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Abstract. Reliable quantification of the sources and sinks of atmospheric carbon dioxide (CO2), including that
of their trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions un-
der the Kyoto Protocol and the Paris Agreement. This study provides a consolidated synthesis of estimates for all
anthropogenic and natural sources and sinks of CO2 for the European Union and UK (EU27+UK), derived from
a combination of state-of-the-art bottom-up (BU) and top-down (TD) data sources and models. Given the wide
scope of the work and the variety of datasets involved, this study focuses on identifying essential questions which
need to be answered to properly understand the differences between various datasets, in particular with regards
to the less-well-characterized fluxes from managed ecosystems. The work integrates recent emission inventory
data, process-based ecosystem model results, data-driven sector model results and inverse modeling estimates
over the period 1990–2018. BU and TD products are compared with European national greenhouse gas invento-
ries (NGHGIs) reported under the UNFCCC in 2019, aiming to assess and understand the differences between
approaches. For the uncertainties in NGHGIs, we used the standard deviation obtained by varying parameters of
inventory calculations, reported by the member states following the IPCC Guidelines. Variation in estimates pro-
duced with other methods, like atmospheric inversion models (TD) or spatially disaggregated inventory datasets
(BU), arises from diverse sources including within-model uncertainty related to parameterization as well as struc-
tural differences between models. In comparing NGHGIs with other approaches, a key source of uncertainty is
that related to different system boundaries and emission categories (CO2 fossil) and the use of different land
use definitions for reporting emissions from land use, land use change and forestry (LULUCF) activities (CO2
land). At the EU27+UK level, the NGHGI (2019) fossil CO2 emissions (including cement production) account
for 2624 Tg CO2 in 2014 while all the other seven bottom-up sources are consistent with the NGHGIs and re-
port a mean of 2588 (± 463 Tg CO2). The inversion reports 2700 Tg CO2 (± 480 Tg CO2), which is well in line
with the national inventories. Over 2011–2015, the CO2 land sources and sinks from NGHGI estimates report
−90 Tg C yr−1

± 30 Tg C yr−1 while all other BU approaches report a mean sink of−98 Tg C yr−1 (± 362 Tg of
C from dynamic global vegetation models only). For the TD model ensemble results, we observe a much larger
spread for regional inversions (i.e., mean of 253 Tg C yr−1

± 400 Tg C yr−1). This concludes that (a) current in-
dependent approaches are consistent with NGHGIs and (b) their uncertainty is too large to allow a verification
because of model differences and probably also because of the definition of “CO2 flux” obtained from different
approaches. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4626578
(Petrescu et al., 2020a).

1 Introduction

Global atmospheric concentrations of CO2 have increased
46 % since pre-industrial times (pre-1750) (WMO, 2019).
The rise of CO2 concentrations in recent decades is caused
primarily by CO2 emissions from fossil sources. Globally,
fossil emissions grew at a rate of 1.3 % yr−1 for the decade
2009–2018 and accounted for 87 % of the anthropogenic
sources in the total carbon budget (Friedlingstein et al.,
2019). In contrast, global CO2 emissions from land use and
land use change estimated from bookkeeping models and
dynamic global vegetation models (DGVMs) were approx-
imately stable during the same period, albeit with large un-
certainties (Friedlingstein et al., 2019).

National greenhouse gas inventories (NGHGIs) are pre-
pared and reported under the UNFCCC on an annual basis by
Annex I countries1, based on IPCC Guidelines using national
activity data and different levels of sophistication (tiers) for

1Annex I Parties include the industrialized countries that were
members of the OECD (Organization for Economic Co-operation
and Development) in 1992 plus countries with economies in transi-
tion (the EIT Parties), including the Russian Federation, the Baltic

well-defined sectors. These inventories contain time series
of annual greenhouse gas (GHG) emissions from the 1990
base year2 until 2 years before the current year and were re-
quired by the UNFCCC and used to track progress towards
countries’ reduction targets under the Kyoto Protocol (UN-
FCCC, 1997). The IPCC tiers represent the level of sophisti-
cation used to estimate emissions, with Tier 1 based on global
or regional default values, Tier 2 based on country- and
technology-specific parameters, and Tier 3 based on more
detailed process-level modeling. Uncertainties in NGHGIs
are calculated based on ranges in observed (or estimated)
emission factors and variation of activity data, using the er-

states, and several central and eastern European states (UNFCCC,
https://unfccc.int/parties-observers, last access: February 2020).

2For most Annex I Parties, the historical base year is 1990.
However, parties included in Annex I with an economy in transi-
tion during the early 1990s (EIT Parties) were allowed to choose
1 year up to a few years before 1990 as reference because of a
non-representative collapse during the breakup of the Soviet Union
(e.g., Bulgaria, 1988; Hungary, 1985–1987; Poland, 1988; Roma-
nia, 1989; and Slovenia, 1986).
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ror propagation method (95 % confidence interval) or Monte
Carlo methods, based on clear guidelines (IPCC, 2006).

NGHGIs follow principles of transparency, accuracy, con-
sistency, completeness and comparability (TACCC) under
the guidance of the UNFCCC (2014). Methodological pro-
cedures follow the 2006 IPCC Guidelines (IPCC, 2006) and
can be upgraded and completed with the IPCC 2019 Re-
finement (IPCC, 2019) containing updated sectors and addi-
tional sources. Atmospheric GHG concentration data can be
used to derive estimates of the GHG fluxes based on atmo-
spheric transport inverse modeling techniques (Rayner et al.,
2019). Such estimates are often called top-down (TD) esti-
mates since these are based on the analysis of concentrations,
which represent the sum of the effects of sources and sinks,
in contrast to bottom-up (BU) estimates, which rely on mod-
els analyzing the processes causing the fluxes. Current UN-
FCCC procedures do not require observation-based evidence
in the NGHGI and do not incorporate independent, large-
scale-observation-based GHG budgets, but the latest guide-
lines allow the use of atmospheric data for external checks
within the data quality control, quality assurance and verifi-
cation process (2006 IPCC Guidelines, chap. 6: QA/QC pro-
cedures). Only a few countries (e.g., Switzerland, UK, New
Zealand and Australia) use atmospheric observations on a
voluntary basis to complement their national inventory data
with top-down estimates annexed to their NGHGI (Bergam-
aschi et al., 2018).

For the post-2020 reporting (which will start in 2023 for
the inventory of year 2021), the Paris Agreement follows on
the Kyoto Protocol, and, at the EU level, the GHG monitor-
ing mechanism Regulation 525 (2013) is replaced by Regu-
lation 1999 (2018), while Regulation 824 (2018) embeds the
LULUCF sector with estimates based on spatial information
in the EU climate targets of 2030. A key element in the cur-
rent policy process is to facilitate the global stocktake exer-
cise of the UNFCCC foreseen in 2023, which will assess col-
lective progress towards achieving the near- and long-term
objectives of the Paris Agreement, also considering mitiga-
tion, adaptation and means of implementation. The global
stocktake is expected to create political momentum for en-
hancing commitments in nationally determined contributions
(NDCs) under the Paris Agreement.

Key components of the global stocktake are the NGHGI
submitted by countries under the enhanced transparency
framework of the Paris Agreement. Under the new frame-
work, for the first time, developing countries will be re-
quired to submit their inventories on a biennial basis, along-
side developed countries that will continue to submit their
inventories and full time series on an annual basis. This
calls for robust and transparent approaches that can build
up long-term emission compilation capabilities and be ap-
plied to different situations. A priority is to refine esti-
mates of CH4 and N2O emissions, which are more uncer-
tain than the CO2 fossil emissions. Fossil CO2 emissions
are closely anchored to well-established fuel use statistics

with narrow uncertainty ranges on emissions factors, while
CO2 from LULUCF and CH4 and N2O have highly un-
certain activity data and/or emission factors (see compan-
ion paper, Petrescu et al., 2021). However, CO2 emissions
dominate the GHG fluxes, and there is need for monitor-
ing and verification support capacity (Janssens-Meanhout et
al., 2020) as the reduction of anthropogenic CO2 fluxes be-
comes increasingly important for the climate negotiations
of the Paris Agreement and where observation-based data
can provide information on the actual situation. In addi-
tion, while fossil CO2 emissions are known to relatively
high precision, LULUCF activities are generally much more
uncertain (RECCAP, https://www.globalcarbonproject.org/
Reccap/index.htm, last access: November 2020, CarboEu-
rope, http://www.carboeurope.org/, last access: November
2020) and as described below in Sects. 2.2. and 3.2.

The current study presents consistently derived estimates
of CO2 fluxes from BU and TD approaches for the EU27 and
UK, building partly on Petrescu et al. (2020b) for the LU-
LUCF sector and on Andrew (2020) for fossil sectors while
laying the foundation for future annual updates. Every year
(time t) the Global Carbon Project (GCP) in its Global Car-
bon Budget (GCB) quantifies large-scale CO2 budgets up
to year t − 1, bringing in information from global to large
latitude bands, including various observation-based flux es-
timates from BU and TD approaches (Friedlingstein et al.,
2020). Except for two sector-specific BU models based on
national statistics (EFISCEN and CBM), we note that the
BU observation-based approaches used in the GCB and in
this paper are based on the NGHGI estimates provided by
national inventory agencies to the UNFCCC with differences
coming from allocation. They rely heavily on statistical data
combined with Tier 1 and Tier 2 approaches. In our case,
focusing on a region that is well covered with data and mod-
els (Europe), BU also refers to Tier 3 process-based mod-
els or complex bookkeeping models (see Sect. 2). At re-
gional and country scales, no systematic and regular com-
parison of these observation-based CO2 flux estimates with
reported fluxes at UNFCCC is yet feasible. As a first step
in this direction, within the European project VERIFY (http:
//verify.lsce.ipsl.fr/, last access: February 2021), the current
study compares observation-based flux estimates of BU ver-
sus TD approaches and compares them with NGHGIs for the
EU27+UK and five sub-regions (Fig. 4). The methodolog-
ical and scientific challenges to compare these different es-
timates have been partly investigated before (Grassi et al.,
2018a, for LULUCF; Peters et al., 2009, for fossil sectors)
but not in a systematic and comprehensive way including
both fossil and land-based CO2 fluxes.

The work presented here represents many distinct datasets
and use of models in addition to the individual country sub-
missions to the UNFCCC for all European countries, which
while following the general guidance laid out in IPCC (2006)
still differ in specific approaches, models and parameters,
in addition to differences in underlying activity datasets. A
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comprehensive investigation of detailed differences between
all datasets is beyond the scope of this paper, though at-
tempts have been previously made for specific subsectors
(Petrescu et al., 2020b, for AFOLU3; Federici et al., 2015, for
FAOSTAT versus NGHGIs). As this is the most comprehen-
sive comparison of NGHGIs and research datasets (includ-
ing both bottom-up (BU) and top-down (TD) approaches) for
Europe to date, we focus here on a set of questions that such
a comparison raises. How can one fairly compare the detailed
sectoral NGHGIs to observation-based estimates? What new
information do the observation-based estimates provide, for
instance on the mean fluxes, spatial disaggregation, trends
and inter-annual variation? What can one expect from such
complex studies, where are the key knowledge gaps, what is
the added value to policy makers and what are the next steps
to take?

We compare official anthropogenic NGHGI emissions
with research datasets correcting wherever needed research
data on total emissions/sinks to separate out anthropogenic
emissions. We analyze differences and inconsistencies be-
tween emissions and sinks and make recommendations
towards future actions to evaluate NGHGI data. While
NGHGIs include uncertainty estimates, special disaggre-
gated research datasets of emissions often lack quantification
of uncertainty. While this is also a call to those developers
to associate more detailed uncertainty estimates with their
products, here we use the median and minimum/maximum
(min/max) range of different research products of the same
type to get a first estimate of overall uncertainty. Table A2 in
Appendix A presents the methodological differences of cur-
rent study with respect to Petrescu et al. (2020b).

2 CO2 data sources and estimation approaches

We use data of the total CO2 emissions and removals from
the EU27+UK from TD inversions and BU estimates,
in addition to BU estimates from sector-specific models.
We collected data of CO2 fossil and CO2 land4 emissions

3In the IPCC AR5 AFOLU stands for agriculture, forestry and
other land use and represents a new sector replacing the two AR4
sectors Agriculture and LULUCF

4The IPCC Good Practice Guidance (GPG) for Land Use, Land
Use Change and Forestry (IPCC, 2003) describes a uniform struc-
ture for reporting emissions and removals of greenhouse gases. This
format for reporting can be seen as land based; all land in the coun-
try must be identified as having remained in one of six classes since
a previous survey or as having changed to a different (identified)
class in that period. According to the IPCC SRCCL, land covers
“the terrestrial portion of the biosphere that comprises the natural
resources (soil, near-surface air, vegetation and other biota, and wa-
ter), the ecological processes, topography, and human settlements
and infrastructure that operate within that system”. Some commu-
nities prefer “biogenic” to describe these fluxes, while others found
this confusing as fluxes from unmanaged forests, for example, are
biogenic but not included in inventories reported to the UNFCCC.

and removals between 1990 and 2018 (or the last avail-
able year if the datasets do not extend to 2018) from peer-
reviewed literature and other data delivered under the VER-
IFY project (see description in Appendix A). The detailed
data source descriptions are found in Sect. A1 and A2.
For the BU anthropogenic CO2 fossil estimates we used
global inventory datasets (Emissions Database for Global
Atmospheric Research (EDGAR v5.0.), Food and Agri-
culture Organization Corporate Statistical Database (FAO-
STAT), British Petroleum (BP), Carbon Dioxide Information
Analysis Center (CDIAC), GCP, Energy Information Admin-
istration (EIA), International Energy Agency (IEA); see Ta-
ble 1) described in detail by Andrew (2020), while for CO2
land estimates we used BU research-level biogeochemical
models (e.g., DGVMs TRENDY-GCP, bookkeeping models;
see Table 2). For TD we used global inversions (from the
GCP in Friedlingstein et al., 2019) as well as regional inver-
sions at higher spatial resolution (CarboScopeReg, EURO-
COM, Monteil et al., 2020; Konovalov et al., 2016).

The values are defined from an atmospheric perspective:
positive values represent a source to the atmosphere and neg-
ative ones a removal from the atmosphere. As an overview
of potential uncertainty sources, Appendix B presents the
use of emission factor (EF) data, activity data (AD), and,
whenever available, uncertainty methods used for all CO2
land data sources used in this study. The referenced data used
for the figures’ replicability purposes are available for down-
load at https://doi.org/10.5281/zenodo.4626578 (Petrescu et
al., 2020a). We focus herein on the EU27 and the UK.
Within the VERIFY project, we have in addition constructed
a web tool which allows for the selection and display of
all plots shown in this paper (as well as the companion
paper on CH4 and N2O, Petrescu et al., 2021) not only
for the regions shown here but for a total of 79 countries
and groups of countries in Europe. The website, located on
the VERIFY project website (http://webportals.ipsl.jussieu.
fr/VERIFY/FactSheets/, last access: February 2021), is ac-
cessible with a username and password distributed by the
project. Figure 4 includes also data from countries outside
the EU but located within geographical Europe (Switzerland,
Norway, Belarus, Ukraine and Republic of Moldova).

2.1 CO2 anthropogenic emissions from NGHGIs

UNFCCC NGHGI (2019) emissions are country estimates
covering the period 1990–2017. The Annex I Parties to the
UNFCCC are required to report emissions inventories an-
nually using the common reporting format (CRF). This an-
nual published dataset includes all CO2 emissions sources
for those countries and for most countries for the period 1990
to t − 2. Some eastern European countries’ submissions be-

As this comparison is central to our work, we decided that “land”
as defined by the IPCC was a good compromise.
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gin in the 1980s. Revisions are made on an irregular basis
outside of the standard annual schedule.

2.2 CO2 fossil emissions

CO2 fossil emissions occur when fossil carbon compounds
are broken down via combustion or other forms of oxidation
or via non-metal processes such as for cement production.
Most of these fossil compounds are in the form of fossil fuels,
such as coal, oil and natural gas. Another category is fossil
carbonates, such as calcium carbonate and magnesium car-
bonate, which are used as feed stocks in industrial processes
and whose decomposition also leads to emissions of CO2.
Because CO2 fossil emissions are largely connected with en-
ergy, which is a closely tracked commodity group, there is
a wealth of underlying data that can be used for estimating
emissions. However, differences in collection, treatment, in-
terpretation and inclusion of various factors such as carbon
contents and fractions of oxidized carbon lead to method-
ological differences (Appendix A, Table A1) resulting in
differences of emissions between datasets (Andrew, 2020).
In contrast to BU estimates, atmospheric inversions for emis-
sions of fossil CO2 are not fully established (Brophy et al.,
2019), though estimates exist. The main reason is that the
types of atmospheric networks suitable for fossil CO2 atmo-
spheric inversions have not been widely deployed yet (Ciais
et al., 2015).

In this analysis, the BU CO2 fossil estimates are presented
and split per fuel type and reported for the last year when
all data products are available (Andrew, 2020). In addition
to the BU CO2 fossil estimates, we report a fossil fuel CO2
emission estimate for the year 2014 from a 4-year inversion
assimilating satellite observations. In order to overcome the
lack of CO2 observation networks suitable for the monitor-
ing of fossil fuel CO2 emissions at a national scale, this in-
version is based on atmospheric concentrations of co-emitted
species. It assimilates satellite CO and NO2 data. While the
spatial and temporal coverage of these CO and NO2 obser-
vations is large, the conversion of the information on these
co-emitted species into fossil fuel CO2 emission estimates is
complex and carries large uncertainties. Therefore, we focus
here on the comparison between the uncertainties in the in-
version versus the magnitude and variations of BU estimates
without discussing system boundaries and constraints of each
of these products (which are instead discussed in Andrew,
2020). The detailed descriptions of each of the data products
described in Table 1 are found in Appendix A1.

2.3 CO2 land fluxes

CO2 land fluxes include CO2 emissions and removals from
LULUCF activities, based on either BU or TD CO2 estimates
from inversion ensembles, represented by the data sources
and products described in Table 2. We compare CO2 net
emissions from the LULUCF sector primarily from three

land use classes5 (forest land, cropland and grassland) from
both land class remaining6 (land class remains unchanged)
and land class converted7 (land class changed in the last
20 years). The wetlands, settlements and other land cate-
gories are included in the discussion on total LULUCF activ-
ities (including harvested wood products, HWPs) presented
in Sect. 3.3.1, 3.3.3 and 3.3.4. Not all the classes reported
to the UNFCCC are present in FAOSTAT or other models;
in addition some models are sector-specific. We use the no-
tation of “FL-FL”, “CL-CL” and “GL-GL” to indicate for-
est, cropland and grassland which remain in the same class
from year to year. We present separate results from sector-
specific models reporting carbon fluxes for FL-FL, CL-CL
and GL-GL (the models EPIC-IIASA, ECOSSE, EFISCEN,
CBM), those including multiple land use sectors and simulat-
ing land use changes (e.g., dynamic global vegetation mod-
els (DGVMs), ensemble TRENDY v7 (Sitch et al., 2008; Le
Quéré et al., 2009)), and those employing bookkeeping ap-
proaches (H&N, Houghton and Nassikas, 2017; and BLUE,
Hansis et al., 2015). The detailed description of each of the
products described in Table 3 is found in Appendix A2.

The two inverse model ensembles presented here are the
GCB 2018 for 1990–2018 (Le Queré et al., 2018) and EU-
ROCOM for 2006–2015 (Monteil et al., 2020). The GCB in-
versions are global and include CarbonTracker Europe (CTE;
van der Laan-Luijkx et al., 2017), CAMS (Chevallier et al.,
2005) and the Jena CarboScopeReg (Rödenbeck, 2005). The
EUROCOM inversions are regional, with a domain limited
to Europe and higher-spatial-resolution atmospheric trans-
port modes, with five inversions covering the entire period
2006-2015 as analyzed in Monteil et al. (2019). They re-
port net ecosystem exchange (NEE) fluxes. These inversions
make use of more than 30 atmospheric observing stations
within Europe, including flask data and continuous observa-
tions, and work at typically higher spatial resolution than the
global inversion models. The other regional inversion pre-
sented here is generated with the CarboScopeReg (CSR) in-
version system (2006–2018), with different ensemble mem-
bers. This system is part of the EUROCOM ensemble, but
new runs were carried out for the VERIFY project. The re-
sults are plotted separately to illustrate two points: (1) that the
CSR runs for VERIFY are not identical to those submitted to
EUROCOM (VERIFY runs from CSR included several sites
that started shortly before the end of the EUROCOM inver-
sion period) and (2) that the CSR model was used in four

5According to the 2006 IPCC Guidelines the LULUCF sector
includes six management classes (forest land, cropland, grassland,
wetlands, settlements and other land).

6According to the 2006 IPCC Guidelines, land should be re-
ported in a “conversion” category for 20 years and then moved to
a “remaining” category, unless a further change occurs. Converted
land refers to CO2 emissions from conversions to and from all six
classes that occurred in the previous 20 years.

7Converted land refers to CO2 emissions from conversions to
and from all six classes that occurred in the previous 20 years.
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Table 1. Data sources for the anthropogenic CO2 fossil emissions included in this study.

Method Data/model name Contact/lab Species/period Reference/metadata

UNFCCC NGHGI (2019) UNFCCC Anthropogenic fossil
CO2 1990–2017

– 2006 IPCC Guidelines for National Greenhouse
Gas Inventories, IPCC (2006)
https://www.ipcc-nggip.iges.or.jp/public/2006gl/
(last access: December 2019)
– UNFCCC CRFs
https://unfccc.int/process-and-meetings/
transparency-and-reporting/
reporting-and-review-under-the-convention/
greenhouse-gas-inventories-annex-i-parties/
national-inventory-submissions-2019
(last access: January 2021)

BU Compilation of multiple
CO2 fossil emission
data sources (Andrew,
2020): EDGAR v5.0, BP,
EIA, CDIAC, IEA, GCP,
CEDS, PRIMAP

CICERO CO2 fossil country
totals and split by fuel
type 1990–2018 (or
last available year)

– EDGAR v5.0
https://edgar.jrc.ec.europa.eu/overview.php?v=50_
GHG (last access: January 2021)
– BP 2011, 2017 and 2018 reports
– EIA
https://www.eia.gov/beta/international/data/browser/
views/partials/sources.html (last access: November
2020)
– CDIAC
https://energy.appstate.edu/CDIAC (last access:
November 2020)
https://www.eia.gov/beta/international/data/browser/
views/partials/sources.html (last access: November
2020)
– IEA
https://www.transparency-partnership.net/sites/
default/files/u2620/the_iea_energy_data_collection_
and_co2_estimates_an_overview__iea__coent.pdf
(last access: November 2020).
– IEA (2019, p. I.17)
– CEDS
http://www.globalchange.umd.edu/data-products/
(last access: November 2020)
– GCP (Le Quéré et al., 2018; Friedlingstein et al.,
2019)
https://www.icos-cp.eu/GCP/2018
(last access: November 2020)
– PRIMAP
https://dataservices.gfz-potsdam.de/pik/showshort.
php?id=escidoc:2959897
(last access: November 2020)

TD Fossil fuel CO2 inversions IAP RAS Inverse fossil fuel CO2
emissions 2012–2015

Konovalov et al. (2016)
VERIFY report
https://projectsworkspace.eu/
sites/VERIFY/WPdocuments/
Estimate-FFCO2-Europe-2012-2015-Konovalov-et-al.
pdf (last access: September 2020)

distinct runs in VERIFY, which differ in the spatial correla-
tion of prior uncertainties and in the number of atmospheric
stations whose observations are assimilated. By presenting
CSR separate from the EUROCOM results, one can get an
idea of the uncertainty due to various model parameters in
one inversion system, with one single transport model.

3 Results and discussion

3.1 Overall NGHGI reported fluxes

According to UNFCCC NGHGI (2019) estimates, in 2017
the European Union (EU27+UK) emitted 3.96 Gt CO2 eq.
from all sectors (including LULUCF) and 4.21 Gt CO2 eq.
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Table 2. Data sources for the land CO2 emissions included in this study.

Method Product type/
file or directory
name

Contact/lab Variables/period References

Bottom-up NGHGI CO2 land

UNFCCC
NGHGI (2019)

UNFCCC LULUCF Net CO2 emis-
sions/removals 1990–2017

– IPCC (2006); IGES, Japan,
https://www.ipcc-nggip.iges.or.jp/public/2006gl/
(last access: December 2020).
– UNFCCC CRFs
https://unfccc.int/process-and-meetings/
transparency-and-reporting/
reporting-and-review-under-the-convention/
greenhouse-gas-inventories-annex-i-parties/
national-inventory-submissions-2019
(last access: January 2021)

Observation-based bottom-up CO2 land

BU ORCHIDEE LSCE CO2 fluxes and C stocks from
forest, cropland and grassland
ecosystems reported as net
biome productivity (NBP);
1990–2018

Ducoudré et al. (1993)
Viovy et al. (1996)
Polcher et al. (1998)
Krinner et al. (2005)

BU CO2 emissions
from inland wa-
ters

ULB One average value for C fluxes
from rivers, lakes and reser-
voirs, with lateral C transfer
from soils 1990–2018

Lauerwald et al. (2015)
Hastie et al. (2019)
Raymond et al. (2013)

BU CBM EC-JRC Net primary production (NPP)
and carbon stocks and fluxes;
2000–2015

Kurz et al. (2009)
Pilli et al. (2016)

BU ECOSSE
grasslands,
croplands

UNIABDN CO2 fluxes from croplands and
grassland ecosystems, with a
particular focus on soils/Rh,
NEE and NBP; 1990–2018

Bradbury et al. (1993)
Coleman and Jenkinson (1996)
Jenkinson and Rayner (1977)
Jenkinson et al. (1987)
Smith et al. (1996, 2010a, b)

BU EFISCEN WUR Forest biomass and soils C
stocks and NBP (a single av-
erage value for 5-year periods,
replicated on a yearly time axis)

Verkerk et al. (2016)
Schelhaas et al. (2017)
Nabuurs et al. (2018)

BU EPIC-IIASA
croplands

IIASA CO2 emissions from cropland;
1981–2018

Balkovič et al. (2013, 2018)
Izaurralde et al. (2006)
Williams (1990)

BU BLUE book-
keeping model
for land use
change

MPI/LMU
Munich

Net C flux from land use
change, split into the contribu-
tions of different types of land
use (cropland vs. pasture expan-
sion, afforestation, wood har-
vest); 1970–2017

Hansis et al. (2015)
Le Quéré et al. (2018)
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Table 2. Continued.

Method Product type/
file or directory
name

Contact/lab Variables/period References

BU H&N book-
keeping model

Woodwell
Climate
Research
Center

C flux from land use and land
cover; 1990–2015

Houghton and Nassikas (2017)

BU FAO FAOSTAT CO2 emissions/removal
from LULUCF sectors;
1990–2017

FAO (2018)
Federici et al. (2015)
Tubiello (2019)

BU TRENDY v7
(2018) models:
CABLE,
CLASS,
CLM5, DLEM,
ISAM,
JSBACH,
JULES, LPJ,
LPX, OCN,
ORCHIDEE-
CNP,
ORCHIDEE,
SDGVM,
SURFEX

Met Office
UK

Land-related C emissions
(NBP) from 14 bottom-up mod-
els; 1900–2017

References for all models in
Le Quéré et al. (2018)
https://www.icos-cp.eu/GCP/2018

Top-down CO2 estimates

TD CarboScopeReg
inversions

MPI-Jena Total CO2 inverse flux;
2006–2018

Kountouris et al. (2018a, b)

TD GCB 2019
global inver-
sions (CTE,
CAMS, Carbo-
ScopeReg)

GCP Total CO2 inverse flux
(NBP); 4 inversions;
1985–2018

Friedlingstein et al. (2019)
van der Laan-Luijk et al. (2017)
Chevallier et al. (2005)
Rödenbeck (2005)

TD EUROCOM
regional inver-
sions 2019,
7 inversions
(including Car-
boScopeReg)

LSCE Total CO2 inverse flux
(NBP); 2006–2015
2006–2018 (CarboScopeReg)

Monteil et al. (2020)

(excluding LULUCF) (Appendix B1, Fig. B1a). LULUCF
only contributed 0.28 Gt CO2 in 2017. This number is consis-
tent with a variety of independent emission inventories (An-
drew, 2020; Petrescu et al., 2020b). A few large economies
account for the largest share of EU27+UK emissions, with
Germany, the UK and France representing 43 % of the to-
tal CO2 emissions (excluding LULUCF) in 2017. For LU-
LUCF the countries reporting the largest CO2 sinks were
Sweden, Poland and Spain, accounting for 45 % of the over-
all EU27+UK sink strength. Only a few countries (the
Netherlands, Ireland, Portugal and Denmark) reported a net
LULUCF source in 2017; in the case of Portugal, this was

mainly due to emissions from biomass burning. The UN-
FCCC shows minimal inter-annual variability, so the 2017
values are indicative of longer-term trends.

CO2 fossil emissions are dominated by the energy sec-
tor, combustion and fugitives, representing 91.4 % of the
total EU27+UK CO2 emissions (excluding LULUCF)
or 3.25 Gt CO2 yr−1 in 2017. The industrial process and
product use sector (IPPU) sector contributes 8.2 % or
0.2 Gt CO2 yr−1, while the CO2 emissions reported as part
of the agriculture sector cover only liming and urea applica-
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Figure 1. Total sectoral breakdown of CO2 fossil emissions from UNFCCC NGHGI (2019), EDGAR v5.0, CEDS and PRIMAP. Subsectors
1A and 1B belong to the energy sector. The total UNFCCC uncertainty is 1.4 % and was calculated based on the UNFCCC NGHGI (2018)
submissions. EDGAR v5.0 uncertainties were calculated only for the year 2015 using a lognormal distribution function and ranged from a
minimum of 3 % to a maximum of 4 %.

tion – UNFCCC sectors 3G and 3H8 respectively. Together
with waste, in 2017, the emissions from agriculture repre-
sent 0.4 % of the total UNFCCC CO2 emissions. Often, the
NGHGI reported values for CO2 emissions do not include
LULUCF as these reported emissions are inherently uncer-
tain, showing almost no inter-annual variability, contrary to
observation-based BU approaches (e.g., process-based mod-
els) which do show large inter-annual variations as a result of
inter-annual variability in climatic conditions and (in part as
a consequence of this variability) in the occurrence of natural
disturbances (Kurz, 2010; Olivier et al., 2017).

3.2 CO2 fossil emissions

3.2.1 Bottom-up estimates by sector

At the EU27+UK level our results show that CO2 fossil
emissions are consistent between UNFCCC NGHGI (2019)
and BU inventories from EDGAR v5.0, CEDS and PRIMAP.
EDGAR v5.0 reports the same sources as the UNFCCC, but
CEDS reports emissions from energy (1A+1B), IPPU and
waste up to 2014, and PRIMAP reports emissions only for
energy and IPPU. All BU datasets show a good match for
overlapping sectors, energy and IPPU (Fig. 1, sum of sub-
sectors 1A and 1B).

CO2 fossil emissions are dominated by the energy sec-
tor, which includes emissions from energy use in energy in-

83G and 3H refer to UNFCCC sector activities, as reported by
the standardized common reporting format (CRF) tables, which
contain CO2 emissions from agricultural activities: liming and urea
applications.

dustries (heat and electricity, industry, transport and build-
ings). Out of the remaining three sectors (IPPU, agriculture
and waste), IPPU contributes the most to the CO2 emis-
sions; in the EU27+UK these emissions contributed 7.1 %,
7.5 %, 5.6 % and 6.4 % from the total NGHGIs, EDGAR
v5.0 (2017), CEDS (2014) and PRIMAP (2015) respectively.
For agriculture and waste, overall, emissions are very small,
accounting in the EU27+UK in 2017 for 0.3 % (NGHGIs)
and 0.4 % (EDGAR v5.0) respectively; therefore this differ-
ence is negligible for the total C budget.

3.2.2 Bottom-up estimates by source category

While Fig. 1 was made to assist explanation of differences
between datasets disaggregated by sector (e.g., energy in-
dustry, transport), in Fig. 2 we present CO2 fossil emis-
sions results from the EU27+UK split by major source cat-
egories (solid, liquid, gas). As in Andrew (2020), we ob-
serve good agreement between all data sources and UN-
FCCC NGHGI (2019) data at this level of regional aggre-
gation. The figure presents estimates for the year 2014, as
that was the most recent year when all sources reported es-
timates. BP9 (2018), CEDS (v_2019_12_23) and EDGAR10

v5.0 (2020) do not publish emissions split by fuel type at the

9For BP, the method description allows for emissions from natu-
ral gas to be calculated from BP’s energy data, but the data for solid
and liquid fuels are insufficiently disaggregated to allow replication
of BP’s emissions calculation method for those fuels.

10EDGAR v5.0 provides significant sectoral disaggregation of
emissions, but not by fuel type due to license restrictions with the
underlying energy data from the IEA.
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Figure 2. EU27+UK total CO2 fossil emissions, as reported by
eight data sources: BP, EIA, CEDS, EDGAR v5.0, GCP, IEA,
CDIAC and UNFCCC NGHGI (2019). This figure presents the split
per fuel type for year 2014. “Others” represents other emissions in
the UNFCCC’s IPPU, and international bunker fuels are not usually
included in total emissions at the sub-global level. Neither EDGAR
(v5.0 FT2017) nor CEDS publish a breakdown by fuel type, so only
the total is shown.

country level, and the latter two are shown as dark grey, while
the former is shown separating gas from liquid/solid.

While the datasets agree well, there are some differences.
The EIA (2020) estimate is higher than others, largely be-
cause it includes international bunker fuels in liquid-fuel
emissions. The IEA (2019) excludes a number of sources
from non-energy use of fuels as well as all carbonates. GCP’s
total matches the NGHGIs exactly by design but remaps
some of the fossil fuels used in non-energy processes from
“others” to the fuel types used. BP, CEDS and EDGAR
v5.0 all report total emissions very similar to the UNFCCC
NGHGI (2019).

3.2.3 Top-down estimates

Figure 3 represents the first attempt to evaluate our single
inversion of CO2 fossil emissions, based on satellite CO
and NO2 measurements, against BU estimates. The particu-
lar inversion reported here provides emission totals for the
EU1111

+ Switzerland, and these exclude non-fossil fuel
emissions (Konovalov et al., 2016; Konovalov and Lvova,
2018). This inversion estimate partly relies on informa-
tion available from the BU emission inventories – EDGAR
v4.3.2 for 2012 (http://edgar.jrc.ec.europa.eu/overview.php?
v=432_GHG, last access: December 2020, http://edgar.
jrc.ec.europa.eu/overview.php?v=432_AP, last access: De-
cember 2020) and CDIAC for 2012–2014 (http://cdiac.
ess-dive.lbl.gov/trends/emis/overview_2014.html, last ac-

11The EU11 members are Portugal, Spain, France, Belgium, Lux-
embourg, the Netherlands, the United Kingdom, Germany, Den-
mark, Italy and Austria

Figure 3. A first attempt in comparing BU CO2 fossil estimates
from eight datasets with a TD fast-track inversion (Konovalov and
Lvova, 2018). The data represent the EU11 + Switzerland for the
year 2014. The uncertainty bar on the inversions represents the 2σ
confidence interval.

cess: September 2020, Boden et al., 2017) – and is there-
fore not fully independent from BU CO2 fossil emission
estimates. The estimate from the inversion, despite its un-
certainty (2700 Tg CO2 (± 480 Tg CO2)), is comparable with
the mean of the CO2 emissions from the NGHGIs in 2014
(2624 Tg CO2) and to mean of the other seven BU sources
2588 (± 463 Tg CO2). The TD estimate does not include
CO2 emissions from cement production, while some bottom-
up inventories include them. Cement emissions are known to
constitute only a minor fraction (∼ 5 %) of the total fossil
CO2 emissions in Europe (UNFCCC, 2019; Andrew, 2019;
Friedlingstein et al., 2020) and can be disregarded in the
given comparison.

3.3 CO2 land fluxes

This section presents an update to the benchmark data col-
lection by Petrescu et al. (2020b) on CO2 emissions and re-
movals from the LULUCF sector (excluding energy-related
emissions but including emissions from land use change,
emissions from disturbances on managed land, and the natu-
ral sink on managed land), expanding the scope of that work
by adding TD estimates from inverse model ensembles and
additional BU models run with higher-resolution meteoro-
logical forcing data over the EU27+UK.

Land CO2 fluxes result from CO2 emissions/removals
from one land type converted to another (e.g., forests cleared
for croplands), as well as emissions/removals from land oc-
cupied by terrestrial ecosystems (depending on the dataset,
this may be from managed or unmanaged land, which com-
plicates comparisons with NGHGIs). Such fluxes typically
include emissions and sinks in soils and carbon shifts due
to harvests, including emissions from the decay of harvested
wood products (HWPs). Some estimates are specific to a
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given vegetation/sector type (i.e., only cropland or grass-
land). As discussed by Petrescu et al. (2020b), the analyzed
fluxes therefore relate to emissions and removals from direct
LULUCF activities (clearing of vegetation for agricultural
purposes, regrowth after agricultural abandonment, wood
harvesting and recovery after harvest, and management) but
also indirect LULUCF for CO2 fluxes due to processes such
as responses to environmental drivers (i.e., climate change
and CO2 fertilization) on managed land12. Additional CO2
fluxes may occur on unmanaged land, but these fluxes are
very small. According to national inventory reports (NIRs),
all land in the EU27+UK is considered managed, except for
5 % of France’s territory.

The indirect CO2 fluxes on managed and unmanaged land
are part of the land sink in the definition used in IPCC
Assessment Reports or the Global Carbon Project’s annual
Global Carbon Budget (Friedlingstein et al., 2019), while the
direct LULUCF fluxes are termed “net land use change flux”.
Grassi et al. (2018a) have shown that the inclusion or exclu-
sion of the indirect sink on managed land in LULUCF is a
key reason for discrepancy between reporting and scientific
definitions.

Several studies have already analyzed the European land
carbon budget from different perspectives and over several
time periods using GHG budgets from fluxes, inventories and
inversions (Luyssaert et al., 2012); flux towers (Valentini et
al., 2000); forest inventories (Liski et al., 2000; Pilli et al.,
2017; Nabuurs et al., 2018); and IPCC Guidelines (Federici
et al., 2015; Tubiello et al., 2021), in addition to the first
benchmark data collection of BU estimates (Petrescu et al.,
2020b).

Achieving the well-below-2 ◦C temperature goal of the PA
requires, among other things, low-carbon energy technolo-
gies, forest-based mitigation approaches and engineered car-
bon dioxide removal (Grassi et al., 2018a; Nabuurs et al.,
2017). Currently, the EU27+UK reports a sink for LU-
LUCF, and forest management will continue to be the main
driver affecting the productivity of European forests for the
next decades (Koehl et al., 2010). For the EU to meet its am-
bitious climate targets, it is necessary to maintain and even
strengthen the LULUCF sink (COM(2020) 562). Forest man-
agement, however, can enhance (Schlamadinger and Mar-
land, 1996) or weaken (Searchinger et al., 2018) this sink.
Furthermore, forest management not only influences the sink
strength but also changes forest composition and structure,
which affects the exchange of energy with the atmosphere
(Naudts et al., 2016) and therefore the potential of mitigating
climate change (Luyssaert et al., 2018; Grassi et al., 2019).
Meteorological extremes (made more likely through climate
change) can also affect the efficiency of the sink (Thompson
et al., 2020). Therefore, understanding the evolution of the

12In NGHGI reporting, land in the EU is considered to be man-
aged.

CO2 land fluxes is critical to meet the goals set out in the
Paris Agreement.

3.3.1 Estimates of European and regional total CO2
land fluxes

We present results of the total CO2 land fluxes from the
EU27+UK and five main regions in Europe: north, west,
central, east (non-EU) and south. The countries included in
these regions are listed in Appendix A, Table A1.

Figure 4 shows the total CO2 fluxes from NGHGIs for both
the 1990 base year and mean of the 2011–2015 period. We
aim with this period to bring together all information over
a 5-year period for which values are known in 2018. In fact
this can be seen as a reference for what we can achieve in
2023, the year of the first global stocktake, where for most
UN Parties the reported inventories will be compiled only
up to the year 2021. Given that the global stocktake is only
repeated every 5 years, a 5-year average is clearly of interest.

The CO2 fluxes in Fig. 4 include direct and indirect LU-
LUCF on managed land. The total UNFCCC estimates in-
clude the total LULUCF emissions and sinks (by the UN-
FCCC definition) belonging to all six IPCC land classes
and HWPs (see Sect. 2.3, Appendix B1, Fig. B1b). We plot
these and compare them with fluxes simulated with statistical
global datasets, bookkeeping and biosphere models, sector-
specific models, and inversion model ensembles. The error
bar represents the variability in model estimates as the min
and max values in the ensemble.

For all regions and the EU27+UK, we note considerable
disagreement between the BU and TD results. We mostly
see that BU (observation-based and process-based) estimates
agree well with the NGHGIs, while inversions, in particular
EUROCOM, report very strong sinks and high variability of
the results compared to the BU estimates. We believe that,
in general, the differences we see between regions’ TD and
BU results are linked to model-specific setups and definition
issues explained in detail in Sect. 3.3.2 (process-based mod-
els and NGHGIs), Sect. 3.3.3 (DGVMs, bookkeeping models
and NGHGIs) and Sect. 3.3.4 (all BU, TD and NGHGIs). As
the current analysis is a first attempt to quantify EU27+UK
estimates as a whole, we aim in the future to deepen the anal-
ysis for regional/country results.

3.3.2 LULUCF CO2 fluxes from NGHGIs and decadal
changes

In Fig. 5 we show the CO2 LULUCF flux decadal change
from UNFCCC NGHGI (2019). The contribution of each
category (“remaining” and “conversion”) to the overall re-
duction of CO2 emissions in percentages between the three
mean periods (grey columns are the mean values over 1990–
1999, 2000–2009 and 2010–2017). The “+” and the “−”
signs represent a source and a sink to the atmosphere.
LUC(−) represents the land use conversion changes that in-
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Figure 4. Five-year-average (2011–2015) CO2 land flux estimates (in Tg C) for the EU27+UK and five European regions (northern,
western, central, southern and eastern non-EU). Eastern Europe does not include European Russia, and the UNFCCC uncertainty for the
Republic of Moldova was not available. Northern Europe includes Norway. Central Europe includes Switzerland. The data are UNFCCC
NGHGI (2019) submissions (grey) and base year 1990 (black star); four sector-specific BU models for FL-FL (CBM, EFISCEN), CL-CL
(EPIC-IIASA) and GL-GL (ECOSSE); ecosystem models (ORCHIDEE and TRENDY v7 DGVMs); FAOSTAT; two bookkeeping models
(BLUE and H&N), TD inversion ensembles (GCP2018, EUROCOM); and one regional European inversion represented by CarboScopeReg.

crease the strength of the LULUCF sink between two av-
erages; LUC(+) represents the land use conversion changes
that decrease the strength of the overall LULUCF sink. Note
that the sectors inside LUC(−) may be sources or may be
sinks, but between the two average periods, they become
more negative. For the period between 1990–1999 mean and
2000–2009 mean the overall reduction is −9.5 % (i.e., in-
creased land sink), with positive contribution from FL-FL
and LUC(+) (wetlands, settlements and other land conver-
sions) contributing to weakening the overall sink (+3.5 %)13

and with all others conversions contributing to the strength-
ening of the sink (−13 %)14. For the period between the
2000–2009 mean and the 2010–2017 mean we notice that
the main contributors to the overall +3.5 % increase are FL-
FL, HWPs and LUC(+) (forest, wetlands and settlement
conversions), which contribute (+7.2 %) to weakening the
sink, while GL-GL, CL-CL and LUC(−) (cropland, grass-
land and other conversions) contribute to strengthening the
sink (−3.7 %).

We see that HWP emissions are by far the major contrib-
utor but in different directions across the two periods, from
strengthening the sink between 1990–1999 and 2000–2009
to reducing the sink in the second period. This is mostly due
to the specific accounting approach where a reduction on the
amount of harvest, such as the one that occurred after the
economic crisis in 2008, progressively reduced the inflow of
raw material, and, taking into account the decay rate applied

13Positive percentages represent sources.
14Negative percentages represent sinks.

to each commodity, this further reduced the C stock within
the same pool. Therefore, Fig. 5 suggests that carbon emis-
sions from HWP decay became greater than the amount of
carbon entering HWPs in recent decades.

3.3.3 Estimates of CO2 fluxes from bottom-up
approaches

In this section we present annual total net CO2 land emis-
sions between 1990–2018, i.e., induced by both LULUCF
and other (environmental changes) processes from class-
specific models as well as from models that simulate some
or all classes. The definitions of the classes might differ from
the definition of the LULUCF (FL, CL, GL etc.) (Figs. 6,
7 and 8), where, according to the 2006 IPCC Guidelines, to
become accountable in the NGHGIs under remaining cate-
gories, a land use type must be in that class for at least 20
years. Over FL (both FL-FL and conversions) we compare
modeled net biome productivity (NBP) estimates (including
soil plus living and dead biomass C stock change) simulated
with class-specific ecosystem models to UNFCCC and FAO-
STAT data consisting of net carbon stock change in the liv-
ing biomass pool (aboveground and belowground biomass)
associated with forests and net forest conversion including
deforestation.

The forest land estimates, which remain in this class (FL-
FL) in Fig. 6, were simulated with ecosystem models (CBM,
ORCHIDEE, EFISCEN) (described in Appendix A2 and Ta-
ble B1), global datasets (FAOSTAT) and countries’ official
inventory statistics reported to UNFCCC. The results show
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Figure 5. The contribution of changes (%) in various LULUCF categories to the overall change in LULUCF multi-year mean emissions
as reported by member states to the NGHGI UNFCCC (2019). Changes in land categories converted to other land are grouped to show net
gains and net losses in the same column, with the bar color dictating which category each emission belongs to; note that the composition
of the “LUC(+)” and “LUC(−)” bars can change between time periods. Not shown are emissions from “wetlands remaining wetlands”,
“settlements remaining settlements” and “other land remaining other land” as none of the BU models used distinguish these categories. The
fluxes follow the atmospheric convention, where negative values represent a sink while positive values represent a source.

Figure 6. Net CO2 land flux from forest land remaining forest land (FL-FL) estimates for the EU27+UK CO2 from UNFCCC NGHGI
2019 submissions and bottom-up emission models with their 2006–2015 mean (on the right side). CBM FL-FL estimates include 25 EU and
UK countries (excluding Cyprus and Malta); the relative error on the UNFCCC value represents the UNFCCC NGHGI (2018) MS-reported
uncertainty computed with the error propagation method (95 % confidence interval) and is 19.6 % (with no values for Hungary and Cyprus).
The negative values represent a sink.
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that the differences between models are systematic, with
CBM having slightly weaker sinks than EFISCEN and FAO-
STAT. Starting with year 2000 and towards 2017, the FAO-
STAT reports sinks that strengthen over time. Differences be-
tween estimates might be due to the use of different input
data; e.g., CBM and EFISCEN use national forest inventory
(NFI) data as the main source of input to describe the current
structure and composition of European forest, while FAO-
STAT uses input data directly from country submission done
under the FAO Global Forest Resources Assessment (FRA,
201515) (e.g., carbon stock change calculated by FAO di-
rectly from carbon stocks and area data submitted by coun-
tries directly). Furthermore, FAOSTAT numbers include af-
forestation, i.e., the sum of all other land converted to FL,
resulting in a smaller sink if afforestation would be removed,
therefore matching the UNFCCC estimates better (Petrescu
et al., 2020b).

For ORCHIDEE, the model shows a high inter-annual
variability in carbon fluxes because ORCHIDEE operates
on a sub-daily time step for most biogeochemical and bio-
physical processes except for a daily time step for “slow”
processes like carbon allocation in the vegetation reservoirs,
while all other models involved in this comparison use for-
est inventory data which are reported every few years (i.e.,
5 years for FRA). ORCHIDEE results indicate that climatic
perturbations and extreme events (multi-month droughts, in
particular) can have significant impacts on the net carbon
fluxes depending on when they occur. This is to some ex-
tent supported by dendrometer data, although highly vary-
ing per site and tree species, obscuring a significant net ef-
fect (Scharnweber et al., 2020). It should also be noted that
dendrometer data measure carbon stored in individual trees,
while the NBP reported in figures in this paper includes
fluxes from litter and soil respiration. The variability of the
weather data affects all components of the carbon dynamics
in the ecosystems (hence NBP), with for instance impacts on
C assimilation rates, length of the growing season, dynamics
of respiration rates and allocation of the carbon in the plant
(cf. Figs. 1 and 2 in Reichstein et al., 2013).

The UNFCCC NGHGI uncertainty of CO2 estimates for
FL-FL across the EU27+UK, computed with the error prop-
agation method (95 % confidence interval) (IPCC, 2006),
ranges between 23 % and 30 % when analyzed at the country
level as it varies as a function of the component fluxes (NIR
reports 2017, UNFCCC NGHGI, 2018). Given the different
methodologies and input data for emission calculation and
uncertainties in each method (10 Tg C yr−1 for the mean),
we consider the match between the model EFISCEN and the
UNFCCC NGHGI (2019) estimates to be good, in particular
with respect to the similarity in temporal trends. The means
of ORCHIDEE and CBM fall within the reported UNFCCC

15The Global Forest Resources Assessment (FRA) is the sup-
plementary source of forest land data disseminated in FAOSTAT
http://www.FAO.org/forestry/fra/en/ (last access: December 2019).

uncertainty (around 20 Tg C yr−1), while FAOSTAT lies out-
side of it. Note that FAOSTAT and EFISCEN have a different
trend compared to other models and the NGHGIs.

Some of the reasons for differences between estimates we
see in Fig. 6 are linked to different activity data (e.g., forest
area) the models use, for example the stronger sink reported
by FAOSTAT compared to the UNFCCC NGHGI. By ana-
lyzing three of the forest area products (ESA-CCI LUH2v2,
Hurtt et al., 2020, used in ORCHIDEE, FAOSTAT and UN-
FCCC) we found the following.

– For this study, the ORCHIDEE model used a so-called
ESA-CCI LUH2v2 plant functional type (PFT) distribu-
tion (a combination of the ESA-CCI land cover map for
2015 with the historical land cover reconstruction from
LUH2, Lurton et al., 2020) and assumes that the shrub
land cover classes are equivalent to forest. In terms
of area, the original ESA-CCI product corresponding
to our domain of the EU-27+UK shows shrub land
equal to about 50 % of the tree area in 2015. A sim-
ilar analysis using the FAOSTAT domain land cover,
which maps and disseminates the areas of MODIS and
ESA-CCI land cover classes to the SEEA land cover
categories (http://www.fao.org/faostat/en/#data/LC, last
access: June 2020), shows that shrub-covered areas
are around 20 % of that of forested areas for the EU-
27+UK. The impact of classifying shrubs as “forests”
on the total carbon fluxes could therefore account for a
significant percentage of the differences between OR-
CHIDEE and other results in Fig. 6. ESA-CCI LUH2v2
does not include the 20-year transition period, as in-
cluded in the IPCC reporting guidelines. This could be
1 % of the forests in Europe, but there is a considerable
uncertainty in that based on the transition data seen be-
tween the maps.

– FAOSTAT forest land area is based on country statistics
from the FAO/FRA process and includes not only for-
est remaining forest area but all forested land, including
afforestation.

Cropland and grassland (CL and GL) (in UNFCCC
NGHGI, 2019, UNFCCC sectors 4B and 4C, respectively)
include net CO2 emissions/removals from soil organic car-
bon (SOC) under remaining and conversion categories. Sim-
ilar to forest land, we present in Fig. 7 the fluxes belonging
to the remaining category CL-CL. The cropland definition
in the IPCC includes cropping systems and agroforestry sys-
tems where vegetation falls below the threshold used for the
forest land category, consistent with the selection of national
definitions (IPCC glossary).

From Fig. 7 we see that modeled CL-CL inter-annual vari-
abilities simulated by ECOSSE and EPIC-IIASA estimates
are consistent, while ORCHIDEE shows a much larger year-
to-year variation. The NGHGIs are mostly insensitive to
inter-annual variability as the estimations are mainly based
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on statistical data for surfaces/activities and EFs that do not
vary with changing environmental conditions.

The three process-based models report sinks in most years
(means of−12,−49 and−23 Tg C respectively), contrary to
the NGHGIs, which report a small but constant source over
the whole period (mean of 5.6± 3.5 Tg C) with almost no
inter-annual variability by construction. The source reported
by NGHGIs, at the EU level, is mostly attributed to emis-
sions from cropland on organic soils16 in the northern part of
Europe which emit CO2 due to C oxidation from tillage ac-
tivities. As an example, Finland and Sweden report together
more than half of the total area of organic soil in Europe. Or-
ganic soils are an important source of emissions when they
are under management practices that disturb the organic mat-
ter stored in the soil. In general, emissions from these soils
are reported using country-specific values when they rep-
resent an important source within the total budget of GHG
emissions. In the southern part of Europe, the two categories
(CL-CL and GL-GL) are a sink, due to a lack of organic soils
in those regions and due to an abandonment trend of land
converting arable land to grassland (EU NIR, 2019). In addi-
tion, NGHGIs assume that all aboveground biomass of non-
woody crops re-enters the atmosphere at harvest. In models
like ORCHIDEE and EPIC-IIASA, only part of the above-
ground biomass is harvested and enters the atmosphere, and
the rest (approximately 50 % of the aboveground carbon) en-
ters the soil and decays. Given more favorable growing con-
ditions due to climatic changes and CO2 fertilization, this
can lead to more carbon entering the soil in ORCHIDEE in
recent decades, which is driving the CL-CL sink observed in
the model.

The strongest sink reported by ECOSSE model is linked to
the soil C model (RothC) used, which simulates a large “in-
ert pool” which thus leads to a slower C turnover time in the
soil (compared to ORCHIDEE or EPIC-IIASA) and thus to
significantly larger sink. This “respiration” aspect of RothC
will be addressed in the next synthesis. According to Ciais
et al. (2010), a small carbon source would be a realistic as-
sumption for croplands and in line with the NGHGI report.
Thus, while the NGHGIs and the three process-based mod-
els show a different sign of the CO2 flux, the difference is a
result of the processes included and definitions used in each
approach, as explained above.

16The 2006 IPCC Guidelines largely follow the definition of
Histosols by the Food and Agriculture Organization (FAO) but
have omitted the thickness criterion from the FAO definition to
allow for often historically determined, country-specific defini-
tions of organic soils (see Annex 3A.5, chap. 3, vol. 4 of the
2006 IPCC Guidelines for National Greenhouse Gas Invento-
ries (2006 IPCC Guidelines) and chap. 1, Sect. 1.2 (Note 3) of
the 2013 Supplement to the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories: Wetlands (Wetlands Supplement,
IPCC 2014): https://www.ipcc-nggip.iges.or.jp/public/wetlands/
pdf/Wetlands_separate_files/WS_Chp1_Introduction.pdf, last ac-
cess: June 2020).

For the inter-annual variability all three models follow
the same dynamic, but the impacts of climate extremes are
different, with significantly larger impacts in ORCHIDEE.
While ORCHIDEE shows a strong reaction to drought im-
pacts changing from a sink to a source (e.g., for 2003, which
is reported as a very dry year, Ciais et al., 2005), the other
two models follow ORCHIDEE’s variation but show less ex-
tremes. As ECOSSE directly simulates the annual net pri-
mary production (NPP) (i.e., internal component model (MI-
AMI) implemented in ECOSSE) and not the intra-annual
gross primary production (as in ORCHIDEE), the impact
of season-specific climate anomalies is smaller than in OR-
CHIDEE.

Figure 8 shows the CO2 flux of the grassland remaining
grassland category, GL-GL. The grassland definition in the
IPCC includes rangelands and pasture land that is not con-
sidered cropland, as well as systems with vegetation that
fall below the threshold used in the forest land category.
This category also includes all grassland from wild lands to
recreational areas as well as agricultural and silvopastoral
systems, subdivided into managed and unmanaged, consis-
tent with national definitions (Petrescu et al., 2020b). The
NGHGIs of countries in the EU-27+UK report emissions
from managed pastures only, which, in 2010, represented a
minimum of 58 % (Chang et al., 2016) of the total managed
grassland area in the EU. Since almost all European grass-
lands are somehow modified by human activity and have to a
major extent been created and maintained by agricultural ac-
tivities, they could be defined as “semi-natural grasslands”,
even if their plant communities are natural (EU LIFE, 2008).
Therefore, NGHGIs report a small mean source over 1990–
2017 (9 Tg C) primarily due to the use of EFs from national
statistics which are linked to intensive management practices
applied to grasslands in the EU.

Out of all the models used in this study, only ORCHIDEE
and ECOSSE report fluxes from this category. Grasslands in
ORCHIDEE do not undergo any specific management and
are not separated from pasturelands. Therefore, discrepan-
cies between ORCHIDEE and the NGHGI data result in
the first reporting a mean sink over 1990–2017 of −12 Tg C
while official inventories report a small source, as explained
above. The sink in ORCHIDEE is due to the fact that the
CO2 fertilization effect increases the NPP over time and
also increases input of C to the soil, which then leads to in-
creased soil C stocks. The strong sink simulated by ECOSSE
(−94 Tg C in mean) is the result of using a limiting scenario
where intensively managed grasslands, i.e., high grazing in-
tensity and high yield removal, are not included, thus favor-
ing high soil carbon storage. These effects are similar to that
seen in croplands (see above), resulting from the CO2 fertil-
ization effect.
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Figure 7. Net CO2 flux from cropland remaining cropland estimates for the EU27+UK from UNFCCC NGHGI (2019) submissions and
bottom-up emission models with their 1990–2017 mean (on the right side). CL-CL emissions estimated with three ecosystem models:
ORCHIDEE, ECOSSE and EPIC-IIASA. The relative error on the UNFCCC value represents the UNFCCC NGHGI (2018) MS-reported
uncertainty computed with the error propagation method (95 % confidence interval) and is 47.5 % (with no data from Hungary, Cyprus and
Portugal). The negative values represent a sink, while the positive values represent a source.

Figure 8. Net CO2 flux estimates from grassland remaining grassland for the EU27+UK CO2 from UNFCCC NGHGI (2019) submissions
and bottom-up emission models with their 1990–2017 mean (on the right side). GL-GL emissions are estimated with the ORCHIDEE and
ECOSSE models. The relative error on the UNFCCC value represents the UNFCCC NGHGI (2018) MS-reported uncertainty computed with
the error propagation method (95 % confidence interval) and is equal to 373.6 % (no data for Hungary, Cyprus, Slovakia, Spain and the Czech
Republic. The negative values represent a sink, while the positive represent a source.
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Figure 9. A comparison of different estimates of the CO2 fluxes from land use, land use change and forestry activities in the EU27+UK
from seven data sources: UNFCCC NGHGI (2019), BLUE, H&N, DGVMs (TRENDY v7), FAOSTAT and ORCHIDEE (stand-alone with
high-spatial-resolution forcing and from TRENDY). The grey bars represent the individual model data for eight DGVMs. The UNFCCC
estimate includes the following categories: forest land, cropland, grassland, wetlands, settlements and other land from conversions, in addi-
tion to harvested wood products (HWPs). The relative error on the UNFCCC value represents the UNFCCC NGHGI (2018) MS-reported
uncertainty computed with the error propagation method (95 % confidence interval) and is 16 %. The FAOSTAT estimate includes forest land,
incorporating afforestation and deforestation as conversion of forest land to other land types. The means are calculated for the 1990–2015
overlapping period. The negative values represent a sink, while the positive values represent a source.

3.3.4 Bottom-up CO2 estimates from all LULUCF
sectors

In this section we attempt to present a comprehensive anal-
ysis of CO2 emissions and sinks for the LULUCF sectors.
Here we try to compare the sum of all categories and sec-
tors of the NGHGIs discussed in Fig. 5 (including the re-
maining and transition subsectors; details are found in the
Fig. 5, caption), with various observation-based BU model
estimates. The comparison with atmospheric inversions (TD)
is discussed in the next section. Such a comparison is chal-
lenging due to differences in terms of activities covered in
the different estimates, as well as differences in terminology,
which have already been highlighted in several papers (see
more specifically Petrescu et al., 2020b, Fig. 12). Let’s first
briefly recall the main differences between the selected prod-
ucts.

– FAOSTAT differs from NGHGIs for reasons sum-
marized by Federici et al. (2015) and Petrescu et
al. (2020b), including numerically different data pro-
vided by member states to FAOSTAT and UNFCCC,
different methods (FAOSTAT applies a Tier 1 approach
globally, while member states reports to the UNFCCC
vary from Tier 1 to Tier 3), differences between net and
gross land use (FAOSTAT is based on net transitions),
and FAOSTAT results only considering living biomass

pools instead of the five IPCC pools17 reported to the
UNFCCC.

– The process-based high-resolution ORCHIDEE simula-
tion and the TRENDY v7 ensemble, with the so-called
“S3 simulation” (see the TRENDY simulation proto-
col, Le Quéré et al., 2018), include the impact of CO2
fertilization, climate change and land use change for
the forest, grassland and cropland sectors; they do not
explicitly treat the wetland, settlement and other land
sectors as in the NGHGIs. They account for the evo-
lution of living and dead biomass as well as SOC for
all categories, while for NGHGIs it is not mandatory
for all subcategories (i.e., dead biomass). Finally, there
is significant uncertainty associated with the DGVMs’
fluxes from (i) the forcing data, including datasets of
land use changes and the coverage of different land use
change practices; (ii) model parameters; and (iii) struc-
tural uncertainty in models (i.e., which processes are in-
cluded and which are not) (Arneth et al., 2017). Similar
to FAOSTAT, DGVMs typically deal with net land use
change emissions, instead of gross land use change as
reported in NGHGIs, which may induce significant dif-

17According to the 2006 IPCC Guidelines the reporting is done
for the five LULUCF carbon pools: aboveground biomass, below-
ground biomass, dead wood, litter and soil organic matter
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ferences with coarse-resolution model simulations (i.e.,
0.5◦ or 1◦ for the TRENDY ensemble). DGVMs often
do not distinguish between managed and unmanaged
land, while NGHGIs are for emissions from managed
land.

– The bookkeeping models, BLUE and H&N, calculate
net emissions from land use change including imme-
diate emissions during land conversion, legacy emis-
sions from slash and soil carbon after land use change,
regrowth of secondary forest after abandonment, and
emissions from harvested wood products when they de-
cay. They thus do not account for the net fluxes occur-
ring in the remaining land categories due to for instance
the CO2 fertilization effects or climate changes. One ex-
ception to this is fluxes from wood harvested, which is a
primary source of emission on managed forest land and
also included in bookkeeping models. As seen before in
Fig. 5, this component can present a significant flux.

Given all these differences in terms of activities, the compari-
son in this section should be considered a first step that raises
both important aspects of the C cycle and questions that need
to be addressed in the future. Going toward a more specific
comparison of only net land use change fluxes would require
additional considerations. In the GCP’s annual Global Car-
bon Budget, this term is estimated by global DGVMs as
the difference between a run with and a run without land
use change and by bookkeeping models. Such an estimate
is given in Fig. 13 in Petrescu et al. (2020b) for forest land.
While attractive, such a plot does not fully resolve the differ-
ences mentioned above. In particular, questions remain about
net vs. gross land use change, managed vs. unmanaged land,
and emissions from wood harvest. In addition, UNFCCC
“convert” emissions (i.e., emissions resulting from land that
has been converted from one type to another) are calculated
for 20 years following conversion. FAOSTAT, DGVMs, and
bookkeeping models typically only include convert fluxes
from the year following conversion, although bookkeeping
models can more easily include this transition period.

Figure 9 thus represents CO2 fluxes from LULUCF activ-
ities, including estimates from ORCHIDEE high-resolution
and TRENDY (mean across the ensemble) DGVMs mod-
els (“S3” type simulations), bookkeeping models, NGHGIs
and FAOSTAT. For the overlapping period 1990–2015,
we observe from the means (see right part of the plot)
that bookkeeping models (BLUE (−61 Tg C) and H&N
(−103 Tg C)) and FAOSTAT (−96 Tg C) estimates match the
UNFCCC NGHGI (−87 Tg C) reporting, because their man-
aged areas for the EU27+UK are similar (H&N: 118 Mha;
BLUE: 117 Mha; UNFCCC: 167 Mha, from in Grassi et al.,
2018a; Petrescu et al., 2020b). The unmanaged area in the
EU27+UK is negligible and sums up only 4 Mha. The sim-
ilarities between bookkeeping models and UNFCCC can be
explained by the fact that, despite a smaller forest sink in
H&N, they both report a small sink in non-forest land uses,

while for these land uses UNFCCC reports a source (Figs. 7
and 8).

The UNFCCC LULUCF estimates contain CO2 emissions
from all six land use classes and HWPs, including remaining
classes and conversion to and from a class to another. OR-
CHIDEE (−93.9 Tg C) shows large variabilities (black dia-
monds), mostly following the temporal patterns of the mean
from TRENDY v7 DGVMs (−103 Tg C) (grey bars) as de-
tailed above. Note again that ORCHIDEE is also part of the
TRENDY ensemble but with a different meteorological forc-
ing (coarser resolution, 0.5◦) than the one used within the
VERIFY project (around 0.1◦ resolution).

The differences between bookkeeping models and UN-
FCCC and FAOSTAT are discussed in detail in Petrescu et
al. (2020b, cf. Fig. 12), who conclude that the key differ-
ence between bookkeeping models, on the one hand, and
FAOSTAT and UNFCCC methodologies, on the other, is that
the latter are based on the managed land proxy (Grassi et
al., 2018a). The ORCHIDEE model and the TRENDY v7
ensemble means show much higher inter-annual variability
due to the sensitivity of the model fluxes to highly vari-
able meteorological forcing and the models’ sub-daily time
steps, which allow for much more rapid responses to chang-
ing conditions (i.e., 2003 extreme drought year), as already
discussed in the previous sections. The incorporation of vari-
able climate data and the fact that DGVM models simulate
explicitly climate impacts on CO2 fluxes, which inventories
and bookkeeping do not, explain these differences.

DGVMs estimate net land use emissions as the difference
between a run with and a run without land use change, and
their estimate includes the loss/gain of additional sink capac-
ity, that is, the sink that favors the environmental changes
(e.g., CO2 fertilization). This sink created over forest land
in the simulation without land use change is “lost” in the
simulation with land use change (i.e., deforestation) because
agricultural land lacks the woody material and thus has a
higher carbon turnover (Gasser and Ciais, 2013; Pongratz
et al., 2014, and cf. Fig. 12 in Petrescu et al., 2020b). This
different definition from bookkeeping models historically
implies on average higher carbon land use emissions from
DGVMs when an ecosystem is converted to another with
a lower carbon density, even if all post-conversion carbon
stocks changes were the same in DGVMs and bookkeeping
models.

3.3.5 Comparison of top-down and bottom-up CO2
estimates

Figure 10 highlights the variability of estimates from at-
mospheric inversions of GCP (1990–2017), CarboScopeReg
(2006–2017) and EUROCOM (2006–2015) plotted against
total annual EU27+UK CO2 land emissions/removals
from observation-based BU approaches and UNFCCC
NGHGI (2019). In these inversions, all components of the
carbon cycle (NEE) that contribute to the observed atmo-
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Figure 10. Comparison of BU and TD total EU27+UK biogenic CO2 estimates. The green line represents the UNFCCC NGHGI (2019).
The BU estimates belong to bookkeeping models (BLUE, H&N), the grey shade is the DGVMs TRENDY v7, and we plot separately
ORCHIDEE and FAOSTAT (FRA) data. The TD estimates belong to models from the ensembles GCB 2019 (red), EUROCOM (blue)
and CarboScopeReg (box with whiskers). The relative error on the UNFCCC value represents the UNFCCC NGHGI (2018) MS-reported
uncertainty computed with the error propagation method (95 % confidence interval) and is 16 %. The time series mean overlapping period is
2006–2015. The colored area represents the min/max of model ensemble estimates. The negative values represent a sink, while the positive
represent a source. In Appendix B, Fig. B1c, we show the expanded figure of the mean time series.

spheric CO2 gradients between stations (e.g., lateral fluxes,
oxidation of C compounds into CO2) are included. To fa-
cilitate the comparisons with NGHGIs we first account for
some of these differences by subtracting from the inversion
estimates the emissions from rivers (Lauerwald et al., 2015),
lakes and reservoirs (Raymond et al., 2013; Hastie et al.,
2019) as NGHGIs do not include them. Also, not included
in NGHGI estimates are the outgassing from crop and wood
products traded and consumed this year.

Looking at TD estimates, the annual mean (overlap-
ping period 2006–2015) of the EUROCOM inversions
(−138 Tg C) is the closest inversions ensemble (among
the three) to the time series mean of the NGHGI esti-
mates (−90 Tg C), with a difference of 48 Tg C yr−1 that
is well within the mean uncertainty of the regional inver-
sion ensemble (about 250 Tg C yr−1). It also matches well
with the TRENDY v7 DGVMs trend, which is smaller
(+7.3 Tg C yr−2) than that of the global GCP inversions
(−16 Tg C yr−1). On the other hand, the large range of vari-
ability in the EUROCOM ensemble estimates (+335 Tg C in
2015 to −615 Tg C in 2013) demonstrates that there is still
a very significant uncertainty in the TD estimates. This vari-
ability seen from the TD estimates is primarily due to uncer-
tainties in atmospheric transport modeling, boundary condi-
tions and uncertainty inherent to the limitation of the obser-
vation network.

Additional analyses are still ongoing with the different
inversion ensembles to analyze the factors controlling the
large difference obtained when compared to BU approaches
(for instance, the effect of the a priori fluxes, observation
sites, a priori flux and observation uncertainties, and bound-
ary conditions). This paper should be taken cautiously as a
first comparison at a spatial scale not investigated so far (i.e.,
EU27+UK).

The GCP results show a clear trend towards increasing the
CO2 sink strength of the land surface in later years, contrary
to the NGHGI estimates, which are relatively stable. Thus,
the initially reasonable agreement between the two datasets
(2000–2005) becomes a difference well outside the uncer-
tainty range of the NGHGI in 2017 (290 Tg C difference be-
tween the GCP and NGHGI, with an NGHGI uncertainty of
only 30 Tg C). Between 2011 and 2018, GCP (−241 Tg C
mean) (red bars) shows, as well as large inter-annual variabil-
ity, an increase in the CO2 sink. The strongest sink between
inversions (mean−381 Tg C) is reported by CarboScopeReg,
which, similar to EUROCOM, also shows high fluctuations.
This fluctuation partly reflects the fact that all other inver-
sions are results from ensembles of inversion systems each
with different inter-annual variations, while CSR is a single
inversion system (just a small ensemble with differing prior
error structure and different set of atmospheric station data
used).
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Also, noteworthy is that the global inversions provide re-
liable results at a global scale (following the atmospheric
global CO2 growth rate), but the ranges of estimates when
considering continental to regional scales increase signifi-
cantly due to the difficulties of the inversion systems to sep-
arate regional fluxes (e.g., Friedlingstein et al., 2020). Note
also that these systems are still primarily designed for large-
scale flux estimates (for instance the CarboScopeReg global
system uses a transport model at coarse spatial resolution
(4◦× 5◦) and an error correlation length of 1000 km over
land). The regional inversions (EUROCOM and CarboScop-
eReg) are still systems in development with additional com-
plexity due to the treatment of the boundary fluxes (compared
to the global systems).

For the models, differences result from choices in the sim-
ulation setup and depend on the type of model used – book-
keeping models, DGVMs or inventory-based – and whether
fluxes are attributed to LULUCF emissions due to the cause
or place of occurrence (indirect fluxes on managed land
included in NGHGIs and FAOSTAT, e.g., changes due to
human-induced climate change, including CO2 fertilization
and nitrogen deposition changes) (Petrescu et al., 2020b).
Table 3 below highlights these differences by presenting an
overview of processes included in the models, seen for the
moment as the main cause of discrepancies between esti-
mates shown in Fig. 10.

4 Data availability

All raw data files reported in this work which were used
for calculations and figures are available for public down-
load at https://doi.org/10.5281/zenodo.4626578 (Petrescu et
al., 2020a). The data we submitted are reachable with one
click (without the need for entering login and password) and
downloadable with a second click, consistent with the two-
click access principle for data published in ESSD (Carlson
and Oda, 2018). The data and the DOI number are subject to
future updates and only refers to this version of the paper.

Please also see Tables 1 and 2 for an overview of data
sources for CO2 emissions used in this study.

5 Summary and concluding remarks

The overview and variety of data products described in this
study are the first of a series of European CO2 synthe-
sis papers presenting and investigating differences between
UNFCCC NGHGIs, bottom-up data-based inventories, high-
resolution observation-based BU models, and TD approaches
represented by both global and regional inversions.

The CO2 fossil emissions dominate the anthropogenic
CO2 flux in the EU27+UK. Fossil CO2 emissions are more
straightforward to estimate than ecosystem fluxes. Different
BU methods have only minor differences with respect to the
NGHGI. These differences can often be attributed to differ-

ent definitions or assumptions about activity data or emis-
sion factors or by the allocation of fuel types to different
sectors (see Fig. 2, Sect. 3.2). Currently, TD methods, albeit
only a single inversion using CO /NOx proxies to determine
CO2 fossil emissions, show broad agreement with the BU
estimates. The TD inversion is not yet capable of verifying
the minor differences between the BU estimates. However,
a substantial decrease in the level of uncertainty is expected
in the near term, with the large-scale deployment of obser-
vation networks dedicated to detecting fossil fuel emissions
(e.g., with the launch of the CO2M18 constellation in 2025,
Maenhout al., 2020). In the short term, methodological im-
provements and the potential co-assimilation of existing CO2
satellite data are also expected to lead to significant decreases
in the uncertainty.

The CO2 land fluxes belong to the LULUCF sector, which
is one of the most uncertain sectors in UNFCCC reporting
due in part to the fact that these fluxes can be either sinks or
sources. The IPCC Guidelines prescribe methodologies that
are used to estimate the CO2 fluxes in the NGHGI, but dif-
ferences between countries continue to exist due to the use
of specific national circumstances (as permitted under the
2006 IPCC Guidelines). When we analyzed the estimates
from multiple BU sources (inventories and models), we ob-
serve similar sources of uncertainties: (a) differences due
to input data and structural/parametric uncertainty of mod-
els (Houghton et al., 2012) and (b) differences in definitions
(Pongratz et al., 2014; Grassi et al., 2018b; Petrescu et al.,
2020b). More accurate estimates for LULUCF data will be
needed in the post-2020 reporting for the EU27 and UK since
the LULUCF sector will now contribute to the EU’s 2030
targets. To better assess natural variability and trends we be-
lieve a reconciliation of BU and TD estimates should focus
on clearly defined activities over a given period (e.g., 5 years)
and regions as presented in Fig. 4. The considerable differ-
ences in the agreement between BU and TD estimates from
regional split are related to areas and for some regions (e.g.,
eastern Europe) sparseness of observation data. Regarding
the detailed sector-specific and inversion results (Figs. 6–10),
often differences come from choices in the simulation setup
and depend on the type of model used – bookkeeping mod-
els, DGVMs, inventory-based or inversion ensembles. Re-
sults also differ based on whether fluxes are attributed to LU-
LUCF emissions due to the cause (e.g., direct or indirect) or
place of occurrence. For example, indirect fluxes on man-
aged land are included in NGHGIs and FAOSTAT, while ad-
ditional sink capacity (e.g., Petrescu et al, 2020b) is included
in estimates from process-based models (e.g., ORCHIDEE
or TRENDY DGVMs). A more in depth analysis of the re-
gional/country level is foreseen as part of the overall long-
term objectives of VERIFY.

18CO2M: Copernicus Anthropogenic Carbon Dioxide Monitor-
ing, https://esamultimedia.esa.int/docs/EarthObservation/CO2M_
MRD_v3.0_20201001_Issued.pdf (last access: January 2021)
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Table 3. Comparison of the processes included in the inventories, bottom-up models and inversions.

Description NGHGI Process-based models DGVMs Bookkeeping models Inversions
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Ecosystem split/land cover transitions

Forest total E E N N E E Acc. Table A1
in GCB 2019

(Friedlingstein
et al., 2019)

E Eh Eh E E Acc. Table A3
in GCB 2019
(Friedlingstein
et al., 2019)

Split FL-FL/
FL-X/X-FL

E E N N E E/Ic/I E Eh/E/E Eh/E/E N N

Cropland total E N E E N N E Eh Eh E E

Split CL-CL/
CL-X/X-CL

E N E E/N/N N N E N/E/E N/E/E N N

Grassland total E N E N N N E E E E E

Split GL-GL/
GL-X/X-GL

E N E N N N E N/E/E N/E/E N N

Peatland account-
ing

E E N N N N N N N N N

Natural processes

CO2 fertilization N N E N N
Acc. Table A1
in GCB 2019

(Friedlingstein
et al., 2019)

E Ni Ni N E
Acc. Table A3
in GCB 2019
(Friedlingstein
et al., 2019)

Climate-induced
impacts

N N Ef Ib I E Ni Ni E E

Natural distur-
bances (fires,
insect, wind)

N N N E N N Ni Ni N N

Soil organic C
dynamic

I E E E E E N N E E

Lateral C transport
(river)

N N N N N N N N N N

Direct human-induced processes

Flux from har-
vested wood
products

E N N I Nd
Acc. Table A1
in GCB 2019

(Friedlingstein
et al., 2019)

E E E N N
Acc. Table A3
in GCB 2019
(Friedlingstein
et al., 2019)Flux from crop/

grass harvest
? E Ee N N E Ii Ii N N

Biomass burning E E E Ng E N N Ej Ej N E

N fertilization
(with N deposi-
tion)

I N E N N N N N N N N

Flux from drained
organic soils

I E E N I N I Ej Ej N N

Resolution

Spatial Country Country 0.125◦× 0.125◦× Country Country Acc. Table A1
in GCB 2019

(Friedlingstein
et al., 2019)

0.125◦× 0.25◦× Country 0.5◦× 0.5◦×
totals totals 0.125◦ 0.125◦ totals totals 0.125◦ 0.25◦ totals 0.5◦ 0.5◦

Temporal Yearly, Yearly Yearly Monthly Yearly Every Monthly Yearly Yearly 3-hourly From
t − 2 5 years 3-hourly to

monthly

N: not included, E: explicitly modeled, I: implicitly modeled, P: partly modeled. a UNFCCC and FAOSTAT are an ensemble of country estimates calculated with specific methodology for each country, following some guidelines. b The climate effects
can be estimated indirectly by CBM, using external additional input provided by other models. c EFISCEN can add this as a scenario variable; there is no internal module that allocates how much forest area there should be. d EFISCEN has only
production in cubic meters but does not have a direct HWP module. e Crop yield and residue harvest from cropland (20 % of residues harvested in the case of cereals; no residue harvest for other crops). f EPIC-IIASA partly accounts for soil drought,
i.e., plant growth limitation due to a lack of water in the soils. Heat stress and floods are not accounted for though. g In principle, burning of crop residues on cropland can be explicitly simulated by EPIC-IIASA. However, this is not done for VERIFY
as it is not a relevant scenario for the business-as-usual cropland management in Europe. h Forest/cropland/grassland exist and have carbon stocks but have carbon fluxes only through change to management. FL-FL includes all land-use-induced
effects (harvest slash and product decay, regrowth after agricultural abandonment and harvesting). i Implicit by using observation-based carbon densities that reflect harvest/climate/natural disturbances. j Peat burning and peat drainage are not
bookkeeping model output but are added fromvarious data sources during post-processing. k According Table 2 in Monteil et al. (2020) and Table A3 in Friedlingstein et al. (2019).
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All observation-based BU estimates for LULUCF pre-
sented in this study show similar magnitudes and trends com-
pared to the NGHGIs but generally differ in the specific val-
ues. We notice stronger similarities between NGHGIs and
models using national forest inventory data (e,g. CBM, EFIS-
CEN). For cropland and grassland sector-specific models
(ECOSSE, EPIC-IIASA) the differences between their re-
sults and the NGHGIs are due to differences in input data,
process representation (in particular those linked to soil or-
ganic matter decomposition) and management representa-
tion. In general, management is one of the main drivers for
the carbon balance of croplands and grasslands. However,
spatial data on management are scarce and can have high un-
certainty. For EPIC-IIASA specifically, the regional carbon
simulation results for managed cropland are almost evenly
impacted by model parameterization, soil input accuracy and
crop management regionalization (Balkovič et al., 2020). For
the overall estimation of emissions from LULUCF activities
on all land types (Fig. 9), the comparison is made more chal-
lenging as results from both land use and land use changes
are presented. Comparing only the effect of land use change
(conversion) is non-trivial and presents an area for improve-
ment to be handled in next synthesis.

Observation-based BU estimates of LULUCF provide
large year-to-year flux variability (Figs. 6–9), contrary to the
NGHGIs, primarily due to the effect of varying meteorology
especially through the duration and intensity of the summer
growing season, which can vary significantly between years
(Bastos et al., 2020; Thompson et al., 2020). In the frame-
work of periodic NGHGI assessments, the choice of a ref-
erence period (usually 5 years, or a biannual reporting) may
be critical in the context of large flux inter-annual variability.
One direction could be to include in the NGHGIs EFs derived
from the observation-based approaches (both BU and TD) in
the form of year-to-year flux anomalies. The TD inversion
estimates also show pronounced inter-annual variability re-
sults (Figs. 10 and B1c for mean values). Uncertainties in the
inversion results are primarily due to uncertainties in atmo-
spheric transport modeling, boundary conditions and uncer-
tainty inherent to the limitation of the observation network.
Currently, regional inversions (CarboScopeReg and EURO-
COM) are still systems under development which face differ-
ent challenges from the much-coarser-resolution global sys-
tems used here to represent regional results (GCP ensemble
including CarboScopeReg global).

The next steps needed to improve and facilitate the rec-
onciliation between BU and TD estimates will include (1)
as already discussed in Petrescu et al. (2020b), BU process-
based models incorporating unified protocols and guidelines
for uniform definitions which should be able to disaggre-
gate their estimates to facilitate comparison to NGHGIs and
2006 IPCC practices (i.e., managed vs. unmanaged land, 20-
year legacy for classes remaining in the same class, distinc-
tion of fluxes arising solely from land use change); (2) for
sector-specific models, especially for cropland and grassland,

improving treatment of the contribution of the soil organic
carbon dynamic to the budget; (3) for TD estimates, the
use of the Community Inversion Framework currently un-
der development (Berchet et al., 2020) to better assess the
different sources of uncertainties from the inversion setups
(model transport, prior fluxes, observation networks); (4) for
the overall comparison of BU and TD fluxes, the incorpora-
tion of the contribution of lateral fluxes of carbon by human
activities and rivers that connect CO2 uptake in one area with
its release in another (Ciais et al., 2020).

From this analysis we demonstrate that a complete, ready-
for-purpose monitoring system providing annual carbon
fluxes across Europe does not yet exist. Therefore, for con-
sistent future estimates to be used in the global stocktake ex-
ercise to reach the Paris Agreement targets, significant ef-
fort must still be undertaken to reduce the uncertainty across
all potential methods used in such a system (e.g., Janssens-
Maenhout et al., 2020).
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Appendix A: Data sources, methodology and
uncertainty descriptions

The country-specific plots are found at http://webportals.ipsl.
jussieu.fr/VERIFY/FactSheets/ (upon registration, last ac-
cess: February 2021) (v1.24).

VERIFY project

VERIFY’s primary aim is to develop scientifically robust
methods to assess the accuracy and potential biases in na-
tional inventories reported by the parties through an indepen-
dent pre-operational framework. The main concept is to pro-
vide observation-based estimates of anthropogenic and natu-
ral GHG emissions and sinks as well as associated uncertain-
ties. The proposed approach is based on the integration of
atmospheric measurements, improved emission inventories,
ecosystem data, and satellite observations, as well as on an
understanding of processes controlling GHG fluxes (ecosys-
tem models, GHG emission models).

Two complementary approaches relying on observational
data streams will be combined in VERIFY to quantify GHG
fluxes:

1. atmospheric GHG concentrations from satellites and
ground-based networks (top-down atmospheric inver-
sion models) and

2. bottom-up activity data (e.g., fuel use and emission fac-
tors) and ecosystem measurements (bottom-up models).

For CO2, a specific effort will be made to separate fossil fuel
emissions from ecosystems fluxes. For CH4 and N2O, we
will separate agricultural from fossil fuel and industrial emis-
sions. Finally, trends in the budget of the three GHGs will be
analyzed in the context of NDC targets.

The objectives of VERIFY are as follows.

– Objective 1. Integrate the efforts between the research
community, national inventory compilers, operational
centers in Europe and international organizations to-
wards the definition of future international standards for
the verification of GHG emissions and sinks based on
independent observation.

– Objective 2. Enhance the current observation and mod-
eling ability to accurately and transparently quantify the
sinks and sources of GHGs in the land use sector for the
tracking of land-based mitigation activities.

– Objective 3. Develop new research approaches to moni-
tor anthropogenic GHG emissions in support of the EU
commitment to reduce GHG emissions by 40 % by 2030
compared to the year 1990.

– Objective 4. Produce periodic scientific syntheses of an
observation-based GHG balance of EU countries and
practical policy-oriented assessments of GHG emission
trends and apply these methodologies to other countries.

For more information on project team and products/results
check https://verify.lsce.ipsl.fr/ (last access: November
2020).

A1 Fossil CO2 emissions

A1.1 Bottom-up emission estimates

For further details, see Andrew (2020).

UNFCCC NGHGI (2019)

The Annex I Parties to the UNFCCC are required to re-
port emissions inventories annually using the common re-
porting format (CRF). This annual published dataset includes
all CO2 emissions sources for those countries and for most
countries for the period 1990 to t − 2. Some eastern Euro-
pean countries’ submissions begin in the 1980s. Revisions
are made on an irregular basis outside of the standard annual
schedule. For a complete description see Andrew (2020).

Uncertainties. Annex I Parties quantitatively estimate their
uncertainties of data used for all source and sink categories
using the methodologies provided in the 2006 IPCC Guide-
lines. The 2006 IPCC Guidelines stipulate that the determi-
nation of uncertainties is a key element of any complete in-
ventory. Uncertainties are quantified for emission factors, ac-
tivity data and, in some cases, for emissions. In general, two
methods for determining uncertainties are differentiated. The
Tier 1 method combines, in a simple way, the uncertainties
in activity data and emission factors for each category and
greenhouse gas and then aggregates these uncertainties for all
categories and greenhouse gas components to obtain the total
uncertainty for the inventory. The Tier 2 method for uncer-
tainty determination is the same in principle, but it also con-
siders the distribution function for uncertainties and carries
out aggregation using Monte Carlo simulation. In the Tier 2
method, the process also necessarily includes the determina-
tion of the probability density function for both parameters.

EDGAR v5.0

The first edition of the Emissions Database for Global Atmo-
spheric Research was published in 1995. The dataset now in-
cludes almost all sources of fossil CO2 emissions, is updated
annually and reports data for 1970 to n−1. Estimates are pro-
vided by sector. Emissions are estimated fully based on sta-
tistical data from 1970 until 2015, while for the years beyond
2015 a fast-track (FT) approach is applied based on BP data
and other proxies to extrapolate CO2 emissions until most re-
cent years (Crippa et al., 2019, https://edgar.jrc.ec.europa.eu/
overview.php?v=booklet2019, last access: 14 April 2020).
For a complete description see Andrew (2020).

Uncertainties. EDGAR uses emission factors (EFs) and
activity data (AD) to estimate emissions. Both EFs and AD
are uncertain to some degree, and when combined, their un-
certainties need to be combined too. To estimate EDGAR’s
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Table A1. Country grouping used for comparison purposes between
BU and TD emissions. Countries highlighted in italic are not dis-
cussed in the current 2019 synthesis mostly because of unavailabil-
ity of UNFCCC NGHGI reports (non-Annex I countries∗) but are
present on the following web portal: http://webportals.ipsl.jussieu.
fr/VERIFY/FactSheets/ (last access: February 2021). Results of An-
nex I countries (NOR, CHE, ISL) and non-EU eastern European
countries (EAE) are represented in Fig. 4.

Country name – geo-
graphical Europe

BU-ISO3 Aggregation from
TD-ISO3

Luxembourg LUX
Belgium BEL BENELUX
Netherlands NDL BNL
Bulgaria BGR BGR
Switzerland CHE
Liechtenstein LIE CHL
Czech Republic CZE Former Czechoslo-

vakia
Slovakia SVK CSK
Austria AUT AUT
Slovenia SVN North Adriatic

countries
Croatia HRV NAC
Romania ROU ROU
Hungary HUN HUN
Estonia EST
Lithuania LTU Baltic countries
Latvia LVA BLT
Norway NOR NOR
Denmark DNK
Sweden SWE
Finland FIN DSF
Iceland ISL ISL
Malta MLT MLT
Cyprus CYP CYP
France (Corsica
included)

FRA FRA

Monaco MCO
Andorra AND
Italy (Sardinia,
Vatican included)

ITA ITA

San Marino SMR
United Kingdom
(Great Britain + N Ire-
land)

GBR UK

Isle of Man IMN
Ireland IRL IRL
Germany DEU DEU
Spain ESP IBERIA
Portugal PRT IBE
Greece GRC GRC
Russia (European part) RUS European
Georgia GEO RUS European +

GEO
Russian Federation RUS RUS
Poland POL POL
Turkey TUR TUR

Table A1. Continued.

Country name – geographical
Europe

BU-ISO3 Aggregation
from
TD-ISO3

EU27+UK (Austria, Bel-
gium, Bulgaria, Cyprus, Czech
Republic, Germany, Den-
mark, Spain, Estonia, Finland,
France, Greece, Croatia, Hun-
gary, Ireland, Italy, Lithuania,
Latvia, Luxembourg, Malta,
Netherlands, Poland, Portugal,
Romania, Slovakia, Slovenia,
Sweden, United Kingdom)

AUT, BEL,
BGR, CYP,
CZE, DEU,
DNK, ESP,
EST, FIN, FRA,
GRC, HRV,
HUN, IRL,
ITA, LTU, LVA,
LUX, MLT,
NDL, POL,
PRT, ROU,
SVN, SVK,
SWE, GBR

E28

Western Europe (Belgium,
France, United Kingdom,
Ireland, Luxembourg, Nether-
lands)

BEL, FRA, UK,
IRL, LUX, NDL

WEE

Central Europe (Austria,
Switzerland, Czech Republic,
Germany, Hungary, Poland,
Slovakia)

AUT, CHE,
CZE, DEU,
HUN, POL,
SVK

CEE

Northern Europe (Denmark,
Estonia, Finland, Lithuania,
Latvia, Norway, Sweden)

DNK, EST,
FIN, LTU, LVA,
NOR, SWE

NOE

Southwestern Europe (Spain,
Italy, Malta, Portugal)

ESP, ITA, MLT,
PRT

SWN

Southeastern Europe (all)
(Albania, Bulgaria, Bosnia
and Herzegovina, Cyprus,
Georgia, Greece, Croatia,
North Macedonia, Montene-
gro, Romania, Serbia, Slove-
nia, Turkey)

ALB, BGR, BIH,
CYP, GEO,
GRC, HRV,
MKD, MNE,
ROU, SRB,
SVN, TUR

SEE

Southeastern Europe (non-
EU) (Albania, Bosnia and
Herzegovina, North Macedo-
nia, Georgia, Turkey, Mon-
tenegro, Serbia)

ALB, BIH,
MKD, MNE,
SRB, GEO, TUR

SEA

Southeastern Europe (EU)
(Bulgaria, Cyprus, Greece,
Croatia, Romania, Slovenia)

BGR, CYP,
GRC, HRV,
ROU, SVN

SEZ

Southern Europe (all) (SOE)
(Albania, Bulgaria, Bosnia
and Herzegovina, Cyprus,
Georgia, Greece, Croatia,
North Macedonia, Montene-
gro, Romania, Serbia, Slove-
nia, Turkey, Italy, Malta, Por-
tugal, Spain)

ALB, BGR, BIH,
CYP, GEO,
GRC, HRV,
MKD, MNE,
ROU, SRB, SVN,
TUR, ITA, MLT,
PRT, ESP

SOE
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Table A1. Continued.

Country name – geographical
Europe

BU-ISO3 Aggregation
from
TD-ISO3

Southern Europe (non-EU)
(SOY) Albania, Bosnia and
Herzegovina, Georgia, North
Macedonia, Montenegro, Ser-
bia, Turkey)

ALB, BIH, GEO,
MKD, MNE,
SRB, TUR

SOY

Southern Europe (EU) (SOZ)
(Bulgaria, Cyprus, Greece,
Croatia, Romania, Slovenia,
Italy, Malta, Portugal, Spain)

BGR, CYP,
GRC, HRV,
ROU, SVN, ITA,
MLT, PRT, ESP

SOZ

Eastern Europe (non-EU) (Be-
larus, Republic of Moldova,
Russian Federation, Ukraine)

BLR, MDA,
RUS, UKR

EAE

EU-15 (Austria, Belgium, Ger-
many, Denmark, Spain, Fin-
land, France, United Kingdom,
Greece, Ireland, Italy, Luxem-
bourg, Netherlands, Portugal,
Sweden)

AUT, BEL, DEU,
DNK, ESP, FIN,
FRA, GBR, GRC,
IRL, ITA, LUX,
NDL, PRT, SWE

E15

EU-27 (Austria, Belgium, Bul-
garia, Cyprus, Czech Republic,
Germany, Denmark, Spain, Es-
tonia, Finland, France, Greece,
Croatia, Hungary, Ireland,
Italy, Lithuania, Latvia, Lux-
embourg, Malta, Netherlands,
Poland, Portugal, Romania,
Slovakia, Slovenia, Sweden)

AUT, BEL, BGR,
CYP, CZE, DEU,
DNK, ESP, EST,
FIN, FRA, GRC,
HRV, HUN, IRL,
ITA, LTU, LVA,
LUX, MLT,NDL,
POL, PRT, ROU,
SVN, SVK, SWE

E27

All Europe (Åland Islands,
Albania, Andorra, Austria,
Belgium, Bulgaria, Bosnia and
Herzegovina, Belarus, Switzer-
land, Cyprus, Czech Republic,
Germany, Denmark, Spain, Es-
tonia, Finland, France, Faroe
Islands, United Kingdom,
Guernsey, Greece, Croatia,
Hungary, Isle of Man, Ireland,
Iceland, Italy, Jersey, Liechten-
stein, Lithuania, Luxembourg,
Latvia, Republic of Moldova,
North Macedonia, Malta, Mon-
tenegro, Netherlands, Norway,
Poland, Portugal, Romania,
Russian Federation, Svalbard
and Jan Mayen, San Marino,
Serbia, Slovakia, Slovenia,
Sweden, Turkey, Ukraine)

ALA, ALB, AND,
AUT, BEL, BGR,
BIH, BLR, CHE,
CYP, CZE, DEU,
DNK, ESP, EST,
FIN, FRA, FRO,
GBR, GGY,
GRC, HRV,
HUN, IMN,
IRL, ISL, ITA,
JEY, LIE, LTU,
LUX, LVA, MDA,
MKD, MLT,
MNE, NDL,
NOR, POL, PRT,
ROU, RUS, SJM,
SMR, SRB, SVK,
SVN, SWE, TUR,
UKR

EUR

∗ Non-Annex I countries are mostly developing countries. The reporting to UNFCCC is
implemented through national communications (NCs) and biennial update reports (BURs):
https://unfccc.int/national-reports-from-non-annex-i-parties(last access: November 2020).

uncertainties (stemming from a lack of knowledge of the true
value of the EFs and AD), the methodology devised by IPCC
(2006, chap. 3) is adopted, that is, the sum of squares of
the uncertainty of the EFs and AD (uncertainty of the prod-
uct of two variables). A lognormal probability distribution
function is assumed to avoid negative values, and uncertain-
ties are reported as a 95 % confidence interval according to
IPCC (2006, chap. 3, Eq. 3.7). For emission uncertainties in
the range 50 % to 230 %, a correction factor is adopted as
suggested by Frey et al. (2003) and IPCC (2006, chap. 3,
Eq. 3.4).

BP

BP releases its Statistical Review of World Energy annually in
June, with the first report being published in 1952. Primarily
an energy dataset, BP also includes estimates of fossil fuel
CO2 emissions derived from its energy data. The emission
estimates are totals for each country starting in 1965 to year
n− 1. For a complete description see Andrew (2020).

CDIAC

The original Carbon Dioxide Information Analysis Center
included a fossil CO2 emissions dataset that was long known
as CDIAC. This dataset is now produced at Appalachian
State University and includes emissions from fossil fuels and
cement production from 1751 to n− 3. Fossil fuel emissions
are derived from UN energy statistics and cement emissions
from USGS production data. For a complete description see
Andrew (2020).

EIA

The US Energy Information Administration publishes inter-
national energy statistics and from these derives estimates of
energy combustion CO2 emissions. Data are currently avail-
able for the period 1980–2016. For a complete description
see Andrew (2020).

IEA

The International Energy Agency publishes international en-
ergy statistics and from these derives estimates of energy
combustion CO2 emissions including from the use of coal
in the iron and steel industry. Emission estimates start in
1960 for OECD members and 1971 for non-members and
run through n− 1 for OECD members’ totals and n− 2
for members’ details and non-members. Estimates are avail-
able by sector for a fee. For a complete description see An-
drew (2020).

GCP

The Global Carbon Project includes estimates of fossil CO2
emissions in its annual Global Carbon Budget publication.
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Table A2. Main methodological changes of the current study with respect to Petrescu et al. (2020b). The sectors are highlighted in italics;
the changes with respect to AFOLU (Petrescu et al., 2020a) are shown in bold. “NA” means that there are no data available.

Publication
year

Bottom-up anthropogenic CO2 estimates
(fossil CO2)

Top-down fossil
CO2 estimates

Bottom-up natural CO2 (NBP) emissions/removals
(land CO2)

Top-down land CO2
emissions

Uncertainty and
other changes

Inventories Global
databases

Emission
models

Inventories Emission models Global
databases

Regional
models

Global
models

2020
(Petrescu et
al., 2020b;
AFOLU
bottom-up
synthesis)

NA NA NA NA National emis-
sions from
UNFCCC (2018)
1990–2016

LULUCF forest
land – EU28
data for 5
years (1995,
2000, 2005, 2010
and 2015)

Cropland and
grassland (1990,
2005, 2010 and
2016)

All land uses
EU28 time series
1990–2016

CBM forest land
(2000, 2005, 2010
and 2015)

EFISCEN for-
est
land (1995, 2000,
2005, 2010 and
2015)

BLUE – all land
uses 1990–2017

H&N – all land
uses 1990–2015

DGVMs (TRENDY
v6) – all land uses
1990–2017

FAOSTAT
time series
remaining and
conversions
1990–2016

NA NA UNFCCC
(2018) uncer-
tainty estimates
for 2016 (error
propagation
95 % interval
method)

2021 (this
study synthe-
sis’ bottom-
up and
top-down)

National
emissions
from
UNFCCC
(2019)
CRFs
2014

All an-
thropogenic
(excluding
LULUCF)
sectors, time
series
1990–2015

EDGAR
v5.0
BP
EIA
CDIAC
IEA
GCP
CEDS
2014 esti-
mates split
by fuel type

EDGAR
v5.0 All
anthropo-
genic sec-
tors, time
series
1990–2015

NA IAP RAS
fast-track in-
version 2014
(EU11+CHE)

National emis-
sions from
UNFCCC (2019)
1990–2017
EU27 + UK
Time series of
forest land,
Cropland and
grassland

Regional EU27
+ UK totals
(including
NOR,
CHE, UKR,
MLD and BLR)

CBM forest land
time series 1990–
2015

EFISCEN for-
est land time series
2005–2018

CO2 emissions
from inland
waters:
one average
value 1990–2018

ORCHIDEE
Forest, cropland
and grassland
and all land uses
1990–2018

ECOSSE Crop-
land and grassland
1990–2018

EPIC-IIASA
Cropland 1990–
2018

BLUE – all land
uses 1990–2018

H&N – all land
uses 1990–2015

DGVMs (TRENDY
v7) – all land uses
1990–2018

FAOSTAT
time series
remaining and
conversions
1990–2017

CarboScope
Reg 2006–
2018

EUROCOM
2006–2015

GCP
2019 in-
versions
2000–
2018

UNFCCC
(2019) uncer-
tainty estimates
for 2016 (error
propagation
95 % interval
method),
for model
ensembles
reported as
variability in
extremes
(min/max)

These includes emissions from fossil fuels and cement pro-
duction for the period 1750 to n−1. For a complete descrip-
tion see Andrew (2020).

CEDS

The Community Emissions Data System has included esti-
mates of fossil CO2 emissions since 2018, with an irregular
update cycle. Energy data are directly from IEA, but emis-
sions are scaled to higher-priority sources, including national

inventories. Almost all emissions sources are included, and
estimates are published for the period 1750–2014. Estimates
are provided by sector. For a complete description see An-
drew (2020).
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A1.2 Top-down CO2 emission estimates

Fast-track fossil CO2 emission inversion

The so called KL18 inversion product (Konovalov and
Lvova, 2018) consists in a rescaling of the 0.1◦× 0.1◦ reso-
lution maps of annual averages of fossil CO2 anthropogenic
emissions in western Europe (over 11 countries of the Eu-
ropean Union – Portugal, Spain, France, Belgium, Luxem-
bourg, Netherlands, UK, Germany, Denmark, Italy and Aus-
tria – and Switzerland) from the EDGARv4.3.2 inventory
(Janssens-Maenhout et al., 2019). It has been produced by
IAP-RAS to provide first inversions of the emissions in Eu-
rope during the first years of VERIFY, while the development
of the main inversion system for this task should last more
than 2 years. It covers the years 2012 to 2015, updating the
method and extending the inversions documented in Kono-
valov et al. (2016). The factors scaling the EDGARv4.3.2
maps are derived from the regional inversions of CO and
NOx emissions from the European Monitoring and Evalu-
ation Programme (EMEP) Centre on Emission Inventories
and Projections (CEIP) as prior knowledge of the emis-
sions and CO2 /CO and CO2 /NOx emission ratios asso-
ciated with the combustion of fossil from EDGARv4.3.2.
These regional inversions are based on the assimilation of
satellite atmospheric concentration data: total column CO
from IASI and tropospheric column NO2 from OMI in a
50 km resolution European configuration of the CHIMERE
mesoscale atmospheric chemistry–transport model (Menut et
al., 2013). The resulting fCO2 inverse emissions are cal-
culated by converting the inverted CO and NOx emission
(sectoral or total) budgets into fCO2 emissions budgets us-
ing ratios of CO (all emissions) / fCO2 (fossil fuel missions
only) and NOx (all emissions) / fCO2 (fossil fuel emissions
only) from EDGAR (excluding biofuel from the CO2 emis-
sions in EDGAR but not from the CO and NOx emissions in
EDGAR).

Uncertainty. An estimate of the uncertainty in the annual
budgets of the emissions over the 12 countries is derived
from the analyses of uncertainties within the CO and NOx
emission inversions (associated with model and data errors)
and from an assessment of the uncertainties in the CO2 /CO
and CO2 /NOx emission ratios (based on their spatial vari-
ability). The preliminary results indicate that the uncertainty
in the information from the CO inversion is too high to pro-
vide reliable estimates of the CO2 fossil emissions when us-
ing CO satellite data only or to provide weight to this infor-
mation when using CO2 fossil estimates from both the CO
and NOx inversions. The estimates based on NO2 data are
close to EDGAR v4.3.2 in 2012. These estimates are quite
constant over the 4-year period, while we assume that the
CO2 fossil emissions followed a significant negative trend
during this period. The analysis shows that the uncertainties
in these estimates can explain the difficulty to detect such a
trend.

A2 Land CO2 emissions/removals

A2.1 Bottom-up CO2 estimates

UNFCCC NGHGI 2019 – LULUCF

Under the convention and its Kyoto Protocol, national
greenhouse gas (GHG) inventories are the most important
source of information to track progress and assess climate
protection measures by countries. In order to build mutual
trust in the reliability of GHG emission information pro-
vided, national GHG inventories are subject to standardized
reporting requirements, which have been continuously
developed by the Conference of the Parties (COP)19. The
calculation methods for the estimation of greenhouse gases
in the respective sectors are determined by the methods
provided by the 2006 IPCC Guidelines for National Green-
house Gas Inventories (IPCC, 2006). They provide detailed
methodological descriptions to estimate emissions and
removals, as well as provide recommendations to collect
the activity data needed. As a general overall requirement,
the UNFCCC reporting guidelines stipulate that reporting
under the convention and the Kyoto Protocol must follow the
five key principles of transparency, accuracy, completeness,
consistency and comparability (TACCC). The reporting
under UNFCCC shall meet the TACCC principles. The
three main GHGs are reported in time series from 1990
up to 2 years before the due date of the reporting. The
reporting is strictly source category based and is done under
the common reporting format tables (CRFs), downloadable
from the UNFCCC official submission portal: https://unfccc.
int/process-and-meetings/transparency-and-reporting/
reporting-and-review-under-the-convention/
greenhouse-gas-inventories-annex-i-parties/
national-inventory-submissions-2019 (last access: Jan-
uary 2021).

For the biogenic CO2 emissions from sector 4 LULUCF,
methods for the estimation of CO2 emissions and removals
differ enormously among countries and land use categories.
Each country uses its own country-specific method, which
takes into account specific national circumstances (as long
as they are in accordance with the 2006 IPCC Guidelines), as
well as IPCC default values, which are usually more conser-
vative and result in higher uncertainties. The EU GHG inven-
tory underlies the assumption that the individual use of na-
tional country-specific methods leads to more accurate GHG
estimates than the implementation of a single EU wide ap-
proach (UNFCCC, 2018). Key categories for the EU28 are
4.A.1. and 4.A.2. – forest land remaining forest land and
land converted to forest land; 4.B.1. and 4.B.2. – cropland
remaining cropland and land converted to cropland; 4.C.1.
and 4.C.2. – grassland remaining grassland and land con-
verted to grassland; 4.D.1. and 4.D.2. – wetlands remaining

19The last revision was made by COP 19 in 2013 (UNFCCC,
2013).
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wetlands and land converted to wetlands; 4.E.1. and 4.E.2. –
settlements remaining settlements and land converted to set-
tlements; and 4.G – harvested wood products (HWPs). The
tier method a country applies depends on the national cir-
cumstances and the individual conditions of the land, which
explains the variability of uncertainties among the sector it-
self as well as among EU countries.

The uncertainty methodology for the NGHGI UNFCCC
submissions is based on chap. 3 of 2006 IPCC Guidelines
for National Greenhouse Gas Inventories and is the same as
in Sect. 2.1 and Petrescu et al. (2020b, Appendix B).

ORCHIDEE

ORCHIDEE is a general ecosystem model designed to be
coupled to an atmospheric model in the context of model-
ing the entire Earth system. As such, ORCHIDEE calculates
its prognostic variables (i.e., a multitude of C, H2O and en-
ergy fluxes) from the following environmental drivers: air
temperature, wind speed, solar radiation, air humidity, pre-
cipitation and atmospheric CO2 concentration. As the run
progresses, vegetation grows on each pixel, divided into 13
generic types (e.g., broadleaf temperate forests, C3 crops),
which cycle carbon between the soil, land surface, and atmo-
sphere through processes such as photosynthesis, litter fall
and decay. Limited human activities are included through
the form of generic wood and crop harvests, which remove
aboveground biomass on an annual basis.

Among other environmental indicators, ORCHIDEE sim-
ulates positive and negative CO2 emissions from plant up-
take, soil decomposition and harvests across forests, grass-
lands and croplands. Activity data are based on land use
and land cover maps. For VERIFY, pixel land cover/land use
fractions were based on the land use map LUH2v2h and the
land cover project of the Climate Change Initiative (CCI)
program of the European Space Agency (ESA). The latter
is based on purely remotely sensed methods, while the for-
mer makes use of national harvest data from the UN Food
and Agriculture Organization.

ESA-CCI LUH2v2. “We describe here the input data and
algorithms used to create the land cover maps specific for our
CMIP6 simulations using the historical/future reconstruction
of land use states provided as reference datasets for CMIP6
within the land use harmonization database LUH2v2h (Hurtt
et al., 2020). More details are provided on the devoted web
page https://orchidas.lsce.ipsl.fr/dev/lccci (last access: Octo-
ber 2020) which shows further tabular, graphical and statis-
tical data. The overall approach relies on the combination
of the LUH2v2 data with present-day land cover distribu-
tion derived from satellite observations for the past decades.
The main task consists in allocating the land use types from
LUH2v2 in the different PFTs for the historical period and
the future scenarios. The natural vegetation in each grid cell
is defined as the PFT distribution derived from the ESA-CCI
land cover product for the year 2010 to which pasture frac-

tion and crop fraction from LUH2v2 (for the year 2010) have
been subtracted from grass and crop PFTs. This characteri-
zation of the natural vegetation in terms of PFT distribution
is assumed invariant in time and is used for both the histori-
cal period and the different future scenarios.” (Lurton et al.,
2020).

Uncertainty in the ORCHIDEE model arises from three
primary sources: parameters, forcing data (including spa-
tial and temporal resolution) and model structure. Some re-
searchers argue that the initial state of the model (i.e., the
values of the various carbon and water pools at the begin-
ning of the production run, following model spinup) repre-
sents a fourth area. However, the initial state of the model is
defined by its equilibrium state and therefore a strong func-
tion of the parameters, forcing data and model structure, with
the only independent choice being the target year of the ini-
tial state. Out of the three primarily areas of uncertainty, the
climate forcing data are dictated by the VERIFY project it-
self, thus removing that source from explaining observed dif-
ferences among the models, although it can still contribute
to uncertainty between the ORCHIDEE results and the na-
tional inventories. The land use/land cover maps, another
major source of uncertainty for ORCHIDEE carbon fluxes,
have also been harmonized to a large extent between the
bottom-up carbon budget models in the project. Parameter
uncertainty and model structure thus represent the two largest
sources of potential disagreement between ORCHIDEE and
the other bottom-up carbon budget models. Computational
cost prevents a full characterization of uncertainty due to pa-
rameter selection in ORCHIDEE (and dynamic global veg-
etation models in general), and uncertainties in model struc-
ture require the use of multiple models of the same type but
including different physical processes. Such a comparison
has not been done in the context of VERIFY, although the
results from the TRENDY suite of models shown in the fig-
ures (Figs. 9 and 10) give a good indication of this.

CO2 emissions from inland waters

These estimates represent a climatology of average annual
CO2 emissions from rivers, lakes and reservoirs at the spa-
tial resolution of 0.1◦. The approach combines CO2 eva-
sion fluxes from the global river network, as estimated by
the empirical model of Lauerwald et al. (2015) with the lake
and reservoir estimates by Hastie et al. (2019) for the boreal
biome and by Raymond et al. (2013) for the lower latitudes.
The Lauerwald et al. (2015) and Hastie et al. (2019) stud-
ies follow the same approach and rely on the development of
a statistical prediction model for inland water pCO2 at 0.5◦

using global, high-resolution geodata. The pCO2 climatol-
ogy was then combined with different estimates of the gas
transfer velocity k to produce the resulting map of CO2 eva-
sion. The Raymond et al. (2013) study only provides mean
flux densities at the much coarser spatial resolution of the so-
called COSCAT regions. All estimates were then downscaled
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to 0.1◦ using the spatial distribution of European inland water
bodies. Note that in contrast to Hastie et al. (2019) the areal
distribution of lakes was extracted from the HydroLAKES
database (Messager et al., 2016) to be consistent with the es-
timates of inland water N2O and CH4 presented by Petrescu
et al. (2021).

Uncertainty. Monte Carlo simulations were performed to
constrain uncertainties resulting from both the pCO2 predic-
tion equation and the choice of the k formulation.

CBM

The Carbon Budget Model developed by the Canadian For-
est Service (CBM-CFS3) can simulate the historical and fu-
ture stand- and landscape-level C dynamics under different
scenarios of harvest and natural disturbances (fires, storms),
according to the standards described by the IPCC (Kurz et
al., 2009). Since 2009, the CBM has been tested and vali-
dated by the Joint Research Centre of the European Com-
mission (JRC) and adapted to the European forests. It is cur-
rently applied to 26 EU member states, both at the country
and NUTS2 level (Pilli et al., 2016).

Based on the model framework, each stand is described by
area, age and land use classes and up to 10 classifiers based
on administrative and ecological information and on silvi-
cultural parameters (such as forest composition and manage-
ment strategy). A set of yield tables define the merchantable
volume production for each species, while species-specific
allometric equations convert merchantable volume produc-
tion into aboveground biomass at the stand level. At the end
of each year the model provides data on the net primary pro-
duction (NPP), carbon stocks and fluxes, as the annual C
transfers between pools and to the forest product sector.

The model can support policy anticipation, formulation
and evaluation under the LULUCF sector, and it is used to
estimate the current and future forest C dynamics, both as
a verification tool (i.e., to compare the results with the esti-
mates provided by other models) and to support the EU leg-
islation on the LULUCF sector (Grassi et al., 2018a). In the
biomass sector, the CBM can be used in combination with
other models to estimate the maximum wood potential and
the forest C dynamic under different assumptions of harvest
and land use change (Jonsson et al., 2018).

Uncertainty. Quantifying the overall uncertainty of CBM
estimates is challenging because of the complexity of each
parameter. The uncertainty in CBM arises from three pri-
mary sources: parameters, forcing data (including spatial and
temporal resolution) and model structure. It is linked to both
activity data and emission factors (area, biomass volume im-
plied by the species-specific equation to convert the mer-
chantable volume to total aboveground biomass (used as a
biomass expansion factor)) as well to the capacity of each
model to represent the original values, in this case estimated
through the mean percentage difference between the pre-

dicted and observed values. A detailed description of the un-
certainty methodology is found in Pilli et al. (2017).

EFISCEN

The European Forest Information SCENario Model (EFIS-
CEN) is a large-scale forest model that projects forest re-
source development on the regional to European scale. The
model uses national forest inventory data as a main source of
input to describe the current structure and composition of Eu-
ropean forest resources. The model projects the development
of forest resources, based on scenarios for policy, manage-
ment strategies and climate change impacts. With the help
of biomass expansion factors, stem wood volume is con-
verted into whole-tree biomass and subsequently to whole-
tree carbon stocks. Information on litter fall rates, felling
residues and natural mortality is used as input into the soil
module YASSO (Liski et al., 2005), which is dynamically
linked to EFISCEN and delivers information on forest soil
carbon stocks. The core of the EFISCEN model was devel-
oped by Ola Sallnäs at the Swedish Agricultural University
(Sallnäs, 1990). It has been applied to European countries
in many studies since then, dealing with a diversity of for-
est resource and policy aspects. A detailed model descrip-
tion is given by Verkerk et al. (2016), with online informa-
tion on the availability and documentation of EFISCEN at
http://efiscen.efi.int (last access: October 2020). The model
and its source code are freely available, distributed under the
GNU General Public License conditions (http://www.gnu.
org/licenses/gpl-3.0.html, last access: October 2020).

Uncertainties. The sensitivity analysis on EFISCEN v3 is
described in detail by Schelhaas et al. (2007) (the manual).
Total sensitivity is mostly caused by young forest growth,
width of volume classes and age of felling.

EPIC-IIASA (croplands)

The Environmental Policy Integrated Climate (EPIC) model
is a field-scale process-based model (Izaurralde et al., 2006;
Williams, 1990) which calculates, with a daily time step,
crop growth and yield, hydrological, nutrient and carbon cy-
cling, soil temperature and moisture, soil erosion, tillage,
and plant environment control. Potential crop biomass is cal-
culated from photosynthetically active radiation using the
radiation-use-efficiency concept modified for vapor pressure
deficit and atmospheric CO2 concentration effect. Potential
biomass is adjusted to actual biomass through daily stress
caused by extreme temperatures, water and nutrient defi-
ciency, or inadequate aeration. The coupled organic C and N
module in EPIC (Izaurralde et al., 2006) distributes organic
C and N between three pools of soil organic matter (active,
slow and passive) and two litter compartments (metabolic
and structural). EPIC calculates potential transformations of
the five compartments as regulated by soil moisture, tempera-
ture, oxygen, tillage and lignin content. Daily potential trans-
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formations are adjusted to actual transformations when the
combined N demand in all receiving compartments exceeds
the N supply from the soil. The transformed components are
partitioned into CO2 (heterotrophic respiration), dissolved C
in leaching (DOC) and the receiving SOC pools. EPIC also
calculates SOC loss with erosion.

The EPIC-IIASA (version EU) modeling platform was
built by coupling the field-scale EPIC version 0810 with
large-scale data on land cover (cropland), soils, topogra-
phy, field size and crop management practices aggregated
at a 1× 1 km grid covering European countries (Balkovič
et al., 2018, 2013). In VERIFY, a total of 10 major Euro-
pean crops including winter wheat, winter rye, spring barley,
grain maize, winter rapeseed, sunflower, sugar beet, potatoes,
soybean and rice were used to represent agricultural produc-
tion systems in Europe. Crop fertilization and irrigation were
estimated for NUTS2 statistical regions between 1995 and
2010 (Balkovič et al., 2013). For VERIFY, the simulations
were carried out assuming conventional tillage, consisting of
two cultivation operations and mouldboard ploughing prior
to sowing and an offset disking after harvesting of cereals.
Two row cultivations during the growing season were simu-
lated for maize and one ridging operation for potatoes. It was
assumed that 20 % of crop residues are removed in the case
of cereals (excluding maize), while no residues are harvested
for other crops.

Uncertainties in EPIC arise from three primary sources
which were described in detail by ORCHIDEE. A detailed
sensitivity and uncertainty analysis of EPIC-IIASA regional
carbon modeling is presented in Balkovič et al. (2020).

ECOSSE (grasslands)

ECOSSE is a biogeochemical model that is based on the car-
bon model RothC (Jenkinson and Rayner, 1977; Jenkinson
et al., 1987; Coleman and Jenkinson, 1996) and the nitrogen
model SUNDIAL (Bradbury et al., 1993; Smith et al., 1996).
All processes of the carbon and nitrogen dynamics are con-
sidered (Smith et al., 2010a, b). Additionally, in ECOSSE
processes of minor relevance for mineral arable soils are im-
plemented as well (e.g., methane emissions) to have a better
representation of processes that are relevant for other soils
(e.g., organic soils). ECOSSE can run in different modes
and for different time steps. The two main modes are site-
specific and limited data. In the later version, basis assump-
tions/estimates for parameters can be provided by the model.
This increases the uncertainty but makes ECOSSE a univer-
sal tool that can be applied for large-scale simulations even if
the data availability is limited. To increase the accuracy in the
site-specific version of the model, detailed information about
soil properties, plant input, nutrient application and manage-
ment can be added as available.

During the decomposition process, material is exchanged
between the soil organic matter (SOM) pools according to
first-order rate equations; characterized by a specific rate

constant for each pool; and modified according to rate modi-
fiers dependent on the temperature, moisture, crop cover and
pH of the soil. The model includes five pools with one of
them inert. The N content of the soil follows the decompo-
sition of the SOM, with a stable C : N ratio defined for each
pool at a given pH and with N being either mineralized or
immobilized to maintain that ratio. Nitrogen released from
decomposing SOM as ammonium (NH+4 ) or added to the soil
may be nitrified to nitrate (NO−3 ).

For spatial simulations the model is implemented in a
spatial model platform. This allows us to aggregate the in-
put parameter for the needed resolution. ECOSSE is a one-
dimensional model and the model platform provides the in-
put data in a spatial distribution and aggregates the model
outputs for further analysis. While climate data are interpo-
lated, soil data are represented by the dominant soil type or
by the proportional representation of the different soil types
in the spatial simulation unit (this is a grid cell in VERIFY).

Uncertainties in ECOSSE arise from three primary
sources: parameters, forcing data (including spatial and tem-
poral resolution) and model structure. These uncertainties are
not yet quantified.

Bookkeeping models

We make use of data from two bookkeeping models: BLUE
(Hansis et al., 2015) and H&N (Houghton and Nassikas,
2017).

The BLUE model provides a data-driven estimate of the
net land use change fluxes. BLUE stands for “bookkeeping
of land use emissions”. Bookkeeping models (Hansis et al.,
2015; Houghton et al., 1983) calculate land use change CO2
emissions (sources and sinks) for transitions between various
natural vegetation types and agricultural lands. The book-
keeping approaches keep track of the carbon stored in vegeta-
tion, soils and products before and after the land use change.
In BLUE, land use forcing is taken from the land use har-
monization, LUH2, project for estimates within the annual
Global Carbon Budget. The model provides data at annual
time steps and 0.25◦ resolution. Temporal evolution of car-
bon gain or loss, i.e., how fast carbon pools decay or regrow
following a land use change, is based on response curves
derived from literature. The response curves describe decay
of vegetation and soil carbon, including transfer to product
pools of different lifetimes, as well as carbon uptake due to
regrowth of vegetation and subsequent refilling of soil carbon
pools.

The H&N model (Houghton, 1983) calculates land use
change CO2 emissions and uptake fluxes for transitions be-
tween various natural vegetation types and agricultural lands
(croplands and pastures). The original bookkeeping approach
of Houghton (2003) keeps track of the carbon stored in veg-
etation and soils before and after the land use change. Car-
bon gain or loss is based on response curves derived from
literature. The response curves describe decay of vegetation
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and soil carbon, including transfer to product pools of dif-
ferent lifetimes, as well as carbon uptake due to regrowth
of vegetation and consequent re-filling of soil carbon pools.
Natural vegetation can generally be distinguished into pri-
mary and secondary land. For forests, a primary forest that
is cleared cannot recover back to its original carbon den-
sity. Instead, long-term degradation of primary forest is as-
sumed and represented by lowered standing vegetation and
soil carbon stocks in the secondary forests. Apart from land
use transitions between different types of vegetation cover,
forest management practices in the form of wood harvest vol-
umes are included. Different from dynamic global vegetation
models, bookkeeping models ignore changes in environmen-
tal conditions (climate, atmospheric CO2, nitrogen deposi-
tion and other environmental factors). Carbon densities at a
given point in time are only influenced by the land use his-
tory but not by the preceding changes in the environmental
state. Carbon densities are taken from observations in the lit-
erature and thus reflect environmental conditions of the last
decades.

Uncertainties are not explicitly quantified in BLUE so far.
A large contribution of uncertainty can be expected from var-
ious input datasets. Apparent uncertainties arise from the
land use forcing data, the equilibrium carbon densities of
soil and vegetation, and the response curves built to reflect
carbon pool decay and regrow after land use transitions. Fur-
thermore, Hansis et al. (2015) have shown that different ac-
counting schemes and initialization settings lead to different
emission estimates even decades after the model start.

FAOSTAT

The Statistics Division of the Food and Agricultural
Organization of the United Nations provides LULUCF
CO2 emissions for the period 1990–2017, available at
http://www.fao.org/faostat/en/#data/GL (last access: January
2021) and its sub-domains. The FAOSTAT emissions land
use database (metadata: http://fenixservices.fao.org/faostat/
static/documents/GL/GL_e_2019.pdf, last access: January
2021) is computed following Tier 1 of the 2006 IPCC Guide-
lines for National Greenhouse Gas Inventories (http://www.
ipcc-nggip.iges.or.jp/public/2006gl/index.html, last access:
December 2019). Geospatial data are the source of AD for
the estimates of emissions from cultivation of organic soils,
biomass and peat fires. GHG emissions are provided by
country, regions and special groups, with global coverage,
relative to the period 1990–present (with annual updates).
Land use total contains all GHG emissions and removals
produced in the different land use sub-domains, represent-
ing three IPCC land use categories: forest land, cropland
and grassland including biomass burning. LULUCF emis-
sions consist of CO2 associated with land use and change, in-
cluding management activities. CO2 emissions/removals are
computed at Tier 3 using carbon stock change. To this end,
FAOSTAT uses forest area and carbon stock data from FRA,

gap-filled and interpolated to generate annual time series. As
a result CO2 emissions/removals are computed for forest land
and net forest conversion, representing respectively the IPCC
categories “forest land” and “forest land converted to other
land uses”. CO2 emissions are provided by country, regions
and special groups, with global coverage, relative to the pe-
riod from 1990 to the most recent available year (with annual
updates), expressed as net emissions/removals in gigagrams
of CO2, by underlying land use emission sub-domain and by
aggregate (land use total).

Uncertainties are not available for the FAOSTAT esti-
mates.

TRENDY v7

The TRENDY (Trends in net land-atmosphere carbon ex-
change over the period 1980–2010) project represents a con-
sortium of dynamic global vegetation models (DGVMs) fol-
lowing identical simulation protocols to investigate spatial
trends in carbon fluxes across the globe over the past cen-
tury. As DGVMs, the models require climate, carbon diox-
ide and land use change input data to produce results. In
TRENDY, all three of these are harmonized to make the re-
sults across the whole suite of models more comparable. In
the case of VERIFY, we used the following 14 models from
version 7 of TRENDY, released in 2018 and therefore cov-
ering the period up to and including 2017: CABLE, CLASS,
CLM5, DLEM, ISAM, JSBACH, JULES, LPJ, LPX, OCN,
ORCHIDEE-CNP, ORCHIDEE, SDGVM and SURFEX.

While describing the details of all the models used here is
clearly not possible, DGVMs calculate prognostic variables
(i.e., a multitude of C, H2O and energy fluxes) from the fol-
lowing environmental drivers: air temperature, wind speed,
solar radiation, air humidity, precipitation and atmospheric
CO2 concentration. As the run progresses, vegetation grows
on each pixel, divided into generic types which depend on the
model (e.g., broadleaf temperate forests, C3 crops), which
cycle carbon between the soil, land surface, and atmosphere
through processes such as photosynthesis, litter fall and de-
cay. Limited human activities are included depending on the
model, typically removing aboveground biomass on an an-
nual basis.

Among other environmental indicators, DGVMs simulate
positive and negative CO2 emissions from plant uptake, soil
decomposition, and harvests across forests, grasslands and
croplands. Activity data are based on land use and land cover
maps. For TRENDY, pixel land cover/land use fractions were
based on the land use map LUH2 (Hurtt et al., 2020) and
the HYDE land_use change dataset (Klein Goldewijk et al.,
2017a, b). Both of these maps rely on FAO statistics on agri-
cultural land area and national harvest data.

Uncertainties in TRENDY v7 are model-specific and de-
scribed by Le Quéré et al. (2018). The spread of the 14
TRENDY models used by this study (Fig. 9) gives an idea
of the uncertainty due to model structure in dynamic global
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vegetation models, as the forcing data were harmonized for
all models.

A2.2 Top-down CO2 emission estimates

CarboScopeReg, GCP 2019 (CTE, CAMS,
CarboScopeReg) and EUROCOM

Top-down estimates of land biosphere fluxes are provided by
a number of different inverse modeling systems that use at-
mospheric concentration data as input, as well as prior infor-
mation on fossil emissions, ocean fluxes and land biosphere
fluxes. The land biosphere fluxes, and in some systems the
ocean fluxes, are estimated using a statistical optimization in-
volving atmospheric transport models. The inversion systems
differ in the transport models used, optimization methods,
spatiotemporal resolution, boundary conditions and prior er-
ror structure (spatial and temporal correlation scales); thus
using ensembles of such systems is expected to result in more
robust top-down estimates.

For this study, the global inversion results are taken from
the GCP 2019 (Global Carbon Project) models CTE (Car-
bonTracker Europe), CAMS (Copernicus Atmosphere Mon-
itoring Service) and CarboScopeReg, with spatial resolutions
ranging from 1◦× 1◦ for certain regions to 4◦× 5◦. For de-
tails see Friedlingstein et al. (2019).

Top-down estimates at regional scales (up to 0.25◦× 0.25◦

resolution) for the period 2006–2015 are taken from the six
models used within EUROCOM (Monteil et al., 2020). These
inversions make use of more than 30 atmospheric observing
stations within Europe, including flask data and continuous
observations. The CarboScopeReg (CSR) inversion system
(also included within the EUROCOM ensemble) was also
run for the extended period 2006–2018 using four differ-
ent settings: three network configurations using 15, 40, or
46 sites and one using all 46 sites but a prior error correla-
tion length scale that is a factor of 2 larger (200 instead of
100 km).
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Appendix B

B1 Overview figures

Figure B1. EU27+UK total annual GHG emissions from UNFCCC NGHGI (2019) submissions split per sector.

Figure B2. EU27+UK total annual GHG emissions from the LULUCF sector split in classes and sub-classes.

Figure B3. Unfolded overlapping (2006–2015) mean column from Fig. 10, Sect. 3.3.4. The dotted lines represent the mean of the time series.
The NGHGI UNFCCC uncertainty is calculated for 2018 as the relative error on the NGHGI value, computed with the 95 % confidence
interval method 16 %. The uncertainty of the three inversions (EUROCOM, CarboScopeReg and GCP) represents the averaged min/max
values of the model ensemble estimates.
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B2 Source-specific methodologies: AD, EFs and
uncertainties

Table B1. Source-specific activity data (AD), emission factors (EFs) and uncertainty methodology for all current VERIFY and non-VERIFY
2019 data product collection.

Data sources
CO2 emission
calculation

AD/tier EFs/tier Uncertainty assessment method Emission data availability

UNFCCC
NGHGI (2019)

Country-specific infor ma-
tion consistent with the IPCC
Guidelines.

IPCC Guidelines/ country-
specific information for higher
tiers.

IPCC Guidelines
(https://www.ipcc-nggip.iges.or.
jp/public/2006gl/) for calculating
the uncertainty of emissions
based on the uncertainty of AD
and EFs – two different ap-
proaches: (1) error propagation
and (2) Monte Carlo simulation.

NGHGI official data
(CRFs) are found at
https://unfccc.int/process-
and-meetings/transparency-
and-reporting/reporting-
and-review-under-the-
convention/greenhouse-
gas-inventories-annex-i-
parties/submissions/national-
inventory-submissions-2019
(last access: January 2021).

Fossil CO2

BP
CDIAC
EIA
IEA
GCP
CEDS

For further details, see Andrew (2020).

EDGAR v5.0 International Energy Agency
(IEA) for fuel combustion.
Food and Agriculture Organiza-
tion (FAO) for agriculture.
US Geological Survey (USGS)
for industrial processes (e.g.,
cement, lime, ammonia and
ferroalloys).
GGFR/NOAA for gas flaring.
World Steel Association for iron
and steel production.
International Fertilizer Associa-
tion (IFA) for urea consumption
and production.
Complete description of the
data sources can be found in
Janssens-Maenhout et al. (2019)
and in Crippa et al. (2019).

IPCC 2006, Tier 1 or Tier 2 de-
pending on the sector.

Tier 1 with error propagation by
fuel type for CO2 and accounting
for covariances.

https://edgar.jrc.ec.europa.eu/
overview.php?v=50_GHG (last
access: January 2020)

IAP RAS fast-track
fCO2 inversion

Tier 3 top-down 0.1◦× 0.1◦ reso-
lution maps of annual averages of
fossil CO2 anthropogenic emis-
sions from EDGAR v4.3.2.
Assimilation of satellite atmo-
spheric concentration data: total
column CO from IASI and tropo-
spheric column NO2 from OMI.

Tier 3 top-down regional inver-
sions of CO and NOx emis-
sions from the EMEP CEIP as
prior knowledge of the emissions
and CO2 /CO and CO2 /NOx
emission ratios associated with
the combustion of fossil from
EDGARv4.3.2.

Bayesian analysis in the CO
and NOx inversions along with
propagation of uncertainties in
fCO2 /CO and fCO2 /NOx
emission ratios.

Detailed gridded data can be
obtained by contacting the data
providers:
Gregoire Broquet
(gregoire.broquet@lsce.ipsl.fr)
and
Igor Konovalov
(konov@ipfran.ru).
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Table B1. Continued.

Data sources
CO2 emission
calculation

AD/tier EFs/tier Uncertainty assessment method Emission data availability

CO2 land: bottom-up

BLUE From LUH2: data on harvest,
land cover types (primary, sec-
ondary, pasture, crop), and gross
land use transitions (e.g., from
primary to pasture); based on
Pongratz et al. (2008) and Ra-
mankutty and Foley (1999): plant
functional types (PFTs) of natu-
ral vegetation types.

Tier 3 (2006 IPCC Guidelines);
PFT and land-cover-type-specific
response curves describing the
decay and regrowth of vegetation
and soil carbon.

N/A Detailed gridded data can be
obtained by contacting the data
provider:
Julia Pongratz
(julia.pongratz@geographie.uni-
muenchen.de).

H&N Simple assumptions about C-
stock densities (per biome or per
biome/country) based on litera-
ture.

Transient change in C stocks fol-
lowing a given transition (time-
dependent EFs after an land use
transition).

N/A Detailed gridded data can be
obtained by contacting the data
provider:
Richard A. Houghton
(rhoughton@woodwellclimate.org).

ECOSSE The model is a point model,
which provides spatial results
by using spatial distributed input
data (lateral fluxes are not con-
sidered). The model is a Tier 3
approach that is applied on grid
map data, polygon organized in-
put data or study sites.

IPCC 2006: Tier 3
The simulation results will be al-
located due to the available infor-
mation (size of spatial unit, repre-
sentation of considered land use,
etc.).

N/A Detailed gridded data can be
obtained by contacting the data
providers:
Matthias Kuhnert
(matthias.kuhnert@abdn.ac.uk)
and Pete Smith
(pete.smith@abdn.ac.uk).

EPIC-IIASA Cropland: static 1× 1 km
cropland mask from CORINE–
PELCOM. Initial SOC stock
from the map of organic carbon
content in the topsoil (Lugato
et al., 2014). Static crop man-
agement and input intensity by
NUTS2 calibrated for 1995–
2010 (Balkovič et al., 2013).
Crop harvested areas by NUTS2
from EUROSTAT. The model is
the Tier 3 approach.

IPCC 2006: Tier 3
Land management and input fac-
tors for the cropland remaining
cropland category as simulated
by the EPIC-IIASA modeling
platform, assuming the business-
as-usual crop management cali-
brated for the 1995–2010 period.
A 50 ha field is considered in
each grid cell.

Sensitivity and uncertainty anal-
ysis of EPIC-IIASA regional soil
carbon modeling (Balkovič et al.,
2020).

Detailed gridded data can be ob-
tained by contacting the data
provider:
Juraj Balcovič
(balkovic@iiasa.ac.at).

ORCHIDEE For the land cover/land use input
maps: data on wood harvest from
the FAO.

Tier 3 model, process based. Any
emission factors enter in the form
of generic parameters for a given
ecosystem type fit against obser-
vational data (both site level and
remotely sensed).

None, though some information
on uncertainty due to model
structure is given by looking at
the spread from the TRENDY
suite of models, of which OR-
CHIDEE is a member.

Detailed gridded data can be
obtained by contacting the data
providers:
Matthew Mcgrath
(matthew.mcgrath@lsce.ipsl.fr)
and
Philippe Peylin
(peylin@lsce.ipsl.fr).

TRENDY v7 For the land cover/land use input
maps: data on wood harvest and
agricultural land from the FAO.

Tier 3 models, process based.
Any emission factors enter in the
form of generic parameters for a
given ecosystem type fit against
observational data (both site level
and remotely sensed).

The spread of the 14 TRENDY
models used gives an idea of the
uncertainty due to model struc-
ture in dynamic global vegetation
models, as the forcing data were
harmonized for all models.

Detailed gridded data can be ob-
tained by contacting the data
provider:
Stephen Sitch
(s.a.sitch@exeter.ac.uk).
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Table B1. Continued.

Data sources
CO2 emission
calculation

AD/tier EFs/tier Uncertainty assessment method Emission data availability

CO2 land: bottom-up

Statistical predic-
tion model for CO2
in inland waters

HydroSHEDS 15s (Lehner et
al., 2008) and Hydro1K (USGS,
2000) for river network, Hydro-
LAKES for lakes and reservoirs
network and surface area (Mes-
sager et al., 2016); river pCO2
data from GLORICH (Hartmann
et al., 2014), lake pCO2 database
from Sobek et al. (2005); river
channel slope and width cal-
culated from GLOBE-DEM
(GLOBE-Task-Team, 2020) and
runoff data from Fekete et al.
(2002). Geodata for predictors
of pCO2 and gas transfer coef-
ficient include air temperature,
precipitation and wind speed
(Hijmans et al., 2005), pop-
ulation density (CIESIN and
CIAT, 2005), catchment slope
gradient (HydroSHEDS 15s),
and terrestrial NPP (Zhao et al.,
2005)

N/A Monte Carlo runs (uncertainty on
pCO2 and gas transfer velocity).

Detailed gridded data can be ob-
tained by contacting the data
providers:
Ronny Lauerwald
(ronny.lauerwald@ulb.ac.be) and
Pierre Regnier
(pierre.regnier@ulb.ac.be).

CBM National forest inventory data,
Tier 2.

EFs directly calculated by model,
based on specific parameters
(i.e., turnover and decay rates)
defined by the user.

As described in Sect. 3.4 in Pilli
et al. (2017).

Detailed gridded data can be
obtained by contacting the data
providers:
Roberto Pilli
(roberto.pilli713@gmail.com)
and Giacomo Grassi
(giacomo.grassi@ec.europa.eu).

EFISCEN National forest inventory data,
Tier 3.

Emission factor is calculated
from net balance of growth minus
harvest.

Sensitivity analysis on EFISCEN
V3 is described in Schelhaas et
al. (2007).
Total sensitivity is mostly caused
by young forest growth, width of
volume classes and age of felling.

Detailed gridded data can be ob-
tained by contacting the data
providers:
Gert-Jan Nabuurs
(gert-jan.nabuurs@wur.nl) and
Mart-Jan Schelhaas
(martjan.schelhaas@wur.nl).

FAOSTAT FAOSTAT land use domain; har-
monized world soil; ESA-CCI;
MODIS 6 burned area products

IPCC Guidelines IPCC (2006, vol. 4, p. 10.33) –
confidential. Uncertainties in es-
timates of GHG emissions are
due to uncertainties in emission
factors and activity data. They
may be related to, inter alia, nat-
ural variability, partitioning frac-
tions, lack of spatial or temporal
coverage, or spatial aggregation.

Agriculture total and sub-
domain-specific GHG emissions
are found for download at
http://www.fao.org/faostat/en/
#data/GT
(last access: January 2021).
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Table B1. Continued.

Data sources
CO2 emission
calculation

AD/tier EFs/tier Uncertainty assessment method Emission data availability

CO2 land: top-down

CarboScopeReg
GCP ensemble
(CTE, CAMS,
CarboScopeReg)
EUROCOM
(PYVAR-
CHIMERE,
LUMIA, FLEX-
INVERT, Car-
boScopeReg,
CTE-Europe)

Tier 3 top-down approach,
prior information from fos-
sil emissions, ocean fluxes,
and biosphere–atmosphere ex-
change.
Spatial resolutions ranging from
1◦× 1◦ for certain regions to
4◦× 5◦. EUROCOM uses more
than 30 atmospheric stations.
CarboScopeReg uses four dif-
ferent settings (as described in
Appendix A2).

Tier 3 top-down
Inversion systems based on atmo-
spheric transport models.

CarboScopeReg – Gaussian
probability distribution function,
where the error covariance
matrix includes errors in prior
fluxes, observations and transport
model representations.
GCP: the different method-
ologies, the land use and land
cover dataset, and the different
processes represented trigger the
uncertainties between models.
A semi-quantitative measure
of uncertainty for annual and
decadal emissions as a best value
judgment equals at least a 68 %
chance (±1σ ).
EUROCOM: account for source
of uncertainties via prior and
model and observation error
covariance matrices; assessment
of the resulting uncertainties in
fluxes based on spread.

Detailed gridded data can be
obtained by contacting the data
providers:
CarboScopeReg –
Christoph Gerbig
(cgerbig@bgc-jena.mpg.de) and
Saqr Munassar
(smunas@bgc-jena.mpg.de);
GCP ensembles –
Pierre Friedlingstein
(p.friedlingstein@exeter.ac.uk);
EUROCOM –
Marko Scholze
(marko.scholze@nateko.lu.se)
and Gregoire Broquet
(gregoire.broquet@lsce.ipsl.fr).

https://doi.org/10.5194/essd-13-2363-2021 Earth Syst. Sci. Data, 13, 2363–2406, 2021



2400 A. M. R. Petrescu et al.: European synthesis of CO2 emissions and removals for the EU27 and UK: 1990–2018

Author contributions. AMRP, MJM and AJD designed research
and led the discussions; AMRP wrote the initial draft of the paper
and edited all the following versions together with MJM, PP and
AJD; RMA and MJM made the CO2 fossil figures and CO2 land
figures respectively; MJM and PP processed the original data sub-
mitted to the VERIFY portal; MJM, PP and PB designed and are
managing the web portal; GPP provided the Figs. B1 and B2 and
performed a very detailed review of a previous version; AMRP pro-
cessed the UNFCCC data and uncertainties; CQ helped make Fig. 4;
HACDvdG led the initial discussions within the fossil CO2 work-
ing group and gave valuable suggestions to the manuscript struc-
ture; PC, GB, FNT, CG, JP, JMG, GG, GJN, PR, RL, MK, JB, RP,
IBK, LP, PS, RLT, GC and AJD read, gave comments and advice on
previous versions of the manuscript; all co-authors commented on
specific parts related to their datasets; MJM, PP, PB, FNT, PR, RL,
MK, JB, RP, IBK, RAH, MC, RG, IL, CG, SM, GC, GM, UK and
MS are data providers.

Competing interests. The authors declare that they have no con-
flict of interest.

Disclaimer. The views expressed in this publication are those of
the author(s) and do not necessarily reflect the views or policies of
FAO.

Acknowledgements. FAOSTAT statistics are produced and dis-
seminated with the support of its member countries to the FAO
regular budget. Philippe Ciais acknowledges the support of the
European Research Council Synergy project SyG-2013-610028
IMBALANCE-P and from the ANR CLAND Convergence Insti-
tute. We acknowledge the work of the entire EDGAR group (Mar-
ilena Muntean, Diego Guizzardi, Edwin Schaaf and Jos Olivier).
We acknowledge Stephen Sitch and the authors of the DGVMs
TRENDY v7 ensemble models for providing us with the data.

Financial support. This research has been supported by the
H2020 European Research Council (grant no. 776810).

Review statement. This paper was edited by Nellie Elguindi and
reviewed by two anonymous referees.

References

Andrew, R. M.: Global CO2 emissions from cement pro-
duction, 1928–2018, Earth Syst. Sci. Data, 11, 1675–1710,
https://doi.org/10.5194/essd-11-1675-2019, 2019.

Andrew, R. M.: A comparison of estimates of global carbon dioxide
emissions from fossil carbon sources, Earth Syst. Sci. Data, 12,
1437–1465, https://doi.org/10.5194/essd-12-1437-2020, 2020.

Arneth, A., Sitch, S., Pongratz, J., Stocker, B. D., Ciais, P., Poulter,
B., Bayer, A. D., Bondeau, A, Calle, L., Chini, L. P., Gasser, T.,
Fader, M., Friedlingstein, P., Kato, E., Li, W., Lindeskog, M.,
Nabel, J. E. M. S., Pugh, T. A. M., Robertson, E., Viovy, N., Yue

E., and Zaehle, S.: Historical carbon dioxide emissions caused by
land-use changes are possibly larger than assumed, Nat. Geosci.,
10, 79–84, https://doi.org/10.1038/ngeo2882, 2017.
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