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Abstract19

The calibration of Partial Least Square regression (PLSR) models can be20

disturbed by outlying samples in the data. In these cases the models can be21

unstable and their predictive potential can be depreciated. To address this22

problem, some robust versions of the PLSR algorithm were proposed. These23

algorithms rely on the downweighting of these outliers during calibration. To24

this end, it is necessary to estimate an inconsistency measurement between25

the samples and the model. However, this estimation is not trivial in high26

dimensions. This paper proposes a novel robust PLSR algorithm inspired27

from the principles of boosting : RoBoost-PLSR. This method consists of28

realising a series of one latent variable weighted PLSR. RoBoost-PLSR is29

compared with the PLSR algorithm calibrated with and without outliers and30

also with Partial Robust M-regression (PRM), a reference robust method.31

This evaluation is conducted on the basis of three simulated datasets and32

a real dataset. Finally Roboost-PLSR proves to be resilient to the tested33

outliers, and can achieve the performances of the reference PLSR calibrated34
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without any outlier.35

Keywords: Partial least squares, Outliers, Robustness, Boosting ;36

1. Introduction37

Partial Least Square Regression (PLSR) [1] is a usual data analysis38

method and a well-established tool in analytical chemistry. PLSR is39

particularly relevant for the processing of high dimensional data, especially40

when the number of explanatory variables exceeds the number of samples.41

The successful processing of these data is partly conditioned by the fact42

that the samples can be assimilated to a well-defined distribution. However,43

if some samples do not share the properties of this distribution, the PLSR44

model can be disturbed and its predictive quality depreciated [2]. These45

samples are designated as outliers in comparison with the other ones called46

inliers. In order to deal with the presence of outliers, numerous strategies47

have been developed in chemometrics [3–15]. This type of methods are48

called robust methods. Robust methods place confidence in the main mass49

the of data. These methods must be parsimonious so as not to exclude50

major samples who contribute strongly to the good predictive quality of the51

model. According to [16], “For high-dimensional data this would result in a52

severe loss of information as long as the outliers still contain some valuable53

information, and thus intelligent robust methods adapt the weights according54

to the outlyingness or inconsistency of the observations.”. In fact, a major55

difficulty is therefore to determine relevant outlying measurements in order56

to give low importance to outliers (e.g. through weighting), while retaining57

some of their relevant properties.58
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In this article, the attention is focused on methods intended for the59

calibration of PLS1 models in presence of potential outliers. This means60

that the methods weight the samples through the PLSR in order to reduce61

the impact of outliers on model calibration. In that sense, only a few robust62

methods were proposed along with an available algorithm.63

One of the first methods was proposed in [10]. This method carries out a64

robust least square regression for each explanatory variable. This means65

that the method considers independent variables with this procedure. This66

aspect was particularly argued in [17] because this process does not capture67

the multidimensional aspect of outliers.68

To address to this problem, [18], developed the Partial Robust M-regression69

(PRM) method. PRM is frequently studied and used in chemometrics. PRM70

is based on the NIPALS algorithm trained on the iteratively reweighted71

matrices (representing the explanatory variables and responses). PRM72

consists of weighting the samples on the basis of a PLSR model with a73

predefined number of latent variables (LVs). This means that the weights74

are defined for a specific model (i.e. PLSR with K latent variables). To75

determine the k < K models, weights must be specifically recomputed for76

each given k, as opposed to PLSR where each 1 to K LVs model cand77

be deduced at once from a K model. In PRM, an outlier is defined by a78

combination of the leverage estimation (i.e. the Euclidean distance between79

scores and the median of scores) and Y-residuals. A limitation of this80

method, is that outliers are detected using a PLSR model with a number of81

latent variables that is defined beforehand. In [10], this limitation is lifted82

by weighting the samples independently of the number of latent variables.83
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Considering these perspectives, authors propose a new robust PLSR84

algorithm that combines principles of gradient boosting within a modified85

framework derived from [10] : RoBoost-PLSR. Boosting is a statistical and86

machine learning principle consisting in assembling a series of weak models87

(i.e. partially explanatory models) that are adjusted between them. Finally,88

the prediction by the strong model is the sum of the predictions of each89

weak model.90

The link between PLS and gradient boosting has already been studied91

and resulted in implementations for the processing of chemical data [19–92

23] Essentially, these approaches use numerous weak learners, computed93

sequentially from different sub-samples. Each new weak learner is computed94

from the previous ones using a loss function. Finally, the weak learners are all95

combined in a weight function according to their predictive potential. As for96

the RoBoost-PLSR framework, it proposes to apply the basic idea of gradient97

boosting : i.e. combining an ensemble of weak learners. The weak learners98

are defined here as weighted one-latent variable PLSR models. The weights99

are defined iteratively in order to reduce the contribution of outliers on the100

calculated model. The weak learners are then combined using an unweighted101

sum of the predictions of each weak learner.102

This strategy enables the weighting of samples in the calibration set103

independently of the number of latent variables (LVs) while considering the104

multivariate nature of the samples.105

The objective of this paper is to provide a study of the proposed new106

RoBoost-PLSR method using simulated and real data. These data represent107

different types of outliers that could be present in spectral databases.108
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The first section presents the theoretical principles of RoBoost-PLSR and109

the associated algorithm. The following section presents the data and the110

methods used to evaluate and compare RoBoost-PLSR with standard PLSR111

and PRM. Finally, the last section presents applications for the calibration112

and prediction performances of RoBoost-PLSR on the basis of simulated113

and real data.114

2. Theoretical background of the RoBoost-PLSR method115

2.1. Notations116

Capital bold characters will be used for matrices, e.g. X ; small bold117

characters for column vectors, e.g. xj will denote the jth column of X ; row118

vectors will be denoted by the transpose notation, e.g. xT
i will denote the ith119

row of X ; italicised characters will be used for scalars, e.g. matrix elements120

xij or indices i. Constant scalars will be denoted with italicised characters,121

e.g. number of samples n. 1 will represent a column vector of ones, of proper122

dimension.123

2.2. Principle of the method124

RoBoost-PLSR consists in achieving a series of K unidimensional (1 LV)125

iteratively reweighted PLSR [24] models. The weigthed PLSR algorithm used126

is weighted-NIPALS [25] (steps 6-8,12). Each K +1 model is calibrated with127

the residuals (X and Y) of the previous K models. Sample weights are128

defined thanks to a Bisquare function [26]. This weight function requires129

the optimisation of a hyperpameter. This optimisation can be done through130

a cross-validation procedure or an optimisation on an external validation set.131
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The more the samples deviate from the model, the closer the weights must132

be to 0. Iteratively, models are updated according to the weights previously133

attributed until convergence to a stable solution.134

Within each PLSR model. Weights are computed according to a combination135

of three measurements :136

— X-residuals137

— Y -residuals138

— Leverage139

2.3. Algorithm140

LetX be an [n×m]matrix containing n samples described bym variables.141

Let y be a response vector containing n samples. In this article y is always142

considered as a vector, i.e. the response is univariate.143

For a definite number of K latent variables, the algorithm proceeds as144

described below :145
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Algorithm RoBoost-PLSR for K LV
Calibration(X,y,K)

1: Set k = 1

2: Set X0 = X

3: Initialise the [n× n] weight matrix D :

D = diag(d1, d2, ..., dn) such as ∀i ∈ [1, n], di = 1
n

4: Derive the weighted means :

x̄T
k = 1TDXk−1

ȳk = 1TDyk−1

5: Center the data :

Xk = Xk−1 − 1x̄T
k

yk = yk−1 − 1ȳk

6: Derive the kth weighted loading’s weights :

wk =
XT
kDyk

||XT
kDyk||

7: Derive the kth scores :

tk = Xkwk

8: Derive the kth weighted loading vectors of Xk and the kth regression coefficient

vector :

pk =
XT
kDtk

tT
kDtk

qk =
yT
kDtk

tT
kDtk
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9: Derive the Y-residuals (f), X-residuals (E), leverage estimation (l)

corresponding to the current kth latent variable :

E = Xk − tkp
T
k

f = yk − tkqk

l = tk

10: Estimate and update the weights for each i ∈ [1, n] sample

αi = B(
||ei||
cα × sα )

βi = B(
fi

cβ × sβ )

γi = B( li
cγ × sγ )

di = 1
n × αi × βi × γi

With sα , sβ , sγ being respectively the median of {||ei||}n, {|fi|}n and {|li|}n

∀i ∈ [1, n]. c respectively denotes fixed constants in each weight function. In

this case the weight function B is the Bisquare function defined as :

B(x) = (1− x2)2, for |x| < 1, B(x) = 0, for |x| > 1

11: Go back to step (4) until convergence of successive q’s.

12: while k < K

Xk+1 = Xk − tkp
T
k

yk+1 = yk − tkqk

set k = k + 1→ then go to step (3)

End Calibration
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Prediction(x∗, fitted model)

Fitted model { [q1, q2, ..., qK ], [w1,w2, ...,wK ], [p1,p2, ...,pK ], [x̄1, x̄2, ..., x̄K ]}

The estimation of ŷ∗ for a given new sample x∗ is :

ŷ∗ =
∑K

k=1 ŷ
∗
k

The computation of ŷ∗k is given by :

ŷ∗k = tkqk with,

tk = x∗
kwk and,

x∗
k = (x∗

k−1 − x̄T
k )− (x∗

k−1 − x̄T
k )wkp

T
k

2.4. Method properties146

The RoBoost-PLSR framework is designed foremost to facilitate the147

estimation of the samples weights, i.e. estimating the deviation from a148

model in large dimensions (a large number of latent variables).149

Firstly, estimating the weights of samples independently for each latent150

variable provides a simpler estimation of leverage points. Indeed, in usual151

robust PLSR algorithms, leverage is computed either thanks to Euclidean152

or Mahalanobis distances between the scores and the centre of the model.153

In high dimensional spaces (numerous LVs), this estimation is not so trivial.154

As a matter of fact, in the case of a Euclidean distance, the latest LVs have155

only a minor contribution to the leverage value. This is naturally due to156

the decreasing magnitude of scores. Nevertheless, the predictive potential157

of these latest LVs is not necessarily lesser. In the case of a Mahalanobis158

distance, the contributions of all LVs become equal in the computation of159

the leverage value. This can be equally detrimental, since the predictive160
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potentials of the LVs are most oftenly uneven.161

Secondly, the proposed method considers X-residuals, which is not the case162

in usual robust PLSR methods. The inclusion of these residuals provides163

additional information that cannot be expressed solely by leverage and164

Y-residuals.165

Thirdly, the method does not provide regression coefficients. Contrary to166

other robust methods such as PRM, in this case, it is not trivial to compute167

them. Indeed, the proposed algorithm for RoBoost-PLSR does not allow an168

estimation of the rotation matrix R. Models can nevertheless be interpreted169

by analysing the loadings, although it is less convenient. Indeed, it is possible170

to observe the loadings and derive the most influential variables within each171

1LV model. However, unlike in conventional PLSR, it is not possible yet to172

determine the relative influences of variables at the scale of the whole K-LV173

model174

Fourthly, like PLSR, RoBoost-PLSR makes it possible to deduce any of175

the 1 to K LVs models from the calibration of a single K LVs model. This176

preserves the operability during the validation and parameterisation process177

of the RoBoost-PLSR method.178

3. Material and methods179

3.1. Data and software180

RoBoost-PLSR was evaluated on three simulated datasets and one real181

dataset. Simulations were used to introduce controlled disturbances while182

the real dataset was used to confirm and support the simulations results. The183

algorithms were developed using the R software packages. RoBoost-PLSR184
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was developed on the basis of “rnirs” functions. The functions and data185

associated with RoBoost-PLSR are available on Github “RoBoost-PLSR” .186

PRM was implement with the "prms" function available in the “sprm”187

package.188

3.2. Simulated Data189

The three simulations were generated according to the generic framework190

proposed by [27]. Contrary to the simulation strategies usually used to191

evaluate robust methods, the data were not simulated from a real model.192

The data are simulated from a combination of spectral signatures, some of193

which are related to one or more variables to be predicted (Y matrix).194

The simulations were based on a combination of pure artificial spectra and195

controlled noises. The aim of each simulation was to reproduce the common196

external disturbances that can occur when calibrating a predictive model. It197

consisted of adding to the dataset an additional set of predefined outliers that198

have a negative effect on the performance of the models. The first simulation199

introduced pure Y outliers. The second simulation introduced contaminant200

induced outlier i.e. X-outliers occurring when an external substance pollutes201

the calibration samples. These individuals are strong outliers because they202

can be easily distinguished from inliers (e.g. by a spectra plot). The third203

simulation introduced slight X-outliers. For all simulations, 900 inliers and204

100 outliers were simulated. Descriptions of the simulation are available in205

the appendix in table form. The differences between simulated inliers and206

outliers are highlighted in bold in the tables.207
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3.3. Real dataset208

The real dataset consisted of NIR spectral samples acquired from209

two types of feed materials : soybean and meat and bone meal. Each210

sample-spectrum was associated with its Y-response i.e. the chemical211

reference measurement of its protein content. The spectra were measured212

with a Foss spectrometer in the spectral range [1100−2498 nm] with a 2 nm213

spectral resolution. These data were extracted from the “PROT” database214

provided by the CRA-W (Agronomic Research Centre of Wallonia, Belgium).215

This database was already used for the development and comparison of local216

methods [28].217

3.4. Evaluation strategies218

The purpose is to evaluate the behaviour of the newly introduced219

RoBoost-PLSR methods in presence of outliers during calibration. The220

calibrated model is then evaluated on a validation set. The reference against221

which all models were compared was a PLSR calibrated on a dataset without222

outliers (and will be designated as such). Roboost-PLSR was evaluated and223

compared with two standard regression algorithms : PLSR and PRM.224

In the case of the simulations, the weight parameters of PRM and225

RoBoost-PLSR were optimised according to the validation set. Only the226

results of the optimal (i.e. the parameters that provide the minimum value227

of RMSEP) parameters of RoBoost-PLSR and PRM were presented in the228

following section. The calibration sets were generated from 500 samples229

(400 inliers and 100 outliers). The resulting models were studied with230

validation sets containing 500 inliers. The prediction performance of the231

RoBoost-PLSR method was studied also as a function of the proportion of232
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outliers . It varied from 10% to 40%. These performances were compared to233

the reference model (PLSR without outliers). This study was carried out234

with the three simulated datasets.235

236

In the case of the real dataset, the weights parameters of PRM (using237

the Hampel function) and RoBoost-PLSR were optimised according to the238

validation set. Only the results of the optimal parameters of RoBoost-PLSR239

and PRM were presented in the following section. The calibration set was240

composed of 457 soybean protein (TTS) samples and 100 animal-protein241

(ANF) samples that represent the outliers. The validation was conducted on242

50 additional samples of soybean and results were evaluated through Root243

Mean Square Error of Prediction (RMSEP).244

The evaluation strategy also aimed at assessing the weights attributed to245

each sample. Weights are evaluted for the number of latent variable resulting246

in the minimum RMSEP respectively for PRM and Roboost.247
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4. Results and discussion248

4.1. Simulation 1 : pure Y-outliers249
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Figure 1: Simulated dataset 1. (a) Spectra, (b) PCA projection of spectra and (c)

distributions of Y-responses. Inliers are represented in blue, while outliers are in red.

Figure 1 presents the properties of the simulated dataset with Y-outliers.250

Figure 1a shows that inliers spectra (in red) blend perfectly with the rest251

of the population. Likewise, there is no separation of the two populations of252

spectra when projected on the two first principal components of a PCA (see253

Figure 1b). The same behaviour is observed up to the 10th component. In254

this simulation, the outliers are simulated to display significant differences255

in terms of Y . Figure 1c shows that the distribution of the outliers is not256

similar to the distribution of inliers. The samples are distinguished only by257

their response values (y) and not by their explanatory variables (X).258
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Figure 2: Evolution of the RMSEP as a function of latent variables for the reference,

PLSR without outliers, PRM and RoBoost-PLSR for the dataset 1

Figure 2 presents four curves showing the RMSEP evolution as a function259

of the number of LVs, for PLSR calibrated with outliers, the reference, PRM260

and RoBoost-PLSR, both calibrated with outliers. This figure shows that261

pure Y-outliers have an impact on the calibration of a PLSR model. In this262

case, the standard PLSR model calibrated on data including outliers (red263

curve) achieves very poor prediction performances compared to the reference264

model (blue curve).265

Figure 2 also shows that PRM achieves similar performances with the266

reference. The behaviour of the RMSEP curve of PRM is similar to the one267

of the reference along the LVs.268

When RoBoost-PLSR (purple curve) is calibrated with Y-outliers, it achieves269

also similar performances with the reference along the LVs. This means270

that RoBoost-PLSR attributes low weights to outliers and reaches the best271

performance of the reference. The behaviour of the RoBoost-PLSR RMSEP272

curve is close to the reference. This means that the attribution of a weights273

close to 0 to the outliers for RoBoost-PLSR is independent of the selected274
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number of LVs.275

276

1 2 3 4 5 6

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

0.000

0.001

0.002

0.003

index

w
ei

gh
t Group

Inliers

Outliers

7 8 9 10 11 12

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

0.000

0.001

0.002

0.003

index

w
ei

gh
t Group

Inliers

Outliers

Figure 3: Repartition of the weights attributed to outliers (red) and inliers (blue) during

the calibration of RoBoost-PLSR over 12 latent variables

Figure 3 shows the weights attributed by RoBoost-PLSR to outliers and277

inliers for the best performing model (12 LVs). Since the first LV, the outliers278

weights are close to 0. Few inliers are also erroneously assigned low weights279

during calibration. However, in this simulation, this distortion has no impact280

on prediction performance of RoBoost-PLSR, as shown by Figure 2. It can be281

observed that there are differences in ceiling values for the weights between282

LVs. This is due to the normalization of the weights. Actually, the weight283

of a given sample varies for each LV. At some point, it is possible that an284

increasing amount of samples are attributed high weights. Therefore, due to285

normalisation, the maximum value of the weights decreases as more samples286
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are considered relevant from RoBoost-PLSR.287
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Figure 4: Repartition of the weights attributed to outliers (red) and inliers (blue) during

the calibration of PRM for respectively 13 LVs

Figures 4 show the weights attributed to outliers and inliers in the288

calibration set for 13 LVs (the best performing model)289

Figure 4 shows a clear separation between outliers and inliers weigths with290

a 13 LVs PRM model. Some inlier samples have a weight of 0 but the vast291

majority of inlier samples have a weight of 1. As the performance curves292

of PRM and the reference are almost similar, this does not disturb model293

calibration.294
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4.2. Simulation 2 : contaminant induced outliers295
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Figure 5: Simulated dataset 2. (a) Spectra, (b) PCA projection of spectra and (c)

distributions of Y-responses. Inliers are represented in blue, while outliers are in red.

Dataset 2 introduces X-outliers. The purpose is to simulate the impact296

of a contamination of samples during spectral measurements without any297

anomaly for the reference measures y. Figure 5a shows that such outliers298

(in red) overlap with standard observations. The difference between the299

two groups is very faintly apparent on the spectra plot. Figure 5b shows300

a separation of outliers from inliers on a projection onto the two first301

principal components of PCA. The two groups are contiguous though,302

which implies that some outliers could be confounded with inliers. Figure303

5c shows the distribution of Y reponses for both outliers and inliers. Data304

are simulated so that the outliers responses match the same distribution as305

inliers. In practice, this situation corresponds to the possibility of conducting306

rigorous reference measurements in controlled laboratory conditions for307

chemical measures, while the spectral measurements are high-throughput308

and possibly conducted in outdoor or uncontrolled conditions. In these cases309
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the extraction of information related to the spectra is more complex and310

probably requires additional LVs. Figure 5 therefore shows that the samples311

are distinguished only by their explanatory variables (X) and not by their312

responses (y).313
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Figure 6: Evolution of the RMSEP as a function of latent variables for the reference,

PLSR with outliers, PRM and RoBoost-PLSR for the dataset 2

Figure 6 shows that the PLSR with outliers (red curve) is less performant314

than the reference (blue curve). Indeed, the minimal RMSEP with outliers is315

' 1 for 19 LVs whereas minimal RMSEP without outliers is ' 0.4 for 13 LVs.316

This means that the PLSR is sensitive to these outliers. In addition, Figure317

6 shows that the number of LVs necessary to achieve the best performances318

is considerably higher (19 LVs vs. 13 LVs for the reference). This means319

that outliers add a detrimental information that requires the calculation of320

a PLSR model with a larger number of LVs [27].321

Figure 6 shows that the PRM performance curve is close to the reference322

curve. This means that PRM can handle the presence of these outliers in the323

calibration set324

Figure 6 shows that the RoBoost-PLSR curve reaches a minimum error close325
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to the reference. RoBoost-PLSR has a behaviour similar to the reference with326

the minimum RMSEP at 12 LVs. This means that RoBoost-PLSR attributes327

very low weights to the outliers but also to some inliers.328

Both PRM and RoBoost-PLSR prove to be robust to “contaminant induced”329

which are simple X-outliers. RoBoost-PLSR seems to perform well and have330

the same behaviour as the reference.331
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Figure 7: Repartition of the weights attributed to outliers (red) and inliers (blue) during

the calibration of PRM for respectively 12 LVs

Figure 7 shows that the majority of inliers weights are 1 and the outliers332

weigths 0 for 12 LVs.333
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Figure 8: Repartition of the weights attributed to outliers (red) and inliers (blue) during

the calibration of RoBoost-PLSR over 12 latent variables

Figure 8 compares the weights assigned to outliers and inliers during334

the calibration process for RoBoost-PLS. It shows that for each LV,335

RoBoost-PLSR assigns to outliers a weight close to 0. As soon as the 2nd336

latent variable, all outliers have a 0 weight. This result is due to the fact337

that the simulated spectra (outliers and inliers) have a first common source338

of variability and that, for the first LV, outliers are not detrimental to the339

model.340
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4.3. Simulation 3 : X-outliers induced by microvariations of the measuring341

environment342
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Figure 9: Simulated dataset 3. (a) Spectra, (b) distributions of Y-responses. Inliers are

represented in blue, while outliers are in red.
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Figure 10: Simulated dataset 3. (a) PCA projection of spectra onto components 1 and 2,

(b) PCA projection of spectra onto components 3 and 4. Inliers are represented in blue,

while outliers are in red.

Dataset 3 introduces further X-outliers. The purpose is to simulate343

the effect of microvariations of the measurement environment, such as344

temperature or hygrometry shifts e.g. when there is a timelapse between345

spectral measurements. The occurrence of such minor disturbances can alter346

the resulting spectra in imperceptible ways, yet, sufficiently to deteriorate347

PLSR models. Figure 9 shows the similarities between the outliers and the348

inliers. Spectra overlap so that the two populations are indistinguishable.349

Figure 10 presents their projection PCA axis. The first two components350

cannot help to differentiate outliers. It is only from the fourth component351

that the two groups are discriminated. However, this axis represents less352

than 2% of the total variability which describes the difficulty to determine353

the presence of such outliers beforehand. In terms of Y-responses, the354

distribution of outliers is simulated to match the inliers, hence the visible355
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overlay on figure 9. Finally, these samples could have been detected through356

the appropriate analysis. For instance, some outliers can be distinguished357

on PCA axes in this case. Nevertheless it is difficult to justify the removal358

of such samples from the presented graphs. Inherently, a sample should be359

discarded if it is detrimental to the prediction quality. To determine that,360

more elaborate methods should be considered, e.g. using a PLS model to361

detect the samples that diverge from the model. These types of approaches362

are very useful to understand the phenomena generating these outliers, but363

require considerable time to study the data. To reduce the time needed364

to detect outliers, it would be therefore relevant to use automated robust365

methods.366
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Figure 11: Evolution of the RMSEP as a function of latent variables for the reference,

PLSR with outliers, PRM and RoBoost-PLSR for the dataset 3

Figure 11 shows that the PLSR with outliers (red curve) is less367

performant than the reference (blue curve). Indeed, the minimal RMSEP368

for the PLSR with outliers is ' 0.7 for 18 LVs whereas the minimal RMSEP369

of the reference is ' 0.55 for 13 LVs. This means that PLSR is sensitive to370

these outliers.371

24



Figure 11 shows that the PRM performance curve is close to the PLSR372

with outliers curve. This means that PRM does not completely capture the373

nature of these outliers. It is fair to conjecture that PRM will perform much374

better for these data if based on a reweighting scheme that accounts for the375

residuals in the X-space as well376

Figure 11 shows that the RoBoost-PLSR curve reaches a minimum error with377

14 LVs, which is close to the reference. RoBoost-PLSR has a behaviour very378

similar to that of the reference. The minimum RMSEP of RoBoost-PLSR379

curve (14 LVs) is higher than the minimum RMSEP of the reference (13380

LVs). This means that RoBoost-PLSR attributes a 0 weights to the outliers381

but also to some inliers. This leads to an increase in the number of LVs for382

a higher minimum RMSEP than the minimum RMSEP of the reference.383

384

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400 500
index

w
ei

gh
t Group

Inliers

Outliers

Figure 12: Repartition of the weights attributed to outliers (red) and inliers (blue) during

the calibration of PRM for 18 latent variables

Figure 12 does not show a clear separation between the majority of385

outlier weights and inlier weights with a 18 LVs PRM model. This is due386

to the fact that outliers are not detected by PRM. This limitation of PRM387
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could be explained by the absence of X-residuals in the computation of388

weights. This also could be explained by the fact that outliers are weighted389

using a model with a predefined number of LVs.390
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Figure 13: Repartition of the weights attributed to outliers (red) and inliers (blue) during

the calibration of RoBoost-PLSR over 14 latent variables

Figure 13 shows the weights assigned to outliers and inliers by392

RoBoost-PLSR. It shows that RoBoost-PLSR begins to assign 0 weights to393

the outliers from the 3rd LV. RoBoost-PLSR also attributes very low weights394

to a significant number of inliers while some outliers are attributed higher395

weights along the three first LVs. This means that some a priori informative396

samples are not necessarily favourable or even relevant for some LVs. It also397

means that outliers are not necessarily detrimental for the determination398

of all LVs. For example, the first LV can often be assimilated to baselines.399
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In these cases, outliers sharing a similar baseline are not detrimental while400

inliers with minor baseline shifts can be detrimental.401

RoBoost-PLSR seems to be able to taking into account the variability of402

the beneficial samples and even sometimes the non-abnormal properties of403

outliers.404

4.4. Influence of the proportion of outliers within calibration405
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Figure 14: RMSEP depending on the proportion of outliers in the calibration set

Figure 14 shows the prediction performances obtained with proportions406

of outliers varying between 10% and 40% for PLSR and RoBoost-PLSR.407

Figure 14 shows that the proportion of outliers affects the PLSR performance408

for each simulation. The higher the proportion of outliers, the lower the409

quality of outlier prediction.410

Figure 14a shows that the proportion of outliers does not affect the411

performance of RoBoost-PLSR until 30% of outliers. This is due to the412

fact that the Y-distributions of the two groups of samples are differentiable413

(see Figure 1) and therefore the separation between outliers and inliers is414

easy. However, with 40% outliers, RoBoost-PLSR methods can not produce415

the same result as the PLSR method without outliers. Indeed, when the416
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proportion of outliers is close to the proportion of inliers, it becomes really417

difficult to focus the model on the main mass. Despite this, RoBoost-PLSR418

method has a stable curve and is generally close to reference even with 40%419

outliers.420

Figure 14b shows that the proportion of outliers has little effect on the421

performance of the RoBoost-PLSR method. This means that the outliers are422

correctly detected by RoBoost-PLSR even when the proportion of outliers423

is close to the inliers proportion.424

Figure 14c shows that the proportion of outliers has little effect on the425

performance of the RoBoost-PLSR method until 30%. For 40%, the curve426

of RoBoost-PLSR is between the PLSR witout outliers and the PLSR with427

outliers. This means that the method detects some but not all outliers.428

In conclusion, the RoBoost-PLSR method supports these three types of429

outliers up to 30% with prediction performances approaching the reference.430

4.5. Real dataset and application : prediction of protein content.431

The present section intends to deal with real agronomic data, with the432

example of a common animal nutrition application : the prediction of the433

protein content of feed materials and the presence of incorrectly categorised434

samples. In this database the samples resulting from animal bonemeal (noted435

ANF) represent the outliers polluting the regular soyabean cakes (noted436

TTS).437
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Figure 15: Properties of TTS and ANF proteins. (a) Spectra, (b) PCA projection of

spectra and (c) distributions of Y-responses. TTS Inliers are represented in blue, while

ANF outliers are in red.

In the proposed application, the proteins contained in ANF outliers,438

present spectral similarities with soya proteins (TTS). Therefore, even in439

minor proportions, these outliers can alter PLSR models. Figure 15 shows440

the similarities between the outliers (ANF) and the inliers (TTS). Spectra441

overlap so that the two populations are indistinguishable. There is supposedly442

an overall difference in baselines, yet insufficient to separate the data into443

consistent clusters. Figure 15 presents the data projected on the first two444

PCA axes. On the basis of this projection, it is also difficult to attest the445

presence of two distinct groups. With the beforehand knowledge regarding the446

affiliation of samples, inliers (in blue) seem to follow a precise trajectory while447

the outliers (in red) form a sparse cloud. However without this knowledge,448

it would not represent a reliable clustering of data, all the more since inliers449

present a second marginal distribution, parallel to the main one. Therefore in450

practice it is not trivial to discard unknown outliers, accidentally introduced451
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in a calibration set. In terms of response, (see fig 15), the outliers also present452

a similar distribution (in red) overlapping the distribution of inliers responses453

(in blue). It is often the case in food applications where different raw materials454

can present comparable nutrient contents.455
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Figure 16: Evolution of the RMSEP as a function of latent variables for the reference,

PLSR with outliers, PRM and RoBoost-PLSR for the real set

Figure 16 shows that the PLSR with ANF samples (red curve) is less456

performant than the reference (PLSR calibrated without ANF samples, blue457

curve). Indeed, the minimal RMSEP for the PLSR with ANF samples is '458

0.95 for 19 LVs whereas the minimal RMSEP of the reference is ' 0.83 for459

11 LVs. This means that PLSR is sensitive to these ANF samples.460

Figure 16 shows that the PRM performance curve is between the PLSR with461

and without ANF samples curves. At best, it achieves an RMSEP equal to462

0.87 for 13 LVs.463

Figure 16 shows that the RoBoost-PLSR curve reaches a minimum error with464

11 LVs, that is the same as the reference (RMSEP = 0.83). RoBoost-PLSR465

has a behaviour very similar to that of the reference. This means that466

RoBoost-PLSR attributes a 0 weights to the ANF samples but also to some467
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TTS samples.468

469

0.00

0.25

0.50

0.75

1.00

0 200 400
index

w
ei

gh
t Group

Inliers

Outliers

Figure 17: Repartition of the weights attributed to outliers (red) and inliers (blue) during

the calibration of PRM for 13 latent variables with the best weights constant setting

Figure 17 presents the repartition of the weights attributed within the470

calibration of PRM. ANF samples weights are not distinguished from the471

TTS samples weights. This result explains the poor prediction performances472

of PRM on this real dataset.473
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Figure 18: Repartition of the weights attributed to outliers (red) and inliers (blue) during

the calibration of RoBoost-PLSR over 11 latent variables with the best weights constants

settings

Figure 18 presents the weights attributed to samples for the eight474

considered LVs within the calibration of RoBoost-PLSR. From the first LV,475

most ANF samples are assigned null weights along with a few TTS samples.476

From the second latent variable, all ANF samples weights are close to 0.477

5. Conclusion & Perspectives478

This article showed the potential of the RoBoost-PLSR method. This479

method offers a relevant solution for the calibration of PLSR models in the480

presence of various types of outliers. At this stage the proposed algorithm is481

mainly based on weighting strategies within a of series unidimensional PLS.482

The method is designed to detect outliers within the calibration, through483

iterations where dissimilarity measurements take into account the hypothesis484
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of robust linear models. The four evaluated applications demonstrate that485

the introduced outliers are predominantly detected and discarded from the486

model. As a result, RoBoost-PLSR is able to attain performance on par with487

the reference.488

One dataset was found to be particularly difficult to process by the PRM489

method. This dataset was the one with X-outliers. It would be interesting490

to integrate within PRM a weighting criterion related to the X-residuals (as491

in RoBoost-PLSR).This would enable to observe the benefit of considering492

X-residuals compared to the benefit of estimating weights based on the score493

space alone. Eventually, RoBoost-PLSR proved to be a promising framework494

to deal with various practical issues. Further studies should be carried out in495

practical context for more diverse applications ; Including smaller datasets,496

where it is yet undetermined if the estimation of weight criteria is still relevant497

/ functional. Indeed, the observations carried out in this paper are based on498

large learning databases. This implies that it is potentially possible to apply499

stricter weights without degrading the prediction quality of the method.500

To this end, the method requires further studies on the following issues :501

Firstly, a comprehensive study regarding the weight functions and their502

optimisation should be carried out, in order to better adjust the models.503

Indeed, the parametrisation of RoBoost-PLSR can be a difficult task (three504

parameters have to be optimised for each LV). In this paper, the constants505

were fixed for all the latent variables. However, it would be relevant to define506

specific constants optimised for each latent variable. It is not conceivable507

to manually optimise constants for each latent variable. Secondly, in real508

applications, outliers can be present both in the calibration and validation509
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sets. In this paper, the validation sets are not contaminated. To obtain a510

fully operational method, it should be completed with the development of a511

metric intended to determine the consistency of unknown samples with the512

model. This would enable to predict datasets containing potential outliers,513

and then only process data for which the model is calibrated for.514

Thirdly, the interpretation of the RoBoost-PLSR model is complex.515

Indeed, the proposed algorithm does not provide an estimation of regression516

coefficients unlike approaches such as PRM. In order to allow better517

interpretability, it would be essential in future work to propose an algorithm518

that enables an estimation of the regression coefficients. Fourthly, the initial519

estimators (centering) and the estimation of the sample weights can be520

corrupted. In RoBoost-PLS, data are centred about the arithmetic mean.521

It is well known that the arithmetic mean is non-robust and can thereby522

provide distorted starting values for the algorithm. A potential solution is to523

replace these estimators with robust alternatives (e.g. robust multivariate524

location). As for the bisquare weight function, it uses the (coordinatewise)525

median, which can lie outside the convex hull of the data than breakdown. It526

would be relevant to consider other weight functions that take into account527

these aspects. Fifthly, the cross-validation of robust methods, for instance528

for the optimisation of hyperparameters, is not a straightforward procedure.529

In this paper, this limitation has been overcome by optimising and studying530

the behaviour of the methods on an unpolluted validation set. In future work531

it will be interesting to develop tools to cross-validate the RoBoost-PLSR532

method in order to allow the development of this method on real cases.533

Finally, the robust multivariate methods have proven their reliable534
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predictive quality in classification issues [29]. RoBoost-PLSR could also be535

adapted to classification problems. This implies that RoBoost-PLSR should536

be adapted to multidimensional Y .537
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Appendix645

Table .1: The different choices in the simulation 1

Inliers Outliers

Pu Pure spectrum of glucose

Tu Folded-normal distribution

Pd Pure spectrum of water

Pure spectrum of ethanol

Spectrum of water-ethanol Interaction

10 Artificial spectra

Td Folded-normal distribution

Folded-normal distribution

Product between Twater and Tethanol

Folded-normal distribution

E Gaussian distribution

f Y = 10 ∗ Tglucose Y = −5 ∗Tglucose

F Gaussian distribution

u define useful space, d define detrimental space, E define the spectral

noise and F the response noise.
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Table .2: The different choices in the simulation 2

Inliers Outliers

Pu Pure spectrum of glucose

Tu Folded-normal distribution

Pd Pure spectrum of water Pure spectrum of water

Pure spectrum of ethanol Pure spectrum of ethanol

Spectrum of water-ethanol Interaction Spectrum of water-ethanol Interaction

10 Artificial spectra 10 Artificial spectra

100 Artificial spectra

Td Folded-normal distribution Folded-normal distribution

Folded-normal distribution Folded-normal distribution

Product between Twater and Tethanol Product between Twater and Tethanol

Folded-normal distribution Folded-normal distribution

Folded-normal distribution

E Gaussian distribution

f Y = 10 ∗ Tglucose

F Gaussian distribution

u define useful space, d define detrimental space, E define the spectral

noise and F the response noise.
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Table .3: The different choices in the simulation 3

Inliers Outliers

Pu Pure spectrum of glucose

Tu Folded-normal distribution

Pd Pure spectrum of water Pure spectrum of water

Pure spectrum of ethanol Pure spectrum of ethanol

Spectrum of water-ethanol Interaction Spectrum of water-ethanol Interaction

10 Artificial spectra 10 Artificial spectra

10 Artificial spectra

Td Folded-normal distribution Folded-normal distribution

Folded-normal distribution Folded-normal distribution

Product between Twater and Tethanol Product between Twater and Tethanol

Folded-normal distribution Folded-normal distribution

Folded-normal distribution

E Gaussian distribution

f Y = 10 ∗ Tglucose

F Gaussian distribution

u define useful space, d define detrimental space, E define the spectral

noise and F the response noise.
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