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This is anOpe
Abstract – In addition to the major fatty acids widely studied, our diet contains many bioactive fatty acids
less frequently investigated such as n-3 docosapentaenoic acid (n-3 DPA), natural trans fatty acids,
conjugated fatty acids (CLAs), furan fatty acids (FuFAs), branched chain fatty acids (BCFAs) and fatty acid
esters of hydroxyl fatty acids (FAHFAs).Many of themmay have beneficial health effects, particularly in the
prevention of cardiovascular diseases, inflammation and metabolic disorders such as diabetes. This review
aims to give a brief overview of the current knowledge on these lipids. Thus, information about biosynthesis,
food and tissue content, daily intake, biological and potential health effects of these fatty acids is provided.

Keywords: bioactive lipids / biosynthesis / food content / dietary intake / biological and health effects

Résumé – Effets potentiellement bénéfiques sur la santé de certains acides gras peu courants de
l’alimentation. Parallèlement aux acides gras prépondérants qui sont largement étudiés, notre alimentation
contient de nombreux acides gras bioactifs moins fréquemment considérés tels que l’acide
docosapentaénoïque n-3 (n-3 DPA), des acides gras trans naturels, des acides gras conjugués (CLAs),
des acides gras furaniques (FuFAs), des acides gras à chaîne ramifiée (BCFAs) et des esters d’acides gras
hydroxylés (FAHFAs). Nombreux d’entre eux peuvent avoir des effets bénéfiques sur la santé, notamment
dans la prévention des maladies cardiovasculaires, de l’inflammation et des troubles métaboliques tels que le
diabète. Cette revue vise à donner un bref aperçu des connaissances actuelles sur ces lipides. Ainsi, des
informations sur la biosynthèse, les teneurs tissulaires et dans les aliments, l’apport alimentaire quotidien,
les effets biologiques et les effets santé potentiels de ces acides gras sont rapportés.

Mots clés : lipides bioactifs / biosynthèse / compositiondesaliments / apport alimentaire / effets biologiques et sur la santé
Food plays an important role not only for an optimal
growth and development but also in the maintenance of a
good health. While the role of nutrients and micronutrients
and the needs of the organism in these components are widely
studied, there are many molecules in our diet whose roles are
yet to be investigated more extensively. These include many
bioactive lipids with potential beneficial health effects such as
n-3 docosapentaenoic acid (n-3 DPA), natural trans fatty
acids, conjugated fatty acids (CLAs), furan fatty acids
(FuFAs), branched chain fatty acids (BCFAs) and fatty acid
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hydroxylated fatty acid esters (FAHFAs). This review aims to
give a brief overview of the current knowledge regarding
these lipids. We present their structure and their biosynthesis
(Fig. 1 for precursors and structure of these lipids), their
content in food and their daily intake (Tab. 1), their tissue
content, their biological and potential health effects. Some
dietary lipids can be toxic (cyclopropene-containing lipids,
mono-unsaturated long-chain fatty acids as erucic acid,
trans-unsaturated fatty acids from industrial hydrogenated
fats, and lipid peroxides) (Gurr et al., 2002). However, except
trans fatty acids of industrial origin, they are not discussed
in this article.
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Fig. 1. Examples of some uncommon fatty acids and their precursors.

Table 1. Daily intake and main dietary sources of some bioactive lipids.

Daily intake Main dietary sources

n-3 DPA 10 to100mg/d Seafood

Natural trans fatty acids 0.5 to 0.9% total energy intake Dairy products
Beef and lamb meat

CLAs Hundreds of milligrams/d Dairy products
Beef and lamb meat

FuFAs Tens of milligrams/d Fish
BCFAs About 400mg/d Dairy products

Meat and fish
FAHFAs No data available Animal products

Plant products and milk

DPA: docosapentaenoic acid; CLAs: conjugated fatty acids; FuFAs: furan fatty acids; BCFAs: branched chain fatty acids; FAHFAs: fatty acid
esters of hydroxyl fatty acids.
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1 The n-3 docosapentaenoic acid DPA

1.1 Structure and biosynthesis

n-3 DPA (C22:5 n-3) belongs to the n-3 polyunsaturated
fatty acid (PUFA) family. It is also called clupanodonic acid. It
is an intermediate between eicosapentaenoic acid (EPA, C20:5
n-3) and docosahexaenoic acid (DHA, C22:6 n-3) in the
conversion pathway of n-3 PUFA from a-linolenic acid (ALA,
C18:3 n-3). n-3 DPA as a reservoir is metabolized into DHA,
and further retro-conversed back to EPA (Guo et al., 2020).

1.2 Food content and daily intake

n-3 DPA is present in numerous foods in notable quantities,
in particular in seafood (1 to 5% of total fatty acids in fish, i.e.
up to 1/3 of EPA or DHA levels taken individually) as well as
in human breast milk (0.2% of total fatty acids) (Drouin, 2018).
For example, fish oils such as menhaden or sardine oil contain
in percentage of total fatty acids: 10–13%EPA, 2–5%DPA and
Page 2
9–11% DHA. Atlantic salmon contains 0.3 g of EPA, 0.3 g of
DPA and 1.1 g of DHA per 100 g. (Kaur et al., 2016).

The estimated average consumption of n-3 DPA is between
10 and 106mg/d inWestern countries and Japan (Richter et al.,
2019). n-3 DPA may represent a significant proportion of the
total long-chain n-3 fatty acid intake, depending on the
population, up to 30% of average total long-chain n-3 fatty acid
intake in some cases (Richter et al., 2019). However, the
digestibility of n-3 DPA in rodents (digestibility reflecting net
absorption in the digestive tract after enzymatic hydrolysis by
digestive enzymes and microflora of the gastrointestinal tract)
is lower than that of EPA and DHA (Drouin et al., 2019a).

1.3 Tissue content and biological functions

The majority of the tissues present n-3 DPA levels in the
order of 5% compared to DHA levels (Ghasemi Fard et al.,
2021). In the brain, n-3 DPA is the second n-3 PUFA found,
although at levels 70 times lower than DHA (Drouin et al.,
2019b).
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n-3 DPA is a source of EPA and to a lesser extent DHA in
major metabolic tissues (liver, heart, lung, spleen and kidney),
two fatty acidswith numerous known health benefits.Moreover,
n-3 DPA is the precursor of many major lipid mediators
(protectins, resolvins, maresins, isoprostanoids), involved in the
pro-resolution of inflammation, with specific effects compared
to other n-3 PUFAs (Ghasemi Fard et al., 2021).

1.4 Health effects

Low commercial availability of n-3 DPA in sufficient
quantity, at high purity and at an affordable price (Drouin,
2018; Drouin et al., 2019b) has limited its studies in rodents
and humans. Thus, only 11 studies in animals and 2 studies in
humans with n-3 DPA in pure form have been reported
(Ghasemi Fard et al., 2021). The effects of n-3 DPA on lipid
parameters associated with the prevention of cardiovascular
diseases are the most documented (anti-inflammatory
properties, inhibition of cytokine synthesis, reduction of
thrombosis and inhibition of atherosclerosis, ...)
(von Schacky and Harris, 2018). The health effects of n-3
DPA could be both independent and shared with EPA and
DHA (Richter et al., 2019). It is important to note that the n-3
DPA could contribute to increasing the n-3 fatty acid status, as
n-3 DPA is more present in meat than EPA or DHA and while
the sources of fatty fish are limited; therefore, n-3 DPA could be
helpful tomaintain a suitable n-6/n-3 ratio which is the indicator
of a preventive diet for the control of non-communicable
diseases (Drouin et al., 2019b).Drouin et al. recently published a
comprehensive review on n-3 DPA (Drouin et al., 2019b).

2 The trans fatty acids

2.1 Structure and biosynthesis

Trans fatty acids are fatty acids that have at least one
double bond in the trans configuration while most of the
naturally occurring unsaturated fatty acids contain cis-double
bonds. Naturally occurring trans fatty acids are mostly
monounsaturated fatty acids, mainly transC18:1 n-7 (vaccenic
acid), trans-C16:1 n-7 and all isomers of oleic acid (18:1 n-9)
(Leray, 2013). There are also di-unsaturated trans fatty acids,
derived from linoleic acid (18:2 n-6) or tri-unsaturated trans
fatty acids, derived from linolenic acid (18:3 n-3). Conjugated
linoleic acids (two conjugated double bonds, one of which is in
a trans configuration) are discussed in Section 3.

Naturally occurring trans fatty acids come from a bacterial
isomerisation of fatty acids in the digestive tract of ruminants
(Leray, 2013). The eukaryotes are unable to synthesize them,
however, it is possible that they can be synthesised by the
action of intestinal microbiota on dietary fatty acids. Trans
fatty acids of industrial origin are formed during the partial
hydrogenation of vegetable or fish oils. Thermal treatments
(frying, cooking, ...) can also produce trans fatty acids of
(poly)unsaturated oils and fats.

2.2 Food content and daily intake

Trans fatty acids of natural origin are found indairy products
and beef and sheep meats. Butter contains 3 to 7 g/100 g of
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natural trans fatty acids, cheeses from 1.3 to 2 g/100 g, whole
milks around 0.15g/100g, vegetable oils between 0.5 and
2g/100g, beef and sheep meat from 0.1 to 0.5g/100g (Leray,
2013).Trans fatty acids from industrial process areusedby the food
industry as stabilizers and preservatives. Thus, they are found in
many processed food products such as pastries, pizzas, quiches
(Afssa, 2005).

According to the results of the INCA2 survey, the average
and 95th percentile intake of the total trans fatty acids in the
French population was estimated at 1–1.5% of total energy
intake, regardless of age and sex (Afssa, 2009). More than half
is of natural origin (0.5–0.9%), thus below the ANSES
recommendations to limit the total trans fatty acid intake to
less than 2% of the total energy intake (Afssa, 2009).

2.3 Tissue content and biological functions

In the 2000s, the total amount of trans fatty acids was
2.32 ± 0.50% of the total fatty acids in adipose tissue of French
women (Boue et al., 2000) andmean adipose tissue levels were
lower in many European countries than in the USA (Arab,
2003).

The trans configuration impacts the physicochemical and
functional properties of monounsaturated fatty acids. It makes
them closer to the properties of the corresponding saturated
fatty acids. Thus, high amounts of trans fatty acids may
decrease the membrane fluidity and increase the oxidative
stress (Leray, 2013), and may induce inflammation and
apoptosis of the cells (Qiu et al., 2018).

2.4 Health effects

A number of epidemiological studies have shown a
relationship between trans fatty acid intake and cardiovascular
diseases. Controlled feeding studies suggest that dietary trans
fatty acids raise serum cholesterol concentrations to a very
similar extent as saturated fatty acids (Gurr et al., 2002; Leray,
2013). Numerous studies show that the risks of cardiovascular
diseases with dietary trans fatty acids are attributable to
industrial trans fatty acid (Oteng and Kersten, 2020). In
contrast, no increase in cardiovascular risk has been observed
with the consumption of naturally occurring trans fatty acids at
the current consumption levels (Guillocheau et al., 2019).
Studies on cells, rodents and humans suggest physiological
benefits on inflammation, type 2 diabetes and obesity
(Guillocheau et al., 2019), without knowing whether these
naturally occurring trans fatty acids act directly or through
their metabolites (Guillocheau et al., 2019). Guillocheau et al.
recently published a comprehensive review on natural trans
fatty acids (Guillocheau et al., 2019).

3 The conjugated linoleic acid CLAs

3.1 Structure and biosynthesis

Conjugated linoleic acid (CLA) is a collective term for a
mixture of positional and geometrical isomers of linoleic
acid (LA,C18:2 n-6) containing conjugated double bounds.
Some linoleic acid isomers have conjugated doubles with one
of them (at least) in a trans configuration (Leray, 2013).
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Rumenic acid (9-cis, 11-trans18:2 n-6) is the most abundant
CLA. There are other conjugated fatty acids such as
conjugated linolenic acids (CLNAs), conjugated eicosapenta-
enoic acids (CEPAs) and conjugated docosahexaenoic acid
(CDHAs) (Leray, 2013).

CLAs are produced naturally in the rumen of ruminant
animals by fermentative bacteria (Butyrivibrio fibrisolvens)
which isomerize linoleic acid into CLAs. Ruminants also
synthesize CLAs by delta9-desaturase and from trans-11 18:1
(Leray, 2013).

3.2 Food content and daily intake

Of the possible isomers of CLA, about 20 have been
identified in foods (Leray, 2013). Beef meat contains up to
120mg/100 g of CLA and lamb meat about 80mg/100 g. The
main isomer present in milk fat is the rumenic acid, which
accounts for 80% to 90% of the total CLA. Rumenic acid
represents up to 700mg/100 g in butter and up to 100 to
250mg/100 g in cheese. Women’s milk contains the same
amount as cow’s milk (10mg/100 g). CLA, including rumenic
acid, can also be found after heating vegetable oils and in
certain food products. In fact, it is possible to obtain CLA
through the partial hydrogenation of linoleic acid or by thermal
treatments, and thus to find up to 0.5 g of CLA for 100 g of
products in certain food products (industrial pasta, cookies)
(Leray, 2013).

The intake of CLA from a typical diet is estimated at
several 100mg/d in various countries (Parodi, 2003). In the
2000s, mean daily intake of rumenic acid was 250mg/d to
320mg/d in female students in Germany (Fremann et al.,
2002), mean daily intake of CLAwas 176mg total CLA/d for
men and 104mg for women in the USA and was estimated to
be almost 100mg in the UK (Ritzenthaler et al., 2001).

3.3 Tissue content and biological functions

To our knowledge, no data are found in the literature on
CLA tissue content in human. It was demonstrated in vitro and
in vivo in animal models that CLA plays a major role in lipid
metabolism, especially as regards the oxidative cellular
system. In fact, in conjugated fatty acids, the electrons
become delocalized over conjugated double bonds, conferring
to CLA unusual chemical properties (Gurr et al., 2002). In
addition to its role on lipid metabolism and lipid peroxidation,
the impact of CLA on energy expenditure, insulin metabolism
and inflammation were also observed (Lehnen et al., 2015;
Wang et al., 2020a).

3.4 Health effects

Some animal studies show that CLA (and also CLNA,
CEPA, CDHA) may have some beneficial health effects such
as reduction of body fat, improved insulin resistance, anti-
thrombogenic and anti-carcinogenic effects, reduction of
atherosclerosis, improved lipid profile, modulation of the
immune system and stimulation of bone mineralization (Wang
et al., 2020a). The most studied CLA supplementation effect is
its capacity to alter the body composition, promoting an
increase in lean mass and reduction of the fatty mass
Page 4
(Lehnen et al., 2015). However, in humans, the clinical
evidence appears to be insufficient and not unanimous
regarding the health effects of CLA (Ritzenthaler et al.,
2001; Lehnen et al., 2015). Of the different isomers of CLA,
rumenic acid has been reported to be the most bioactive CLA
(Belury, 1995). Lehnen et al. recently published a compre-
hensive review on CLAs (Lehnen et al., 2015).

4 The furan fatty acids FuFAs

4.1 Structure and biosynthesis

The furanfattyacids (FuFAs)are fattyacidswitha furanring.
To date, thirty different structures have been identified (Glass
et al., 1974; Wang et al., 2020b). The most common FuFAs are
methylated or dimethylated forms. However, non-methylated
furans have been also described (Yurawecz et al., 1995).

Methylated FuFAs are formed from polyunsaturated fatty
acids, in particular linoleic acid (Batna et al., 1993) and non-
methylated FuFAs are formed from conjugated dienes, in
particular CLA (Yurawecz et al., 1995). Currently, the
biosynthetic pathway of FuFAs is not completely established
and might depend on the species considered (plant, bacteria,
animal, ...).

4.2 Food content and daily intake

Fish are an important source of FuFAs, with 1 to 4% of total
fatty acids in the form of FuFAs (Vetter et al., 2012). Butter and
dairy products contain 5 to 50mg/100 g FuFAs (Vetter et al.,
2012;Wendlinger and Vetter, 2014). FuFAs have been found in
wheat, rice, potatoes, cabbage, orange, lemon, raspberries,
with levels ranging from 1 to 350mg/g dry matter (Hannemann
etal.,1989). Soybeans contain FuFAs at levels of 30 to 300mg/g
(Guth and Grosch, 1991; Wu et al., 1997) while the levels are
not quantifiable in olives, sesame, nuts, grape seeds and
sunflower (Wahl et al., 1994).

Few data exist on the ingested amount of FuFAs. The
estimated average consumption of FuFAs was estimated in
Germany in 2014, and observed to be about 10 to 25mg/day
(6.6 to 16.5mg via fish, 0.7–4.8mg via milk fat, 1.4 to 2.5mg
via soybean oil, 0.2–0.5mg via rapeseed oil and 0.008mg via
olive oil) (Wendlinger and Vetter, 2014).

4.3 Tissue content and biological functions

To our knowledge, no data are found in the literature on
FuFAs tissue content in human. FuFAs possess antioxidant
properties due to the presence of the furan ring (Okada et al.,
1990, 1996; Masuchi Buscato et al., 2020). They also have
anti-microbial (Knechtle et al., 2014; Dasagrandhi et al., 2016;
Kimura et al., 2018) and anti-inflammatory (Wakimoto et al.,
2011; Khan et al., 2018; Lauvai et al., 2019) properties. FuFAs
may thus participate to the anti-inflammatory effects of fish
oils and fish-based diets.

4.4 Health effects

FuFAs present in fish may be involved in the beneficial
effects of fish consumption on cardiovascular disease
(Spiteller, 2005). Several in vitro studies support this hypothesis
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(Graff et al., 1984; Okada et al., 1996; Fuchs and Spiteller,
1999) as well as studies conducted in humans (Wahl et al.,
1994; Zheng et al., 2016; Tovar et al., 2017). Moreover, in
vitro FuFAs modulate lipid metabolism in adipose tissues
(Lengler et al., 2012; Lauvai et al., 2019). The 3-carboxy-4-
methyl-5-propyl-2-furanpropanoic acid (CMPF), a degrada-
tion product of FuFAs, also derived from the metabolism of n-
3 PUFAs, could prevent or even reverse hepatic steatosis
(Prentice et al., 2018; Dai et al., 2019; Mohan et al., 2019).
Alvarado et al. recently published a comprehensive review on
FuFAs (Alvarado et al., 2021).

5 The branched chain fatty acids BCFAs

5.1 Structure and biosynthesis

BCFAs are saturated fatty acids with one or more methyl
groups in the linear carbon chain. There are two distinct series
of BCFAs: the iso-series where the terminal group is

and the anteiso-series where the terminal group is

(Gurr et al., 2002). However, branch points can also

be found in other positions. More than 50 BCFAs have been
identified in ruminant-derived fats (Taormina et al., 2020).
Monomethyl BCFAs are themost abundant. Amongmultimethyl
BCFAs, phytanic acid (3,7,11,15-tetramethylhexadecanoic acid)
and pristanic acid (2,6,10,14-tetramethylpenta-decanoic acid) are
predominantalthoughin lesseramountscompared tomonomethyl
structures (Leray, 2013; Taormina et al., 2020).

In ruminants, BCFAs are synthesized by microorganisms
in the rumen, from dietary branched-chain amino acids such as
valine, leucine and isoleucine (Taormina et al., 2020). Wallace
et al. (Wallace et al., 2018) demonstrated also that BCFAs were
synthesized de novo in adipose tissues from branched-chain
amino acids catabolized in mitochondria, and then exported by
carnitine acetyltransferase to the cytosol, where they were
elongated by fatty acid synthase.

5.2 Food content and daily intake

BCFAs occur widely but mainly at low concentrations in
animal fat and some marine oils (Gurr et al., 2002). BCFAs are
present in the milk and tissues of ruminants consumed by
humans (beef, sheep, goat). In cow’s milk, the concentration of
phytanic acid ranges from 0.16 to 0.59 g/100 g of lipids and
that of pristanic acid from 0.03 to 0.09 g/100 g of lipids (Leray,
2013). In some wild fishes, BCFAs were only 1%±0.5%
(mean ± SD) of the total fatty acids, contributing only a small
amount of BCFAs per serving to the diet. Consuming a
standardized portion (70 g) of wild freshwater fish contributes
to only small amounts of BCFAs (for instance 2.5–24.2mg, in
the American diet) (Wang et al., 2016). Asian food, fermented
soy known as nātto and fermented shrimp paste have high
BCFA levels, 1.71 ± 0.17% and 3.18 ± 0.14% BCFAs, respec-
tively (Wang, 2017), relative to total fatty acids.

Few data exist on the ingested amount of BCFAs. In the
USA in 2011, the consumption of milk, cheese and beef
contributed to a daily dietary intake of about 400mg of
branched fatty acids (Ran-Ressler et al., 2011). Consumption
of chocolate contributed to about 6mg BCFA/day (Ran-Ressler
et al., 2014).
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5.3 Tissue content and biological functions

In mammalian tissues, BCFAs rarely constitute more than
1–2% of the total fatty acid pool (Pakiet et al., 2020). BCFA are
present in thegut fromaveryearlyageand throughout thehuman
life cycle. BCFA are major components of the lipids of Gram-
positive bacteria (such asBacillus andLactobacillus). They play
an important regulatory role in fluidity and permeability of
bacterialmembrane (Taorminaetal., 2020).Theyhaveapositive
influence on the development of commensal bacteria from birth,
and on intestinal metabolism (Leray, 2013).

5.4 Health effects

BCFAs may contribute to the positive health effects
attributed to dairy product consumption. Several in vivo studies
show protective effects against inflammation, cancers and
metabolic disorders (Ran-Ressler et al., 2014; Taormina et al.,
2020). In an animal model, BCFAs play a beneficial role
against inflammation in the premature intestine, modulate the
microbiota and increase the expression of anti-inflammatory
cytokines (Taormina et al., 2020). To date, no data concerning
the metabolic effects were reported in humans. However it was
suggested that BCFAs may favourably influence insulin
sensitivity, energy and glucose metabolism in human
(Taormina et al., 2020). Taormina et al. recently published
a comprehensive review on BCFA (Taormina et al., 2020).

6 The branched fatty acid esters of hydroxy
fatty acids FAHFAs

6.1 Structure and biosynthesis

FAHFAs are fatty acid esters of hydroxy fatty acids. As
multiple combinations of fatty acids (FA) and hydroxylated
fatty acids (HFA) are possible, there are hundreds of FAHFAs
(Yore et al., 2014; Kuda et al., 2016). Almost 50 families of
FAHFAs have been identified, the esters of palmitic acid and
hydroxy stearic acid (PAHSA) being the most studied. In each
family of branched FAHFAs, several positional isomers are
possible, with more than 300 regioisomers identified, and for
each isomer, there are also 2 possible configurations (Kuda
et al., 2018).

Branched FAHFAs are synthesized in vivo (Yore et al.,
2014) or can be obtained exogenously from food. To date, only
PAHSA biosynthesis pathway in adipocytes was elucidated,
involving esterification of hydroxy fatty acids with acyl-CoA
fatty acids by an acyltransferase (Kuda et al., 2018), and
storage in adipocyte as FAHFA-containing triacylglycerols
(Tan et al., 2019).

6.2 Food content and daily intake

Numerous branched FAHFA families have been detected
in food of plant origin (fruits, vegetables and cereals) (Zhu
et al., 2018; Liberati-Cizmek et al., 2019) and of animal origin
(egg, chicken, beef, caribou, moose) (Yore et al., 2014; Pham
et al., 2019). Abundance of each FAHFAs varies according to
the type of food considered. Total FAHFAs range from 45 to
320 ng/g in fresh food. Branched FAHFAs were also detected
in caribou meat and moose at very high doses (50mg/g)
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compared to other food sources. Branched FAHFAs are present
in breast milk, although at very low concentrations (Kuda
et al., 2018).

To our knowledge, no data are available on the amount of
FAHFAs ingested daily. Moreover, absorption and bioavail-
ability of dietary FAHAs are unknown.

6.3 Tissue content and biological functions

FAHFAs are present in blood and in many tissues in rodent
and humans. PAHSA content is around 100 ng/g in white
adipose tissue, 150 ng/g in brown adipose tissue, and 10–20 ng
in liver, kidney and pancreas (Yore et al., 2014). In lung,
kidney, thymus, liver and heart FAHFAs content is rather
in pg/g (Zhu et al., 2017). Short-chain FAHFAs are in a
concentration range from 0.84 to 57 pmoles/mg in the large
intestine (Gowda et al., 2020b, 2020c).

Only a few FAHFAs have been studied. They modulate
favourably insulin sensitivity and glucose metabolism. In
particular, 5- and 9-PAHSA have been reported to improve
glucose metabolism and insulin signalling (Yore et al., 2014;
Moraes-Vieira et al., 2016; Smith and Kahn, 2016; Syed et al.,
2018). 9-PAHPA or 9-OAHPA increased insulin sensitivity,
but without modifying glucose tolerance, and increased basal
metabolism, both in healthy mice and in obese mice with lower
insulin sensitivity (Benlebna et al., 2020a, 2020b). Moreover,
9-PAHPA or 9-OAHPA induced a switch toward a more
oxidative contractile phenotype of skeletal muscle, suggesting
a muscular origin of the increase in insulin sensitivity observed
(Benlebna et al., 2020c). Surprisingly, 9-PAHPA or 9-OAHPA
induced hepatic steatosis and fibrosis in some healthy mice but
not in obese mice, likely because both FAHFAs had insulin-
sensitized the healthy liver so much that de novo lipogenesis
promoted steatosis/fibrosis (Benlebna et al., 2020a, 2020b).
FAHFAs activate GPR120 and GPR40 and increase GLP-1
secretion (Yore et al., 2014; Hammarstedt et al., 2018; Kimura
et al., 2020). The FAHFAs studied to date have anti-
inflammatory effects, as demonstrated both in vitro and in
vivo in chronic and acute inflammation models (Yore et al.,
2014; Kuda et al., 2016; Lee et al., 2016; Kolar et al., 2019). At
least some FAHFAs, notably from omega-3 fatty acid derived-
FAHFAs family, may have antioxidant effects (Gowda et al.,
2020a).
6.4 Health effects

Metabolic dysfunction in adipose tissue of healthy
moderately overweight humans is associated with reduced
levels of PAHSAs in the same tissue (Hammarstedt et al.,
2012; Hammarstedt et al., 2018). In addition, serum PAHSAs
levels are reduced in obese patients and in diabetics (Yore
et al., 2014; Moraes-Vieira et al., 2016). Thus, beneficial
effects of PAHSAs were suggested in human in various
metabolic disorders such as type 1 and type 2 diabetes, and in
chronic inflammation (Brejchova et al., 2020). Other beneficial
health effects have been also suggested, in particular against
some cancers (Rodriguez et al., 2019). It is important to note
that these health effects of FAHFAs have been demonstrated
with pharmacological doses in animal models or linked to
Page 6
circulating FAHFAs levels, but not associated to diet normal
content. Several comprehensive reviews on branched FAHFAs
have been recently published (Brejchova et al., 2020;
Benlebna et al., 2021).

7 Conclusion

Human diet contains many uncommon fatty acids with
bioactive properties such as n-3 DPA, natural trans fatty acids,
CLAs, FuFAs, BCFAs and FAHFAs. Many of them may have
favourable effects on health, in particular on prevention of
cardiovascular diseases, inflammation and metabolic disorders
such as diabetes. It is interesting to note that many of these
lipids are found mainly in seafood and in dairy products. As
bacteria are involved in the synthesis of some of these fatty
acids, the role of intestinal microbiota in their metabolism in
humans deserves to be explored. As not only food intake but
also bioavailability is important to provide adequate nutrients
status, and as bioavailability is still unknown for some of these
uncommon fatty acids, this parameter needs to be investigated
to better understand their health effects.
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