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Abstract
Quantitative plant biology is an interdisciplinary �eld that builds on a long history of biomathe-
matics and biophysics. Today, thanks to high spatiotemporal resolution tools and computational
modelling, it sets a new standard in plant science. Acquired data, whether molecular, geometric
or mechanical, are quanti�ed, statistically assessed and integrated at multiple scales and
across �elds. �ey feed testable predictions that, in turn, guide further experimental tests.
Quantitative features such as variability, noise, robustness, delays or feedback loops are included
to account for the inner dynamics of plants and their interactions with the environment.
Here, we present the main features of this ongoing revolution, through new questions around
signalling networks, tissue topology, shape plasticity, biomechanics, bioenergetics, ecology and
engineering. In the end, quantitative plant biology allows us to question and better understand
our interactions with plants. In turn, this �eld opens the door to transdisciplinary projects with
the society, notably through citizen science.

1. Introduction

Strictly speaking, taking quantitative biology approach means that we use numbers, and typically
also mathematics, to describe biological processes (Figure 1). However, this is not merely a nice-
to-have extra or a technological increment; it actually revolutionises knowledge production.
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Fig. 1. A quantitative revolution in plant science. Whereas molecular insights in plant biology could simply provide a molecular catalogue of plant ontology, the integration of
mathematics and computational modelling has instead helped to identify new questions with the aim to unravel the principles of plant life. Hypotheses are formalised and tested
in computational models, and results from simulations fuel further experimental analysis. Assessment of the validity of the results, from molecules to ecosystems, involves
statistical validation and further quantitative exploration. Background image (Primula o�icinalis) taken from Atlas des plantes de France, A. Masclef, Paul Klincksieck Ed., Paris,
1890. Quantitative examples extracted from Verna et al., 2019 eLife; Chakrabortty et al., 2018 Curr. Biol.; Bastien et al., 2013 PNAS; Brestovitsky et al., 2019 Plant Direct; Zhao et al.,
2020 Curr. Biol.; Woolfenden et al., 2017 Plant J; Cummins, 2018 Nature; Allard, 2010 Mol. Biol. Cell. and Fache et al., 2010 Plant Cell.

Quantitation leads to identifying and modelling dependencies
between di�erent measurements, which is the way to form new
hypotheses. Statistical approaches measure the strength of such
dependencies. Modelling then allows a preliminary test of the
hypothesis in silico, with predictions tested again in experiments
with quantitative results, while all along probability theory is used
to make sure that we draw sound inferences, and account for
noise and robustness. �is is what a quantitative approach in the
multiple senses used in this review means—an iterative approach
of measurement, statistical analyses, hypothesis testing in silico,
in vitro and in planta, and back to the next cycle with the gained
knowledge we have just obtained.

Furthermore, such an interdisciplinary approach also fuels cre-
ativity and triggers new questions for two reasons: (a) being able to
formalise questions within a de�ned mathematical framework also
means that hypotheses become truly testable and interoperable.
�is is key to understand plants as multiscale (both in space and
in time) systems, (b) because interdisciplinary settings imply that
not everybody is an expert in all techniques, the focus remains
on the question at hand, and not the techniques and their devel-
opment. �is means that quantitative biology is one of the best
ways to open new avenues of research, and identify new questions
(Figure 2). �is is what we are attempting to elaborate on in this
review.

2. Signalling networks

Signalling networks primarily act to process and integrate infor-
mation perceived through a multitude of receptor systems, and
relay this information to cellular e�ectors, which, in turn, enact
a response tailored to the conditions. �is de�nition implies that
information is encoded and decoded, and thus can be formalised.
�is is a thriving �eld of study in computational modelling (Long
et al., 2008). In terms of identifying complex relationships between
inputs and outputs, machine learning approaches are becoming
increasingly popular. Furthermore, exciting developments in tech-
nologies coupled with statistical techniques now allow for the
inference signalling networks from large genomic datasets which
are becoming readily available (Carr� et al., 2017).

Most studies on signalling networks have emphasised the
identi�cation of the molecular components critical for signal
transduction pathways in a mostly binary manner (‘on’ vs. ‘o� ’),
o�en considering a reduced set of actors (minimally a receptor
and its ligand), under controlled-lab growth conditions. To expand
our knowledge beyond the description of pathway architecture
and understand how integrated signalling networks behave in
varying conditions, quantitative biology approaches are required.
For example, how can signals be discriminated from each other
when they simultaneously occur? How can priorities be established
and an integrated response achieved when a cell is challenged with
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Fig. 2. Examples of research topics at the crossroad between plant biology, physics and maths. Quantitative plant biology explores these topics, and the common mathematical
framework allows their integration, across spatial and temporal scales. See main text for details.

multiple inputs, beyond the so-called ‘hormonal cross-talk’? How
are thresholding and noise �ltering mechanisms molecularly
encoded to prevent spurious pathway activation? Answering these
questions requires accepting a number of technical challenges, for
example, concerning the quanti�cation of signalling molecules and
graded responses.

A major achievement in plant signalling has been the identi�-
cation of the core components of ‘receptor–ligand’ pairs for many
signal transduction pathways, through the isolation of mutants
that have modi�ed responses to a particular signal, that either fail
to respond, or respond constitutively even in the absence of that
signal. Genetics further uncovered the hierarchy and interactions
among transduction pathway components and showed how com-
plex the networks involved in the integration of signalling inputs
and outputs are. �is includes feedback mechanisms, where sig-
nalling sometimes provides unexpected compensatory responses.
For instance, a dwarf cellulose synthase mutant is partially rescued
when it bears another mutation in the wall integrity pathway: the
plant becomes unable to detect the damages in its cell wall and thus
does not trigger growth arrest mechanisms (H�maty et al., 2007).

Compared to other systems, the contribution of signalling
dynamics, that is, the duration, frequency and amplitude of a
signal for downstream responses, has been somewhat neglected
in plants (Purvis & Lahav, 2013). For example, in mammalian cells,
transient activation of extracellular signal-regulated kinase (ERK)
through epidermal growth factor can result in cell proliferation,
whereas sustained activation by nerve growth factor can lead to
cell di�erentiation (Avraham & Yarden, 2011). It has been predicted
and experimentally validated that modulation of feedback strength
in a single inhibitory loop from ERK to one of its upstream kinases

(RAF) can result in a variety of stable output states ranging from
a sustained monotone response to a transient adapted output, to
oscillation, or to bi-stable, switch-like responses (Kholodenko et al.,
2010). In plants, our understanding of this temporal dimension of
information encoding is far less developed and thus opens many
avenues for pioneering studies in quantitative plant biology.

Despite increased e�orts, the availability of quantitative data
on signalling events remains the major constraint for approaches
aiming at a deeper understanding and modelling of signalling
networks. An ever-expanding set of biosensors, which allow for
the in vivo visualisation and quanti�cation of signalling molecules
with cellular or even subcellular resolution, are among the most
promising remedies for this lingering ailment. In fact, very recently,
biosensor-based approaches have brought breakthroughs to the
�eld of plant signalling. For example, a study by Toyota and col-
leagues has elegantly elucidated ‘Rapid, long-distance signalling
in plants’ showing that when injured on one leaf by a nibbling
insect, a plant can alert its other leaves to begin anticipatory defence
responses (Toyota et al., 2018). �is development went hand in
hand with quantitative approaches and mathematical modelling
that led to the proposal of a propagation mechanism (Evans et al.,
2016). In addition, emerging systems biology tools may provide
new ways to perturb signalling network components in a spatially
and temporally controlled manner to illustrate network behaviour.

Finally, beyond the computational models of networks, val-
idation with molecular genetics and biosensors, quantitative
approaches on signalling also need to deal with numerous players,
their redundancy, synergy and antagonism. Crucial gene activities
are o�en shared by several redundant homologs, and thus single
mutations in such genes cause only partial defects. It is also
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challenging to identify the primary defect from all the secondary
defects. �ese di�culties can be solved by extensive phenotype
quanti�cation. For example, the roles of various miRNAs, which
were identi�ed by small RNA sequencing of Arabidopsis embryos,
were clari�ed based on their mutant phenotypes on each embry-
onic tissue and developmental stage (Plotnikova et al., 2019).
Such quanti�cation can be further combined with CRISPR/Cas9-
based genome editing techniques that enable tissue-speci�c and
conditional gene manipulation of target gene (Decaestecker et al.,
2019; Wang et al., 2020). With the help of such systems, one can
knockout genes in speci�c cell types at will, thus enabling the
identi�cation of the distinct roles of the identi�ed genes.

3. Noise and robustness

Another layer of complexity is brought about by a prevalent factor
in biology: noise. Stochastic, or random, e�ects pervade biology
across scales (Lestas et al., 2010; Tsimring, 2014), from cells where
molecules are constantly bu�eted by thermal noise, to the robust
formation of organs by collections of cells, to the environmental
�uctuations experienced by crops in the �eld. Noise also invades
our e�orts to measure the biological world, leading to techni-
cal variation and requiring transparent quantitative methods for
responsible analysis. Unavoidable, multiscale noise in biology pro-
vides both challenges and opportunities for plants, and a large and
growing body of work seeks to elucidate how plants attempt to
�lter out, or exploit, randomness. We cannot hope here to give a
comprehensive survey of the many ways stochastic in�uences shape
plant biology, but hope that a few classic examples across scales
will illustrate the ubiquity, and importance, of stochasticity in plant
biology (Abley et al., 2016).

At the most fundamental level, stochasticity in the form of spon-
taneous mutations and other events underlies all plant evolution
(e.g., Rose et al., 2002) studying the interplay of stochastic variation
and �tness in thistle populations. With the view of neutral theory
of molecular evolution, stochastic events continually shape plant
population structure (e.g., Menges, 2014, modelling the impact of
stochastic extinction events on plant populations).

Within plants, cellular noise impacts vital processes across scales
including the circadian clock (Guerriero et al., 2012), gene expres-
sion (Ara÷jo et al., 2017; Wang et al., 2004), internal signalling
(Trewavas, 2012), tropisms (Meroz & Bastien, 2014), patterning
(Meyer et al., 2017) organ shape plasticity (Hong et al., 2018) and
seed germination (see below). �e cytoskeletal polymer networks
formed by actin and microtubules are prime examples of why
quantitative approaches are inevitable: they are far-out of equi-
librium, stochastic, interacting many-particle systems with a high
number of spatial degrees of freedom. Emergent properties from
such behaviour include the formation of parallel arrays or cell
division plane orientations. As such, they are at the cutting edge
of statistical physics, a vibrant �eld of highly quantitative research
in its own right (Deinum & Mulder, 2013; Wasteneys & Ambrose,
2009).

Stochastic modelling can provide a powerful framework to
understand the interactions of plants with their environments (e.g.,
Katul et al., 2007). Elegant modelling work coupling mechanical
and stochastic in�uences has been used to describe whole-
plant development (e.g., Costes et al., 2008; for apple trees). �e
explosion of multiomics technology has allowed genetic features
shaping noise levels in transcripts and metabolites to be discovered
(Jimenez-Gomez et al., 2011).

Some of these stochastic in�uences constitute challenges for
plants—for example, cellular noise in signalling pathways means
that plants need to invest extra resources in maintaining the �delity
of signals. However, noise can also be bene�cial, providing a useful
source of variability in plants (Muller et al., 2019). Bet-hedging
in seeds provides a compelling example of plants exploiting noise:
a generation of seeds that germinate at di�erent times will be
more robust to unpredictable environmental change than one that
germinates synchronously. Johnston and Bassel (2018) identi�ed a
network motif encoding a variability enabling bet-hedging in seeds.
In this system, noisy positive feedback onto both ABA synthesis and
ABA degradation can result in signi�cantly varying �nal hormone
levels. Noise can even help signals to become detectable, because
noise on top of a weak signal can make the signal detectable, a
phenomenon called ‘stochastic resonance’ (Ru� et al., 2012).

Variability in environmental inputs is also leveraged by dormant
seeds. Topham et al. (2017) identi�ed a system whereby seeds make
preferential use of �uctuating ambient and low temperatures over
constant low temperature to break their dormancy. �is mecha-
nism indicates that the perception of low temperature in seeds is
not a matter of the linear accumulation of cold, but rather complex
processing of these �uctuating inputs. �e adaptive signi�cance of
this may relate to daily temperature �uctuations being greater in the
spring and autumn, with these variable signals acting as indicators
of the changing seasons.

�e relationship between the variability in single cells and their
collective contribution towards robust organ shape and size has also
been investigated. It is proposed that noise across molecular and
cellular scales can be ampli�ed to prime organogenesis (Uyttewaal
et al., 2012) or �ltered in order to ultimately result in the formation
of organs having consistent morphologies (Hervieux et al., 2017).

�e study of these vital in�uences is quantitative in essence.
Statistical measures to quantify variability and heterogeneity across
scales have been developed. �e characterisation of noise requires
these quantitative measures (for example, a measure of disper-
sion like the coe�cient of variation or Fano factor; Tsimring,
2014). Large numbers of quantitative observations are required for
accuracy in these measurements, and to distinguish mechanistic
hypotheses when noise is involved. It is only through suitably
coupled quantitative models, experiments and statistical methods
that we can hope to unravel the sources and e�ects of stochasticity
in plant biology, and the mechanisms by which plants deal with, and
exploit, the resulting variability. �ere is much at stake since robust
agrosystems increasingly build on genetic heterogeneity (agro-
forestry, agroecology and mixed varieties) while facing increasing
environmental �uctuations. �e future of food security will involve
careful assessment of uncertainties and better ways to build on the
added values of stochasticity.

Another issue related to noise exists in concert—perhaps less
biologically exciting but equally, if not more, societally important.
Statistical misunderstandings of the role noise plays in experiments
has led to most published research �ndings being wrong, at least in
some scienti�c �elds (Ioannidis, 2005). To combat this, we need
both to embrace rigorous (but not necessarily complicated) statis-
tical methods and a shi� in quantitative philosophy, where noise
and uncertainty are more transparently and openly addressed and
critically analysed. �e p @ .05 paradigm, and accompanying focus
on statistical rather than scienti�c signi�cance, has been much
criticised (Ziliak & McCloskey, 2008). Even within this paradigm,
statistical tests are frequently misused. A common example is using
a t-test for integers or non-negative entities when the standard
deviation (not the standard error!) is of similar magnitude to the
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mean. Clearly, such a sample cannot be normally distributed, and
other tests (like Mann–Whitney) should be favoured (Saxon, 2015).
�e series of articles in Saxon (2015) highlights several other sta-
tistical misuses that confound scienti�c progress. As the transition
towards more quantitative and data-rich plant biology continues,
we urge researchers to adapt their statistical approaches to ensure
this exciting world is understood as accurately as possible.

4. Tissue topology as an instructive cue

Signalling and noise occur in cells that reside in tissues. An indi-
vidual cell’s function is thus highly biased by that of its neighbours.
Beyond the molecular aspects, plant biology thus embeds another
strong quantitative component: topology.

Cell-to-cell communication is central to plants. Coordination
between cells is needed to orchestrate growth and development,
as well as responses to their environment. Plant cells can trans-
mit information using chemical, mechanical and electrical signals.
Chemical signals typically move between cells through a secreted
peptide sensed by a transmembrane receptor kinase, through sym-
plastic channels called ‘plasmodesmata’ or via e�ux and in�ux
transporters. Mechanical signals are likely to be transduced via
the connecting cell wall surfaces, although the precise mechanisms
for this remain to be elucidated. Electrical signals could be trans-
ferred through membrane voltage through plasmodesmata or the
transport of ions. All these mechanisms are dependent on either
symplastic connectivity or common surface areas between cells.
Topology is thus an essential part of plant biology.

As cells divide, the daughter cells may lose connections to some
of the previously neighbouring cells. Growth can cause movement
or deformation of cells, thus leading to changes in the contact sur-
face area with neighbouring cells and potentially new connections.
One would therefore expect that growth and development would
lead to changes in communication between cells. How could plant
cells then know, in this ever-changing environment, how to act
and whether they should divide or di�erentiate (Jackson et al.,
2019)? How is this dynamic cell-to-cell communication achieved
and coordinated (Bassel, 2018)?

One possibility is spatial restriction acting to modulate the
expression of key proteins, whose �ux in concentration gradients
create unique microenvironments. �e microenvironment of a cell
is established by a combination of signals within the original cell,
known as cell autonomous signalling, along with external signals
known as non cell autonomous signals. �ese signals originate
from neighbouring cells, such as phytohormones or mobile pro-
teins, executing non cell autonomous functions in plants. �e
importance of regulatory mobile proteins in establishing a unique
microenvironment has been shown to be central for the proper
cellular organisation of the root stem cell niche, and thus cell-to-cell
communication in this region. For example, non cell autonomous
signalling of SHORTROOT (SHR) and its binding partner SCARE-
CROW (SCR) guide the timing of cell division and determine cell
fate of quiescent centre (QC) cells and cortex-endodermis initial
(CEI) cells in the Arabidopsis root stem cell niche (Cruz-Ramflrez
et al., 2012).

Studying the communication between cells is critical both to
address complex problems at the whole-organism level, and to
understand systemwide cellular behaviours. To accommodate the
study of cell-to-cell communication, several exciting approaches
have been used. Using scanning �uorescence correlation spec-
troscopy, one can quantify protein characteristics within a speci�c

cell type, such as complex stoichiometry, as well as molecular
dynamics between di�erent cells, such as protein movement (Clark
et al., 2016). SHR and SCR expression activity di�ers in QC and
CEI cells, as they form complexes in each cell type with di�erent
stoichiometric proportions. Methods like raster image correlation
spectroscopy, pair correlation function and number and brightness
allow mobile transcription factor motility and expression levels
to be analysed, thus quantifying how they contribute to devel-
opmental processes. Computational modelling can then be used
to predict cellular behaviour, such as cell division or di�erenti-
ation timing, as well as expression dynamics of key regulatory
proteins in speci�c QC and CEI cells. �e latter can be accom-
plished through mathematical methods such as ordinary di�er-
ential equations, which can take into consideration the number
and concentration of stoichiometric complexes of SHR and SCR in
each cell type, the di�erence in SHR and SCR expression between
cell types QC and CEI and relevant upstream regulatory elements
(Clark et al., 2020).

Mathematical modelling also has a key role to play in developing
and testing hypotheses on communication through plasmodes-
mata. Our understanding of how this process works is still relatively
poor, but two mathematical models have recently o�ered new
insights into how this may work. Deinum et al. (2019) developed
a model of di�usion from cell to cell through plasmodesmata.
�e authors built a detailed multilevel model based on realistic
plasmodesmatal geometries and investigated the impact of di�erent
geometrical parameters and plasmodesmatal distributions. �is
model allows for wall permeabilities, as a function of geometrical
parameters, to be inferred from experimental data. Park et al.
(2019) modelled cell-to-cell communication via plasmodesmatal
�ux as a function of turgor pressure. �ey hypothesised a plas-
modesmata closing mechanism based on mechanosensing. �is
model o�ers an explanation for rapid closing for which the alternate
model of callose deposition seems too slow. Further work, both the-
oretical and experimental, is needed to elucidate the mechanisms
underpinning the functioning of these important communication
channels.

An interdisciplinary approach is required for another key aspect
of this topic: ‘decoding’ the information involved in cell commu-
nication. Increasingly, detailed experiments and bioinformatics are
revealing the mechanisms of production, and dynamics, of di�erent
signals (molecular and biophysical). But how such complex signals
are used by the plant to convey information is an open question.
What processing converts an intracellular combination of hormone
concentrations into an actionable signal, for example? Over what
length and timescales can signals of di�erent physical forms be
sent and received through the plant? How is the �delity of such
signals retained in the face of inevitable noise (Lestas et al., 2010)?
Quantitative answers to these questions have tremendous potential
for basic biology and agronomical resilience, but will require a
cross-disciplinary approach using information theory, modelling
and statistics to harness exciting new data.

5. Morphometric atlas for morphogenesis

Scaling up from tissue topology, another quantitative aspect of
plant biology is shape, which can be complex in case of many
organs, and morphogenesis, that is, shape changes in time or its
maintenance despite organ growth. At the tissue scale, quantita-
tive plant biology can take the form of growth kinematics, which
is growth description of high spatiotemporal resolution that is
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necessary to understand plant growth dynamics, that is, how the
plants develop (Silk, 1984). �e most in�uential proponents of
quantitative studies of plant growth and development were Ralph
O. Erickson (1914–2006) and his students or followers, the late
Zygmunt Hejnowicz (1929–2016) and Paul B. Green (1931–1998),
as well as Wendy K. Silk (Meicenheimer & Silk, 2006). �ese
scientists have used quantitative and interdisciplinary approaches
despite the average biologists’ prejudice against math and statistics
at that time (Erickson, 1988). In his review devoted to modelling of
plant growth, Erickson (1976) summed up their approach writing
that ‘in any attempt at modelling it should be possible to relate the
experimental data to the di�erential equations which represent the
process being modelled’. Experimental data thus must have to be
extensive in terms of precision and robust, through large sample
size. In such endeavours, the required quantitative analysis is o�en
complemented by modelling.

Kinematics of plant growth has been studied from two bio-
physical perspectives: �uid dynamics (Silk, 1984) and solid body
mechanics (Hejnowicz & Romberger, 1984). �e �rst perspective
is based on the analogy between plant growth and �uid �ow:
individual cells ‘�ow’ through a growing plant organ that maintains
an almost steady shape. �e second perspective focuses on the con-
tinuous character of the symplastic growth, typical for plant tissues,
which is cell growth coordinated at tissue and organ levels. �e
symplastic growth of plant organs, which is o�en also anisotropic,
is the irreversible tissue deformation that observes the continuum
condition of solid body mechanics. Both perspectives, �uid dynam-
ics and solid body mechanics, put forward the tensorial nature of
plant organ growth, which implies elaborate quanti�cations and
modelling (Hejnowicz & Romberger, 1984; Silk, 1984).

Empirical studies of plant growth and development as well as
its complex regulation are technically challenging, because growth
is o�en unsteady and inhomogeneous. �erefore, critical for the
progress of our understanding of plant morphogenesis are tech-
niques enabling the acquisition of high spatiotemporal resolution,
high quality and well-quanti�ed imaging data and its subsequent
analysis. Recently, various techniques were developed to support
live imaging, such as autotracking of moving samples and in vitro
tissue cultivation under microscopes. �ese techniques were fur-
ther combined with minimally invasive microscopy, including light
sheet and two-photon excitation systems, and enabled long-term
time-lapse imaging to visualise the four-dimensional dynamics
during pattern formation. For example, the combination of Ara-
bidopsis ovule cultivation and two-photon excitation microscopy
revealed the 4D atlas of cell lineages during embryo patterning
(Gooh et al., 2015). Furthermore, high-resolution live imaging
enabled to monitor the intracellular behaviour of developing cells,
such as cytoskeletal rearrangement during lateral root initiation
and vacuolar shape change during zygote polarisation (Kimata
et al., 2019; Vilches Barro et al., 2019).

�e advanced imaging technologies provide a vast amount of
spatiotemporal data, and this can mask important information.
�erefore, image quanti�cation is essential to extract key proper-
ties from the 4D big data. For example, cell volume and division
orientation were quanti�ed at various stages of embryogenesis, and
these values were utilised for simulation modelling, which revealed
the importance of geometric cell division rules and its modi�-
cation by plant hormone auxin in embryo patterning (Yoshida
et al., 2014; Moukhtar et al.,2019). �us, the combination of 4D
imaging and detailed quanti�cation can provide a powerful tool
to identify fundamental rules underlying plant morphogenesis. As
shown next, such morphometric analyses are now integrated with

gene networks and cell identities in comprehensive 4D atlases to
identify patterning rules.

6. Patterning spatial and temporal information

It has long been recognised that plants exploit algorithm-like pat-
terns in their development (Prusinkiewicz & Hanan, 1989). We are
only now beginning to uncover the complex mechanisms based on
long-range transport and sensing of small metabolites, such as the
ubiquitous auxin, in some sense the charge-carrier of the analogue
‘electronics’ steering plant development.

To integrate 4D imaging-based quantitative information of
dynamic transcriptional or signalling networks, developmental
atlases are arising as functional tools, complementary to computa-
tional modelling (Refahi et al., 2021). For instance, this coupling
of approaches, allowing the precise spatial registration of auxin
maxima and signalling in the shoot apical meristem, uncovered
a novel mechanistic framework to explain phyllotaxis (Galvan-
Ampudia et al., 2020).

Other examples include the formation of trichomes, the divi-
sion pro�le of the stomatal lineage, the emergence of lateral roots
and the positioning of root hairs. Such patterning processes o�en
involve local signalling modules, with positive and negative feed-
back loops. Interestingly, while many of these networks build on
biochemical interactions, as, for example, in reaction-di�usion
Turing-like patterns, there is increasing interests in more holistic
models that also include mechanics. For instance, lateral root emer-
gence from the pericycle, and through cortical tissues, involves
adjacent cells and their mechanical accommodation to such an
invasion (Ditengou et al., 2008; Lucas et al., 2013; Vermeer et al.,
2014). Similarly, the stomatal lineage patterning involves a tight
control of polarity, which also involves large-scale patterns of tissue
tension across the leaf (Bringmann & Bergmann, 2017). Finally,
some of the feedbacks involved in patterning can be geometrical.
For instance, it has been proposed that the positioning and size of
the WUS-expressing domain at the shoot apical meristem depends
on cytokinins di�using from the epidermis, and thus scales with
meristem shape (Gruel et al., 2016).

Importantly, integrated quantitative approaches also allow us to
address how stereotypical patterns and organ shapes are. De�ning
stereotypes, in turn, paves the way to quantify the variability of
morphogenesis, which is likely a crucial component per se of devel-
opment (Waddington, 1942). In plants, mechanisms controlling
speci�cally plasticity and robustness of development are starting to
be explored (Hong et al., 2018), and will shed new lights on plant
growth and form.

7. Shape plasticity

Whereas many animals can developmentally rest on their laurels
a�er reaching maturity, plant morphogenesis is by de�nition an
un�nished project. As such, postembryonic development is central
to plant developmental biology. Organogenesis can be plastic and
nonuniform, and organ shapes can respond to environmental cues.
While in animals, symmetry, repeatability and scalability are key
due to the importance of motion for animal survival, in plants
instead plastic development in response to environmental condi-
tions is central to plant �tness. It is this plasticity that enables plants,
for instance, to generate new lateral roots where nutrients or water
is found, yet save valuable resources by not investing in growth
elsewhere.
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Heterogeneity in growth, ranging from organ shape deforma-
tions to tropisms, are key to plant adaption. Organ or architec-
ture plasticity is observed not only across plant evolution between
species, but also within single individuals during development, or
in response to changing environments. Such plasticity can also be
predictable, meaning that quantitative approaches can measure,
describe and help to understand its features. Toward this aim,
robust shape descriptors have been developed. For instance, leaf
shape plasticity has been assessed quantitatively in grapevine, using
more than 5,500 leaves representing 270 vines from more than 11
species, to understand environmental impact (Chitwood & Sinha,
2016). Similarly, at the cellular level, careful cell shape description
in 3D identi�ed geometric cues predicting speci�c formative asym-
metric division, shi�ing organism growth from 2D to 3D in a basal
plant, the moss Physcomistrella patens (Tang et al., 2020).

Cell growth orientation and anisotropy, de�ning �nal cell shape,
clearly determine asymmetric cell divisions, but also symmetric cell
divisions in proliferative tissues, as cell division plane depends on
geometrical and mechanical rules (von Wangenheim et al., 2016;
Willis et al., 2016; Yoshida et al., 2014). As such, cell shape de�nes
cell division patterns, which are key in various aspect of plant mor-
phogenesis, such as stomata, root development or early embryo-
genesis in Arabidopsis. However, mutants displaying random cell
division patterns, like tonneau, are still able to pattern normal
fates territories (Traas et al., 1995), and embryo patterning occurs
in monocots despite highly variable cell division patterns (Zhao
et al., 2017). �ese examples suggest that supracellular mechanisms
operate to control morphogenesis, as predicted by the organismal
theory (Kaplan, 1992).

Shape robustness entails a control of organ shape plasticity to
ensure reproducible �nal shapes while facing external and internal
perturbations. �is implies the coordination of heterogeneous cel-
lular behaviours. �is coordination involves various mechanisms
ranging from mechanical stress to mobile morphogens controlled
by cell-to-cell communications (e.g., Hervieux et al., 2017). Impor-
tantly, local cellular growth variability can be as well used by the
plant to bu�er shape variations at the organ or tissue level, as shown,
for instance, during Arabidopsis sepal development (Hong et al.,
2016), or leaf primordia initiation at the shoot apical meristem
(Uyttewaal et al., 2012), with a primary role of the epidermis
(Malivert et al., 2018; Zhou et al., 2020). Finally, shape de�nition
during plant development is a multiscale and integrated process,
which is plastic by nature. Indeed, the gradual production of new
cells during iterative development imposes continuously new geo-
metric, topological and mechanical constraints, which, in turn,
canalise individual cells growth and shapes.

Plastic cellular patterns can rely on local �uctuations in gene
expression, establishing thresholds determining cell fate trajecto-
ries. Indeed, the coupling of variations in gene expression and in
cell fate has been observed for individual genes, such as ATML1
in leaf and sepal epidermal cells. In epidermal cells arrested in
G2 phase of the cell cycle, when ATML1 level exceeds a cer-
tain threshold, endoreduplication starts, allowing di�erential cell
growth (Meyer et al., 2017). Recent years have seen the rise of
single cell transcriptome techniques. To obtain separate cells for
single cell analysis, cell walls need to be removed (i.e., generation
of protoplasts) quickly from plant tissues, whose e�ect on gene
expression remains to be comprehensively assayed. Protoplasts
are easy to extract from the root meristem of Arabidopsis, and
therefore several papers describing the single cell transcriptome of
that tissue have recently been published. �ese pioneering studies
con�rmed the identities of di�erent cell types in the root meris-

tem, but most interestingly, with the help of bioinformatics, they
also revealed cell di�erentiation trajectories (Efroni et al., 2016).
Di�erentiation of the stomatal lineage have also been addressed
recently (Lee et al., 2019), showing that more and more plant
tissues can be amenable to single cell transcriptomic approaches.
Interestingly, di�erentiation trajectories can be mapped on pseu-
dotime curves, by coupling single cell techniques to careful tissue
staging, as recently shown for male germline precursors in maize
(Nelms & Walbot, 2019). �rough spatial transcriptomics (Duncan
et al., 2016; Giacomello et al., 2017), we will obtain information
on transcriptional programs during morphogenesis at a temporal
and spatial resolution we thought impossible just a while ago.
Such high-resolution transcriptome technology would allow us
to understand how individual cells dynamically determine their
cell fates in response to diverse inputs, such as nutrient amount
mechanical stress and the dynamics of neighbouring cells, to actu-
alise plastic plant development.

8. Mechanics behind growth and motion

A quantitative approach is also indispensable in the �eld of plant
biomechanics. Cell growth is a classical and enlightening example
of how quantitative descriptions and mechanical reasoning can
shed light on a key biological process. It has been quantitatively
studied since the 19th century, with experiments on osmosis by
Wilhelm Pfe�er (1845–1920). Many control factors are involved
(temperature, hormones, osmole concentration, oxygen etc.).
Although turgor pressure is understood to be the force behind cell
growth, its action appears contradictory: On the one hand, turgor
pushes on the cell wall, promoting growth; on the other hand, it
raises the water potential, inhibiting water entry into the cell. By
modelling the cell wall as a viscoplastic material, Lockhart (1965)
was able to combine these two opposite tendencies into a single
equation, from which turgor is absent. In Lockhart’s equation,
the relative growth rate becomes nonzero when the di�erence in
osmotic pressure �� rises above a yield pressure PY:

1
V

dV
dt

�
’L

’�L
��� �PY�;

where ’ is the extensibility of the cell wall and L is its relative
hydraulic conductance. As argued by Green (1996), these two
physical parameters enter the equation in a nonlinear way, which
could not have been deduced from co-variation studies. Biophys-
ical modelling, supported by quantitative data, was therefore a
necessary step. Ortega (1985) added an elastic component to the
equation, accounting for reversible changes in cell volume, which
can be signi�cant, for instance, in diurnal variations in tree stem
diameter.

Another biophysical approach to cell growth is based on the
principle of minimum energy (Hejnowicz, 2011). However, neither
this nor the Lockhart–Ortega equation directly accounts for the
e�ects of temperature, hormones or other factors. Actually, these
factors act on the extensibility of the cell wall. Investigating the
corresponding relationships requires more detailed models of the
chemo-rheological processes occurring in the cell wall (e.g., Ali
& Traas, 2016), assessed against quantitative data (Proseus et al.,
2000).

Upscaling mechanical properties from a single cell to an
organ(ism) is nontrivial. �e whole structure has to be closely
considered. Because cell walls are sti�er than protoplasts and are
under tensile stress generated by turgid protoplasts, the apoplast is
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the load bearing and load transmitting part of the organ. �e green
organ can thus be regarded as made of a pressurised cellular solid,
where the contribution of various organ tissues into its mechanical
properties/sti�ness depends on tissue distribution and structure.
One of the �rst plant morphologists who studied biophysical
aspects of plant structure and development was Hofmeister,
who also noted that cell walls are under tension. His ‘ability to
combine exceptional observational detail with an emphasis on
experimental methodology’ (Kaplan & Cooke, 1996) was an early
manifestation of quantitative plant biology. �e structure of plant
organs was studied from a mechanical perspective and looked at as
a supportive system also by other pioneers of plant anatomy, such as
Sachs and Simon Schwendener (1829–1919), although later these
aspects of plant structure were generally neglected for decades
(Romberger & Hejnowicz, 1993).

Mechanics also explains plant movements, such as the oper-
ation of contractile roots, the catapult-like action of fern spo-
rangia (Noblin et al., 2012) or the closing of the Venus �ytrap
(Forterre et al., 2005). Some of these movements, including nastic
ones, have important morphogenetic implications, for instance, to
explain how leaves �atten as they grow (Derr et al., 2018). All
these phenomena in living organisms have to be studied observing
empirical rigors of physics, and thus contribute to quantitative plant
biology.

As for biochemistry, mechanics is not only an output of the gene
network, but also an input. Growth and geometry changes cause
mechanical tension and stress during morphogenesis, and this, in
turn, feeds back to tissue patterning (Heisler et al., 2010; Nakayama
et al., 2012). A growing number of studies report that both short-
and long-distance signalling between plant cells is accompanied
by tension/stress sensing mechanisms enabling correct morpho-
genetic processes (Trinh et al., 2021). Because forces are invisible
in essence, and as these regulatory mechanisms take place in three
dimensions and at di�erent timescales, computational modelling
has become a vital tool to understand patterning processes ranging
from the tissue, organ to whole plant scale.

Because plants develop ‘in-place’, they might be more geometry-
aware than many other organisms. �is is apparent even at the
level of individual plant cells, which like plants themselves largely
develop ‘in-place’. �e unique properties of the semirigid plant cell
wall, means that plant cells need to maintain and hence be able
to sense their geometry o�en at a size scale of tens of microns.
It is remarkable that Paul Green in a landmark paper (Green,
1962; Green & King, 1966) basically predicted the existence of
cellulose micro�bril reorientation by mechanical stress on the basis
of his observations of the plant cell wall, even before microtubules
were discovered (Ledbetter & Porter, 1963). Microtubules were
later on found to guide the synthesis and orientation of cellulose
micro�brils, which determine cell growth orientation, through live
imaging (Paredez et al., 2006).

Not only the role of mechanical stress in development is well
established (Green, 1999; Hamant et al., 2008; Lynch & Lintilhac,
1997), but it is also widely accepted that mechanics is at the basis
of the supportive functional system of plant organs (Romberger
et al., 1993). Noteworthy, plant organs are o�en prestressed con-
structions. Namely, an important role in this system is played by
tissue stresses (Hejnowicz & Sievers, 1996; Kutschera, 1989), that
is, the tensegrity at the organ level. �e structural tissue stresses, an
indirect result of the turgor pressure, exist in plant organs that are
composed of turgid tissues that di�er in cell size as well as thickness
and mechanical properties of the cell walls.

Due to their size and perennity, trees are of special interest for
plant biomechanics. As slender structures, they lend themselves
well to engineering approaches like beam theory (Niklas, 1992).
Prompted by the pioneering works of Schwendener (Schwendener,
1874), biomechanicians started to investigate the quantitative con-
straints put on tree growth by their own weight (Greenhill, 1881)
or external loads like wind (Metzger, 1893). Trees greatly di�er
from engineered structures as they change their mass and size by
large factors during their lifetime and experience a wide range
of mechanical loads. In addition, they explore their environment
and adapt to it (see, e.g., Alonso-Serra et al., 2020; Eloy et al.,
2017). De�ning integrative biomechanical traits makes it possible
to quantify how well a tree is adapted to its environment and to
infer which ecological strategy it follows (Fournier et al., 2013).
�is also illustrates how physics, engineering and plant ecology can
work hand in hand.

9. Bioenergetics

As is the case for all living organisms, plant growth, development
and physiology involve continuous dynamic energy conversion,
abiding the laws of thermodynamics. Photosynthesis is the most
important energy-harvesting process on Earth. By driving the �ow
of electrons extracted from water molecules through several highly
organised photosynthetic complexes, sun energy is momentarily
converted into two chemical energy currencies of the cells, ATP
and NADPH. At the same time, it drives the assimilation of carbon,
nitrogen and sulphur. �e chemical energy generated from photo-
systems then fuels many anabolic metabolisms that promote the
mechanisms behind plant growth described above.

As shown for other themes, cell bioenergetics is examined by
quantitative approaches, such as absorption spectrometry, chloro-
phyll �uorescence, irradiance measurement, optical microscopy,
gas analysis, electrodes or isotopic labelling. �ese methods allow
the estimation of photosynthetic parameters, carbon assimilation
rate, electron �ows, metabolic �uxes, stomatal conductance or
respiration rate (Fernandez-Jaramillo et al., 2012).

�e acquired data are integrated into metabolic networks and
�ux-balance analysis models to describe energy metabolism in
photosynthetic organisms (Cheung et al., 2014; RXgen et al., 2015).
One example is the Farquhar, von Caemmerer and Berry model
for predicting net CO2 uptake (A) in C3 plants by linking A
to the carboxylation rate of ribulose 1,5-bisphosphate (RuBP),
oxygenation rate of RuBP and mitochondrial respiration in the
light (Farquhar et al., 1980). �is model, which has been cited
more than 7,500 times since its publication 40 years ago, has been
applied to a wide range of studies, from investigating C3 bioener-
getics to predicting photosynthetic �uxes of ecosystems on a global
scale.

In fact, the importance of modelling and quantitative studies of
photosynthesis goes beyond the cellular, tissue or organismal levels.
Field and global measurements of solar-induced vegetation �uores-
cence by recent remote sensing technologies using airborne sensors
or satellite systems allow scientists to monitor the temporal and
seasonal changes of vegetation and the �uxes of carbon, water and
energy on a regional or a global scale, and to study the interaction
between vegetation, primary productivity, environmental stresses
and climate changes (Wu et al., 2016). Coupled with data gathered
in the �eld, this opens many opportunities to bridge scales and
revisit the essential role of plant productivity for our civilisation and
ecosystem.
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10. Integrating fluctuating and diverse abiotic environmen-
tal factors

Within a single day, plants may experience all kinds of challenges,
including �uctuating light intensity and/or quality, temperature
changes, wind, rain or snow. Each of such �uctuations in the
surrounding environment factors may represent a threat to plants,
unless dealt with properly.

�e information contained in abiotic signals needs to be pro-
cessed and integrated in order to arrive to developmental deci-
sions. To elucidate this process, a quantitative systems approach is
required, because the intricate interplay between the several parts
of the signalling networks o�en escapes intuitive reasoning (Boer
et al., 2020). �ere are numerous quantitative challenges related to:
(a) learning the structure of environmental signal integration net-
works, (b) understanding the dynamic properties of these networks
and (c) designing genetic changes to the network that would cause
the plant to respond to environmental parameters in a speci�c way.

One of the most thoroughly studied abiotic response systems in
plants is light and temperature signal integration. Plants sense the
quantity and quality of light, for which a variety of photosensors
are used ranging from the UV to the red part of the spectrum
(MHglich et al., 2010; Paik & Huq, 2019). For instance, measuring
the duration of the day by sensing dawn and dusk is important for
the entrainment of the circadian clock (Seaton et al., 2018; Wenden
et al., 2011). But also other responses, such as germination, de-
etiolation, regulation of �owering and responses to canopy shade,
are regulated by light sensing networks (Chen et al., 2004; Galv�o
& Fankhauser, 2015; Kami et al., 2010; Paik & Huq, 2019). Plants
respond di�erently to di�erent spectral distributions of the incident
light, which is achieved not by the light sensors alone, but by an
interplay between the sensors and their interacting factors, that is,
by the light sensing network (Galv�o & Fankhauser, 2015; Klose
et al., 2015; Paik & Huq, 2019; Rausenberger et al., 2010). Due
to this, the plant’s response to environmental light is a system
property and cannot be understood by analysing the properties of
the photoreceptors alone, besides simple cases.

A prominent example of this is phytochrome A (phyA) in
Arabidopsis thaliana. �e spectral response of phyA depends on the
light intensity; for low intensities, phyA responds to red (660 nm)
light, whereas for high intensities, it responds to far-red light
(720 nm; Franklin et al., 2007). �is intensity-dependent change of
the spectral response without a change of the physical properties
of phyA can only be understood, if one analyses the signalling
network (Possart et al., 2014; Rausenberger et al., 2011; Sch"fer,
1975).

�e understanding of the light signalling networks and their
di�erent responses to the light spectrum is very challenging and
requires joining the forces of experiments and mathematical mod-
elling. �is is even more true if one aims to unravel the integration
and processing of light and temperature signals in plants. Plants are
sensitive to temperature changes, and many aspects of plant growth
and development respond to temperature, for example, hypocotyl
elongation or �owering (Wigge, 2013). However, both processes are
also sensitive to light, and therefore the temperature and the light
signals need to be taken into account together.

In principle, temperature and light could be sensed by two
separate networks, and the integration could be achieved through
further downstream elements. Nevertheless, it has become clear
that in Arabidopsis thaliana, temperature and light sensing and sig-
nal integration are done by the same network (Franklin, 2009; Jung
et al., 2016; Legris et al., 2016; Seaton et al., 2018). Again, without

mathematical analysis of the data and knowledge integration into
dynamic mathematical models, progress in our conceptual under-
standing of how plants analyse ambient temperature and light con-
ditions in a coordinated manner would be very di�cult. �e math-
ematical models allow for studying the e�ect of the di�erent parts
of the network, their interplay and role in the signal processing.

While dynamical systems approaches have been useful for
understanding the interplay between temperature and light signal
integration, many of the environmental signal integration networks
in plants have been primarily interrogated with ‘Big Data’-
based approaches that also provide insight into the structure
and behaviours of signal integration networks. One research
aim has been to infer the structure of large biological networks
used in signal integration using transcriptomics data and either
experimental or computational predictions of transcription factor
binding (Brooks et al., 2019; Ezer et al., 2017; Gamboa-Tuz et al.,
2018; Greenham et al., 2017; Walker et al., 2017). �e resulting
networks can be too complicated for us to easily comprehend how
plants integrate environmental signals, and so there is an ongoing
e�ort to identify submodules that perform speci�c environmental
sensing and integration roles (Polanski et al., 2014).

When environmental signal integration networks are too com-
plicated to model with dynamical systems, an alternative approach
to understanding their behaviours is to directly predict phenotypic
traits of interest from environmental input variables. Here, the aim
is not to learn conceptually or model the precise network that
plants use intrinsically to integrate signals, but rather to �nd a
model that makes accurate predictions. �ese kinds of phenotypic
forecasts have been especially useful in agricultural applications,
where the primary aim of the researcher is to predict agriculturally
relevant traits, given a certain set of abiotic environmental param-
eters. Innovations in this area come from deep learning techniques
that integrate networks of sensor and satellite data (Aruul Mozhi
Varman et al., 2017; Wang et al., 2018; Wolanin et al., 2020) and
statistical advances that integrate more time-series environmental
data into these models, taking into account that a plants’ response
to an environmental stimulus is time-of-day and season-dependent
(Brestovitsky & Ezer, 2019; Kocian et al., 2020; Newlands et al.,
2014).

�ere are a number of open challenges related to the study of
how abiotic factors are integrated by plants, which merit quan-
titative investigation. For instance, there is a limit to how many
combinations of environmental parameters can be perturbed in
an experiment, so there is a need for new tools to help scientists
iteratively design experiments (Ezer & Keir, 2019). �ese would
help them choose growth conditions that would help them learn
as much as possible about how plants integrate environmental
signals, while adhering to time and budget constraints. A second
major challenge is to e�ciently reverse-engineer speci�c responses
to abiotic stimuli, so we can e�ciently engineer crops that are
sustainable in the light of climate change.

11. Ecosystem complexity: interactions with pathogens and
microbiome

Plant phenotype goes beyond their individual body: to under-
stand their biology, one needs to account for the myriad of living
organisms with which they interact. �is represents a large �eld of
research, notably because of the threat posed by pathogens on plant
development. Needless to say, quantitative thinking is also at the
heart of such biotic interactions.
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�e research �eld of plant immunity is deeply rooted in crop
sciences with phytopathology and breeding for disease resistance
traits. �e gene-for-gene hypothesis by Flor established the �eld
under the concept of qualitative disease resistance: the presence or
absence of a matching pair of host resistance gene and pathogenic
avirulent factor determines the qualitative traits, resistance or sus-
ceptibility (Flor, 1942). �is simple assumption has greatly con-
tributed to the development of the plant immunity research �eld,
resulting in a growing list of important immune receptors both in
model and crop plant species and the deployment of such robust
resistance traits in the crop �elds.

Despite its initial contributions, the simple qualitative concept
has been challenged with quantitative counterarguments. A resis-
tance trait based on the one-on-one relationship would be pre-
dicted to break easily if fast-evolving pathogens come up with a
strategy to overcome the resistance. However, most natural popu-
lations withstand stochastic pathogenic loads, re�ecting their com-
plex immune systems that would consist of resistance genes serving
to recognise more than one pathogenic avirulent factor.

As the research �eld matures, evidence for the quantitative
nature of disease resistance and plant immunity is accumulating.
An obvious numbers game comes from a genomic view of plant
immunity. Numerous genome sequencing datasets point out that
the list of immune receptors on our hands, mostly discovered
under the gene-for-gene concept, is only a tiny fraction of what a
given plant species could carry. For example, out of approximately
160 genes belonging to NLR-type (formerly known as NBS-LRR)
resistance genes found in Arabidopsis thaliana, only less than two
dozen have been functionally assigned to resistance. �e fraction
of knowns in other species is far less than those found in the most
well-studied model species (Kourelis et al., 2020). What are the
functions of the rest of these unannotated immune genes present
in the plant genome? Are they ‘reservoir’ immune genes that would
ensure the plant populations to be ready for stochastic pathogenic
pressures? In this sense, does the immune complexity revealed from
the functional genomics of plant immunity research re�ect the
phenotypic plasticity wired in their immune network? How much
is the contribution of cryptic genetic variation accumulated in the
system to overall plant �tness? Can the complexity be utilised to
develop durable resistance in the �eld?

�e current research focus is shi�ing towards a systematic and
quantitative approach to understand the robustness of the plant
immune system. Recent molecular �ndings point to cooperative
modules of immune receptors and a di�use relationship between
receptor and ligands in the plant immune system (Cesari et al.,
2014; Karasov et al., 2014; Wang et al., 2015; Williams et al., 2014).
�ese �ndings suggest that we should adopt a network view on
plant immunity to better understand innate complexity in the plant
immune system (Adachi et al., 2019).

Copious omics-driven large-scale research has revealed that
despite an obvious expansion in the peripheral nodes of the net-
work which accommodates diverse recognition modes, plants have
evolved a core machinery that activates rather conserved immune
responses (Hillmer et al., 2017; Mukhtar et al., 2011; Tsuda &
Katagiri, 2010; Wessling et al., 2014). Characteristic plant immune
responses o�en culminate in immunological cell death events that
would dispose of the infected local areas, while the activation of
immune responses in return sacri�ce growth in general. �e two
topics, the canalisation of diverse recognition events to canoni-
cal immune responses and the trade-o� between immunity and
growth, are the major areas that could bene�t from the quantitative

approaches already implemented in other areas of biology, partic-
ularly in plant development and signalling.

If one can visualise characteristic immune responses, for exam-
ple by de�ning and utilising immune responsive elements, detailed
image analysis in a spatiotemporal manner would certainly uncover
the hidden rules of immune signalling and cell death execution.
Such details in immune responses in plants are expected to pro-
vide a way to modulate the responses to quantitatively pinpoint
how much either acute or residual immune responses a�ect plant
performance during the course of development. As local cell death
could disturb the developmental system drastically, rerouting of
developmental signalling in a quantitative matter would strengthen
our understanding of phenotypic plasticity of plants under external
stress.

Another important research area of plant immunity lies in its
connection to �eld sciences. Microbial ecology is an inseparable
research area from that of plant immunity. With recent advances
in microbiome research platforms, the relative importance of the
host-microbe interaction starts to be unveiled in its contribution
to plant performance (Chen et al., 2020; Hacquard et al., 2017).
Such e�orts widen the past focus on plant–pathogen interactions
to embrace di�erent kinds of plant–microbe interactions including
symbiosis. De�nitely, the expansion of the plant immunity �eld to
embrace the multitude of interactions between plants and microbes
as well as between plant immune components will require sophis-
ticated quantitative tools for analysis to build up a comprehensive
view of the plant immune system.

12. Back to society: plants and humans

Engineering technology and approaches have always been a
weighty facilitator of research and innovation in life sciences,
including plant sciences. In turn, many areas of plant sciences
are identi�ed as the next frontiers of bioengineering, particularly
in light of working towards mitigating climate disasters and
realising a sustainable future (Wintle et al., 2017). �e interface
between biology and engineering can be classi�ed into three types:
engineering for biology, with biology and inspired by biology.

First, engineering can help biology with quantitative tools. It
could be a totally new method, or more o�en a new improved
version of an available technology. For example, how fast and cost-
e�ectively we can sequence DNA has kept transforming the size
of the datasets we can a�ord to produce, and hence the depth and
breadth of information we can extract from them. Plant genomes
tend towards the large end of the spectrum compared to ones
from the other kingdoms (e.g., Nystedt et al., 2013). �e pheno-
typic variation is high even within a species, which has prompted
genomic sequencing of a collection of accessions (e.g., Alonso-
Blanco et al., 2016). New bioimaging technology has revealed more
and more about plant structures, ever since Robert Hooke saw ‘cells’
in oak cork. In the past 20 years, plant science has been leading the
emerging �eld of morphodynamics. Community e�orts to capture
growth and development in 4D have kept improving the capacity in
data acquisition, processing, extraction and analysis (e.g., Barbier
de Reuille et al., 2015; Wolny et al., 2020). Phenotypic platforms
have been developed, driving innovative solutions to capture mor-
phodynamics in situ, generating a wealth of quantitative data.
Even root development that occurs underground and is usually
optically inaccessible has been visualised, with such technologies
as transparent soil and CT scan protocols (Bao et al., 2014; Rell�n-
�lvarez et al., 2015). Satellite data, together with machine learning
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techniques, are increasingly used to monitor ecosystem evolution
at continent scale (Newman & Furbank, 2021).

Bioengineering technology is not limited to hardware or data
acquisition. Breakthroughs in in silico platforms for data process-
ing, analysis and sharing underscore rapid progress in quantitative
experimentation, lately including AI and machine learning. �ese
are only few examples; engineering is constantly rewriting what is
possible to �nd in the chemistry and physics of living organisms,
and it has been driving biology towards quantitative data collection.

Second, engineering with biology involves a much deeper con-
nection. Notably, through domestication, this corresponds to a
form of co-evolution between plants and humans. Since the dawn
of civilisation, people have indeed engineered food, drugs and
other health remedies, materials and energy sources with living
organisms, in the forms of agriculture, horticulture, forestry, fer-
mentation and so on. Genetic engineering deepened the level of
orientation towards engineering in that it is design-led.

In the past 20 years, the new �eld of ‘synthetic biology’ has been
expanding rapidly in microbial classes �rst but later in multicellular
systems including plants. Synthetic biology is sometimes called
‘engineering biology’, for its commitment to the engineering princi-
ples in design-led problem solving, such as simplicity, universality,
e�ciency, consistency and predictability. Because of its streamlined
and user-considered designs, synthetic biology enables complex
genetic engineering; small and well-characterised standard parts
of promoters, terminators, functional coding sequences and logic
gates all promote e�cient cloning of many-part, multigene con-
structs. Simpler and faster genetic construction calls for large-
scale and e�cient, likely automated, characterisation platforms.
Tools are constantly expanded (while each of them simpli�ed);
new technology, should it be CRISPR or directed evolution, is
adopted quickly and transformed into usable and sharable parts.
Predictability and reproducibility are overarching goals in syn-
thetic biology, and thus predictive modelling plays a crucial role.
Synthetic biology builds upon systems biology, or systems biology
prompted synthetic biology; synthetic biology could be viewed as
an experimental platform for systems biology, and systems biology
as a theoretical platform for synthetic biology.

�e two most major industrial applications of plant sciences—
metabolic engineering and molecular breeding—entail complex
genetic engineering to tinker with biosynthetic or developmental
pathways that are controlled by multiple genes that o�en cross-
regulate among themselves. As such, synthetic biology technology
has already been employed to the pioneering crop engineering
projects such as the GM omega-3 project, C4 Rice Project and
RIPE (Realizing Increased Photosynthesis Enhancement) Project
(Napier et al., 2014; Parry et al., 2013; Wang et al., 2016). Step
changes in biotechnology and agriculture are anticipated, as more
countries approve gene-edited organisms in their policy and regu-
lation.

Development of universal standards is a key objective of the
synthetic biology �eld, and plant synthetic biologists, in particular,
have been leading the e�orts to enhance community sharing. �e
uni�ed design overhangs for standard parts to make DNA assembly
compatible named PhytoBricks, and the simple and open material
transfer agreement called ‘Open MTA’ were both proposed and
developed by plant scientists �rst and then adopted by wider circles
of synthetic biologists (e.g., the student genetic engineering compe-
tition iGEM and the largest DNA repository Addgene; Patron et al.,
2015; Kahl et al., 2018).

Finally, biology can also inspire engineering. Among all the
living organisms great and small that together exhibit a fantastic

variety of functional and structural features, plants have been the
primary source of inspiration for engineering. �is may be due to
their sessile nature. �e plant mode of living is not as dependent
on rapid and constant movement, and thus their structures are
closer to engineered constructions. Many functional structures
are made of no-longer living components and feasible to emulate
via engineering. For example, the functional appendages that aid
seed �ight in winged or haired diaspores (such as of maples and
dandelions) are made solely of the cell wall remnants of no-longer
living cells. �e intricate surface textures that confer di�eren-
tial functionalities, such as structural colour and hydrophobicity,
are patterned with wax. In fact, the representative examples of
biomimetic innovations, such as the burr-mimicking VELCRO and
self-cleaning materials that resemble the lotus leaf surface, were
inspired by plant structures (Koch et al., 2009). �is trend continues
in robotics, and plant tropisms motivated a large interdisciplinary
consortium e�ort to create self-growing robots, which also embody
sensors and modify their growth in response to physical cues from
the environment (Fiorello et al., 2020).

Engineered mimics o�en highlight what we do not as yet
know about the living structures that they emulate. �erefore,
biomimetic engineering, as well as engineering with biology, can
be used as learning via building. �is is why in bioengineering,
Richard Feynman’s famous words—‘What I cannot create, I
do not understand.’—are so o�en quoted. Reconstruction and
recapitulation are a highly e�ective process of rede�ning questions.
�e engineering investigative framework dictates the circular
iteration of design–build–test stages. �ey are reminiscent of the
modern scienti�c framework in which a question is de�ned as
hypothesis that is tested via experimentation. �e engineering
cycle is indeed a variation of the general framework in research
and project development of any kinds. However, there is a bene�t
to explicitly casting this concept onto applied and basic research in
natural sciences, because of the emphasis on its interactive nature.
Research typically does not end with the ‘test’ stage with a clear
and de�nitive conclusion. Any project or scienti�c endeavour is
not a linear process; rather, it is iterations of inquisition. �ere is
no failure of a project; any sound scienti�c experimentation only
brings us closer to new insights and �ndings about plants and how
to apply such gained knowledge better.

13. Conclusion: a proposition

At the end, this overview of quantitative plant biology in the 21st
century is an invitation to explore new paradigm changes in �elds
including high-resolution cell dynamics and computational recon-
struction of gene networks, or plant and environment interactions
through multiscale metamodels. �is synthesis must also include
yet another important player: the citizen. With the rise of partici-
pative science, notably through education and digital technologies,
it appears that data acquisition, analysis and interpretation is more
and more open to plant amateurs. �is is facilitated by fair science
and open access to data. By sharing lab and citizen data, new
questions arise. How to deal with heterogeneous measurements,
from people with di�erent expertise? How to compare results
obtained in controlled conditions but in small numbers and results
obtained in the �eld in large numbers? Even more interestingly,
situated knowledge, for instance, relating to agronomical practices,
are now fuelling basic research in the labs. �is notably includes
the synergistic properties of varietal mixtures, an emerging �eld
of study in genetics and ecophysiology. It seems therefore that
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quantitative plant biology is taking a turn from inter- to transdis-
ciplinary research.

Building on this fertile �eld and these exciting developments,
we proposed the founding of a new journal, Quantitative Plant
Biology, that also includes a new transdisciplinary �eld of research,
involving scientists and nonscientists. �is will likely require new
ways to coordinate between disciplines and community resources,
for instance, when considering stock centres �special code reposi-
tories, coordination on �le speci�cations (like SBML did for other
areas of biology), and stock centres of synthetic biology parts,
databases of images and shared so�ware for image storage and
analysis� or new standards in article format and reviewing (e.g.,
running scripts and models in published notebooks with the article,
access to code and data). �is will also require the formation of the
next generation of inter- and transdisciplinarians. Several summer
schools and workshops are supporting these e�orts. We hope this
open access journal, a�liated to both a public research institu-
tion like the John Innes Centre and a nonpro�t publisher (Cam-
bridge University Press), is the ideal forum for these stimulating
endeavours.
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