT)
(green) from different estimates. Anthropogenic emissions from these inversions were obtained by removing the sum of the natural emissions
(peatland, inland waters and geological fluxes shown in Fig. 4a) from the total estimates. For consistency with the global data we plot the
global wetland emissions from the GCP inversions (blue). The UNFCCC NGHGI (2018) MS-reported uncertainty computed with the error
propagation method (95 % confidence interval) is 9.29 % and represents the UNFCCC NGHGI (2018) uncertainty for all sectors (including
LULUCF). The time series mean was computed for the common period 2010–2016. Two out of 11 SURF products (GELCA-SURF_NIES
and TOMCAT-SURF_UOL) were not available for 2016.

3.2 Comparing N2O emission estimates from different
approaches

3.2.1 Estimates of European and regional total N2O
fluxes

Similarly, as done for CH4 (Sect. 3.1.1 and Fig. 1), we
present results of the total N2O fluxes from the EU27+UK
and five main regions in Europe. Figure 7 summarizes the to-
tal N2O fluxes from NGHGIs (including LULUCF) for both
the base year 1990 and mean of 2011–2015 period.

The total UNFCCC estimates include emissions from all
sectors. We plot these and compare them with fluxes from
global datasets, BU models and TD inversions. We note that
for all five regions the N2O emissions decreased between
29 % (northern Europe) and 43 % (western Europe) and for

the EU27+UK 37 % with respect to the NGHGI 1990 value.
It also shows that at the regional European level the emis-
sions from BU (anthropogenic and natural) and TD estimates
agree well with reported NGHGI data within the high un-
certainty reported by UNFCCC (∼ 80 %) or observed in the
TD model range (for the EU27+UK global inversions show
a min/max range of 25 %–32 %, while regional inversions
show a variability range of 9 %–11 % compared to the mean
2011–2015 value). This TD uncertainty is represented here
by the variability in the model ensembles and denotes the
range of the extremes (min and max) of estimates within each
model ensemble. There is significant uncertainty in northern
Europe, where the TD estimates indicate either a source or
a sink (Fig. 6). The current observation network is sparse,
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Figure 6. Five-year-average (2011–2015) N2O emission estimates for EU27+UK and five European regions (northern, western central,
southern and eastern non-EU). The eastern European region does not include European Russia, and the UNFCCC uncertainty for the Republic
of Moldova was not available. Northern Europe includes Norway. Central Europe includes Switzerland. The data belong to UNFCCC NGHGI
(2019) submissions (grey) and base year 1990 (black star), two BU inventories (GAINS and EDGAR v5.0), natural emissions (emissions from
lakes, rivers and reservoirs), and two TD total estimates (one regional European inversion (FLEXINVERT_NILU) and an average from three
global inverse models from GN2OB, Tian et al., 2020). The relative error on the UNFCCC value represents the UNFCCC NGHGI (2018)
MS-reported uncertainty computed with the error propagation method (95 % confidence interval): 80.0 % for the EU27+UK, 50.3 % for
eastern Europe non-EU, 26.6 % for northern Europe, 91.6 % for southern Europe, 51.9 % for western Europe and 46.0 % for central Europe.

Figure 7. The contribution of changes in N2O anthropogenic emissions in the five UNFCCC sectors to the overall change in decadal mean,
as reported to UNFCCC NGHGI (2019). The emissions follow the atmospheric convention, where positive numbers represent an emission
to the atmosphere. The three stacked columns represent the average N2O emissions from each sector during three periods (1990–1999,
2000–2009 and 2010–2017), and percentages represent the contribution of each sector to the total reduction percentages between periods.

which currently limits the capability of inverse models to
quantify GHG emissions at the country or regional scale.

For all other regions BU anthropogenic emissions agree
well with NGHGIs given uncertainties, though we note con-
sistently higher estimates from TD regional and global mod-

els estimates. The difference is too high to be attributed to
the natural emission, which is related here to inland waters
as the only source and which ranges for all five regions be-
tween 0.2–1.3 ktN2Oyr−1. The blue bar representing the nat-
ural emissions has a lower value estimates (Maavara et al.,
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2019, and Lauerwald et al., 2019), while the maximum value
was calculated according to Yao et al. (2020). The higher val-
ues in Yao et al. (2020) are primarily due to N2O emissions
from small streams, which are not included in Maavara et al.
(2019), while both studies agree fairly well regarding N2O
emissions from larger rivers (Yao et al., 2020).

3.2.2 NGHGI sectoral emissions and decadal changes

According to the UNFCCC (2019) NGHGI estimates for
2017, the EU27+UK emitted GHGs totaling 3.9 GtCO2 eq.
(including LULUCF); of this total, N2O emissions accounted
for ∼ 6 % (0.2 Gt CO2 eq. or 0.8 MtN2Oyr−1) (Fig. 7).
France, UK and Germany contributed together 41 % of the
total N2O emissions, respectively, which slightly higher than
for CH4 (Appendix B2, Fig. B1b).

The data in Fig. 7 show anthropogenic CH4 emissions
and their change from one decade to the next, from UN-
FCCC NGHGI (2019), with the contribution from dif-
ferent UNFCCC sectors. In 2017, NGHGIs reported an-
thropogenic emissions from the EU27+UK for the four
UNFCCC sectors (excluding LULUCF) (Table 1) to be
0.8 TgN2Oyr−1. The agricultural N2O emissions accounted
for 76 % (± 107 %) of the total EU27+UK emissions fol-
lowed by emissions from the energy sector with 12 %
(± 23 %). We exclude fire emissions as they only account for
1.8 % of the total N2O emissions in the EU27+UK.

Between the 1990s and the 2000s, the net −17.7 % reduc-
tion originates largely from the IPPU and agriculture sec-
tors, which contributed −13.5 % and −4.2 %, respectively.
For the period between the 2000s and 2010–2017, the net
−15.2 % reduction was again mainly attributed to the IPPU
sector (−14.1 %), despite very small increases from the LU-
LUCF and waste sectors (+0.6 %).

We note that in 2017 the amount of emissions from the
IPPU sector had already decreased by 98 % compared to
1990 and was only 3.5 ktN2Oyr−1. Although the IPPU sec-
tor contributes in 2017 only 4 % to the total N2O emissions,
it was the sector with the largest reduction. IPPU sector emis-
sions are mainly linked to the production of nitric acid (e.g.,
used in fertilizer production) and adipic acid (e.g., used in ny-
lon production). In the late 1990s and early 2000s the five Eu-
ropean adipic acid plants were equipped with efficient abate-
ment technology, cutting emissions by 95 %–99 %, largely
through voluntary agreements of the companies. Much of
the remaining IPPU emissions, from nitric acid plants, were
cut in a similar manner around 2010, a development that
has been connected with the introduction of the European
Emission Trading System that made it economically interest-
ing for companies to apply emission abatement technologies
(catalytic reduction of N2O in the flue gas) to reduce their
emissions.

3.2.3 NGHGI estimates compared with bottom-up
inventories

Figure 8 compares the six bottom-up inventories with UN-
FCCC NGHGI (2019) data and shows that all of them fall
on the NGHGI line (Fig. 8a), noting that GAINS only pro-
vides emissions every 5 years. Each inventory shows a very
good agreement with each other and the NGHGI estimates
until 2005. After 2005 the slight increased trend is influ-
enced by the IPPU (Fig. 8c) and waste (Fig. 8e) sectors,
with estimates of both EDGAR v5.0 and GAINS for total
anthropogenic N2O emissions in the year 2015 being 15.6 %
higher than UNFCCC NGHGI (2019). The jump seen in
Fig. 8e for EDGAR v5.0 waste emissions in year 2000 is due
to updates on activity data for domestic waste water treat-
ment using FAO statistics for 2000–2016, while the previ-
ous period 1990–1999 remained unchanged using the data
from the previous version of EDGAR v4.3.2. For agriculture
(Fig. 8d) five models/inventories show a very good match
with the NGHGI. Over 1990–2015, we found linear trends
of −0.7 %yr−1 in NGHGIs, GAINS and EDGAR v5.0. This
provides further evidence that the sources rely on the same
basic activity data from FAOSTAT and follow the IPCC EF
Tier 1 or 2 approach (Petrescu et al., 2020a). In contrast,
ECOSSE estimates do not use the FAO fertilizer application
rate database but instead calculate ideal fertilizer application
rates from the nitrogen demand of the crops. This means that
it can severely underestimate the applied fertilizer amounts
for some areas (e.g., the Netherlands, Denmark or northwest-
ern Germany), and the results are more indicative of emis-
sions under idealized fertilizer application rates. Addition-
ally, as mentioned above, the model simulates only the direct
emissions.

In the NGHGI (2018) submissions, the EU27+UK Tier 1
total uncertainty (based on the IPCC chap. 3 error propaga-
tion method described in detail by Petrescu et al., 2020a) for
the waste sector was 626 %. The sectoral activity responsible
for this high uncertainty was the wastewater treatment and
discharge (913 %), and this remains one of the most uncer-
tain sources of N2O having the highest emissions in the waste
sector. Emissions are known to vary markedly in space and
time even within a single wastewater treatment plant (Gruber
et al., 2020), a fact that only recently has been properly ac-
counted for in the inventory guidelines (IPCC, 2019a). How-
ever, the total emissions from the waste sector account for
only 4.4 % of the total EU27+UK N2O emissions (exclud-
ing LULUCF).

3.2.4 NGHGI estimates compared to atmospheric
inversions

Figure 9 compares inversion estimates of the total regional
(FLEXINVERT_NILU) and global (three models) N2O in-
versions with UNFCCC NGHGI (2019). The minimum–
maximum range of all inversions is within the 2σ uncertainty
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Figure 8. (a) Total EU27+UK anthropogenic N2O emissions from UNFCCC NGHGI (2019) submissions and MS-NRT 2018 compared to
global BU inventories for agriculture (CAPRI, FAOSTAT, DayCent) and all sectors excluding LULUCF (EDGAR v5.0, GAINS). Sectors:
(b) energy, (c) IPPU, (d) agriculture and (e) waste. LULUCF not included. CAPRI reports one value for Belgium and Luxembourg. The
UNFCCC NGHGI (2018) MS-reported uncertainty was computed with the error propagation method (95 % confidence interval) and is 86 %
for the total EU27+UK (excluding LULUCF), 23 % for energy, 16 % for IPPU, 107 % for agriculture and 626 % (in the figure 100 %) for
waste. Uncertainty for EDGAR v5.0 was calculated for 2015, and the min/max values for all sectors are as follows: EU27+UK total 48/126,
energy 12/250, IPPU 13/19, agriculture 74/191 and waste 63/166; it represents the 95 % confidence interval of a lognormal distribution. The
mean values on the right-hand side reflect the values for the common overlapping period 1990–2015. The last reported year in this study
refers to 2017 (UNFCCC and FAOSTAT), 2015 (EDGAR v5.0 and GAINS every 5 years), 2013 (CAPRI), 2018 ECOSSE and 2011–2015
DayCent.

Figure 9. Total N2O emissions from UNFCCC NGHGI (2019) (including LULUCF) and MS-NRT 2018, compared to the FLEXIN-
VERT_NILU regional inversion over Europe and GCP global inversions (TOMCAT, CAMS-N2O and MIROC4-ACTM). In blue are the
natural inland water (lakes_rivers_reservoirs_ULB) N2O emissions. The UNFCCC NGHGI (2018) reported uncertainty computed with the
error propagation method (95 % confidence interval) is 80 % and represents the UNFCCC NGHGI (2018) uncertainty for all sectors (includ-
ing LULUCF). The uncertainty for EDGAR v5.0 was calculated for 2015 and ranged from a minimum of 37 % to a maximum of 73 %; it
represents the 95 % confidence interval of a lognormal distribution. The last reported year in this study refers to 2014 (TOMCAT_LEEDS),
2016 (MIROC4-ACTM), 2017 (UNFCCC NGHGI, 2019; FLEXINVERT_NILU; and CAMS-N2O). For MS-NRT, the following countries
are missing information from the LULUCF sector: Austria, Estonia, Croatia, Hungary, Latvia, Malta and Slovenia. The time series mean for
TD products was computed for the overlapping period 2005–2014.
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of NGHGIs, with the median of global inversions being on
average 42 % or 0.4 TgN2Oyr−1 higher than NGHGIs. Over
the period 2005–2017, the regional FLEXINVERT_NILU
is 65 % higher than UNFCCC NGHGI (2019). From the
three global inversions, two show consistently higher esti-
mates (MIROC4-ACTM and TOMCAT) as well as high vari-
ability. Regarding trends, only FLEXINVERT_NILU shows
a decreasing trend of −2.1 %yr−1 over 2005–2017, com-
pared to UNFCCC NGHGI (2019) with a decreasing trend of
−1.2 %yr−1. The global CAMS-N2O inversion agrees best
in its mean value (1.0 TgN2Oyr−1) with the UNFCCC esti-
mate (0.9 TgN2Oyr−1) but not in its trend. The higher emis-
sions from TD estimates may be at least in part due to the
fact that they include natural emissions of N2O, which are
not considered in NGHGI reporting. One estimate (from the
O−CN land ecosystem model) is that the natural emissions
could amount to 11 % of those reported in NGHGIs for the
EU27+UK region. In addition, the EFs used in NGHGI re-
porting are very uncertain (up to 300 % for direct agricultural
emissions) so there may be a systematic error in these.

For the N2O we do not present the corrected anthropogenic
value because the only natural flux, from inland waters, is
very low (2.7 ktN2Oyr−1), and when subtracted from the
four inversions the change is almost negligible. Part of the
inland water natural estimate is considered anthropogenic in
Europe and is due to the leaching of N fertilizers from agri-
culture. In this study, it accounts for 66 % of the total inland
waters emissions.

4 Data availability

All data files reported in this work which were used for
calculations, and figures are available for public download
at https://doi.org/10.5281/zenodo.4590875 (Petrescu et al.,
2020b). The data we submitted are reachable with one click
(without the need for entering login and password) and
downloadable with a second click, consistent with the two-
click access principle for data published in ESSD (Carlson
and Oda, 2018). The data and the DOI number are subject to
future updates and only refer to this version of the paper. The
raw gridded data, according to the VERIFY consortium gov-
erning document, will be made publicly available 12 months
after their publication in ESSD. However, they could be re-
leased earlier, upon request to the specific author.

Please also see Table 2 for an overview of data sources for
CH4 and N2O emissions used in this study.

5 Summary and concluding remarks

This study represents the first comprehensive European ver-
ification that compares total and sectoral European CH4 and
N2O emission estimates from BU (anthropogenic and natu-
ral) with TD estimates in order to assess their use for verifica-
tion purposes with the UNFCCC NGHGI reporting. Above,

in the results sections, we discussed differences between es-
timates. Identification of source-specific uncertainty is key
in understanding these differences and will lead to the re-
duction of the overall uncertainty in GHG inventories. More
specifically, we present the first EU27+UK and European
regional 2011–2015 averaged results for CH4 (Fig. 1) and
N2O (Fig. 6) compared to the NGHGI emissions (including
LULUCF) for the same period and the one reported in 1990,
in the framework of the future global stocktake estimate.

Regarding sources of inconsistencies between CH4 BU es-
timates and NGHGI data (Fig. 3), at the EU27+UK level
they are mainly caused by the use of different methodolo-
gies in calculating emissions as highlighted in Petrescu et al.
(2020a). Both BU inventories and the NGHGIs use similar
activity data, and the default EFs reported in the 2006 IPCC
Guidelines make all data sources agree rather well; thus,
inventory spread may not be indicative of the uncertainty.
For global consistency purposes, EDGAR v5.0 mostly uses
Tier 1 approaches in calculating emissions and uncertain-
ties, a fact which triggers differences with other data sources
(GAINS for all sectors and CAPRI for agriculture). Within
the UNFCCC reporting process, the two most important
emission sectors after agriculture are energy and waste and
contribute to the highest reduction percentages (see Fig. 1).
Another reason for small inconsistencies between datasets is
the allocation of emissions to different sectors, with differ-
ent data sources using different versions of IPCC Guidelines
(e.g., EDGAR v5.0).

For N2O anthropogenic emissions, all BU data sources
show good agreement with the UNFCCC NGHGI (2019)
data in both trends and means (Fig. 8), and agriculture re-
mains the largest emitter (e.g., urea fertilizers). The uncer-
tainties reported by NGHGIs are very large and will need
further improvement.

Regarding the TD estimates, our exercise shows that the
comparison between CH4 inversion estimates and NGHGIs
is highly uncertain because of the large spread in the inver-
sion results. As TD inversions do not fully distinguish be-
tween all emission sectors used by NGHGIs and report ei-
ther total emissions or a coarse sectorial partitioning, their
comparison to NGHGIs is only possible for total emissions.
It is also necessary to make an adjustment for natural emis-
sions, which are included in TD inversions but not reported
by the NGHGIs. However, the natural N2O emissions do not
explain the difference between BU and TD (452 ktN2O), and
more research is needed to identify the source of discrepan-
cies.

Some studies (Fronzek et al., 2018) show that model
ensembles work well in simulating highly uncertain vari-
ables. In general regional inversions show less spread than
the global inversions as they used recent updates of trans-
port models and higher-resolution transport. Total CH4 from
regional inversions shows a minimum–maximum range of
8.7 TgCH4 yr−1 compared to 12.4 TgCH4 yr−1 from global
GOSAT inversions and 13.5 TgCH4 yr−1 from global SURF

https://doi.org/10.5194/essd-13-2307-2021 Earth Syst. Sci. Data, 13, 2307–2362, 2021

https://doi.org/10.5281/zenodo.4590875


2326 A. M. R. Petrescu et al.: European synthesis of CH4 and N2O emissions for the EU27 and UK: 1990–2017

inversions (Figs. 4 and 5). The global models use fewer ob-
servations for Europe compared to the European regional in-
versions and thus are expected to have larger uncertainties
for the European fluxes. In addition, the global models are
at coarser resolution and thus likely have larger model rep-
resentation errors compared to the regional ones, which may
contribute to further systematic uncertainty for the European
fluxes.

A key challenge for the inversion CH4 community remains
the separation of emissions in specific source sectors, as de-
rived total emissions may also include natural emissions (or
removals), while in the case of N2O this will not be possible
due to the use of definitions (e.g., “natural” N2O emissions
are defined as the level of emission in the pre-industrial pe-
riod). It is therefore not possible to separate between N2O
from natural or anthropogenic sources because natural (or
unmanaged) soils can have both natural and anthropogenic
emissions, while anthropogenic (managed) agricultural soils
can also have a level of natural emissions according to the
definition of natural. Therefore, the goal of TD inversions for
estimating N2O emissions should mainly focus on the trends.
Furthermore, the accuracy of derived emissions and the spa-
tial scales at which emissions can be estimated depend on
the quality and density of measurements and the quality of
the atmospheric models (Bergamaschi et al., 2018b). Signif-
icant further developments of the global observation system
and the top-down methods would be required to support the
implementation of the Paris Agreement.

We provide for the EU27+UK a consolidated synthesis of
the relatively uncertain CH4 and N2O emissions making use
of consistently derived BU and TD estimates over the region
of Europe, which might illustrate the importance of regional
consistent analyses that form the basis of the multilateral fa-
cilitative consideration of progress under the enhanced trans-
parency framework of the Paris Agreement. However, the im-
plementation of the Paris Agreement requires accurate quan-
tification of GHG emissions in order to track the progress
of all parties with their nationally determined contributions
and to assess collective progress towards achieving the pur-
pose of this agreement and its long-term goals (stocktake).
As this will be mainly achieved and build upon BU method-
ologies developed by the IPCC, we need to take into con-
sideration the potential to quantify GHG emissions by using
top-down methods (inverse modeling) (Bergamaschi et al.,
2018b). One advantage of the inverse estimate is that it pro-
vides total emission estimates. Therefore, the capability to
quantify anthropogenic emissions depends on the magnitude
of natural sources and sinks and the capability to quantify
them.

As stated in the introduction, our aim was to identify in
this synthesis the issues which cause the differences between
NGHGIs, BU and TD to further improve and build a path-
way to a verification system (BU use of activity data, emis-
sion factor and emission allocation (CH4), very large NGHGI
reported uncertainties which need to be reassessed (N2O)

and higher TD estimates compared to inventories (CH4 and
N2O). Additionally, we advocate the need of analyzing the
seasonality of emissions, which is of great importance for
CH4 (wetland emission estimates have large uncertainties
and show large variability in the spatial (seasonal) distribu-
tion) and N2O (agriculture fertilizer application), included
mostly in the TD prior information but not included in the
reported IPCC Guidelines. In the climate mitigation process
these seasonal variations may play an important role for a
better quantification of sector-specific uncertainties.
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Appendix A: Data sources, methodology and
uncertainty descriptions

The country-specific plots are found at http://webportals.ipsl.
jussieu.fr/VERIFY/FactSheets/ (upon registration, last ac-
cess: February 2021) (v1.24).

VERIFY project

VERIFY’s primary aim is to develop scientifically robust
methods to assess the accuracy and potential biases in na-
tional inventories reported by the parties through an indepen-
dent pre-operational framework. The main concept is to pro-
vide observation-based estimates of anthropogenic and natu-
ral GHG emissions and sinks as well as associated uncertain-
ties. The proposed approach is based on the integration of
atmospheric measurements, improved emission inventories,
ecosystem data, and satellite observations, as well as on an
understanding of processes controlling GHG fluxes (ecosys-
tem models, GHG emission models).

Two complementary approaches relying on observational
data streams will be combined in VERIFY to quantify GHG
fluxes:

1. atmospheric GHG concentrations from satellites and
ground-based networks (top-down atmospheric inver-
sion models) and

2. bottom-up activity data (e.g., fuel use and emission fac-
tors) and ecosystem measurements (bottom-up models).

For CO2, a specific effort will be made to separate fossil
fuel emissions from ecosystems fluxes. For CH4 and N2O,
we will separate agricultural from fossil fuel and industrial
emissions. Finally, trends in the budget of the three GHGs
will be analyzed in the context of NDC targets.

The objectives of VERIFY are as follows.

– Objective 1. Integrate the efforts between the research
community, national inventory compilers, operational
centers in Europe, and international organizations to-
wards the definition of future international standards for
the verification of GHG emissions and sinks based on
independent observation.

– Objective 2. Enhance the current observation and mod-
eling ability to accurately and transparently quantify the
sinks and sources of GHGs in the land use sector for the
tracking of land-based mitigation activities.

– Objective 3. Develop new research approaches to moni-
tor anthropogenic GHG emissions in support of the EU
commitment to reduce its GHG emissions by 40 % by
2030 compared to the year 1990.

– Objective 4. Produce periodic scientific syntheses of the
observation-based GHG balance of EU countries and
practical policy-oriented assessments of GHG emission
trends and apply these methodologies to other countries.

For more information on project team and products/results
check https://verify.lsce.ipsl.fr/ (last access: February 2021).

A1 Anthropogenic CH4 emissions (sectors energy,
IPPU, agriculture, LULUCF and waste)

A1.1 Bottom-up CH4 emission estimates

UNFCCC NGHGI (2019)

Under the UNFCCC convention and its Kyoto Protocol
national greenhouse gas (GHG) inventories is the most
important source of information to track progress and
assess climate protection measures by countries. In order
to build mutual trust in the reliability of the GHG emission
information provided, national GHG inventories are subject
to standardized reporting requirements, which have been
continuously developed by the Conference of the Parties
(COP)9. The calculation methods for the estimation of green-
house gases in the respective sectors are determined by the
methods provided by the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories (IPCC, 2006). These guidelines
provide detailed methodological descriptions to estimate
emissions and removals as well as provide recommendations
to collect the activity data needed. As a general overall
requirement, the UNFCCC reporting guidelines stipulate
that reporting under the convention and the Kyoto Protocol
must follow the five key principles of transparency, accuracy,
completeness, consistency and comparability (TACCC). The
reporting under UNFCCC shall meet the TACCC principles.
The three main GHGs are reported in time series from 1990
up to 2 years before the due date of the reporting. The
reporting is strictly source category based and is done under
the common reporting format tables (CRF), downloadable
from the UNFCCC official submission portal: https://unfccc.
int/process-and-meetings/transparency-and-reporting/
reporting-and-review-under-the-convention/
greenhouse-gas-inventories-annex-i-parties/
national-inventory-submissions-2019 (last access: Jan-
uary 2021)

The UNFCCC NGHGI anthropogenic CH4 emissions in-
clude estimates from four key sectors for the EU27+UK:
(1) energy, (2) industrial processes and product use (IPPU),
(3) agriculture, and (5) waste. The tier method a country ap-
plies depends on the national circumstances and the individ-
ual conditions of the land, which explain the variability of
uncertainties among the sector itself as well as among EU
countries. The LULUCF CH4 emissions are very small but
are included in some figures (see Table 1).

The uncertainty methodology for the NGHGI UNFCCC
submissions is based on chap. 3 of the 2006 IPCC Guidelines
for National Greenhouse Gas Inventories and is explained in
Appendix B of Petrescu et al. (2020a).

9The last revision was made by COP 19 in 2013 (UNFCCC,
2013)
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Table A1. Country grouping used for comparison purposes between
BU and TD emissions. Countries highlighted in italic are not dis-
cussed in the current 2019 synthesis mostly because of unavailabil-
ity of UNFCCC NGHGI reports (non-Annex I countries∗) but are
present on the following web portal: http://webportals.ipsl.jussieu.
fr/VERIFY/FactSheets/ (last access: February 2021). Results of An-
nex I countries (NOR, CHE, ISL) and non-EU eastern European
countries (EAE) are represented in Fig. 4.

Country name – geo-
graphical Europe

BU-ISO3 Aggregation from
TD-ISO3

Luxembourg LUX
Belgium BEL BENELUX
Netherlands NLD BNL
Bulgaria BGR BGR
Switzerland CHE
Lichtenstein LIE CHL
Czech Republic CZE Former Czechoslo-

vakia
Slovakia SVK CSK
Austria AUT AUT
Slovenia SVN North Adriatic

countries
Croatia HRV NAC
Romania ROU ROU
Hungary HUN HUN
Estonia EST
Lithuania LTU Baltic countries
Latvia LVA BLT
Norway NOR NOR
Denmark DNK
Sweden SWE
Finland FIN DSF
Iceland ISL ISL
Malta MLT MLT
Cyprus CYP CYP
France (Corsica
included)

FRA FRA

Monaco MCO
Andorra AND
Italy (Sardinia,
Vatican included)

ITA ITA

San Marino SMR
United Kingdom
(Great Britain +
N Ireland)

GBR UK

Isle of Man IMN
Ireland IRL IRL
Germany DEU DEU
Spain ESP IBERIA
Portugal PRT IBE
Greece GRC GRC
Russia (European part) RUS European
Georgia GEO RUS European +

GEO
Russian Federation RUS RUS
Poland POL POL
Turkey TUR TUR

Table A1. Continued.

Country name – geographical
Europe

BU-ISO3 Aggregation
from
TD-ISO3

EU27+UK (Austria, Bel-
gium, Bulgaria, Cyprus, Czech
Republic, Germany, Den-
mark, Spain, Estonia, Finland,
France, Greece, Croatia, Hun-
gary, Ireland, Italy, Lithuania,
Latvia, Luxembourg, Malta,
Netherlands, Poland, Portugal,
Romania, Slovakia, Slovenia,
Sweden, United Kingdom)

AUT, BEL,
BGR, CYP,
CZE, DEU,
DNK, ESP,
EST, FIN, FRA,
GRC, HRV,
HUN, IRL,
ITA, LTU, LVA,
LUX, MLT,
NDL, POL,
PRT, ROU,
SVN, SVK,
SWE, GBR

E28

Western Europe (Belgium,
France, United Kingdom,
Ireland, Luxembourg, Nether-
lands)

BEL, FRA, UK,
IRL, LUX, NDL

WEE

Central Europe (Austria,
Switzerland, Czech Republic,
Germany, Hungary, Poland,
Slovakia)

AUT, CHE,
CZE, DEU,
HUN, POL,
SVK

CEE

Northern Europe (Denmark,
Estonia, Finland, Lithuania,
Latvia, Norway, Sweden)

DNK, EST,
FIN, LTU, LVA,
NOR, SWE

NOE

Southwestern Europe (Spain,
Italy, Malta, Portugal)

ESP, ITA, MLT,
PRT

SWN

Southeastern Europe (all)
(Albania, Bulgaria, Bosnia
and Herzegovina, Cyprus,
Georgia, Greece, Croatia,
North Macedonia, Montene-
gro, Romania, Serbia, Slove-
nia, Turkey)

ALB, BGR, BIH,
CYP, GEO,
GRC, HRV,
MKD, MNE,
ROU, SRB,
SVN, TUR

SEE

Southeastern Europe (non-
EU) (Albania, Bosnia and
Herzegovina, North Macedo-
nia, Georgia, Turkey, Mon-
tenegro, Serbia)

ALB, BIH,
MKD, MNE,
SRB, GEO, TUR

SEA

Southeastern Europe (EU)
(Bulgaria, Cyprus, Greece,
Croatia, Romania, Slovenia)

BGR, CYP,
GRC, HRV,
ROU, SVN

SEZ

Southern Europe (all) (SOE)
(Albania, Bulgaria, Bosnia
and Herzegovina, Cyprus,
Georgia, Greece, Croatia,
North Macedonia, Montene-
gro, Romania, Serbia, Slove-
nia, Turkey, Italy, Malta, Por-
tugal, Spain)

ALB, BGR, BIH,
CYP, GEO,
GRC, HRV,
MKD, MNE,
ROU, SRB, SVN,
TUR, ITA, MLT,
PRT, ESP

SOE
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Table A1. Continued.

Country name – geographical
Europe

BU-ISO3 Aggregation
from
TD-ISO3

Southern Europe (non-EU)
(SOY) (Albania, Bosnia and
Herzegovina, Georgia, North
Macedonia, Montenegro, Ser-
bia, Turkey)

ALB, BIH, GEO,
MKD, MNE,
SRB, TUR

SOY

Southern Europe (EU) (SOZ)
(Bulgaria, Cyprus, Greece,
Croatia, Romania, Slovenia,
Italy, Malta, Portugal, Spain)

BGR, CYP,
GRC, HRV,
ROU, SVN, ITA,
MLT, PRT, ESP

SOZ

Eastern Europe (non-EU) (Be-
larus, Republic of Moldova,
Russian Federation, Ukraine)

BLR, MDA,
RUS, UKR

EAE

EU-15 (Austria, Belgium, Ger-
many, Denmark, Spain, Fin-
land, France, United Kingdom,
Greece, Ireland, Italy, Luxem-
bourg, Netherlands, Portugal,
Sweden)

AUT, BEL, DEU,
DNK, ESP, FIN,
FRA, GBR, GRC,
IRL, ITA, LUX,
NDL, PRT, SWE

E15

EU-27 (Austria, Belgium, Bul-
garia, Cyprus, Czech Republic,
Germany, Denmark, Spain, Es-
tonia, Finland, France, Greece,
Croatia, Hungary, Ireland,
Italy, Lithuania, Latvia, Lux-
embourg, Malta, Netherlands,
Poland, Portugal, Romania,
Slovakia, Slovenia, Sweden)

AUT, BEL, BGR,
CYP, CZE, DEU,
DNK, ESP,EST,
FIN, FRA, GRC,
HRV, HUN,IRL,
ITA, LTU, LVA,
LUX, MLT,NDL,
POL, PRT, ROU,
SVN, SVK, SWE

E27

All Europe (Åland Islands,
Albania, Andorra, Austria,
Belgium, Bulgaria, Bosnia and
Herzegovina, Belarus, Switzer-
land, Cyprus, Czech Republic,
Germany, Denmark, Spain, Es-
tonia, Finland, France, Faroe
Islands, United Kingdom,
Guernsey, Greece, Croatia,
Hungary, Isle of Man, Ireland,
Iceland, Italy, Jersey, Liechten-
stein, Lithuania, Luxembourg,
Latvia, Republic of Moldova,
North Macedonia, Malta, Mon-
tenegro, Netherlands, Norway,
Poland, Portugal, Romania,
Russian Federation, Svalbard
and Jan Mayen, San Marino,
Serbia, Slovakia, Slovenia,
Sweden, Turkey, Ukraine)

ALA, ALB, AND,
AUT, BEL, BGR,
BIH, BLR, CHE,
CYP, CZE, DEU,
DNK, ESP, EST,
FIN, FRA, FRO,
GBR, GGY,
GRC, HRV,
HUN, IMN,
IRL, ISL, ITA,
JEY, LIE, LTU,
LUX, LVA, MDA,
MKD, MLT,
MNE, NDL,
NOR, POL, PRT,
ROU, RUS, SJM,
SMR, SRB, SVK,
SVN, SWE, TUR,
UKR

EUR

∗ Non-Annex I countries are mostly developing countries. The reporting to UNFCCC is
implemented through national communications (NCs) and biennial update reports (BURs):
https://unfccc.int/national-reports-from-non-annex-i-parties (last access: November
2020).

EDGAR v5.0

The Emissions Database for Global Atmospheric Research
(EDGAR) is an independent global emission inventory of
greenhouse gases (GHG) and air pollutants developed by the
Joint Research Centre of the European Commission (https://
edgar.jrc.ec.europa.eu/index.php, last access: January 2021).
The non-CO2 component in EDGAR v5.0 covers a long time
series of emissions starting in 1970 until the t−4. CH4 emis-
sions are estimated for all anthropogenic emission sectors
with the exception of land use, land use change and forestry
(LULUCF) at the country and annual level in a consistent and
comparable way for all world countries. Emissions are com-
puted using activity data from international statistics (e.g.,
IEA (2017), FAO (2017), USGS (2019), etc.); emission fac-
tors from IPCC Guidelines (IPCC, 2006); and scientific lit-
erature, technology and abatement measures incorporation.
Once the emission database is compiled for all countries, sec-
tors and pollutants, annual emission data are disaggregated
to monthly emissions applying sector- and country-specific
yearly emission profiles (Crippa et al., 2019). In addition,
monthly emissions are spatially distributed over global grid
maps with a resolution of 0.1◦× 0.1◦, making use of sector-
specific spatial proxies (Janssens-Maenhout et al., 2019).

The latest version of the EDGAR database EDGAR v5.0
contains estimated CH4 emissions from 1970 until 2015
based fully on statistical data (https://edgar.jrc.ec.europa.eu/
overview.php?v=50_GHG, last access: January 2021). The
EDGAR v5.0 updated waste emissions were quantified us-
ing the first-order-decay method, combining nationally de-
fined inputs (for waste generation rates and compositions)
and IPCC’s regional default values for parameters asso-
ciated with waste degradation processes (specific mass of
biodegradable organic carbon, the methane volumetric frac-
tion in the obtained landfill gas and the half-life time for each
waste component). The total landfilled waste was split into
six streams: food and organic waste type, paper and card-
board, textiles, rubber, wood, and sludge and similar efflu-
ents. This was done by making use of the EUROSTAT waste
database (EUROSTAT, 2020) but also by employing data
from waste composition for municipal/household-type waste
from Silpa (Silpa et al., 2018).

Uncertainties. The methodological description is ex-
plained in detail in Appendix B Petrescu et al. (2020a) and
Solazzo et al. (2021).

CAPRI

CAPRI is an economic, partial equilibrium model for the
agricultural sector focused on the EU (Britz and Witzke,
201410; Weiss and Leip, 201211. CAPRI stands for Com-

10https://www.capri-model.org/docs/CAPRI_documentation.pdf
(last access: January 2020)

11https://www.sciencedirect.com/science/article/pii/
S0167880911004415 (last access: September 2020)
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Table A2. Main methodological changes of the current study with respect to Petrescu et al. (2020a). The sectors are highlighted in italics;
the changes with respect to AFOLU (Petrescu et al., 2020a) are shown in bold. “NA” means that there are no data available.

Publication
year

Gas Bottom-up anthropogenic CH4 /N2O
emissions

Bottom-up natural
CH4 / N2O
emissions

Top-down CH4 /N2O
emissions

Uncertainty and other changes

Inventories Global databases Emission models Emission models Regional models Global models

2020
Petrescu
et al.
(2020a)
AFOLU
bottom-up
synthesis

CH4 National emissions
from UNFCCC
NGHGI (2018)
1990–2016

AFOLU sector
(Agriculture and
LULUCF) EU28
data for 4 years
(1990, 2005, 2010
and 2016)

EDGAR v4.3.2
1990–2012

EDGAR FT2017
1990–2016

FAOSTAT
1990–2016

Agriculture sec-
tor EU28 data for
4 years (1990,
2005, 2010 and last
reported year)

CAPRI
1990–2013

GAINS
1990–2015

Agriculture sec-
tor EU28 data for
4 years (1990,
2005, 2010 and last
reported year)

Natural (wetlands)
CH4 emissions
model ensemble
GCP (2018) Poulter
et al. (2017)

Time series 1990–
2017

NA NA UNFCCC (2018) uncertainty
estimates for 2016 (error propa-
gation 95 % interval method)

EDGAR v.4.3.2. reports only for
2012

N2O National emissions
from UNFCCC
(2018)
1990–2016

Agriculture sec-
tor EU28 data for
4 years (1990, 2005,
2010 and 2016)

EDGAR v4.3.2
1990–2012
EDGAR FT2017
1990–2016
FAOSTAT
1990–2016

Agriculture sec-
tor EU28 data for
4 years (1990,
2005, 2010 and last
reported year)

CAPRI
1990–2013

GAINS
1990–2015

Agriculture sec-
tor EU28 data for
4 years (1990,
2005, 2010 and last
reported year)

NA NA NA UNFCCC (2018) uncertainty es-
timates for 2016
EDGAR v.4.3.2. reports only for
2012

2021
this study
synthesis
bottom-up
and
top-down

CH4 National emissions
from UNFCCC
(2019)
1990–2017

All UNFCCC
sectors
EU27+UK time
series and 2018
MS-NRT estimate
(EEA, 2019)

Regional
EU27 + UK to-
tals (including
NOR, CHE, UKR,
MLD and BLR)

EDGAR v5.0
1990–2015
FAOSTAT (only
agriculture)
1990–2017

Anthropogenic
EU27+UK time
series (excluding
LULUCF)

Regional
EU27 + UK to-
tals (including
NOR, CHE, UKR,
MLD and BLR)

Excluding LU-
LUCF

CAPRI
1990–2013

GAINS
1990–2015

Agriculture
sector EU27+UK
Times series

Non-wetland
inland waters
Average 2005–
2011

Geological fluxes
Total pre-
industrial era

JSBACH–
HIMMELI
2005–2017

Total CH4
column
Time series
2005–2017:
FLEXPART
(FLExKF-TM5-
4DVAR)_EMPA

TM5-4DVAR

FLEXINVERT_
NILU

CTE-FMI

InTEM-NAME
Only for UK

InGOS
inversions
2006–2012

Anthropogenic
and natural
partitions

GCP-GCB
2019
2000–2017

UNFCCC (2018) uncertainty
estimates for 2016 (error propa-
gation 95 % interval method)

EDGAR v.4.3.2. reports only for
2015

For model ensembles reported
as variability in extremes
(min/max)

N2O National emissions
from UNFCCC
(2019)
1990–2017

All UNFCCC
sectors
EU27+UK time
series and 2018
MS-NRT estimate
(EEA, 2019)

Regional
EU27 + UK to-
tals (including
NOR, CHE, UKR,
MLD and BLR)

EDGAR v5.0
1990–2015
(excluding
LULUCF)

FAOSTAT (only
agriculture)
1990–2017
Anthropogenic
EU27+UK time
series

Regional
EU27 + UK to-
tals (including
NOR, CHE, UKR,
MLD and BLR)
(excluding
LULUCF)

Agriculture
CAPRI
1990–2013

ECOSSE
1990–2018

N2O missions
from lakes, rivers,
reservoirs
Average 2010–
2014

Total N2O
column
Time series

FLEXINVERT_
NILU
2005–2017

Total N2O
column
Time series
GCP-GN2OB
2019
CAMS-N2O
TOMCAT
MIROC4-
ACTM
1998–2016

UNFCCC (2018) uncertainty
estimates for 2016 (error propa-
gation 95 % interval method)

EDGAR v.4.3.2. reports only for
2015

For model ensembles reported
as variability in extremes
(min/max)
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mon Agricultural Policy Regionalised Impact analysis, and
the name hints at the main objective of the system: assess-
ing the effect of CAP policy instruments not only at the EU
or member state level but also at the sub-national level. The
model is calibrated for the base year (currently 2012) and
then baseline projections are built, allowing the ex ante eval-
uation of agricultural policies and trade policies on produc-
tion, income, markets, trade and the environment.

Among other environmental indicators, CAPRI simulates
CH4 emissions from agricultural production activities (en-
teric fermentation, manure management, rice cultivation,
agricultural soils). Activity data are mainly based on FAO-
STAT and EUROSTAT statistics, and estimation of emissions
follows IPCC 2006 methodologies, with a higher or lower
level of detail depending on the importance of the emission
source. Details on the CAPRI methodology for emissions
calculations are referenced in the Annex Table A1.

Uncertainties are not available for the CAPRI estimates.

GAINS

Specific sectors and abatement technologies in GAINS vary
by the specific emitted compound, with source sector def-
inition and emission factors largely following the IPCC
methodology at the Tier 1 or Tier 2 level. GAINS includes
in general all anthropogenic emissions to air but does not
cover emissions from forest fires, savannah burning and land
use/land use change. Emissions are estimated for 174 coun-
tries/regions, with the possibility to aggregate to a global
emission estimate and spanning a timeframe from 1990 to
2050 in 5-year intervals. Activity drivers for macroeconomic
development, energy supply and demand, and agricultural
activities are entered externally; GAINS extends with knowl-
edge required to estimate “default” emissions (emissions oc-
curring due to an economic activity without emission abate-
ment) and emissions and costs of situations under emission
control (see Amann et al., 2011).

The GAINS model covers all source sectors of anthro-
pogenic methane (CH4) emissions: agricultural sector emis-
sions from livestock, rice cultivation and agricultural waste
burning; energy sector emissions from upstream and down-
stream sources in fossil fuel extraction and use; and emis-
sions from handling and treatment of solid waste and
wastewater source sectors. A description of the model-
ing of CH4 emissions in GAINS is presented in Höglund-
Isaksson et al. (2020). Generation of solid waste and the
carbon content of wastewater are derived within the model
in consistency with the relevant macroeconomic scenario.
The starting point for estimations of anthropogenic CH4 is
the methodology recommended in the IPCC (2006 and re-
vision in 2019) Guidelines, for most source sectors using
country-specific information to allow for deriving country-
and sector/technology-specific emission factors at a Tier 2
level. Consistent methodologies were further developed to
estimate emissions from oil and gas systems (Höglund-

Isaksson, 2017) and solid waste (Höglund-Isaksson et al.,
2018; Gómez-Sanabria et al., 2018). Emission factors are
specified in a consistent manner across countries for given
sets of technology and with past implementation of emis-
sion abatement measures reflected as changes in technology
structures. The resulting emission estimates are well com-
parable across geographic and temporal scales. The GAINS
approach to calculate waste emissions is developed in con-
sistency with the first-order-decay method recommended by
IPCC (2006 and 2019 revision), applying different decay
periods when estimating emissions from flows of different
types of organic waste, i.e., food and garden, paper, wood,
textile and other. Data on waste generation, composition and
treatment are taken from EUROSTAT (https://ec.europa.eu/
eurostat/statistics-explained/index.php/Waste_statistics, last
access: 2019) and complemented with national information
from the UNFCCC (2019) common reporting format tables
on the amounts of waste diverted to landfills of various man-
agement levels and to treatment, e.g., recycling, composting,
biodigestion and incineration.

Uncertainties. Uncertainty is prevalent among many dif-
ferent dimensions in the estimations of emissions, abatement
potentials and costs. When constructing global bottom-up
emission inventories at a detailed country and source level, it
is inevitable that some information gaps will be bridged us-
ing default assumptions. As it is difficult to speculate about
how such sources of uncertainty affect resulting historical
and future emission estimates, we instead address uncer-
tainty in historical emissions by making comparisons to es-
timates by other publicly available and independently de-
veloped bottom-up inventories and various top-down esti-
mates consistent with atmospheric measurements and inverse
model results. Although existing publicly available global
bottom-up inventories adhere to the recommended guidelines
of the IPCC (2006), the flexibility in these is large, and re-
sults will depend on the availability and quality of gathered
source information. There is accordingly a wide range of
possible sources of uncertainty built into estimations in such
comprehensive efforts. Having a pool of independently de-
veloped inventories, each with its own strengths and weak-
nesses, can improve the understanding of the scope for un-
certainty, in particular when compared against top-down at-
mospheric measurements.

FAOSTAT

The Food and Agriculture Organization of
the United Nations (FAO) provides CH4
emissions from agriculture available at
http://www.fao.org/faostat/en/#data/GT/visualize (last
access: January 2021) and emissions from land use, avail-
able at http://www.fao.org/faostat/en/#data/GL/visualize
(last access: January 2021). The FAOSTAT emis-
sions database is computed following Tier 1 2006
IPCC Guidelines for National GHG Inventories
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(http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html,
last access: December 2019). Country reports to FAO on
crops, livestock and agriculture use of fertilizers are the
source of activity data. Geospatial data are the source of ac-
tivity data (AD) for the estimates from cultivation of organic
soils, biomass and peat fires. GHG emissions are provided
by country, regions and special groups, with global coverage,
relative to the period 1961–present (with annual updates,
currently to 2017) and with projections for 2030 and 2050,
expressed as CO2 eq. for CH4, by underlying agricultural
emission sub-domain and by aggregate (agriculture total,
agriculture total plus energy, agricultural soils). LULUCF
emissions consist of CH4 (methane) associated with biomass
and peat fires.

Uncertainties were computed by Tubiello et al. (2013) but
are not available in the FAOSTAT database.

A1.2 Top-down CH4 emission estimates

FLEXPART(FLExKF-TM5-4DVAR)

FLExKF applies an extended Kalman filter (Brunner et al.,
2012) in combination with backward Lagrangian transport
simulations using the model FLEXPART (Stohl et al., 2005;
Pisso et al., 2019). It optimizes surface–atmosphere fluxes by
assimilating atmospheric observations in a sequential man-
ner, which allows for an analytical solution for relatively
large inversion problems (long time periods, number sta-
tions O(100)). Since model–observation residuals typically
follow a lognormal distribution, the method optimizes log-
transformed emissions, which also guarantees a positive so-
lution. Source-receptor matrices (Seibert and Frank, 2004)
were computed at 0.25◦× 0.25◦ resolution with FLEXPART
driven by ECMWF ERA-Interim meteorological fields in the
same way as for FLEXINVERT_NILU. Backward simula-
tions were limited to 10 d prior to each observation and to the
domain 15◦W–35◦ E, 30◦–75◦ N. Fluxes were estimated for
this domain on a monthly basis at 0.5◦× 0.5◦ resolution. For
the version used in this study, FLEXPART(FLExKF-TM5-
4DVAR)_EMPA, the background mole fraction was taken
from a global TM5-4DVAR assimilation run (Bergamaschi
et al., 2018a) where the above domain was cut out following
the two-step approach of Rödenbeck et al. (2009).

Uncertainties. The uncertainty in the posterior fluxes is
composed of random and systematic errors. The random un-
certainties are represented by the posterior error covariance
matrix provided by the Kalman filter, which combines errors
in the prior fluxes with errors in the observations and model
representation. Systematic uncertainties primarily arise from
systematic errors in modeled atmospheric transport and in
background mole fractions but also include aggregation er-
rors, i.e., errors arising from the way the flux variables are
discretized in space and time.

FLEXINVERT_NILU

The FLEXINVERT_NILU framework is based on Bayesian
statistics and optimizes surface–atmosphere fluxes using
the maximum probability solution (Rodgers, 2000). Atmo-
spheric transport is modeled using the Lagrangian model
FLEXPART (Stohl et al., 2005; Pisso et al., 2019) run in the
backwards time mode to generate a so-called source-receptor
matrix (SRM). The SRM describes the relationship between
the change in mole fraction and the fluxes discretized in
space and time (Seibert and Frank, 2004) and was calculated
for 8 d prior to each observation. For use in the inversions,
FLEXPART was driven using ECMWF operational analysis
wind fields. The state vector consisted of prior fluxes dis-
cretized on an irregular grid based on the SRMs (Thomp-
son and Stohl, 2014). This grid has finer resolution (in this
case the finest was 0.25◦× 0.25◦) where the fluxes have a
strong influence on the observations and coarser resolution
where the influence is only weak (the coarsest was 2◦× 2◦).
The fluxes were solved at 10 d temporal resolution. The state
vector also included scalars for the background contribution.
The background mixing ratio, i.e., the contribution to the
mixing ratio that is not accounted for in the 8 d SRMs, was
estimated by coupling the termination points of backwards
trajectories (modeled using virtual particles) to initial fields
of methane simulated with the Lagrangian FLEXPART-CTM
model, which was developed at Empa based on FLEXPART
(Stohl et al., 2005; Pisso et al., 2019). In these simulations,
we applied the data assimilation method described by Groot
Zwaaftink et al. (2018) that constrains modeled fields with
surface observations through nudging.

Uncertainties. The posterior fluxes are subject to system-
atic errors primarily from (1) errors in the modeled atmo-
spheric transport; (2) aggregation errors, i.e., errors arising
from the way the flux variables are discretized in space
and time; (3) errors in the background methane fields; and
(4) the incomplete information from the observations and
hence the dependence on the prior fluxes. In addition, there
is, to a smaller extent, some error due to calibration offsets
between observing instruments. Uncertainties in the observa-
tion space were inflated to take into account the model rep-
resentation errors

InGOS and TM5-4DVAR

The atmospheric models used within the European FP7
project InGOS (Integrated non-CO2 Greenhouse gas Observ-
ing System) are described by Bergamaschi et al. (2018a)
and their Supplement (https://doi.org/10.5194/acp-18-901-
2018-supplement). The models include global Eulerian mod-
els with a close-up over Europe (TM5-4DVAR, TM5-CTE,
LMDZ), regional Eulerian models (CHIMERE) and La-
grangian dispersion models (STILT, NAME, COMET). The
horizontal resolutions over Europe are ∼ 1.0–1.2◦ (longi-
tude) ×∼ 0.8–1.0◦ (latitude) for the global models (close-
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up) and ∼ 0.17–0.56◦ (longitude) ×∼ 0.17–0.5◦ (latitude)
for the regional models. Most models are driven by meteoro-
logical fields from the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA-Interim reanalysis (Dee
et al., 2011). In the case of STILT, the operational ECMWF
analyses were used, while for NAME meteorological analy-
ses of the Met Office United Model (UM) were employed.
The regional models use boundary conditions (background
CH4 mole fractions) from inversions of the global models
(STILT from TM3, COMET from TM5-4DVAR, CHIMERE
from LMDZ) or estimate the boundary conditions in the in-
versions (NAME) using baseline observations at Mace Head
as prior estimates. In the case of NAME and CHIMERE,
the boundary conditions are further optimized in the inver-
sion. The inverse modeling systems applied in this study use
different inversion techniques. TM5-4DVAR, LMDZ, and
TM3-STILT use 4DVAR variational techniques, which al-
low optimization of emissions of individual grid cells. These
4DVAR techniques employ an adjoint model in order to it-
eratively minimize the cost function using a quasi-Newton
(Gilbert and Lemaréchal, 1989) or conjugate gradient (Rö-
denbeck, 2005) algorithm. The NAME model applies a sim-
ulated annealing technique, a probabilistic technique for ap-
proximating the global minimum of the cost function. In
CHIMERE and COMET, the inversions are performed an-
alytically after reducing the number of parameters to be op-
timized by aggregating individual grid cells before the inver-
sion. TM5-CTE applies an ensemble Kalman filter (EnKF)
(Evensen, 2003) with a fixed-lag smoother (Peters et al.,
2005).

Uncertainty. In general, the estimated model uncertainties
depend on the type of station and for some models (TM5-
4DVAR and NAME) also on the specific synoptic situation.
In InGOS the uncertainty of the ensemble was calculated as a
1σ estimate. Bergamaschi et al. (2015) showed that the range
of the derived total CH4 emissions from north-western and
eastern Europe using four different inverse modeling systems
was considerably larger than the uncertainty estimates of the
individual models because the latter typically use Bayes’ the-
orem to calculate the reduction of assumed a prior emission
uncertainties by assimilating measurements (propagating es-
timated observation and model errors to the estimated emis-
sions). An ensemble of inverse models may provide more re-
alistic overall uncertainty estimates, since estimates of model
errors are often based on strongly simplified assumptions and
do not represent the total uncertainty.

InTEM-NAME

The Inversion Technique for Emission Modelling (InTEM)
(Arnold et al., 2018) uses the NAME (Numerical Atmo-
spheric dispersion Modeling Environment) (Jones et al.,
2007) atmospheric Lagrangian transport model. NAME is
driven by analysis 3-D meteorology from the UK Met Office
Unified Model (Cullen, 1993). The horizontal and vertical

resolution of the meteorology has improved over the mod-
eled period from 40 to 12 km (1.5 km over the UK). InTEM
is a Bayesian system that minimizes the mismatch between
the model and the atmospheric observations given the con-
straints imposed by the observation and model uncertainties
and prior information with its associated uncertainties. The
direction- (latitude and longitude) and altitude-varying back-
ground concentration and observation station bias are solved
for within the inverse system along with the spatial distri-
bution and magnitude of the emissions. The time-varying
prior background concentration for the DECC network sta-
tions is derived from the MHD observations when they are
very largely sensitive only to northern Canada (Arnold et al.,
2018). The prior bias (that can be positive or negative) for
each station is set to zero with an uncertainty of 1 ppb. The
observations from each station are assumed to have an expo-
nentially decreasing 12 h time correlation coefficient and, be-
tween stations, a 200 km spatial correlation coefficient. The
observations are averaged into 2 h periods. The uncertainty
of the observations is derived from the variability of the ob-
servations within each 2 h period. The modeling uncertainty
for each 2 h period at each station varies and is defined as
the larger of the median pollution events in that year at that
station or 16.5 % of the magnitude of the pollution event.
These values have been derived from analysis of the obser-
vations of methane at multiple heights at each station across
the DECC network. Each inversion is repeated 24 times; each
time 10 % of the observations per year per station are ran-
domly removed in 5 d intervals and the results and uncer-
tainty averaged.

Uncertainty. This random removal of observations allows
a greater exploration of the uncertainty, given the potential
for some of the emission sources to be intermittent within
the time period of the inversion.

CTE-CH4 Europe, CTE-SURF and CTE-GOSAT

CarbonTracker Europe CH4 (CTE-CH4) (Tsuruta et al.,
2017) applies an ensemble Kalman filter (Peters et al., 2005)
in combination with the Eulerian transport model TM5 (Krol
et al., 2005). It optimizes surface fluxes weekly and assimi-
lates atmospheric CH4 observations. TM5 was run at 1◦× 1◦

resolution over Europe and 6◦× 4◦e resolution globally, con-
strained by 3-hourly ECMWF ERA-Interim meteorological
data. The photochemical sink of CH4 due to tropospheric
and stratospheric OH as well as stratospheric Cl and O(1D)
were pre-calculated based on Houweling et al. (2014) and
Brühl and Crutzen (1993) and not adjusted in the optimiza-
tion scheme.

Three experiments were conducted, which differ in (1) sets
of prior fluxes, (2) sets of assimilated observations and
(3) optimization resolution over the Northern Hemisphere.
CTE-FMI uses sets of prior fluxes from LPX-Bern DYP-
TOP (Stocker et al., 2014) for biospheric, EDGAR v4.2
FT2010 (Janssens-Maenhout et al., 2013) for anthropogenic,
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GFED v4 (Giglio et al., 2013) for biomass burning, Ito
and Inatomi (2012) for termites, and Tsuruta et al. (2017)
for ocean sources. CTE-SURF and CTE-GOSAT use sets
of prior fluxes from the Global Carbon Project (Saunois
et al., 2020). CTE-FMI and CTE-SURF assimilated ground-
based surface CH4 observations, while CTE-GOSAT assim-
ilated GOSAT XCH4 retrievals from NIES v2.72. CTE-FMI
optimized fluxes at 1◦× 1◦ resolution over northern Eu-
rope, northeast Russia and southeast Canada; 6◦× 4◦ reso-
lution over other parts of the Northern Hemisphere land; and
region-wise (combined TransCom regions and soil type) over
the Southern Hemisphere and ocean. CTE-SURF and CTE-
GOSAT fluxes were optimized at 1◦× 1◦ resolution over Eu-
rope and region-wise elsewhere globally.

Uncertainty. The prior uncertainty is assumed to be a
Gaussian probability distribution function, where the error
covariance matrix includes errors in prior fluxes, observa-
tions and transport model representations. The uncertainty
for the prior fluxes was assumed to be 80 % of the fluxes
over land and 20 % over ocean, with the correlation between
grid cells or regions being 100–500 km over land and 900 km
over ocean. The uncertainties for observations and transport
model representations vary between observations, with the
minimum aggregated uncertainty being 7.5 ppb for surface
observations and 15 ppb for GOSAT data. The posterior un-
certainty is calculated as the standard deviation of the ensem-
ble members, where the posterior error covariance matrix is
driven by the ensemble Kalman filter.

MIROC4-ACTM

The MIROC4-ACTM time-dependent inversions solve for
emissions from 53 regions for CH4 and 84 regions for N2O.
The inversion framework is based on Bayesian statistics
and optimizes surface–atmosphere fluxes using the maxi-
mum probability solution. Atmospheric transport is mod-
eled using JAMSTEC’s Model for Interdisciplinary Research
on Climate, version 4, based on an atmospheric chemistry–
transport model (MIROC4-ACTM) (Watanabe et al., 2008;
Patra et al., 2018). The source-receptor matrix (SRM) is cal-
culated by simulating unitary emissions from 53 or 84 ba-
sis regions, for which the fluxes are optimized. The SRM
describes the relationship between the change in mole frac-
tion at the measurement locations for the unitary basis region
fluxes. The MIROC4-ACTM meteorology was nudged to the
JMA 55-year reanalysis (JRA-55) horizontal wind fields and
temperature. The calculation of photochemical losses is per-
formed online. The hydroxyl (OH) radical concentration for
reaction with CH4 varies monthly but without any interan-
nual variations. The simulated mole fractions for the total a
priori fluxes are subtracted from the observed concentrations
before running the inversion calculation (as in Patra et al.,
2016, for CH4 inversion). Both inversion results are con-
tributed to the GCP-CH4 and GCP-N2O activities (Saunois
et al., 2020; Thompson et al., 2019; Tian et al., 2020).

Uncertainties. The posterior fluxes are subject to system-
atic errors primarily from (1) errors in the modeled atmo-
spheric transport; (2) aggregation errors, i.e., errors arising
from the way the flux variables are discretized in space
(84 regions) and time (monthly means); (3) errors in the
background mole fractions (assumed to be a minor factor);
and (4) the incomplete information from the sparse observa-
tional network and hence the dependence on the prior fluxes.
In addition, there is, to a much smaller extent, some error due
to calibration offsets between observing instruments, which
is more pertinent for N2O than for other GHGs. We have
validated model transport in the troposphere using SF6 for
the inter-hemispheric exchange time using SF6 and CO2 for
the age of air in the stratosphere. The simulated N2O con-
centrations are also compared with aircraft measurements in
the upper troposphere and lower stratosphere for evaluating
the stratosphere–troposphere exchange rates. Comparisons
with ACE-FTS vertical profiles in the stratosphere and meso-
sphere indicate good parameterization of N2O loss by photol-
ysis and chemical reactions and thus the lifetime, which af-
fect the global total N2O budgets. Random uncertainties are
calculated by the inverse model depending on the prior flux
uncertainties and the observational data density and data un-
certainty. Only 37 sites are used in the inversion, and thus the
reduction in priori flux uncertainties has been minimal. The
net fluxes from the inversion from individual basis regions
are less reliable compared to the anomalies in the estimated
fluxes over a period of time.

Global Carbon Project – Global Methane Budget (GMB)

GMB uses an ensemble of 22 top-down global inversions
for anthropogenic CH4 emissions presented in Saunois et al.
(2020) for the Global Methane Budget. These inversions
were simulated by nine atmospheric inversion systems based
on various chemistry–transport models, differing in verti-
cal and horizontal resolutions, meteorological forcing, ad-
vection and convection schemes, and boundary layer mix-
ing. Surface-based inversions were performed over the pe-
riod 2000–2017, while satellite-based inversions cover the
GOSAT data availability over 2010–2017. The protocol es-
tablished for these simulations was not stringent as the prior
emission flux dataset was not mandatory, and each group se-
lected their constraining observations. More information can
be found in Saunois et al. (2020), in particular in their Ta-
bles 6 and S6.

Uncertainties. Currently there are no uncertainties re-
ported for the GMB models. This study uses the median and
the min/max as uncertainty range estimation from the 22-
model ensemble. In general uncertainties might be due to
factors like different transport models, physical parameter-
izations, prior fluxes and observation datasets.
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A2 Natural CH4 emissions

A2.1 Bottom-up CH4 emission estimates

CH4 emissions from inland waters

The CH4 estimate from inland waters represents a climatol-
ogy of average annual diffusive and ebulitive CH4 emissions
from lakes and reservoirs at the spatial resolution of 0.1◦.
The climatology is based on five alternative estimates, all re-
lying on the high-resolution HydroLAKES database (Mes-
sager et al., 2016), and of which we report the mean and
the standard deviation as a measure of uncertainty. Four
of these estimates are based on predictions of CH4 emis-
sion rates from N and P concentrations. These concentra-
tions were computed for each lake and reservoir of the Hy-
droLAKES dataset (> 1.4 millions), using the mechanistic–
stochastic model (MSM) of Maavara et al. (2017, 2019) and
Lauerwald et al. (2019); see methodology for inland water
N2O emissions for further details. The four estimates re-
sult from two empirical equations relating CH4 emissions to
chlorophyll a concentrations (Deemer et al., 2016; DelSon-
tro et al., 2018) and two equations relating chlorophyll a con-
centrations to nutrient concentrations (both from McCauley
et al., 1989) in lakes and reservoirs. The fifth estimate is
based on direct upscaling from observed CH4 emission rates
(155 lakes and reservoirs), which we have classified into rates
reported for small lakes (< 0.3 km2), larger (> 0.3 km2) lakes
and reservoirs. In addition, we applied a coarse regionaliza-
tion distinguishing the boreal (> 54◦ N) from the temperate
to sub-tropical (< 54◦ N) zone.

JSBACH–HIMMELI

The model framework, JSBACH–HIMMELI (Raivonen
et al., 2017; Susiluoto et al., 2018), is used to estimate wet-
land and mineral soil emissions, and an empirical model is
used to estimate the emissions from inland water bodies.

JSBACH–HIMMELI is a combination of two models, JS-
BACH, which is the land-surface model of MPI-ESM (Reick
et al., 2013), and HIMMELI, which is a specific model for
northern peatland emissions of CH4 (Raivonen et al., 2017).
HIMMELI (HelsinkI Model of MEthane buiLd-up and emIs-
sion for peatlands) has been developed especially for esti-
mating CH4 production and transport in northern peatlands.
It simulates both CH4 and CO2 fluxes and can be used as
a module within different modeling environments (Raivonen
et al., 2017; Susiluoto et al., 2018). HIMMELI is driven with
soil temperature, water table depth, the leaf area index and
anoxic respiration. These parameters are provided to HIM-
MELI from JSBACH, which models hydrology, vegetation
and soil carbon input from litter and root exudates. CH4
emission and uptake of mineral soils are calculated applying
the method by Spahni et al. (2011) based on soil moisture
estimated by JSBACH.

The distribution of terrestrial vegetation types in
JSBACH–HIMMELI is adopted from CORINE land cover
data and from native JSBACH land cover for the areas that
CORINE does not cover. The HIMMELI methane model is
applied for peatlands and the mineral soil approach for the
rest. The map of inland water CH4 emissions has been com-
bined with the JSBACH–HIMMELI land use map so that the
map of inland waters is preserved and JSBACH grid-based
fractions of different land use categories are adjusted accord-
ingly. In order to avoid double-counting the terrestrial CH4
flux estimates have been normalized by the ratio of the two
inland water body distributions.

Uncertainties. As in any process modeling, the uncertain-
ties of the bottom-up modeling of CH4 arise from three
primary sources: parameters, forcing data (including spatial
and temporal resolution) and model structure. An important
source of uncertainty in the case of terrestrial CH4 flux mod-
eling is the spatial distribution of peatlands.

The uncertainties of JSBACH–HIMMELI peatland emis-
sions were estimated by comparing the annual totals of mea-
sured and simulated methane fluxes at five European obser-
vation sites. Two of the sites are located in Finnish Lapland,
one in middle Sweden, one in southern Finland and one in
Poland.

For the sensitivity of mineral soil fluxes Spahni et al.
(2011) tested two soil moisture thresholds, 85 % or 95 % of
water holding capacity. Below these two thresholds, mineral
soils are assumed to be only CH4 sinks, while above these
thresholds they are assumed to be only CH4 sources. We used
the higher value, 95 % of water holding capacity. The uncer-
tainty was estimated using CH4 flux simulations of 1 year
(2005). We performed two new model runs, using the mois-
ture threshold 95± 15 %, and derived the uncertainty from
the resulting range in the annual emission sum.

Geological fluxes

To calculate geological CH4 emissions we used literature
data for geological emissions on land (excluding marine
seepage) (Etiope et al., 2019; Hmiel et al., 2020). From the
gridded geological CH4 emissions by Etiope et al. (2019),
and using the land–sea mask for the EU27+UK (to exclude
marine seepage), geological CH4 emissions from the land of
EU27+UK are 8.83 TgCH4 yr−1. Then we scaled this num-
ber by the ratio of global geological CH4 emissions estimated
by Hmiel et al. (2020) and by Etiope et al. (2019), thus ob-
taining a value of 8.83×5.4/37.4= 1.3 TgCH4 yr−1 (marine
and land geological). The global total geological CH4 emis-
sions reported by Etiope et al. (2019) and Hmiel et al. (2020)
are 37.4 and 5.4 TgCH4 yr−1, respectively.
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A2.2 Top-down CH4 emission estimates

Global Carbon Project – Global Methane Budget
(Saunois et al., 2020)

GMB uses an ensemble of 13 monthly gridded estimates of
wetland emissions based on different land surface models as
calculated for Saunois et al. (2020). Each model conducted
a 30-year spin-up and then simulated net methane emis-
sions from wetland ecosystems over 2000–2017. The models
were forced by CRU-JRA reconstructed climate fields (Har-
ris, 2019) and by the remote sensing-based wetland dynam-
ical area dataset WAD2M (Wetland Area and Dynamics for
Methane Modeling). This dataset provides monthly global
areas over 2000–2017 based on a combination of microwave
remote sensing data from Schroeder et al. (2015) and various
regional inventory datasets. More information is available in
Saunois et al. (2020), and more details will be presented in a
future publication led by Poulter et al. (2017) and colleagues.

Uncertainty. As described by Saunois et al. (2020) uncer-
tainties are reported as minimum and maximum values of the
available studies in brackets. They do not take into account
the uncertainty of the individual estimates but rather express
the uncertainty as the range of available mean estimates, i.e.,
the standard error across measurements/methodologies con-
sidered.

A3 Anthropogenic and natural N2O emissions

A3.1 Bottom-up N2O emission estimates

UNFCCC NGHGI (2019), EDGAR v5.0 and CAPRI de-
scriptions are found in Appendix A1.

ECOSSE

ECOSSE is a biogeochemical model that is based on the car-
bon model RothC (Jenkinson and Rayner, 1977; Jenkinson
et al., 1987; Coleman and Jenkinson, 1996) and the nitrogen
model SUNDIAL (Bradbury et al., 1993; Smith et al., 1996).
All processes of the carbon and nitrogen dynamics are con-
sidered (Smith et al., 2010a,b). Additionally, in ECOSSE,
processes of minor relevance for mineral arable soils (e.g.,
methane emissions) are implemented in order to represent
better processes that are relevant for other soils (e.g., organic
soils). ECOSSE can run in different modes and for different
time steps. The two main modes are site-specific and limited
data. In the later version, basis assumptions/estimates for pa-
rameters can be provided by the model. This increases the
uncertainty but makes ECOSSE a universal tool that can be
applied for large-scale simulations even if the data availabil-
ity is limited. To increase the accuracy in the site-specific
version of the model, detailed information about soil proper-
ties, plant input, nutrient application and management can be
added as available.

During the decomposition process, material is exchanged
between the soil organic matter (SOM) pools according to
first-order rate equations, characterized by a specific rate
constant for each pool, and modified according to rate modi-
fiers dependent on the temperature, moisture, crop cover and
pH of the soil. The N content of the soil follows the decom-
position of the SOM, with a stable C : N ratio defined for
each pool at a given pH, with N being either mineralized or
immobilized to maintain that ratio. Nitrogen released from
decomposing SOM as ammonium (NH+4 ) or added to the soil
may be nitrified to nitrate (NO−3 ).

For spatial simulations the model is implemented in a
spatial model platform. This allows us to aggregate the in-
put parameter for the needed resolution. ECOSSE is a one-
dimensional model, and the model platform provides the in-
put data in a spatial distribution and aggregates the model
outputs for further analysis. While climate data are interpo-
lated, soil data are represented by the dominant soil type or
by the proportional representation of the different soil types
in the spatial simulation unit (this is a grid cell in VERIFY).

Uncertainties in ECOSSE arise from three primary
sources: parameters, forcing data (including spatial and tem-
poral resolution) and model structure.

DayCent

DayCent was designed to simulate soil C dynamics, nutri-
ent flows (N, P, S) and trace gas fluxes (CO2, CH4, N2O,
NOx, N2) between soil, plants and the atmosphere at a daily
time step. Submodels include soil water content and temper-
ature by layer, plant production and allocation of net primary
production (NPP), decomposition of litter and soil organic
matter, mineralization of nutrients, N gas emissions from
nitrification and denitrification, and CH4 oxidation in non-
saturated soils.

The DayCent modeling application at the EU level is a
consolidated model framework running on Land Use/Cover
Area frame statistical Survey (LUCAS) points (Orgiazzi
et al., 2018), which was extensively explained in previous
works (Lugato et al., 2017, 2018; Quemada et al., 2020)
where a detailed description of numerical and geographical
datasets and uncertainty estimations is reported.

Information directly derived from LUCAS (2009–2015)
included the soil organic carbon content (SOC), particle
size distribution and pH. Hydraulic properties and bulk den-
sity was also calculated with an empirically derived pe-
dotransfer. Management information was derived from of-
ficial statistics (EUROSTAT, https://ec.europa.eu/eurostat/
web/agriculture/data, last access: Seprember 2019) and in-
cluded crop shares at the NUTS2 level. The amount of min-
eral N was partitioned according to the regional crop rota-
tions and agronomic crop requirements. Organic fertilization
and irrigated areas were derived from the Gridded Livestock
of the World FAO dataset and the FAO-AQUASTAT product.
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Meteorological data were downloaded from the E-OBS
gridded dataset (http://www.ecad.eu, last access: June 2019)
at 0.1◦ resolution. For the climatic projection, the gridded
data from CORDEX database (https://esgf-node.ipsl.upmc.
fr/search/cordex-ipsl/, last access: June 2019) were used. The
average annual (2006–2010) atmospheric N deposition from
the EMEP model (rv 4.5) was also implemented into the sim-
ulations.

Uncertainty. The starting year of the simulation was set in
2009 and projected in the future. The uncertainty analysis,
based on the Monte Carlo approach, was done running the
model 52 times in each point and, contemporarily, randomly
sampling model inputs from probability density functions for
SOC pool partition, irrigation, and both mineral and organic
fertilization rates. The model outputs (including uncertain-
ties) at point level were upscaled regionally at 1 km resolu-
tion by a machine learning approach based on random forest
regression.

N2O emissions from inland waters

The N2O estimate represents a climatology of average an-
nual N2O emissions from rivers, lakes, reservoirs and estu-
aries at the spatial resolution of 0.1◦. Based on a spatially
explicit representation of water bodies and point and non-
point sources of N and P, this model quantifies the global-
scale spatial patterns in inland water N2O emissions in a
consistent manner at 0.5◦ resolution, which were then down-
scaled to 0.1◦ using the spatial distribution of European in-
land water bodies. The procedure to calculate the cascad-
ing loads of N and P delivered to each water body along
the river–reservoir–estuary continuum and to topologically
connect 1.4 million lakes (extracted from the HydroLAKES
database) is described in Maavara et al. (2019) and Lauer-
wald et al. (2019). The methodology to quantify N2O emis-
sions is based on the application of a mechanistic stochas-
tic model (MSM) to estimate inland water C−N−P cycling
as well as N2O production and emission generated by nitri-
fication and denitrification. Using a Monte Carlo analysis,
the MSM allows us to generate relationships relating N pro-
cesses and N2O emissions to N and P loads and water res-
idence time from the mechanistic model outputs, which are
subsequently applied for the spatially resolved upscaling. For
the estimation of N2O emission, we ran two distinct model
configurations relying on EFs scaling to denitrification and
nitrification rates: one assuming that N2O production equals
N2O emissions and the other taking into account the kinetic
limitation on N2O gas transfer and progressive N2O reduc-
tion to N2 during denitrification in water bodies with increas-
ing residence time (Maavara et al., 2019). The model outputs
from the two scenarios are used to constrain uncertainties in
N2O emission estimates.

GAINS

Specific sectors and abatement technologies in GAINS vary
by the specific emitted compound, with source sector def-
inition and emission factors largely following the IPCC
methodology at the Tier 1 or Tier 2 level. GAINS includes
in general all anthropogenic emissions to air but does not
cover emissions from forest fires, savannah burning and land
use/land use change. Emissions are estimated for 174 coun-
tries/regions, with the possibility to aggregate to a global
emission estimate and spanning a timeframe from 1990 to
2050 in 5-year intervals. Activity drivers for macroeconomic
development, energy supply and demand, and agricultural
activities are entered externally; GAINS extends with knowl-
edge required to estimate “default” emissions (emissions oc-
curring due to an economic activity without emission abate-
ment) and emissions and costs of situations under emission
control (Amann et al., 2011).

Emissions of nitrous oxide derive from energy, industry,
agriculture and waste. Land use change emissions are not
included. In the energy sector, certain technologies imple-
mented to improve air quality affect N2O emission factors
(like catalytic converters in vehicles), sometimes also nega-
tively. That is also the case for non-selective catalytic reduc-
tion devices for NOx abatement in power plants or for flu-
idized bed combustion. Relevant industrial processes cover
nitric acid and adipic acid, with other processes (glyoxal, if
relevant, or caprolactam) included. Both processes allow for
two different levels of abatement technologies, which both
are relatively easily accessible and low cost. The use of N2O
in gaseous form, often as an anesthetic for medical purposes,
is associated with population numbers and scaled by avail-
ability of hospital beds. Marked emission reductions (at low
costs) as well as complete phaseout of emissions (high costs)
are implemented as technologies. Agricultural emissions in
part derive from manure handling, where different manage-
ment strategies have repercussions on emissions. The larger
fraction of emission is from application of nitrogen com-
pounds in different forms to grassland, crops and rice, with
rice using a different emission factor. Application of manure
and of mineral fertilizer in GAINS can be reduced by ad-
vanced computer technology such as automatic steering and
variable rate application or by agrochemistry (nitrification
inhibitors). The costs of implementation are considered to
depend on the size of a farm; hence farm size is an impor-
tant parameter. In the waste sector, composting and wastew-
ater treatment are considered relevant sources. For wastewa-
ter treatment, GAINS also considers a specific emission re-
duction option when optimizing processes towards N2O re-
duction (e.g., via favoring the anammox process). All details
have been reported by Winiwarter et al. (2018) in their sup-
plementary material.

Uncertainties. The same paper provides full information
on the uncertainty of N2O emissions in the GAINS model,
which is a consequence of uncertainty provided in the activ-
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ity data, in the emission factors and in the actual structure
of the respective management strategies that also include the
share of abatement technology already implemented. Further
parameters also described (on uncertainty of future projec-
tions and on costs) are not relevant here.

FAOSTAT

The Statistics Division of the Food and Agri-
culture Organization of the United Nations
provides N2O emissions from agriculture
(http://www.fao.org/faostat/en/#data/GT/visualize, last
access: January 2021) and its sub-domains, as well
as N2O emissions from land use linked to biomass
burning (metadata: http://fenixservices.fao.org/faostat/
static/documents/GT/GT_e_2019.pdf, last access: De-
cember 2020, and http://fenixservices.fao.org/faostat/
static/documents/GL/GL_e_2019.pdf, last access: De-
cember 2020). The FAOSTAT emissions database
is computed following Tier 1 of the 2006 IPCC
Guidelines for National Greenhouse Gas Inventories
(http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html,
last access: December 2020). Country reports to FAO on
crops, livestock and agriculture use of fertilizers are the
source of activity data. Geospatial data are the source of AD
for the estimates from cultivation of organic soils, biomass
and peat fires. N2O emissions are provided by country,
regions and special groups, with global coverage, relative
to the period 1961–present (with annual updates, currently
2017) and with projections for 2030 and 2050 for agriculture
only, expressed in both CO2 eq. and N2O by underlying
agricultural and land use emission sub-domain and by
aggregate (agriculture total, agriculture total plus energy,
agricultural soils). The main N2O emissions are reported for
the following agricultural activities: manure management,
synthetic fertilizers, manure applied to the soils, manure left
in pasture, crop residues, cultivation of organic soils and
burning crop residues. LULUCF emissions consist of N2O
associated with burning biomass and peat fires, as well as
from the drainage of organic soils.

Uncertainties were computed by Tubiello et al. (2013) but
are not available in the FAOSTAT database.

A3.2 Top-down N2O emission estimates

FLEXINVERT_NILU

The FLEXINVERT_NILU framework is based on Bayesian
statistics and optimizes surface–atmosphere fluxes using the
maximum probability solution (Rodgers 2000). Atmospheric
transport is modeled using the Lagrangian model FLEX-
PART (Stohl et al., 2005; Pisso et al., 2019) run in the back-
wards time mode to generate a so-called source-receptor ma-
trix (SRM). The SRM describes the relationship between the
change in mole fraction and the fluxes discretized in space
and time (Seibert and Frank, 2004) and was calculated for 7 d

prior to each observation. For use in the inversions, FLEX-
PART was driven using ECMWF ERA-Interim wind fields.

The state vector consisted of flux increments (i.e., offsets
to the prior fluxes) discretized on an irregular grid based on
the SRMs (Thompson et al., 2014). This grid has finer resolu-
tion (in this case the finest was 0.5◦× 0.5◦) where the fluxes
have a strong influence on the observations and coarser res-
olution where the influence is only weak (the coarsest was
2◦× 2◦). The flux increments were solved at 2-weekly tem-
poral resolution. The state vector also included scalars for the
background mole fractions. The optimal (posterior) fluxes
were found using the conjugate gradient method (e.g., Paige
and Saunders, 1975).

The background mole fractions, i.e., the contribution to
the modeled mole fractions that is not accounted for in the
7 d SRMs, was estimated by coupling the termination points
of backwards trajectories (modeled using virtual particles) to
initial fields of mole fractions from the optimized Eulerian
model LMDZ (i.e., the CAMS N2O mole fraction product
v18r1) following the method of Thompson et al. (2014).

Uncertainties. The posterior fluxes are subject to system-
atic errors primarily from (1) errors in the modeled atmo-
spheric transport; (2) aggregation errors, i.e., errors arising
from the way the flux variables are discretized in space and
time; (3) errors in the background mole fractions; and (4) the
incomplete information from the observations and hence the
dependence on the prior fluxes. In addition, there is, to a
smaller extent, some error due to calibration offsets between
observing instruments, which is more pertinent for N2O than
for other GHGs. Random uncertainties are calculated from
a Monte Carlo ensemble of inversions following Chevallier
et al. (2007), and uncertainties in the observation space were
inflated to take into account the model representation errors.

A3.3 Global N2O Budget – GCP (Tian et al., 2020)

CAMS-N2O

Within the GCP 2019 results, N2O fluxes are estimated us-
ing the atmospheric inversion framework, CAMS-N2O. At-
mospheric inversions use observations of atmospheric mix-
ing ratios, in this case of N2O, and provide the fluxes that
best explain the observations while at the same time being
guided by a prior estimate of the fluxes. In other words, the
fluxes are optimized to fit the observations within the limits
of the prior and observation uncertainties. To produce the op-
timized (a posteriori) fluxes a number of steps are involved:
first, the observations are pre-processed; second, a prior flux
estimate is prepared; third, mixing ratios are simulated using
the prior fluxes and are used to estimate the model represen-
tation error; and fourth, the inversion is performed.

In total 140 ground-based sites, ship and aircraft transects
are included in the inversion. The term “site” refers to lo-
cations where there is a long-term record of observations
and includes ground-based measurements, both from discrete
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samples (or “flasks”) and quasi-continuous sampling by in
situ instruments, as well as aircraft measurements. A prior
estimate of the total N2O flux with monthly resolution and
inter-annually varying fluxes is prepared from a number of
models and inventories. For the soil fluxes (including anthro-
pogenic and natural) an estimate from the land surface model
OCN-v1.2 is used, which is driven by observation-based cli-
mate data, N fertilizer statistics and modeled N deposition
(Zaehle et al., 2011). For the ocean fluxes, an estimate from
the ocean biogeochemistry model PlankTOM-v10.2 is used,
which is a prognostic model (Buitenhuis et al., 2018). Atmo-
spheric transport is modeled using an offline version of the
Laboratoire de Météorologie Dynamique model, LMDZ5,
which computes the evolution of atmospheric compounds
using archived fields of winds, convection mass fluxes and
planetary boundary layer (PBL) exchange coefficients that
have been calculated using the online version nudged to
ECMWF ERA-Interim winds.

CAMS-N2O uses the Bayesian inversion method to find
the optimal fluxes of N2O given prior information about the
fluxes and their uncertainty, as well as observations of atmo-
spheric N2O mole fractions. The method is the same as that
used in Thompson et al. (2014)

Uncertainty. Uncertainties in CAMS-N2O simulations
pertain to observation space and to state space. The uncer-
tainty in the observation space is calculated as the quadratic
sum of the measurement and transport uncertainties. The
measurement uncertainty is assumed to be 0.3 ppb (ap-
proximately 0.1 %) based on the recommendations of data
providers. The transport uncertainty includes estimates of un-
certainties in advective transport (based on the method of Rö-
denbeck et al., 2003) and from a lack of subgrid-scale vari-
ability (based on the method of Bergamaschi et al., 2010).
For the error in each land grid cell, the maximum magnitude
of the flux in the cell of interest and its eight neighbors is
used, while for ocean grid cells the magnitude of the cell of
interest only is used. Posterior flux uncertainties are calcu-
lated from a Monte Carlo ensemble of inversions, based on
the method of Chevallier et al. (2005).

TOMCAT-INVICAT

TOMCAT-INVICAT (Wilson et al., 2014) is a variational in-
verse transport model, which is based on the global chemi-
cal transport model TOMCAT and its adjoint. It uses a four-
dimensional variational (4DVAR) optimization framework
based on Bayesian theory which seeks to minimize model–
observation differences by altering surface fluxes while al-
lowing for prior knowledge of these fluxes to be retained.
TOMCAT (Monks et al., 2017) is an offline chemical trans-
port model in which meteorological data are taken from
ECMWF ERA-Interim reanalyses (Dee et al., 2011). The
model grid resolution, and therefore the optimized surface
flux estimates, has a horizontal resolution of 5.6◦× 5.6◦.
The model has 60 vertical levels running from the surface

to 0.1 hPa. For each individual year’s fluxes, which are op-
timized on a monthly basis, 30 minimization iterations are
carried out.

Uncertainty. Uncertainties in TOMCAT-INVICAT N2O
inversions are described as follows and further in Thompson
et al., (2019). The uncertainty in the observations is calcu-
lated as the quadratic sum of the measurement and transport
uncertainties. The measurement uncertainty for each obser-
vation is assumed to be 0.4 ppb. The transport error for each
observation is assumed to be the mean difference between
the observation grid cell and its eight neighbors. Prior flux
errors are assumed to be 100 % or the prior estimate and are
uncorrelated in space and time. Posterior flux uncertainties
are not currently able to be calculated.

MIROC4-ACTM

The MIROC4-ACTM time-dependent inversion for 84 re-
gions (TDI84) framework is based on Bayesian statistics
and optimizes surface–atmosphere fluxes using the max-
imum probability solution (Rodgers 2000). Atmospheric
transport is modeled using JAMSTEC’s Model for Inter-
disciplinary Research on Climate, version 4, based on an
atmospheric chemistry–transport model (MIROC4-ACTM)
(Watanabe et al., 2008; Patra et al., 2018). The source-
receptor matrix (SRM) is calculated by simulating unitary
emissions from 84 basis regions, for which the fluxes are
optimized. The SRM describes the relationship between the
change in mole fraction at the measurement locations for the
unitary basis region fluxes (similar to Rayner et al., 1999).
The MIROC4-ACTM meteorology was nudged to the JMA
55-year reanalysis (JRA-55) horizontal wind fields and tem-
perature.

The simulated mole fractions for the total a priori fluxes
are subtracted from the observed concentrations before run-
ning the inversion calculation (as in Patra et al., 2016, for
CH4 inversion).

Uncertainties. The posterior fluxes are subject to system-
atic errors primarily from (1) errors in the modeled atmo-
spheric transport; (2) aggregation errors, i.e., errors arising
from the way the flux variables are discretized in space
(84 regions) and time (monthly means); (3) errors in the
background mole fractions (assumed to be a minor factor);
and (4) the incomplete information from the sparse observa-
tional network and hence the dependence on the prior fluxes.
In addition, there is, to a much smaller extent, some error due
to calibration offsets between observing instruments, which
is more pertinent for N2O than for other GHGs. We have val-
idated model transport in the troposphere using SF6 for the
inter-hemispheric exchange time and used SF6 and CO2 for
the age of air in the stratosphere. The simulated N2O con-
centrations are also compared with aircraft measurements in
the upper troposphere and lower stratosphere for evaluating
the stratosphere–troposphere exchange rates. Comparisons
with ACE-FTS vertical profiles in the stratosphere and meso-
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sphere indicate good parameterization of N2O loss by pho-
tolysis and chemical reactions and thus the lifetime, which
affect the global total N2O budgets.

Random uncertainties are calculated by the inverse model
depending on the prior flux uncertainties and the observa-
tional data density and data uncertainty. Only 37 sites are
used in the inversion, and thus the reduction in priori flux un-
certainties has been minimal. The net fluxes from the inver-
sion from individual basis regions are less reliable compared
to the anomalies in the estimated fluxes over a period of time.
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Appendix B

B1 Overview tables

Table B1. Comparison of CH4 results from the BU and TD methods for common periods: BU anthropogenic 1990–2015, BU and TD
natural 2005–2011, and TD total 2006–2012 representing the common period between all datasets and the last year available. All values
are in ktCH4 yr− 1, and uncertainties are in kilotons (kt). The UNFCCC NGHGI uncertainties represent the 95 % confidence interval; the
uncertainty for EDGAR v5.0 was calculated for 2015, and the min/max values for all sectors are as follows: energy 33/37, IPPU 39/34,
agriculture 18/18 and waste 32/38; it represents the 95 % confidence interval of a lognormal distribution. The other uncertainties represent
the variability of the model ensembles (TD) and are the min and max of the averaged result over the time period. All values are rounded to
the nearest 0.1 ktCH4, and therefore columns do not necessarily add up.

Sector Data source Mean flux CH4 (kt)a

Bottom-up EU27+UK CH4 emissions

BU anthropogenic 1990–2013 2005–2011 2006–2012 2010–2016 Last available yearb

Energy UNFCCC NGHGI 5262.6± 1205.1 4022.6± 920.2 3938.7± 902 3641.2± 833.8 3398.5± 778.2
GAINS 4661.5 3336.5 3237.6 NA 2460.2
EDGAR v5.0 5438.4 4464.6 4401.7 NA 4276.9

(+2012.2; −1794.7) (+1651.9; −1473.3) (+1628.6; −1452.6) (+1582.4; −1411.4)

IPPU UNFCCC NGHGI 69.6± 18.3 70.3± 19 68.1± 18.4 63.2± 17.1 63.4
GAINS NA NA NA NA NA
EDGAR v5.0 26.2 26.7 26.2 NA 25.0

(+10.2; −8.9) (+10.4; −9.1) (+10.2; −8.9) (+9.8; −8.5)

Agriculture UNFCCC NGHGI 10 284.3± 998.8 9682.9± 992 9622.1± 985.3 9512.3± 974.1 9671.9± 17.1
GAINS 10 791.3 9730.9 9632.6 NA 9441.3
EDGAR v5.0 10 816.4 (± 1947) 10 165.7 (± 1829.8) 10 125.9 (± 1822.6) NA 10 178.5 (± 1832.1)
CAPRI 9915.3 9049.2 8975.9 NA 8834
FAOSTAT 10 864.8 10 067.5 9990.7 9814.4 9870.6

LULUCF UNFCCC NGHGI 278.5± 136.5 245.1± 118.3 244.7± 120.0 227.1± 111.3 320.6± 157.1

Waste UNFCCC NGHGI 8010.7± 1629.4 6735.9± 1549.3 6483.5± 1491.2 5564.1± 1279.7 5018.7± 1154.3
GAINS 8364.8 7691.1 7562.91 NA 6546.3
EDGAR v5.0 8792.9 7717.7 7501.7 NA 6103.6

(+3341.3; −2813.7) (+2932.7; −2469.6) (+2850.6; −2400.5) (+2319.4; −1953.2)

Total anthropogenic BU – UNFCCC NGHGI 23 905.7± 2220.8 20 756.8± 1928.3 20 357.2± 1891.2 19 007.9± 1765.8 18 473.1± 1716.1

BU natural JSBACH–HIMMELI NA 1446.4 1423.0 1442.0 1345.9
CH4 emissions peatlands

Fluxes from lakes NA 2531.6 2531.6 NA 2531.6
and reservoirs
Geological flux NA 1275.0 1275.0 1275.0 1275.0

TOTAL natural BU NA 5253 5229.6 2717

TD natural GCP-CH4 wetlands NA 1519 1486.5 1355.9 1248.1
CH4 emissions from inversions (+4649.1; −462) (+4825.4; −464.3) (+5188.2; −431.5) (+2608.5; −272)

Top-down EU27+UK total CH4 emissions

TD regional total FLEXPART NA 30 486.8 30 047.3 27 062.3 24 594.83
(FLExKF-TM5-4DVAR)
_EMPA
TM5-4DVAR NA 28 770.7 29 308.9 29 431.5 29 144.0
FLEXINVERT_NILU NA 33 190.6 32 714.9 32 434.1 31 343.8
CTE-CH4 NA 32 836.8 32 213.3 30 246.7 33 483.5
InGOS inversions NA NA 29496 NA 27 467.5

(+6115.4; −1305.1) (+1913; −4857.4)

TD global total Total SURF NA 24 702.1 24 308.5 23 719.0 26 175.7
(+ 10 174.7; −5083.2) (+9593.2; −4529.1) (+9195.4; −4605.7) (+4798.9; −6474)

Total GOSAT NA NA NA 22 689.3 22 651.4
(+8190.9; −3240.3) (+8511.5; −10 759.0)

a The three periods were chosen based on the availability of data. The common period between all datasets is 2006–2012. b The last available year is listed in the following: UNFCCC NGHGI 2017, EDGAR v5.0 2015,
GAINS 2015, CAPRI 2013, FAOSTAT 2017, JSBACH–HIMMELI 2017, Fluxes from lakes and reservoirs 2011, geological (one value for 2005–2017), GCP-CH4 natural wetlands partition from TD 2015, FLEXPART –
FLExKF-TM5-4DVAR 2017, FLEXINVERT_NILU 2017, CTE-CH4 2017, InGOS 2012, GCP ensemble total 2017, total SURF 2017 and total GOSAT 2017. For details on model estimates and yearly values please
download the data behind the figures on Zenodo https://doi.org/10.5281/zenodo.4590875. NA: not available.
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Table B2. Comparison of N2O results from the BU and TD methods for different periods: BU anthropogenic 1990–2015, TS total 2005–
2014, and the common period between all datasets 2010–2014 and the last year available. All values are in ktN2Oyr−1, and uncertainties are
in kilotons (kt). The UNFCCC NGHGI uncertainties represent the 95 % confidence interval; the uncertainty for EDGAR v5.0 was calculated
for 2015, and the min/max values for all sectors are as follows: energy 12/250, IPPU 13/19, agriculture 74/191 and waste 63/166; it represents
the 95 % confidence interval of a lognormal distribution. The other uncertainties represent the variability of the model ensembles (TD) and
are the min and max of the averaged result over the time period. All values are rounded to the nearest 0.1 ktN2O, and therefore columns do
not necessarily add up.

Sector Data source Mean flux N2O (kt)a

Bottom-up EU27+UK N2O emissions

BU anthropogenic 1990–2013 2005–2014 Last year availableb

Energy UNFCCC NGHGI 102.6± 24.1 99.0± 23.2 97.9± 23.0
GAINSc 85.3 100.1 97.7
EDGAR v5.0 90.3 (+225.75; −10.8) 86.1 (+215.3; −10.3) 77.9 (+194.8; −9.3)

IPPU UNFCCC NGHGI 231.5± 37.1 103.1± 16.5 37.1± 5.9
GAINS 259.9 147.8 69.5
EDGAR v5.0 234.5 (+44.5; −30.5) 155.7 (+29.6 ; −20.2) 141.7 (+26.9; −18.4)

Agricultured UNFCCC NGHGI 636.4± 636.4 603.7± 603.7 627.7± 627.7
GAINS 704.7 665.7 669.8
EDGAR v5.0 612.3 (+1169.5; −453.1) 578.0 (+1104; −427.7) 587.7 (+1122.5; −434.9)
CAPRI 637.9 NA 639.1
FAOSTAT 689.7 653.8 670.1
ECOSSE 429.0 425.6 386.0
DayCente NA 643.9± 60.0 643.9± 60.0

LULUCF UNFCCC NGHGI 60.7± 29.7 64.9± 31.8 61.2± 30.0

Wasted UNFCCC NGHGI 32.1± 32.1 34.0± 34.0 35.2± 35.2
GAINS 61.6 63.3 68.4
EDGAR v5.0 49.0 (+81.3; −30.9) 58.1 (+96.4; −36.6) 59.7 (+99.1; −37.6)

Total BU
anthropogenic
UNFCCC NGHGI

1063.3± 853.6 904.7± 726.2 859.2± 689.7

BU natural
N2O emissions

Lakes, rivers,
reservoirs

NA 2.7 2.7

Top-down EU27+UK total N2O emissions

TD total
(2005–2014)

MIROC4-ACTM
(global)

NA 1535.7 1577.3

CAMS-N2O (global) NA 1024.2 1401.6
TOMCAT_LEEDS
(global)

NA 1369.7 1411.0

FLEXINVERT_NILU
(regional)

NA 1541.7 1228.5

Total TD min and max NA 1362.9 (+181.2; −340.3) NA

a The three periods were chosen based on the availability of data. The common period between all datasets is 2010–2014. b The last available year is listed in the following:
UNFCCC NGHGI (2019) 2017, EDGAR v5.0 2015, GAINS 2015, CAPRI 2013, FAOSTAT 2017, ECOSSE 2018, DayCent average 2011–2015, Lakes_rivers_reservoirs (one
value 2010–2014), FLEXINVERT_NILU 2017, TOMCAT_LEEDS 2014, CAMS-N2O 2017, MIROC4-ACTM 2016. For details on model estimates and yearly values please
download the data behind the figures on Zenodo https://doi.org/10.5281/zenodo.4590875. c GAINS reports one value for every 5 years. d UNFCCC uncertainties for
agriculture and waste were set to 100 %; the values are much higher: 626 % for waste and 107 % for agriculture. e DayCent 2011–2015. NA: not available.
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Table B3. Adapted from Petrescu et al. (2020a): agriculture and natural N2O emissions – allocation of emissions to different sectors by
different data sources.

Emission sources/
data providers

UNFCCC NGHGI
(2019)

UNFCCC
MS-NRT

EDGAR v5.0 CAPRI GAINS FAOSTAT ECOSSE DayCent Inland waters

Direct N2O
emissions from
manure
management

3.B.2 minus 3.B.2.5 –
manure management

3.B –
manure
management

4.B –
manure
management

N2OMAN –
manure
management

3B –
manure management

Manure
management

NA NA NA

Direct N2O
emissions from
managed soils

3.D.1.1 and 3.D.1.2 –
direct N2O emissions
from managed soils
(inorganic N and
organic N fertilizers)
3.D.1.4 – crop
residues
3.D.1.6 – cultivation
of organic soils

3.D. –
agricultural
soils

4.D.1 – direct
soil emissions

N2OAPP –
manure applica-
tion on soils
N2OSYN –
synthetic fertilizer
application
N2OHIS –
histosols
N2OCRO – crop
residues

3.D.a.1 – soil:
inorganic fertilizer
and crop residues
3.D.a.2 – organic
fertilizer
3.D.a.6 – histosols

Synthetic
fertilizers
Crop residues
Cultivation of
organic soils
Prescribed burning
of savannas

Direct
N2O emis-
sions

Direct emis-
sions from
manure
application +
direct N2O
emissions
(fertilizers?)

NA

Direct N2O
emissions from
grazing animals

3.D.1.3 – urine and
dung deposited by
grazing animals

NA 4.D.2 –
manure in
pasture/range/
paddock

N2OGRA –
grazing

3.D.a.3 – grazing Manure left on
pasture

NA Direct and
indirect N2O
emissions from
grazing animals

NA

Indirect N2O
emissions

3.B.2.5. – indirect
N2O emissions from
leaching from manure
management
3.D.2 – indirect emis-
sions from soils
(3.D.2.1 atmospheric
deposition –
volatilized N +
3.D.2.2 leaching and
runoff)

NA 4.D.3 –
indirect N2O
from agricul-
ture

N2OLEA –
leaching
N2OAMM –
ammonia
volatilization

3.D.b.1 – atmospheric
deposition
3.D.b.2 – leaching

Manure applied to
soils

Atmospheric
N deposi-
tion

Atmospheric N
deposition

Runoff and
leaching
N fertilizers

Field burning
of agricultural
residues

3.F. – field burning of
agricultural residues

3.F. – field
burning of
agricultural
residues

4.F. –
agricultural
waste burning

NA NA Field burning of
crop residues

NA NA NA

Natural
(unmanaged)
N2O emissions

NA NA NA NA NA NA NA NA Emissions from
lakes, rivers
and estuaries

NA: not available.

https://doi.org/10.5194/essd-13-2307-2021 Earth Syst. Sci. Data, 13, 2307–2362, 2021
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B2 Overview figures

Figure B1. (a) EU27+UK total CH4 emissions time series per sector as reported by UNFCCC NGHGI (2019). (b) EU27+UK total N2O
emissions time series per sector as reported by UNFCCC NGHGI (2019).

Earth Syst. Sci. Data, 13, 2307–2362, 2021 https://doi.org/10.5194/essd-13-2307-2021
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B3 Source-specific methodology: AD, EFs and
uncertainties

Table B4. Source-specific activity data (AD), emission factors (EFs) and uncertainty methodology for all current VERIFY and non-VERIFY
2019 data product collection.

Data sources AD/tier EFs/tier Uncertainty assessment method Emission data availability

UNFCCC NGHGI
(2019)

Country-specific information
consistent with the IPCC Guide-
lines.

IPCC Guidelines/
country-specific information for
higher tiers.

IPCC Guidelines
(https://www.ipcc-nggip.iges.or.
jp/public/2006gl/, last access:
December 2019) for calculating
the uncertainty of emissions
based on the uncertainty of AD
and EFs – two different ap-
proaches: (1) error propagation
and (2) Monte Carlo simulation.

NGHGI official data (CRFs) are
found at
https://unfccc.int/process-
and-meetings/transparency-
and-reporting/reporting-
and-review-under-the-
convention/greenhouse-
gas-inventories-annex-i-
parties/submissions/national-
inventory-submissions-2019 (last
access: January 2021).

UNFCCC MS-NRT Country-specific information
consistent with the IPCC Guide-
lines.

IPCC Guidelines/
country-specific information for
higher tiers.

NA EEA report, Approximated EU
GHG inventory: proxy GHG
estimates for 2018
(https://www.eea.europa.eu/
publications/approximated-eu-
ghg-inventory-proxy,
last access: November 2020).

EDGAR v5.0 International Energy Agency
(IEA) for fuel combustion.
Food and Agriculture Organiza-
tion (FAO) for agriculture.
US Geological Survey (USGS)
for industrial processes (e.g.,
cement, lime, ammonia and
ferroalloys).
GGFR/NOAA for gas flaring.
World Steel Association for iron
and steel production.
International Fertilizer Associa-
tion (IFA) for urea consumption
and production.
Complete description of the
data sources can be found in
Janssens-Maenhout et al. (2019)
and in Crippa et al. (2020).

IPCC 2006, Tier 1 or Tier 2 de-
pending on the sector.

Tier 1 with error propagation by
sectors for CH4.

https://edgar.jrc.ec.europa.eu/
overview.php?v=50_GHG
(last access: January 2021)

CAPRI Farm and market balances, eco-
nomic parameters, crop areas,
livestock population and yields
from EUROSTAT, parameters for
input-demand functions at the re-
gional level from FADN (EC),
data on trade between world re-
gions from FAOSTAT, and policy
variables from OECD.

IPCC 2006: Tier 2 for emissions
from enteric fermentation of cat-
tle and from manure management
of cattle. Tier 1 for all other live-
stock types and emission cate-
gories.
N flows through agricultural sys-
tems (including N excretion) cal-
culated endogenously.

N/A Detailed gridded data CH4 and
N2O emissions can be obtained
by contacting the data provider:
Adrian Leip
(adrian.leip@ec.europa.eu).

GAINS Livestock numbers by animal
type (FAOSTAT, 2010; EURO-
STAT, 2009; UNFCCC, 2010).
Growth in livestock numbers
from FAOSTAT (2003) and
CAPRI model (2009).
Land area for rice cultivation
(FAOSTAT, 2010).
Projections for the EU are taken
from the CAPRI model.

Country-specific information and
livestock – implied EFs reported
to UNFCCC and IPCC Tier 1
(2006, vol. 4, chap. 10) default
factors, rice cultivation – IPCC
Tier 1–2 (2006, vol. 4, p. 5.49),
and agricultural waste burning –
IPCC Tier 1 (2006, vol. 5,
p. 520).

IPCC (2006, vol. 4, p. 10.33) un-
certainty range.

Detailed gridded data CH4 and
N2O emissions can be obtained
by contacting the data providers:
for CH4, contact Lena Höglund
Isaksson (hoglund@iiasa.ac.at);
for N2O, contact Wilfried Wini-
warter (winiwart@iiasa.ac.at).
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Table B4. Continued.

Data sources AD/tier EFs/tier Uncertainty assessment method Emission data availability

FAOSTAT FAOSTAT crop and livestock
production domains from coun-
try reporting; FAOSTAT land use
domain; harmonized world soil;
ESA-CCI and Copernicus Global
Land Cover Service (C3S) maps;
MODIS MCD12Q1 v6;
FAO Gridded Livestock of the
World; MODIS MCD64A1.006
burned area products.

IPCC Guidelines
Tier 1

IPCC (2006, vol. 4, p. 10.33)
uncertainties in estimates of
GHG emissions are due to
uncertainties in emission factors
and activity data. They may
be related to, inter alia, natural
variability, partitioning fractions,
lack of spatial or temporal
coverage, or spatial aggregation.

Agriculture total and sub-
domain-specific
GHG emissions are found for
download at
(last access: June 2020).

CH4 bottom-up natural emissions

Data source AD/tier EFs/tier Uncertainty assessment
method

Emission data availability

Mechanistic
stochastic
model CH4
emissions from in-
land waters

HydroSHEDS 15s (Lehner et al.,
2008) and Hydro1K (USGS,
https://www.usgs.gov/centers/
eros/science/usgs-eros-archive-
digital-elevation-hydro1k?qt-
science_center_objects=0#qt-
science_center_objects, last
access: June 2019) for river
network, HydroLAKES for the
lake and reservoir network and
surface area (Messager et al.,
2016); worldwide typology of
estuaries by Dürr et al. (2011).

N/A Four model configurations for
CH4

Detailed gridded data can be ob-
tained by contacting the data
providers:
Ronny Lauerwald
(ronny.lauerwald@ulb.ac.be) and
Pierre Regnier
(pierre.regnier@ulb.ac.be).

JSBACH–
HIMMELI

JSBACH vegetation and soil car-
bon and physical parameters pro-
vided to HIMMELI to simulate
the wetland methane fluxes
HydroLAKES database (Mes-
sager et al., 2016).
CORINE land cover data
VERIFY climate drivers
0.1◦× 0.1◦.

CH4 fluxes from peatlands The standard deviation and the
resulting range in the annual
emission sum represent a mea-
sure of uncertainty.

Detailed gridded data CH4 emis-
sions can be obtained by contact-
ing the data providers:
Tuula Aalto
(tuula.aalto@fmi.fi) and
Tiina Markkanen
(tiina.markkanen@fmi.fi).

Geological
emissions, including
marine and land ge-
ological

Areal distribution activity:
1◦× 1◦ maps include the four
main categories of natural geo-
CH4 emission: (a) onshore hy-
drocarbon macro-seeps, includ-
ing mud volcanoes; (b) subma-
rine (offshore) seeps; (c) diffuse
microseepage; and (d) geother-
mal manifestations.

CH4 fluxes, measurements and
estimates based on size and activ-
ity

95 % confidence interval of the
median emission-weighted mean
sum of individual regional val-
ues.

(Etiope et al., 2019, and Hmiel
et al., 2020)

CH4 top-down inversions

Regional inversions over Europe (high transport model resolution)

Data source AD/tier EFs/tier Uncertainty assessment
method

Emission data availability

FLEXPART –
FLExKF

Extended Kalman filter in
combination with backward
Lagrangian transport simulations
using the model FLEXPART
atmospheric observations
ECMWF ERA-Interim meteoro-
logical fields.

FLExKF-TM5-4DVAR_EMPA
specific background

The random uncertainties are
represented by the posterior er-
ror covariance matrix provided
by the Kalman filter, which com-
bines errors in the prior fluxes
with errors in the observations
and model representation (see de-
scription in Appendix A1).

Detailed gridded data can be ob-
tained by contacting the data
provider:
Dominik Brunner
(dominik.brunner@empa.ch).

TM5-4DVAR Global Eulerian models with
a close-up over Europe, ERA-
Interim reanalysis

4DVAR variational techniques Uncertainty was calculated as a
1σ estimate. See descriptions in
Appendix A1.

Detailed gridded data can be
obtained by contacting the data
provider:
Peter Bergamaschi
(peter.bergamaschi@ec.europa.eu).
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Table B4. Continued.

Data sources AD/tier EFs/tier Uncertainty assessment method Emission data availability

FLEXINVERT_
NILU

Bayesian statistics atmospheric
transport is modeled using the
Lagrangian model FLEXPART.

Prior fluxes from LPX-Bern
DYPTOP, EDGAR v4.2 FT2010
GFED v4
termites and ocean fluxes
ground-based surface CH4 ob-
servations.
Background fields based on
nudged FLEXPART-CTM sim-
ulations (Groot Zwaaftink et al.,
2018).

Detailed gridded data CH4 emis-
sions can be obtained by contact-
ing the data provider:
Christine Groot Zwaaftink
(cgz@nilu.no).

CTE-FMI Ensemble Kalman filter
Eulerian transport model TM5
ECMWF ERA-Interim meteoro-
logical data.

Prior fluxes from LPX-Bern
DYPTOP, EDGAR v4.2 FT2010
GFED v4
termites and ocean fluxes
ground-based surface CH4 ob-
servations.
GOSAT XCH4 retrievals from
NIES v2.72.

The prior uncertainty is assumed
to be a Gaussian probability dis-
tribution function.
The posterior uncertainty is cal-
culated as standard deviation of
the ensemble members, where
the posterior error covariance
matrix are driven by the ensem-
ble Kalman filter.

Detailed gridded data can be ob-
tained by contacting the data
provider:
Aki Tsuruta
(aki.tsuruta@fmi.fi).

InTEM-NAME Atmospheric Lagrangian trans-
port model analysis 3-D meteo-
rology from the UK Met Office
Unified Model.

(a) the UK National Atmospheric
Emissions Inventory (NAEI)
2015 within the UK.
(b) Outside the UK – EDGAR
2010 emissions distributed uni-
formly over land (excluding the
UK).

Derived from the variability of
the observations within each 2 h
period:
a) 40 %;
b) 50 %.

Detailed gridded data can be ob-
tained by contacting the data
provider:
Alistair Manning
(alistair.manning@
metoffice.gov.uk).

InGOS 18 European monitoring stations
EDGARv4.2FT-InGOS
wetland inventory of Jed Kaplan
and LPX-Bern v1.0
ERA-Interim reanalysis
Met Office Unified Model

For priors please see Table B4 The uncertainty of the model en-
semble was calculated as a 1σ es-
timate.
Individual models use Bayes’
theorem to calculate the reduc-
tion of assumed a priori emis-
sion uncertainties by assimilating
measurements.

Detailed gridded data can be
obtained by contacting the data
provider: Peter Bergamaschi
(peter.bergamaschi@ec.europa.eu).

Global inversions from the Global Carbon Project CH4 budget (Saunois et al., 2020)

GCP-CH4 2019 an-
thropogenic and nat-
ural partitions from
inversions

Ensemble of inversions gather-
ing various chemistry–transport
models surface or satellite data.

For priors please see Table B4 Uncertainties are reported
as minimum and maximum
values of the available stud-
ies, as the range of available
mean estimates, i.e., the stan-
dard error across measure-
ments/methodologies consid-
ered.
Posterior uncertainties mostly
use Monte Carlo methods.

Detailed gridded data can be ob-
tained by contacting the data
provider:
Marielle Saunois
(marielle.saunois@lsce.ipsl.fr).

N2O bottom-up anthropogenic emissions

Data source AD/tier EFs/tier Uncertainty assessment
method

Emission data availability

UNFCCC NGHGI (2019), MS-NRT (2018), EDGAR v5.0, CAPRI, GAINS and FAOSTAT see above

ECOSSE The model is a point model,
which provides spatial results
by using spatial distributed input
data (lateral fluxes are not con-
sidered). The model is a Tier 3
approach that is applied on grid
map data, polygon organized in-
put data or study sites.

IPCC 2006: Tier 3.
The simulation results will be al-
located due to the available infor-
mation (size of spatial unit, repre-
sentation of considered land use,
etc.).

N/A Detailed gridded data can be ob-
tained by contacting the data
provider:
Matthias Kuhnert
(matthias.kuhnert@abdn.ac.uk).
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2348 A. M. R. Petrescu et al.: European synthesis of CH4 and N2O emissions for the EU27 and UK: 1990–2017

Table B4. Continued.

Data sources AD/tier EFs/tier Uncertainty assessment method Emission data availability

DayCent Spatial explicit simulations at
point level, upscaled at 1 km for
agricultural areas.

Tier 3; land management and in-
put factors for the cropland re-
maining cropland category based
on datasets covering the 2005–
2015 period.

Monte Carlo Detailed gridded data can be
obtained by contacting the data
provider:
Emanuele Lugato
(emanuele.lugato@rc.europa.eu).

N2O bottom-up natural emissions

Mechanistic
stochastic
model for N2O
emissions from
inland waters

HydroSHEDS 15s (Lehner et al.,
2008) and Hydro1K (USGS,
2000) for river network; Hydro-
LAKES for the lake and reservoir
network and surface area (Mes-
sager et al., 2016); worldwide ty-
pology of estuaries by Dürr et al.
(2011); terrestrial N and P loads
by Global-NEWS (Van Drecht
et al., 2009; Bouwman et al.,
2009), redistributed at 0.5◦ reso-
lution by Maavara et al. (2019).

EFs applied to denitrification and
nitrification rates for N2O emis-
sions. Values constrained from
the range reported in Beaulieu
et al. (2011).

Two model configurations for
N2O

Detailed gridded data can be
obtained by contacting the data
providers:
Ronny Lauerwald
(ronny.lauerwald@ulb.ac.be)
and
Pierre Regnier
(pierre.regnier@ulb.ac.be).

Regional N2O inversions over Europe (high transport model resolution)

FLEXINVERT_
NILU

Bayesian statistics.
Atmospheric transport is mod-
eled using the Lagrangian model
FLEXPART.

Background mole fractions. Random uncertainties are calcu-
lated from a Monte Carlo ensem-
ble of inversions.

Detailed gridded N2O data can
be obtained by contacting the
data provider:
Rona Thompson
(rlt@nilu.no).

Global N2O inversions over Europe from GN2OB (Tian et al., 2020)

CAMS-N2O Bayesian inversion method ob-
servations of atmospheric mixing
ratio fluxes from ground-based
sites, ship and aircraft transects
soil fluxes OCN-v1.2 ocean bio-
geochemistry model PlankTOM-
v10.2
GFED-v4.1s
EDGAR-4.32
ECMWF ERA-Interim

Fires emission factors from Ak-
agi et al. (2011).

Uncertainty in the observa-
tion space is calculated as the
quadratic sum of the measure-
ment and transport uncertainties.
For the error in each land grid
cell, the maximum magnitude of
the flux in the cell of interest and
its eight neighbors is used; for
ocean grid cells the magnitude of
the cell of interest only is used.

Detailed gridded N2O data can
be obtained by contacting the
data provider:
Rona Thompson
(rlt@nilu.no).

TOMCAT-
INVICAT

Variational Bayesian inverse
model assimilating surface flask
observations of atmospheric
mixing ratios. ECMWF ERA-
Interim meteorological driving
data.

Prior emission estimates are
from the OCN-v1.1 model
(soils), EDGARv4.2FT2010
(anthropogenic non-soil), Plank-
TOM5 (oceans) and GFEDv4.1s
(biomass burning).

Uncertainty in the observa-
tion space is calculated as the
quadratic sum of the measure-
ment and transport uncertainties.
For the error in each land grid
cell, the maximum magnitude of
the flux in the cell of interest and
its eight neighbors is used. Prior
emission uncertainties are 100 %
and uncorrelated.

Detailed gridded N2O data can
be obtained by contacting the
data provider:
Christopher Wilson (GEO)
(c.wilson@leeds.ac.uk).

MIROC4-ACTM Matrix inversion for calculation
of fluxes from 53 and 84 par-
titions of the globe for CH4
and N2O, respectively. Forward
model transport is nudged to
JRA-55 horizontal winds and
temperature.

Fire emissions for CH4 are taken
from GFEDv4s.

A posteriori uncertainties are ob-
tained from the Bayesian statis-
tics model. A priori emissions
uncertainties are uncorrelated.

Detailed gridded data can be ob-
tained by contacting the data
provider:
Prabir Patra
(prabir@jamstec.go.jp).

NA: not available.

Earth Syst. Sci. Data, 13, 2307–2362, 2021 https://doi.org/10.5194/essd-13-2307-2021



A. M. R. Petrescu et al.: European synthesis of CH4 and N2O emissions for the EU27 and UK: 1990–2017 2349

Table B5. Biogeochemical models that computed wetland emissions used in this study. Runs were performed for the whole period 2000–
2017. Models run with prognostic (using their own calculation of wetland areas) and/or diagnostic (using WAD2M) wetland surface areas
(see Sect. 3.2.1). From Saunois et al. (2020).

Model Institution Prognostic Diagnostic References

CLASS-CTEM Environment and Climate Change Canada y y Arora, Melton and Plummer (2018)
Melton and Arora (2016)

DLEM Auburn University n y Tian et al., (2010, 2015)
ELM Lawrence Berkeley National Laboratory y y Riley et al. (2011)
JSBACH MPI n y Kleinen et al. (2020)
JULES UKMO y y Hayman et al. (2014)
LPJ GUESS Lund University n y McGuire et al. (2012)
LPJ MPI MPI n y Kleinen et al. (2012)
LPJ-WSL NASA GSFC y y Zhang et al. (2016b)
LPX-Bern University of Bern y y Spahni et al. (2011)
ORCHIDEE LSCE y y Ringeval et al. (2011)
TEM-MDM Purdue University n y Zhuang et al. (2004)
TRIPLEX_GHG UQAM n y Zhu et al. (2014, 2015)
VISIT NIES y y Ito and Inatomi (2012)
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Table B6. Top-down studies used in our new analysis, with their contribution to the decadal and yearly estimates noted. For decadal means,
top-down studies have to provide at least 8 years of data over the decade to contribute to the estimate. From Saunois et al. (2020).

Number of
Model Institution Observation used Time period inversions References

Carbon Tracker-Europe
CH4

FMI Surface stations 2000–2017 1 Tsuruta et al. (2017)

Carbon Tracker-Europe
CH4

FMI GOSAT NIES L2 v2.72 2010–2017 1 Tsuruta et al. (2017)

GELCA NIES Surface stations 2000–2015 1 Ishizawa et al. (2016)

LMDZ-PYVAR LSCE/CEA Surface stations 2010–2016 2 Yin et al. (2020)

LMDZ-PYVAR LSCE/CEA GOSAT Leicester v7.2 2010–2016 4 Yin et al. (2020)

LMDZ-PYVAR LSCE/CEA GOSAT Leicester v7.2 2010–2017 2 Zheng et al. (2018a, b)

MIROC4-ACTM JAMSTEC Surface stations 2000–2016 1 Patra et al. (2016, 2018)

NICAM-TM NIES Surface stations 2000–2017 1 Niwa et al. (2017a, b)

NIES-TM-
FLEXPART-VAR
(NTFVAR)

NIES Surface stations 2000–2017 1 Maksyutov et al. (2020);
Wang et al. (2019b)

NIES-TM-
FLEXPART-VAR
(NTFVAR)

NIES GOSAT NIES L2 v2.72 2010–2017 1 Maksyutov et al. (2020);
Wang et al. (2019b)

TM5-CAMS TNO/VU Surface stations 2000–2017 1 Segers and Houweling (2018);
Bergamaschi et al. (2010, 2013);
Pandey et al. (2016)

TM5-CAMS TNO/VU GOSAT ESA/CCI
v2.3.8 (combined with
surface observations)

2010–2017 1 Segers and Houweling (2018);
Bergamaschi et al. (2010, 2013);
Pandey et al. (2016)

TM5-4DVAR EC-JRC Surface stations 2000–2017 2 Bergamaschi et al. (2013, 2018)

TM5-4DVAR EC-JRC GOSAT OCPR v7.2
(combined with surface
observations)

2010–2017 2 Bergamaschi et al. (2013, 2018)

TOMCAT University Surface stations 2003–2015 1 McNorton et al. (2018)
of Leeds
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