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Abstract: Climate change threatens the sustainability of agriculture and natural resources. Adaptive
solutions must be designed locally with stakeholders. We developed the Approach for Building
Adaptation Scenarios with Stakeholders (ABASS), which aims to identify adaptation policies and
corresponding scenarios of natural resource management in the context of climate change. Its
originality is the combination of different existing participatory methods, organized in three phases.
In step 1, experts identify local environmental problems on a map and build the assumption tree of
local climate change effects. In step 2, experts identify stakeholders. Step 3 leads to the construction
of adaptation scenarios with stakeholders in two phases. First, in a participatory workshop gathering
numerous stakeholders, the assumption tree is presented to help stakeholders identify potential
policies that address the effects of climate change. Then, using the map produced in step 1, each
group of stakeholders separately translates each potential policy into a detailed scenario. We applied
ABASS to the context of groundwater overexploitation in South India. Two policies at the farm level
emerged as consensual: (i) ponds to harvest runoff water and (ii) drip irrigation to conserve water;
but their implementation highlights the differences of opinion among stakeholders.

Keywords: participatory approach; farming system sustainability; natural resource management;
management policy; groundwater overexploitation; tropics

1. Introduction

Climate change is expected to intensify water scarcity in regions where irrigation
sustains agriculture, as is the case in India [1]. At the same time, an increasing population
means that irrigation is necessary to increase food production. Both influence the need for
adaptation strategies and for methodological approaches to identify and evaluate these
strategies [2].

Approaches such as scenario development, modelling and evaluation are classic ways
to explore adaptation strategies in the water resource domain and to address climate change
effects [3]. They are associated with participatory approaches, and in recent decades several
participatory stakeholder frameworks have been designed and implemented in projects
that address adaptation strategies for groundwater management [4]. Decision-making
processes related to natural resource management are receiving increasing attention from
local to international levels [5]. Stakeholders’ involvement and participation are recognized
as a key aspect of sustainable management of groundwater, as they provide reliable
information and inputs, which make research more robust [6,7]. For adaptation strategies
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to be effective and accepted at the local level, Barreteau et al. [8] recommend considering
the perspectives on local interests and priorities of multiple stakeholders.

According to the literature, stakeholders are defined as entities (individuals, groups or
organisations) that affect or can be affected by a decision [9,10]. The degree of stakeholder
integration in participatory approaches depends on the objective of the approach (commu-
nicate, consult or participate) [8]. Participation is a process in which stakeholders have a
role in making decisions that affect them [11,12]. Classic frameworks of the participatory
approach are organized around three steps: (i) identify the environmental problem to
be addressed and define its social and natural boundaries, (ii) identify the stakeholders
affected by or who can affect the natural system considered and (iii) select the most relevant
stakeholders for the specific objectives of the project and engage them in project activi-
ties [13,14]. Such approaches were used for example for identifying sustainable farming
practices [15,16], designing natural resource management and conservation schemes [17,18]
or assessing livelihood strategies [19,20] in different regions of the world.

In this article, we (i) describe a new participatory approach for building adaptation
scenarios with stakeholders to explore water resource management strategies that address
climate change and then (ii) apply the approach to a case study. The approach, based
on the classic framework of the participatory approach, is adapted to the context of the
Indian “water crisis” [21]. The originality of our approach is the combination of different
methods to structure the groundwater issue and to engage stakeholders in identifying
solutions adapted to the region, which has a diversity of biophysical and socio-economic
situations. As in the “story and simulation” [22,23] and “participatory model building” [24]
approaches, our approach encourages strong involvement of stakeholders in the scenario-
building process, with a high level of interaction focused on potential solutions and
adaptation scenarios.

2. Materials and Methods
2.1. Study Area

The Berambadi watershed (11◦43′00′′ to 11◦48′00′′ N, 76◦31′00′′ to 76◦40′00′′ E) is
located in southwest India and covers an area of 84 km2 (Figure 1). This watershed is
mainly composed of an agricultural area that extends over 15 villages in the east and centre
and a forest area that predominates in the west and belongs to the Bandipur National
Park. In the Berambadi, groundwater resources are intensively monitored since 2009,
under the Kabini Critical Zone Observatory (SNO M-TROPICS, part of OZCAR research
infrastructure) [25]. These long-term observations show large spatial variations in depletion
and quality due to groundwater overexploitation, mainly for irrigation [26,27]. Indeed,
water availability is an important factor that influences farm diversity in this watershed [28].
Farmers try to adapt to this situation, either by increasing the number of borewells or
by changing their irrigation practices and cropping patterns according to groundwater
availability [29]. However, groundwater depletion is likely to worsen because of climate
change, and exacerbation of groundwater overexploitation has become a real concern [30].
Thus, exploring effective and specific adaptation policies to manage the water crisis in this
context becomes necessary.

2.2. ABASS Development and Steps

Our Approach for Building Adaptation Scenarios with Stakeholders (ABASS) consists
of three steps (Figure 2). The first two steps involve local scientific experts in multiple fields
(e.g., sociologists, hydrologists, agronomists) and understanding an extensive body of
information, including biophysical and socio-economic data. The third step involves local
stakeholders, mainly policymakers, or those who influence public development policies.
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2.2.1. Step 1: Using Expert Knowledge to Identify the Environmental Problem

This first step aims to provide clear understanding of the functioning of the ecological
and socio-economic system that could be affected by the adaptation scenarios [9,23]. Sci-
entific studies help in understanding the problem of local groundwater overexploitation,
potential effects of climate change on groundwater use and overexploitation, as well as
the effects that these problems may have on other components of the territory [31]. To
provide a complete overview of the biophysical and socio-economic functioning of the
Berambadi watershed and to understand the main issues for groundwater management
due to effects of climate change, we used two participatory methods to obtain scientific
knowledge: “zoning based on mental representations” (ZADA) and “assumption tree
construction” (ATC).

• Identifying groundwater-related problems using the ZADA method

To represent fully the ecological and socio-economic system related to the groundwater
problem, we used the ZADA method [32] with the scientific experts. In ZADA, individuals
share information in a spatial manner by drawing and describing areas or sectors on a map
that have resource management problems [33,34].

• Identifying climate change effects and adaptation mechanisms using the ATC method

To understand effects of climate change in the Berambadi watershed, we used the ATC
method, which has three phases: (1) brainstorming about (i) the climate change that has
occurred or is likely to occur, (ii) the effects (direct or indirect) on groundwater resources
and local agriculture and (iii) the current adaptation strategies farmers use to address
these changes; (2) organising the elements that the experts identified into causal chains
that connect climate change, its impacts on the watershed and the potential adaptations
adopted by farmers and (3) organising these causal chains in an assumption tree with
connections between branches (because a change can have several effects, and one effect
can lead to several adaptations).

2.2.2. Step 2: Using the “Actors-Resources-Dynamics-Interactions” Method with Experts to
Identify Stakeholders

Researchers’ knowledge of the functioning of an ecological system is a relevant way
to characterise and select its stakeholders [13,35]. Therefore, we used as experts several
scientists who work in the Berambadi watershed to identify stakeholders associated with
groundwater management. We adapted the “actors-resources-dynamics-interactions”
(ARDI) method [36], which was already used in several case studies to map interactions
between stakeholders and resources (and their dynamics) in a particular area [37,38]. We
asked participants to (i) identify direct stakeholders involved in using and managing
groundwater resources and their management entities and indirect stakeholders whose
actions could influence management strategies of the direct stakeholders; (ii) determine
resources related to groundwater resource management and (iii) identify interactions
among the stakeholders and between stakeholders and resources. This participatory
method identified the socio-political system associated with groundwater management, as
well as multiple stakeholders who can affect or are affected by the groundwater system at
different levels of integration (from local to national levels).

2.2.3. Step 3: Building Adaptation Scenarios with Stakeholders

This step involves developing qualitative storylines, which the research team subse-
quently quantifies and simulates using a model. To develop storylines on water resource
management policies in the context of climate change, we selected stakeholders involved
in policymaking at different levels [39]. These stakeholders, selected from those identified
by the ARDI method, were engaged in the two phases of the adaptation-scenario-building
process: (i) explore potential policies to manage water resources and address effects of
climate change and (ii) transform these policies into scenarios that can be simulated.
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• Exploring potential policies to manage water resources in response to effects of climate
change

We selected stakeholders from governmental and technical institutions involved in
policymaking related to water resource management in the region. We invited these
stakeholders to participate in a workshop to identify potential policies that address effects
of climate change. We used the assumption tree built by the experts as food for thought.
We asked each participant to select one (or more) climate change effect(s), develop an
adaptation strategy for addressing the selected effect(s) and explain how to translate it into
a policy by specifying its purpose, its targeted scale and how to implement it. Each policy
was placed on the tree and discussed with all participants. Afterward, we classified the
policies by their purpose and targeted scale.

• Transforming potential adaptation policies into scenarios to manage water resources
in response to the effects of climate change

Moving from a narrative description of a potential policy to a scenario that can
be simulated using models requires translating the information into numerical model
inputs [40]. We translated the two most common and thus representative policies. To
capture most of the differences in opinion about how to implement policies, we selected
stakeholders from different domains (institutional, technical and civil society) who are
essential to policymaking. The translation step was performed independently with each
group of stakeholders. We used the map built during the ZADA step as an intermediate
object [41,42] to help stakeholders contextualise and spatialise the policy.

3. Results: Applying ABASS to the Groundwater Crisis in South India
3.1. Environmental Problem According to Expert Knowledge

The scientific experts involved were specialized in a variety of scientific fields and
affiliated with several scientific institutions (Indian Institute of Science, Indo-French Cell
for Water Sciences, and the French Institute of Pondicherry) and a non-governmental
development organisation (NGO). These scientific experts, all involved in research and
development activities in the Berambadi watershed, helped us identify biophysical and
socio-economic problems inherent in the exploitation of groundwater, as well as the stake-
holders involved in using and managing the groundwater.

3.1.1. Berambadi, an Area Dominated by a Gradient of Rainfall and Groundwater Level

The map produced by ZADA summarises the biophysical mechanisms and social
dynamics in the Berambadi watershed (Figure 3). The watershed has a significant east–west
gradient of rainfall and groundwater levels, which are connected by the recharge process.
In the eastern zone of the watershed, development of irrigation since the 1990s resulted
in a rapid decrease in groundwater levels and pump yields. In the western zone, rainfall
and groundwater levels are higher. This gradient influences the spatial distribution of
farming systems in the area strongly. In the east, farmers have mixed cropping systems
(mainly vegetables and turmeric) and are adapting quickly to groundwater depletion
by increasing the number of borewells or changing their irrigation practices or cropping
systems. In the west, where irrigation developed later, farmers have a wider variety of
cropping systems with irrigated crops (e.g., turmeric, sugar cane, banana, vegetables) and
rainfed crops. Marigold cropping (rainfed) is widespread in this zone due to contract
farming with a local industry. In addition to water availability, soil types affect the crop
choice. Black soils (fertile, deep, good water holding capacity, located mostly in valleys)
are more suitable for irrigated cash crops (perennial crops, horticulture) than red soils
(poor, low water holding capacity). Historically, many water tanks were used for irrigation,
but they are no longer filling, due to the disappearance of incoming base flow related to
the decrease in groundwater level and to climate change. They are now used only as a
source of sediments to apply to soils of farms in the region. Moreover, spatial disparity in
socio-economic development has resulted in different migratory movements: long-term
and seasonal migrations of landless workers from the east of the watershed to other states
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or neighbouring cities, and daily migrations from the east to the west of the watershed,
both of which are facilitated by bus lines.
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3.1.2. A Wide Diversity of Climate Change Effects and Adaptations in Berambadi

According to the experts, the main effects of climate change in the Berambadi wa-
tershed are (i) an increase in temperature, (ii) a decrease in the number of rainy days but
no change in annual rainfall amount, (iii) a delay in the start of the monsoon and (iv) an
increase in the frequency of extreme events (Figure 4). Through causal chains, these effects
have negative consequences on water and soil resources, agricultural production, crop
yields, farm and regional socio-economic development and wildlife. Moreover, several
causal chains of different climate change effects are interconnected. Experts identified
three types of farmer adaptations: technical adaptations that address the decrease in
groundwater levels, agronomic adaptations that address the decrease in crop yields and
socio-economic adaptations that address the decrease in income.

3.2. An Intricate Network of Stakeholders Identified by Experts

Four major groups of stakeholders that affected or were affected directly or indirectly
by these problems were identified (Figure 5): farmers, villages, government institutions,
and businesses. Among farmers, irrigating farmers affect groundwater directly by pumping
it for irrigation. However, their use of groundwater depends on the availability of energy
for pumping and on the choice of cropping system, which in turn is influenced by business
(e.g., market, contract farming) and decisions made at the village scale (e.g., programmes
and subsidies, labour availability, NGO programmes). Panchayats (village authorities)
affect groundwater directly by pumping it to supply drinking water to villages. Among
government institutions, the watershed development department (WDD) operates at
the state scale and is the only stakeholder that influences groundwater directly, through
programmes for groundwater recharge via surface water and for surface water conservation.
The WDD is directly connected to the local agricultural technical and advisory centre
(KVK) to design and disseminate development programmes at the district scale. The
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energy supplier affects groundwater indirectly via decisions about the amount of time that
electricity is distributed to farmers for pumping.
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3.3. Adaptation Scenarios to Address Climate Change
3.3.1. Potential Policies to Manage Water Resources in Response to Climate Change Effects

A wide variety of potential policies that address climate change specific to the Beram-
badi watershed were identified by 16 officers from the WDD and KVK, who are recognised
as the main stakeholders involved in water management policies in the state of Karnataka.
They proposed policies that targeted different scales (e.g., shared areas, all types of farms,
irrigated farms, rainfed farms) and purposes (Table 1). Some policies aimed to build infras-
tructure to harvest water, such as a dam reservoir (check dam), diversion reservoir (nala
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bund), contour bunding, contour trenching or bench terracing for “individual farms and
shared areas”. For “shared areas”, the participants also proposed landscape management,
such as increasing the area of forest or pasture. For “all types of farms”, they mentioned
two policy purposes: (i) building infrastructure such as farm ponds (i.e., small tanks or
reservoirs on farms to store rainwater from surface runoff) to harvest water and (ii) en-
couraging technical practices to conserve water (e.g., mulching and anti-transpirant crop
techniques). For “irrigated farms”, all the policies proposed focused on using less water:
installing drip irrigation and smart sensors (tensiometers) to schedule irrigation, increasing
access to weather information and encouraging application of recommended water doses.
For “rainfed farms”, the policies included promoting crops or varieties adapted to severe
climatic conditions (e.g., short-cycle, dryland-adapted, late-sowing, day-neutral).

3.3.2. Two Scenarios to Manage Water Resources in Response to Climate Change Effects

To transform the potential policies into scenarios, a local NGO (which, in addition
to helping farmers with their concerns, can influence policymakers) was included with
the institutions (WDD and KVK) at this stage. It was included to add the opinion of civil
society to those of the governmental institutions about implementation of the proposed
policies. We focused on the two main policies for adapting to climate change that the
stakeholders proposed: (i) building farm ponds and (ii) installing drip irrigation and smart
sensors to schedule irrigation.

• First scenario: harvesting runoff water in farm ponds

The WDD recommended installing two types of farm ponds based on the location
within the watershed: storage ponds for irrigation in the west, where groundwater levels
are higher, and groundwater recharge ponds in the east, where groundwater levels are
lowest (Figure 6). The storage ponds, which are lined to prevent infiltration, are used
exclusively for irrigation but concern all farms, even those that are currently rainfed.
Using water from storage ponds efficiently requires micro-irrigation (drip or sprinkler
irrigation). In comparison, groundwater recharge ponds, which are not lined, are used
exclusively to recharge groundwater and thus benefit borewells. Thus, by using the two
types of ponds, it is expected that the groundwater level will stabilize once recharged and
withdrawn for irrigation rebalance. Moreover, the increase in water availability (storage
ponds and groundwater) will enable farmers to diversify by growing high-value-added
crops, intensifying crops (more crops per year, at least in the rainy season) and developing
associated activities (e.g., fodder, small ruminants, poultry). This would maintain crops
and yields and increase farmers’ income. In addition, development at the watershed
level will create employment opportunities (e.g., agricultural work, processing, branding,
marketing) and promote development of mechanised services (e.g., harvesting, sowing).
However, rainfed farms with a groundwater recharge pond will be excluded from this
socio-economic development.
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Table 1. Potential policies proposed by the WDD and KVK officers to address effects of climate change.

Purpose of the Policy % of
Responses Policy Explanation

For individual farms or shared areas

Build infrastructure to
harvest water 13.5

Check dam, nala bund, contour
bunding, contour trenching or

bench terracing

Increase the water resource (stored water)
Address extreme events

Mandatory at sites that require it
Performed by the NGO, the government and

farmers

For all types of farms

Build infrastructure to
harvest water 18.5 Farm ponds (runoff harvesting) For groundwater recharge only, for irrigation

only, or for both

Encourage technical practices
to conserve water

4.5 Mulching methods Decrease water evaporation (using crop
residues available in the field)

4.5 Anti-transpirant crop
techniques Reduce crop transpiration

For irrigated farms

Develop of technologies to
conserve water

18.5
Drip irrigation (or sprinkler)
and smart sensors to improve

irrigation scheduling

Improve irrigation efficiency
and

Provide technical information (education and
capacity building)

Create awareness through departments and
the NGO

Use smart sensors (tensiometers)

4.5 Weather information
Development of media and apps

Databases to provide data to farmers, water
managers, etc.

4.5 Recommended Water Dose
(RWD)

RWD for flood irrigation based on research
Install water measuring equipment at the

field level

For rainfed farms

Promote crops adapted to
severe climate conditions

9 Short-cycle crop varieties
To adapt to delayed monsoon

Growing crops with a 70-day cycle (instead
of 90- to 100-day cycles).

4.5 Crops adapted to dryland
Drought-tolerant crops adapted to dryland

(e.g., tamarind, cashew, amla, jamun,
mustard)

4.5 Late-sowing and day-neutral
varieties

Drought-tolerant crops and those adapted to
delayed monsoon

Provide research on all such crops

For shared areas

Landscape management

4.5 Increase forest area Recharge groundwater
Trap evaporation

9.0 Increase pasture area (in shared
areas, forest and hilly areas)

Recharge groundwater
Prevent erosion and protect soil fertility (use

forage varieties with deep roots)
Provide food to animals

(NGO or state services in shared areas)
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The KVK focused on rainfed farms, for which they proposed installing ponds with a
dual function: protective irrigation and groundwater recharge. In years with low rainfall
or a delayed monsoon, the pond could be lined to keep it exclusively for irrigation. In
this case, the groundwater would be recharged by other recharge structures in the area
(e.g., tanks). According to the KVK, these ponds can increase the groundwater level and
provide protective irrigation that ensures crop growth during dry spells and critical stages
of crop development. Thus, the KVK considers that the rainfed farms will be able to keep
the same production system, with integrated crops adapted to the soil and agro-climatic
conditions in the region. Additionally, rainfed farms will be able to improve their land
use by producing at least one double crop each year (in the rainy season) and increasing
their production. Consequently, this situation is likely to reduce the vulnerability of these
farms by decreasing their debts and increasing their incomes. In addition, intensification of
their crops implies increasing demand for labour, which would keep the farmers, as well
as daily wage workers, within the region. In return, this would decrease long-term and
seasonal migration.

The NGO focused on the most vulnerable farms—small and marginal rainfed farms
(i.e., <2 ha)—that are numerous in the watershed and for which they proposed another
type of dual-purpose pond. In addition to increasing the groundwater level, these ponds
would provide protective irrigation for rainfed crops to prevent crop failure and to reduce
the amount of abandoned land. Thus, in addition to diversifying and intensifying crops on
these farms, by growing more crops per year (in the rainy season), the cultivated area of
the watershed would increase. As a result, these ponds would help secure the income of
these small farms and reduce socio-economic inequalities at the watershed level. Moreover,
the increase in cultivated area would increase the demand for labour and decrease seasonal
migration.

• Second scenario: installing drip irrigation and smart sensors to schedule irrigation

The WDD and KVK agreed on this scenario and targeted all irrigated farms in the
watershed, regardless of their size or irrigation source (borewell and/or pond). According
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to these stakeholders, drip irrigation and smart sensors for scheduling irrigation will
decrease water loss from evaporation and increase water-use efficiency at the farm level,
resulting in “more crop per drop”. Thus, conserving water at the farm level will stabilize
the groundwater level and expand the irrigated area at the farm level (for a given volume
of water, drip irrigation can irrigate ca. 2 times as much area as flood irrigation). Greater
water availability at the farm level will allow for a wider variety of crops (e.g., vegetables,
horticulture, orchards, fodder) with higher yields and encourage more associated activities
(e.g., poultry, livestock). Thus, these farmers are likely to earn more income, especially since
drip irrigation will reduce the labour costs associated with irrigation. As with dual-purpose
ponds, increasing the cultivated area will increase demand for labour and thus decrease
seasonal migration across the region.

The NGO believed that drip irrigation would expand the irrigated area and increase
water demand, thus increasing groundwater extraction. The groundwater level would
decrease considerably if this technique were installed on all irrigated farms in the watershed.
Thus, the NGO targeted only large farms (>2 ha) for this technology because, unlike small
farms, they would decrease the risk of expanding the irrigated area, as their entire area
is usually already irrigated. Thus, reducing evaporation losses for large farms through
drip irrigation could conserve a large amount of water, which would then increase the
groundwater level. However, this would not significantly change the production systems
on these farms or the socio-economic development of the watershed area.

4. Discussion
4.1. Participatory Approach

The ABASS approach provided an overview of the groundwater problem and adapta-
tion scenarios for groundwater management in the context of climate change. It did so by
hybridizing several methods that already existed but were rarely combined.

As the stakeholders had limited availability and their interaction time was relatively
short, it was necessary to prepare these meetings and target the appropriate supports to
facilitate participation and interaction. For this reason, we worked with scientists from
multiple fields as experts involved in research in the Berambadi watershed for many years.
Their involvement helped us understand the state of groundwater depletion and identify
the stakeholders involved in groundwater management, as well as the biophysical and
socio-economic dynamics related to groundwater. Working with experts enabled us to
prepare a range of supports and materials for reflection, such as the ZADA map and the
assumption tree, to provide concrete forms of abstract information and to support mutual
learning and shared information during interactions with stakeholders [43,44].

Natural resource management involves complex ecological and socio-political systems
that operate at multiple scales [13]. However, a growing body of literature indicates
that scale framing is far from straightforward, as there is no “natural” boundary that
encompasses both socio-political and ecological systems [45]. There are many reports of
disappointing outcomes of participatory projects due to boundary mismatches [46,47]. For
example, Levain et al. [48] described a participatory project that focused on co-building
solutions to address algal blooms in a coastal watershed in Brittany, France; they showed
that a shift in the socio-political boundary from local to national during the project resulted
in mismatches with the ecological boundaries and thus to the disengagement of local
stakeholders. Consequently, the challenge is to find a “middle path” that considers the
complexity of scales and ensures participation of upper-level (e.g., national, regional) and
local-level stakeholders to design efficient and applicable solutions [49]. The Berambadi
watershed enabled us to meet this challenge, first because it is a concrete example of aquifer
overexploitation, which helped in identifying relevant scenarios, and second, because it
was not the main focus, scale or a privileged issue for any of the stakeholders involved
(WDD, KVK and the NGO operate at the state, district and village scale, respectively).
Thus, it highlighted stakeholders’ divergent views of groundwater management among
the political (WDD), technical (KVK) and civil-society (NGO) spheres.
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4.2. Relevance of the Stakeholders’ Scenarios

The two scenarios that the stakeholders proposed to address effects of climate change
were not innovative, as they corresponded to existing measures under development in
state and central government schemes, such as the “Integrated Watershed Management
Programme” and “Mahatma Gandhi National Rural Employment Guarantee Act” [50].
This highlights that the stakeholders’ views conform to national and local programmes
and schemes; however, the relevance of these scenarios is strongly debated in the scientific
literature.

The scenario of “harvesting runoff water in farm ponds” was advocated by the
WDD, KVK and also by several scientists, who argued that the ponds provide a range of
benefits not only at the farm level (e.g., reducing risks of agricultural production, bridging
the yield gap, improving cropping diversity and intensity, increasing land values and
farm profitability) but also at the watershed level (e.g., increasing groundwater recharge,
regulating streamflow and surface storage, reducing soil erosion) [50,51]. Nevertheless,
in practice, the success and sustainability of farm ponds vary and depend greatly on the
biophysical and socio-economic context of a given site [52]. While many success stories
of farm pond development have been reported in several parts of India, constraints to
their development and failures in their use have also been identified [50]. The two main
obstacles to developing farm ponds are their high investment cost (INR 30,000–80,000),
which penalises small and marginal farmers, and their occupation of arable land (2–5%
of a farm’s area), which strongly impacts the livelihood of the farms [50]. Moreover, the
pond use can fail because the pond was not designed well enough for effective water
storage due to a lack of quantification of the biophysical and socio-economic criteria,
or due to inefficient use of harvested water [52]. The water that ponds harvest in the
rainy season provides protective irrigation during periods of water stress that increase the
performance of rainfed crops or can help to diversify crops by allowing high-value-added
crops to be produced. After the rainy season, the water harvested can provide pre-sowing
irrigation, which increases cropping intensity [52]. These practices depend on the site and
the dimension of the pond, and farmers do not necessarily optimise the use of harvested
water [51].

The “installing drip irrigation and smart sensors to schedule irrigation” scenario
also raises concerns about its ability to conserve groundwater and increase resilience
to climate change. As the WDD and KVK indicated, much evidence exists that drip
irrigation, in addition to increasing agricultural production in Indian semi-arid agricultural
ecosystems, provides long-term sustainable economic benefits by increasing water-use
efficiency [53,54]. However, installing drip irrigation will not conserve groundwater if it
encourages farmers to increase the area under irrigation and intensify production [55,56].
This is the Jevons paradox (i.e., rebound effect) reported by the NGO, in which adopting
a more efficient natural resource technology results in an increase rather than a decrease
in the use of a natural resource [57]. Moreover, in India, where agricultural development
policy encourages intensifying and expanding the area of irrigated cash crops that have
high water demand, installing drip irrigation would increase water use and exacerbate
the decrease in groundwater [58]. Thus, water conservation technologies alone will not
conserve water without developing associated groundwater-withdrawal regulations [58].

5. Conclusions

The ABASS approach was developed to build adaptation scenarios of the water crisis
in South India in the context of climate change. However, we believe that this method can
be used in other contexts of groundwater depletion, whether in India or worldwide, and it
can also be adapted to tackle other natural resource issues in the context of climate change.
ABASS was developed by incorporating methods used for participatory approaches, and
it involved scientific experts and stakeholders. The scientific experts helped us to assess
the state of groundwater overexploitation and the effects of climate change on the hydro-
agricultural system and to identify the socio-political system inherent to groundwater
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management and use. The stakeholders and policymakers helped us to identify several
potential adaptation policies to address the water crisis and then to transform the two
main policies into scenarios. The scenarios reflected the stakeholders’ opinions about
how to implement the selected policies. The diversity of scenarios reflected differences in
stakeholders’ opinions about water resource management in the political (WDD), technical
(KVK) and civil-society (NGO) spheres.

Choosing the most suitable scenario for the Berambadi context requires using a model
to estimate scenario effects at the farm and watershed levels. The model must simulate
the processes that underlie the scenarios built with the stakeholders and must produce
results (scenario effects) in the form of indicators that are relevant to these stakeholders.
This study involved mainly stakeholders who are policymakers, with the goal to explore
policies for adapting to climate change. However, to ensure that farmers would accept
and adopt the scenarios, it would be useful to ensure communication between these two
groups.
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