
HAL Id: hal-03323897
https://hal.inrae.fr/hal-03323897v1

Submitted on 15 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Two Metabolomics Phenotypes of Human
Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver

Disease According to Fibrosis Severity
Benjamin Buchard, Camille Teilhet, Natali Abeywickrama Samarakoon,

Sylvie Massoulier, Juliette Joubert-Zakeyh, Corinne Blouin, Christelle Reynes,
Robert Sabatier, Anne-Sophie Biesse-Martin, Marie-Paule Vasson, et al.

To cite this version:
Benjamin Buchard, Camille Teilhet, Natali Abeywickrama Samarakoon, Sylvie Massoulier, Juliette
Joubert-Zakeyh, et al.. Two Metabolomics Phenotypes of Human Hepatocellular Carcinoma in Non-
Alcoholic Fatty Liver Disease According to Fibrosis Severity. Metabolites, 2021, 11 (1), pp.54.
�10.3390/metabo11010054�. �hal-03323897�

https://hal.inrae.fr/hal-03323897v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


metabolites

H

OH

OH

Article

Two Metabolomics Phenotypes of Human Hepatocellular
Carcinoma in Non-Alcoholic Fatty Liver Disease According to
Fibrosis Severity

Benjamin Buchard 1,2, Camille Teilhet 1,2, Natali Abeywickrama Samarakoon 2, Sylvie Massoulier 1,
Juliette Joubert-Zakeyh 3, Corinne Blouin 3, Christelle Reynes 4, Robert Sabatier 4, Anne-Sophie Biesse-Martin 5,
Marie-Paule Vasson 2, Armando Abergel 1,6 and Aicha Demidem 2,*

����������
�������

Citation: Buchard, B.; Teilhet, C.;

Abeywickrama Samarakoon, N.;

Massoulier, S.; Joubert-Zakeyh, J.;

Blouin, C.; Reynes, C.; Sabatier, R.;

Biesse-Martin, A.-S.; Vasson, M.-P.;

et al. Two Metabolomics Phenotypes

of Human Hepatocellular Carcinoma

in Non-Alcoholic Fatty Liver Disease

According to Fibrosis Severity.

Metabolites 2021, 11, 54. https://

doi.org/10.3390/metabo11010054

Received: 2 November 2020

Accepted: 12 January 2021

Published: 14 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Digestive and Hepatobiliary Medecine, CHU Clermont-Ferrand,
F-63000 Clermont-Ferrand, France; bbuchard@chu-clermontferrand.fr (B.B.); camille.teilhet@hotmail.fr (C.T.);
smassoulier@chu-clermontferrand.fr (S.M.); aabergel@chu-clermontferrand.fr (A.A.)

2 INRA, Human Nutrition Unit, Clermont Auvergne University, F-63000 Clermont-Ferrand, France;
nataliabeywickramasamarakoon@gmail.com (N.A.S.); m-paule.vasson@uca.fr (M.-P.V.)

3 Department of Anatomo-pathology, CHU Clermont Ferrand, F-63000 Clermont-Ferrand, France;
jjoubert@chu-clermontferrand.fr (J.J.-Z.); cblouin@chu-clermontferrand.fr (C.B.)

4 Laboratory of Biostatistics, Computer Science and Pharmaceutical Physics, UMR 5203, Faculty of Pharmacy,
F-34 093 Montpellier, France; christelle.reynes@umontpellier.fr (C.R.); robert.sabatier@umontpellier.fr (R.S.)

5 Team RMN-START, Clermont Auvergne University, F-63000 Clermont-Ferrand, France;
a-sophie.biesse-martin@uca.fr

6 UMR CNRS 6284, Clermont Auvergne University, F-63000 Clermont-Ferrand, France
* Correspondence: aicha.demidem@inra.fr; Tel.: +33-4-73-17-80-47; Fax: +33-4-73-17-80-38

Abstract: Non-Alcoholic Fatty Liver Disease (NAFLD) is considered as the forthcoming predominant
cause for hepatocellular carcinoma (HCC). NAFLD-HCC may rise in non-cirrhotic livers in 40 to 50%
of patients. The aim of this study was to identify different metabolic pathways of HCC according
to fibrosis level (F0F1 vs. F3F4). A non-targeted metabolomics strategy was applied. We analyzed
52 pairs of human HCC and adjacent non-tumoral tissues which included 26 HCC developed in
severe fibrosis or cirrhosis (F3F4) and 26 in no or mild fibrosis (F0F1). Tissue extracts were analyzed
using 1H-Nuclear Magnetic Resonance spectroscopy. An optimization evolutionary method based
on genetic algorithm was used to identify discriminant metabolites. We identified 34 metabolites
differentiating the two groups of NAFLD-HCC according to fibrosis level, allowing us to propose
two metabolomics phenotypes of NAFLD-HCC. We showed that HCC-F0F1 mainly overexpressed
choline derivatives and glutamine, whereas HCC-F3F4 were characterized by a decreased content
of monounsaturated fatty acids (FA), an increase of saturated FA and an accumulation of branched
amino acids. Comparing HCC-F0F1 and HCC-F3F4, differential expression levels of glucose, choline
derivatives and phosphoethanolamine, monounsaturated FA, triacylglycerides were identified as
specific signatures. Our metabolomics analysis of HCC tissues revealed for the first time two
phenotypes of HCC developed in NAFLD according to fibrosis level. This study highlighted the
impact of the underlying liver disease on metabolic reprogramming of the tumor.

Keywords: hepatocarcinoma; fibrosis; non-alcoholic fatty liver disease; nuclear magnetic reso-
nance; metabolomics

1. Introduction

Hepatocellular carcinoma (HCC) is a concerning disease worldwide as it is the sixth
most common malignant tumor and the third leading cause of cancer death [1]. For the
past 20 years, the increasing incidence of HCC is suspected to be related to the increasing
burden of Non-Alcoholic Fatty Liver Disease (NAFLD) [2]. Notably, it was reported that
around ten percent of HCCs rise on a non-cirrhotic background, including chronic hepatitis
B and C infections, hemochromatosis, and NAFLD [3].
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NAFLD is closely linked to abdominal obesity, hypertension, dyslipidemia, and type
2 diabetes through insulin resistance and impaired glucose metabolism. It is considered as
the liver manifestation of the metabolic syndrome (MS) [4]. It covers a wide spectrum of
various chronic liver diseases: simple steatosis, steato-hepatitis, and all-grade fibrosis. The
METAVIR classification is currently the reference for assessing histological fibrosis level
from absence of fibrosis (F0) to cirrhosis (F4) [5]. NAFLD has become the most common liver
disorder in industrialized countries, affecting up to 25% of the adult population in western
countries [2]. Recently, it was proposed to revise the fatty liver nomenclature, NAFLD
being substituted for Metabolic Associated Fatty Liver Disease (MAFLD), by including
anthropometric and metabolic phenotyping approaches [4].

Forty to 50% of NAFLD associated HCC (NAFLD-HCC) have no evidence of cirrho-
sis [6,7]. A French cohort of HCC in patients with MS showed that these patients were more
often free of severe fibrosis (F0–F2), at odds with the paradigm that severe fibrosis (F3–F4)
is a necessary step in carcinogenesis and implying different carcinogenic pathways [8].
Moreover, a recent review underlined that hepatocarcinogenesis could be promoted by
both fibrosis dependent and independent mechanisms [9]. NAFLD-HCC is detected more
frequently at a later tumor stage as these patients escape surveillance [7]. Histological
patterns indicate a less aggressive phenotype with fewer microvascular invasion and satel-
lite nodules [10]. These tumors are more often well-differentiated [8]. Pro-carcinogenic
factors for NAFLD-HCC have been well defined in the last years, including insulin resis-
tance and PNPLA3 polymorphism [11]. Despite growing evidence, the population with
NAFLD at the highest risk of developing HCC is underdiagnosed. Currently, international
guidelines do not propose a dedicated surveillance for these patients apart from those with
cirrhosis [12]. Considering the large and increasing number of patients with NAFLD, early
detection remains a major challenge.

So far, understanding the pathophysiology of NAFLD-HCC has not given the key
for the identification of high-risk patients. Multiple mechanisms have been established
in NAFLD-HCC, including hyperinsulinemia, proinflammatory pathways, abnormal
adipokines secretion, oxidative stress, epigenetic alterations, and mobilization of hepatic
progenitor cells [11]. Putative pathways linking fibrosis level and NAFLD-HCC, partic-
ularly regarding metabolic signatures, have not been thoroughly investigated. Thus, the
identification of metabolic pathways could lead to the development of relevant screening
and diagnosis tools. This approach may provide appropriate treatments targeting specific
pathways in NAFLD-HCC. We recently reported specificities of human HCC developed on
non-cirrhotic NAFLD vs. HCC associated with cirrhosis of various etiologies [13]. More
investigations are needed to identify specific carcinogenic pathways involved in HCC
developed exclusively in NAFLD according to the fibrosis status.

Metabolomics is being widely used to get insights into carcinogenesis mechanisms.
Most metabolomics studies of HCC were based on animal models or applied to serum
and urine of patients, using mass spectrometry or Nuclear Magnetic Resonance (NMR)
spectroscopy [14]. At present, few metabolomics studies have investigated HCC using
human tissues [15]. Moreover, metabolomics studies focusing specifically on NAFLD-
HCC are scarce. To our knowledge, there are no reports concerning the impact of fibrosis
severity on the metabolic profile of NAFLD-HCC. To gain insight into the mechanisms
of the underlying disease, we performed a metabolomics tissue analysis using proton
NMR spectroscopy.

We speculated that the degree of liver fibrosis might interfere with metabolomics
profiles of tumors. Thus, according to the severity of fibrosis, NAFLD-HCC might present
specific metabolic phenotypes suggesting different signaling pathways and distinct mecha-
nisms of carcinogenesis. The aim of our study was to investigate firstly the metabolomics
profile of tumoral and non-tumoral tissue from NAFLD-HCC patients according the stage
of fibrosis (F3F4) versus (F0F1) and secondly to identify specific tissue metabolic signatures.
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A total of 52 pairs of matched HCC tissues and distal non-tumoral tissues (NTT)
(taken at 2 cm from tumor localization) were assessed using 1H-NMR-based metabolomics
to explore direct metabolic changes in the liver. Metabolomics analyses underlined several
biochemical alterations involving glycolysis, TCA cycle, oxidative response, transmethy-
lation reactions, lipids and phospholipids metabolisms. Based on the analysis of extract
tissues, we report 34 metabolites with differences in abundance in two groups of NAFLD-
HCC according to fibrosis status (F0F1 versus F3F4), allowing us to propose two specific
metabolomics phenotypes of NAFLD-HCC.

2. Results
2.1. Patients Characteristics

Our HCC cohort (n = 52) included 45 males and 7 females with a mean age of 70 years.
Clinical, biological, histological features of the two groups are reported in Table 1.

There were no differences between the two groups regarding body mass index, diabetes
status or preoperative AFP level. There was no difference of steatosis severity between the
two groups of NAFLD-HCC. Notably, severe steatosis (>33%) was still found in almost 20%
of patients with severe fibrosis.

Despite a higher tumor burden, recurrence free survival and overall survival did not
differ between the two groups of HCC (Supplementary Figures S1 and S2A,B). Indeed,
NAFLD-HCC is more often detected at a later tumor stage [7]. However, the absence of
severe fibrosis resulting in more favorable outcomes after surgery and the lower incidence
of HCC in patients with non-cirrhotic NAFLD probably explain the similar prognosis
observed between the two groups of NAFLD-HCC [3].

Table 1. Patients’ characteristics.

Group F0F1
N = 26

Group F3F4
N = 26 p-Value

PARAMETERS

Gender (M:F) 21:5 24:2 ns
Age in years (mean ± SD) 69.9 ± 10.7 70.5 ± 5.9 ns

CLINICAL AND BIOLOGICAL DATA

Body Mass Index
(missing data n = 3)

Normal 4 4 ns
Overweight 11 10 ns

Obesity 10 10 ns
Diabetes

(missing data n = 5)
Yes 16 19 ns
No 7 5 ns

Tobacco
(missing data n = 6)

Yes 7 11 ns
No 16 12 ns

Blood Alpha-Foeto-Protein
(missing data n = 4)

<20ng/mL 18 23 ns
20–200ng/mL 2 0 ns

200–1000ng/mL 1 1 ns
>1000ng/mL 2 1 ns

HISTOLOGICAL DATA

Degree of steatosis in NTT

No 5 1 ns
Low (5–33%) 5 6 ns

Moderate (33–66%) 11 14 ns
Severe (>66%) 5 5 ns

Tumor Differentiation
(WHO)

(missing data n = 1)

Well 11 12 ns
Moderate 14 12 ns

Poor 1 1 ns

Significant difference: p-Value < 0.05 (Student Test, Fisher Test, Chi2 Test); ns: No significant differences between the 2 groups.

2.2. Identification of Discriminant Metabolites

Table 2 provides the list of discriminating metabolites with their respective chemical
shift (ppm) between the two groups of tissues (aqueous and lipid extracts). Most of the
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metabolites belonged to glucose metabolism, Krebs cycle, energy metabolism, amino acids
(AA), phospholipids (Plp), and lipids metabolism.

Table 2. List of discriminant metabolites identified with 1H-NMR spectroscopy and corresponding ppms.

Metabolites Abbreviations Chemical Shifts (ppm)

Aqueous Phase

Carbohydrates/TCA cycle
derivatives

Lactate Lac 1.31–1.33/4.10–4.11

Glucose Glc 3.39/3.46/3.51/3.75/4.63/5.22

Glycogen Gly 5.38–5.43

Amino Acids and derivatives

Glutamine Gln 2.14/2.44

Glutamate Glu 2.04/2.34

Glutathione GSx 2.15/2.54/2.97/3.78

Leucine Leu 0.93–0.97

Isoleucine Isoleu 0.93–0.97

Valine Val 1.02-1.04/2.26

Histidine His 7.07–7.11

Sarcosine Sar 2.70–2.73

Nucleotides derivatives

Hypoxanthine 8.20

Nicotinamide Adenine
Dinucleotide NAD 9.33

Vitamins Ascorbic acid Asc A 4.50

Phospholipids Derivatives
Phosphocholine PC 3.22

Choline derivatives 3.62–3.68

Lipid Phase

Phospholipids derivatives Phosphoethanolamine PE 3.05–3.07/3.13

Cholesterol
Total cholesterol TChol 0.69/0.93–0.94/1.01/1.52–

1.54/2.19/2.25/3.49/3.57/3.89

Free cholesterol FChol 0.94/1.07/1.50/1.79/2.22/3.45/3.48/3.57

Fatty acids

Saturated FA
(CH2)n SFA 1.24–1.44

Monounsaturated FA
–CH2CH= MUFA 2.02–2.12

Triacylglycerides TAG TAG 4.14–4.34
5.26

2.3. Differential Metabolites between NAFLD-HCC-F0F1 vs. NTT-F0F1

First, our metabolomics results showed that glucose (Glc) level decreased in HCC,
while lactate (Lac) level increased. This universal observation known as the “Warburg
effect” is a major biochemical trait of tumor cells. Second, in NAFLD-HCC F0F1, the accu-
mulation of glutamine (Gln) may be consistent with an activation of glutamine synthetase
(GS) which converts glutamate to glutamine in pericentral hepatocytes. We also found
an accumulation of Histidine (His) content. In addition, HCC displayed an increase of
glutathione (GSx) and ascorbic acid (Asc A) contents that may correspond to a preserved
anti-oxidant response in HCC-F0F1. A decrease of glycogen level was also observed. Third,
the most relevant observation is that HCC exhibited an increase in choline derivatives,
including phosphocholine (PC), a precursor and a breakdown product of phosphatidyl-
choline (PtdCho), suggesting a change in membrane structure and function with the
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possible activation of choline kinase (CK) and PtdCho hydrolysis involving phospholipases
(Figure 1A).
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Figure 1. Frequency of selection of each ppm location in the aqueous (A) and lipid phases (B) from the comparison between
hepatocellular carcinoma (HCC)-F0F1 and non-tumoral tissues (NTT)-F0F1. Discriminant metabolites (above the number of
selection threshold in dotted line) are illustrated in red for upregulated and blue for downregulated metabolites in HCC. In
the aqueous phase (A), lactate (ppm 1.31), glutamine (ppm 2.14/2.43), glutathione (ppm 2.56), phosphocholine (ppm 3.22),
choline derivatives (ppm 3.59–3.66), ascorbic acid (ppm 4.50), histidine (ppms 7.11/7.85), glucose (ppm 3.42), and glycogen
(ppm 5.43) were identified as discriminant metabolites. In the lipid phase (B), total cholesterol (ppm 1.52–1.54/2.25/3.49)
and monounsaturated fatty acids (ppm 2.05) were identified as discriminant metabolites. Subsets of metabolites in the
aqueous (C) and lipid phases (D) demonstrated significant accuracy to differentiate HCC from NTT in F0F1 fibrosis.
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Lipids extracts analysis indicated a decrease of monounsaturated fatty acids (MUFA)
level and an increase in total cholesterol (TChol) in HCC compared to NTT which suggest
a change in lipid metabolism (Figure 1B).

Supplementary Table S1 provides the list of discriminant metabolites according to the
number of selections found in the comparison between NTT-F0F1 vs. HCC-F0F1.

These subsets of metabolites significantly discriminated NTT-F0F1 from HCC-F0F1 in
both aqueous and lipid phases, as illustrated in Figure 1C,D, respectively. These metabolic sig-
natures demonstrated very high areas under curve (AUC) of 0.98 and 0.94 (Supplementary
Figure S3A,B).

2.4. Differential Metabolites between NAFLD-HCC-F3F4 vs. NTT- F3F4

HCC metabolomics profile displayed the hallmark of “Warburg effect” with an in-
crease of Lac level and a decrease of Glc level. HCCs exhibited an increase of Gln and
Glu. These results could indicate a decrease of TCA cycle activity in tumors, an impaired
glutaminolysis or an alteration of the urea cycle. Moreover, HCCs moderately accumulated
Branched Chain Amino Acids (BCAA), such as Valine (Val), Leucine (Leu), and Isoleucine
(IsoLeu), which may reflect an activation of mTORC1 pathway. The increased content
of Sarcosine (Sar) and decreased level of His may imply methylation disorders in HCC
developed in severe fibrosis. In addition, tumors exhibited an increased level of both
Nicotinamide Adenine Dinucleotide (NAD) and hypoxanthine levels, metabolites which are
required for tumor cell proliferation and survival (Figure 2A).

Lipid analysis indicated a significant increase of saturated fatty acids (SFA) and
decrease of MUFA in HCC compared to NTT. These data may indicate abnormal activities
of enzymes involved in de novo lipogenesis (DNL), such as Fatty Acid Synthase (FASN)
and stearoyl-coA desaturase (SCD). Meanwhile, an accumulation of free cholesterol (FChol)
and TChol was found which could be in favor of mTOR activation, consistent with the
increase in BCAA found in the aqueous phase (Figure 2B).

Supplementary Table S2 provides the list of discriminant metabolites according to the
number of selections found in the comparison between NTT-F3F4 vs. HCC-F3F4.

These subsets of metabolites significantly discriminated NTT-F3F4 from HCC-F3F4 in
both aqueous and lipid phases as illustrated in Figure 2C,D, respectively. These metabolic
signatures demonstrated very high AUC of 0.97 and 0.98 (Supplementary Figure S4A,B).

2.5. Differential Metabolites between NAFLD-HCCs according the Severity of Fibrosis

The observed accumulation of Glc in HCC F3F4 could be a consequence of an enhanced
neoglucogenesis process. Thus, the increase of Glc content may confirm the putative
activation of mTOR pathway in severe fibrosis (Figure 3A). We found an increased level of
choline derivatives (Cho/PC/PtdCho) in HCC-F0F1 vs. HCC F3F4, which is consistent
with the observation in HCC-F0F1 reported in the comparison between HCC-F0F1 vs. NTT-
F0F1 (Figure 3A). These data strongly suggest that these metabolites play a paramount role
in this carcinogenesis process.

Other HCC metabolic signatures arose from lipid analysis. Low levels of MUFA
and increased triacylglycerol (TAG) content in HCC-F3F4 suggested different lipid re-
programming according to fibrosis level. In addition, we found an increased content
of phosphoethanolamine (PE) in HCC-F0F1 in accordance with the increase of choline
derivatives in the aqueous phase (Figure 3B).

Supplementary Table S3 provides the list of discriminant metabolites according to the
number of selections found in the comparison between HCC-F0F1 vs. HCC-F3F4.

These subsets of metabolites significantly discriminated HCC-F3F4 from HCC-F0F1 in
both aqueous and lipid phases as illustrated in Figure 3C,D, respectively. These metabolic
signatures demonstrated high AUC of 0.88 and 0.76 (Supplementary Figure S5A,B).

Genetic algorithm (GA) and metabolomics analysis, in the context of NAFLD, high-
light, for the first time, that there are two phenotypes of HCC developed in NAFLD
according to fibrosis level.
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Figure 2. Frequency of selection of each ppm location in the aqueous (A) and lipid phases (B) from the comparison
between HCC-F3F4 and NTT-F3F4. Discriminant metabolites (above the number of selection threshold in dotted line) are
illustrated in red for upregulated and blue for downregulated metabolites in HCC. In the aqueous phase (A), Branched
Chain Amino Acids (BCAA) (ppm 0.97/1.02), lactate (ppm 1.31–1.33/4.10–4.11), glutamine (ppm 2.14/2.42–2.43), glutamate
(ppm 2.06–2.07/2.38), sarcosine (ppm 2.73/3.63), hypoxanthine (ppm 8.20), Nicotinamide Adenine Dinucleotide (NAD)
(ppm 9.33), glucose (ppm 3.82/4.60), choline derivatives (ppm 3.67), and histidine (ppm 6.98/7.10) were identified as
discriminant metabolites. In the lipid phase (B), saturated fatty acids (ppm 1.41–1.43), total cholesterol (ppm 1.83), free
cholesterol (ppm 2.22), and monounsaturated fatty acids (ppm 2.06) were identified as discriminant metabolites. Subsets of
metabolites in the aqueous (C) and lipid phases (D) demonstrated significant accuracy to differentiate HCC from NTT in
F0F1 fibrosis.
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Figure 3. Frequency of selection of each ppm location in the aqueous (A) and lipid phases (B) from the comparison
between HCC-F0F1 and HCC-F3F4. Discriminant metabolites (above the number of selection threshold in dotted line) are
illustrated in red for upregulated and blue for downregulated metabolites in HCC-F0F1. In the aqueous phase (A), choline
derivatives (ppm 3.62), glucose (ppm 3.50/3.73–3.74), and monounsaturated FA (ppm 5.23) were identified as discriminant
metabolites. In the lipid phase (B), monounsaturated fatty acids (ppm 2.11/5.46), phosphoethanolamine (ppm 3.05–3.07),
and triacylglycerides (ppm 4.12/4.22) were identified as discriminant metabolites. Subsets of metabolites in the aqueous (C)
and lipid phases (D) demonstrated significant accuracy to differentiate HCC from NTT in F0F1 fibrosis.
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3. Discussion

To our knowledge, our study investigates for the first time tissue metabolome of
human NAFLD-HCC according to the degree of fibrosis as the underlying pathology.
Our work revealed major metabolic alterations in NAFLD-HCC concerning glycolysis,
AA levels, methylated species, phospholipids derivatives, and lipids content.

3.1. Carbohydrate Metabolism in NAFLD-HCC: A Common Warburg Effect but Enhanced
Neoglucogenesis in Severe Fibrosis

The comparison between HCC to NTT indicated that, irrespective of the degree of
fibrosis, tumors displayed a decreased level of Glc and an increase of Lac content. This
biological pattern of cancer known as the Warburg effect consists of enhanced glycolysis,
low levels of oxidative phosphorylation and high Lac production are observed [16]. Pre-
vious works supported the notion of a favored glycolytic pathway in HCC through the
upregulation of hexokinase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate
kinase [16–18].

In addition, when comparing both groups of HCC, a significant accumulation of Glc
in HCC developed on severe fibrosis was highlighted suggesting an enhanced neogluco-
genesis process through an upregulation of lactate deshydrogenase (LDH) in a mTOR
dependent manner. Positron-emission tomography (PET) scan using fluorodeoxyglucose
(FDG) is currently used in HCC for tumor staging. Its use in clinical practice reinforces our
data demonstrating strong Glc accumulation in tumors [19].

3.2. Preserved Antioxidant Defenses in HCC-F0F1

Our results indicated an increased level of major antioxidant agents that are GSx
and ascorbic acid. Oxidative stress is a well-known driver of NAFLD progression with
increased Reactive Oxygen Species (ROS) and decreased antioxidants levels [20]. It was
suggested that ROS production could be a protective mechanism to induce an upregula-
tion of antioxidant defenses in NALFD [21]. This hypothesis corroborates our findings
suggesting a preserved production of antioxidant defenses in HCC tissue in the absence of
fibrosis in response to an increased oxidative stress in NAFLD.

3.3. Enhanced Glutamine Synthetase Activity in HCC-F0F1 and Putative Involvement of the
Beta-Catenin Pathway in NAFLD

Another noteworthy finding of our study is that HCC-F0F1 specifically exhibited
a high level of Gln compared to NTT. Our previous study was the first one to reveal
the increased levels of Gln in HCC-F0F1, which correlated with an overexpression of
GS [13]. GS activity is impaired in chronic liver diseases and glutamine levels gradually
decrease from healthy liver to established cirrhosis [22] as confirmed in our study (data not
shown). GS immunostaining is detected in preneoplastic lesions and in HCC, preferentially
in tumors developed on cirrhosis [22]. GS positive labeling is an important histological
hallmark of HCC, including early HCC, and has been associated with poor prognosis
following surgery [23,24]. The overexpression of GS is highly correlated with β-catenin
mutation and GS is proposed as a reliable marker of β-catenin activation secondary to its
mutation [25]. To our knowledge, there is no data in the literature on GS activity, especially
in NAFLD-HCC, according to fibrosis severity. How the Gln metabolism and whether the
beta-catenin pathway is specifically involved in NAFLD carcinogenesis remains unknown.

Comparing HCC-F3F4 and NTT-F3F4, our data revealed higher levels of both Gln and
Glu in tumors. These results corroborate previous studies reporting that patients with HCC
have decreased plasma and tissue levels of GSx, since Glu being an important component
of GSx [26]. Based on a global transcriptomic analysis of multiple human HCC, Bjornson
et al. identified a significant downregulation of enzymes involved in glutaminolysis in
HCC [27]. Data from this study are in accordance with our previous published results
which demonstrated that HCC developed on cirrhosis accumulated hydroxybutyrate,
a metabolite which supplies the TCA (tricarboxylic acid) cycle with acetyl-coA [13].
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3.4. BCAA Content and Possible Activation of the mTOR Pathway in HCC-F3F4

BCAAs are essential ketogenic amino acids. In chronic liver disease, serum concen-
trations of BCAAs decreased, while the concentrations of aromatic amino acids (AAA)
increased [28]. It has also been reported that the ratio of BCAAs to AAAs called the Fischer
ratio were lower in serum of patients with HCC compared to controls [28].

Our metabolomics data showed an increase in BCAA content (Val, Leu, IsoLeu)
in HCC-F3F4 compared to NTT-F3F4, as previously reported in tissue metabolomics
analysis [29,30]. Loss of BCAA mitochondrial catabolism was held responsible for BCAA
accumulation in HCC and mTOR activation [29]. BCAA activate the mTOR pathway in a
Rag GTPase manner depending on nutritional environment [31].

Previous reports highlighted a link between obesity-associated insulin resistance and
increase of BCAA through a mTORC1 mechanism and impaired autophagy [31]. These
data corroborate our findings in NAFLD-HCC in the presence of severe fibrosis.

From our data, we propose that NAFLD-HCC developed on severe fibrosis may have
a higher affinity for BCAA. BCAA accumulation results from an impaired mitochondrial
catabolism which activate mTOR pathway. This is consistent with other data indicating that
mitochondria functions are impaired in NAFLD-HCC. Tanaka et al. quantified increased
oxidative stress through elevated content of 8-Hydroxy-2′-Deoxyguanosine in NASH-HCC
tissues compared to NASH without HCC and HCC of various etiologies [32]. However,
the impact of fibrosis severity was not evaluated.

3.5. Methylation Disorders in HCC-F3F4

In NAFLD-HCC F3F4, the increase of Sar level, a methyl donor, suggests the in-
volvement of the oncoprotein Glycine N-methyltransferase (GNMT). This enzyme plays a
pivotal role in the biochemical conversion of Glycine (Gly) to Sar with the addition of one
methyl group. GNMT is a key enzyme for methylation reactions and epigenetic modulation
through DNA and histone methylation. Previous reports showed that GNMT expression
was significantly downregulated in human HCC [33]. Sar (N-methylglycine) was previ-
ously delineated as a substantial oncometabolite of prostate cancer and its metabolism
seems to be significantly involved in prostate cancer development [33]. We also observed in
NTT-F3F4 an increase in glycine content compared to NTT-F0F1 (data not shown) which re-
inforces our hypothesis of methylation disorders in severe fibrosis, even in the peritumoral
environment, and the notion of metabolic continuum between tumor and NTT.

Our data indicate that His levels decrease in HCC-F3F4. His metabolism is coupled
with the folate cycle by its transformation into formiminoglutamate, which is also consistent
with the increase of Glu found in HCC-F3F4 [34]. The formimino group is then transfered
to THF (tetrahydrofolate) to form fomiminoTHF, a metabolic precursor of methyl THF
involved in the synthesis of methionine, a major methyl donor [33].

3.6. NAFLD-HCC in Non-Severe Fibrosis Displays a Cholinic Phenotype

An important result of this study is that HCC developed on NAFLD without or with
mild fibrosis exhibited first a significant increase of choline derivatives, including PC,
compared to its non-tumor adjacent tissue and second an increase of PE when compared
to HCC-F3F4. Our study is the first one to provide evidence that HCC without fibrosis
exhibit a new Plp phenotype.

PC is an intermediate in the synthesis of PtdCho in tissues and a breakdown product
of cell membrane [35]. PC was also shown to promote cell proliferation effects of insulin
and insulin-like growth factor-1 [36]. Previous reports in human HCC and in other can-
cers highlighted an upregulation of CK consistent with a modification in cell membrane
synthesis, structure and function [17,37]. Choline derivatives accumulation in cancer cells
play a role in the stimulation of mitogenesis and in the maintainenance of PtdCho home-
ostasis, which is critical for cell survival. Activated choline metabolism, characterized by
increased PC and choline derivatives compounds is referred to as a cholinic phenotype [35].
CK has also been incriminated in HCC by helping the interaction between Epidermal
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Growth Factor Receptor and mTORC2 [37]. Whether CK participates in hepatocarcinogen-
esis as an oncometabolite in cell signaling or as precursor of cell membrane compounds
remains unclear.

This observation might provide a rationale for increased radiolabeled choline uptake
on PET-scan for HCC developed in NAFLD without fibrosis. Interestingly, a correlation
between 18F Fluorocholine uptake and the degree of fibrosis in the liver was recently
reported in patients undergoing surgery for HCC: liver mean Standardized Uptake Value
decreased as the stage of fibrosis increased [38]. More studies focusing on early detection
and progression of NAFLD-HCC without fibrosis are urgently needed and PET scan with
Fluorocholine is a promising tool.

PE is produced from Ethanolamine under the action of cytosolic Ethanolamine Ki-
nase located specifically in the liver [39]. It belongs to the CDP (cytidine diphosphate)
ethanolamine pathway ultimately leading to Phosphatidylethanolamine (PtdEth), an impor-
tant component of inner cell membrane. This pathway parallel the CDP-choline pathway
for PC synthesis, in agreement with the increase in PC found in HCC-F0F1. The balance
between PtdCho and PtdEth is fundamental in the liver, any disturbance resulting in
steatosis [39]. The involvement of Ethanolamine derivatives in cancer has been little inves-
tigated. PtdCho also derives from PtdEth under the action of Phosphatidylethanolamine
N-methyltransferase (PEMT), consuming three methyl groups. In human HCC, a down-
regulation of PEMT has been reported [40]. However, the activity of PEMT according to
fibrosis level needs to be addressed.

3.7. Different Lipid Metabolism Reprogramming in NAFLD-HCC according to Fibrosis Severity

Comparing the metabolic profile of HCC to NTT, independently of the severity of
fibrosis, a lower level of MUFA was found in tumors. This result was unexpected since it
was demonstrated that metabolic diseases, including NAFLD and HCC, display increased
DNL [41,42]. We are aware that the expression of MUFA should be confirmed by a more
specific method for lipids, such as mass spectroscopy. Cumulating evidence underlines
aberrant lipid biosynthesis as an early and crucial event in carcinogenesis. Elevated MUFA
content is a signature of many tumors, including HCC, and results from an enhanced activ-
ity of SCD1 [43]. The elevated expression of this enzyme is associated with poor prognosis
and cancer aggressiveness [43]. The increased level of MUFA-PtdCho is a biochemical
trait of HCC and could explain the decrease of MUFA in our tumor tissues analysis [44].
Otherwise, MUFA-PtdCho was shown to significantly correlate with proliferative finger-
print metabolites [45]. The lower level of MUFA observed in HCC-F3F4 compared to
HCC-F0F1 may be associated with a higher proliferative rate in presence of severe fibrosis.
This hypothesis is consistent with the increased content of NAD and hypoxanthine found
in HCC-F3F4.

We also highlighted an increased content of SFA in HCC-F3F4 compared to its NTT.
It was recently demonstrated that some HCCs, particularly beta-catenin driven tumors,
are not dependent on FASN activity and DNL for their growth [46]. Thus, we hypothesize
that some tumors rise under the influence of the beta-catenin pathway and, therefore, may
be less dependent of DNL, such as HCC-F0F1.These NMR metabolomics data should be
confirmed by immunohistochemistry and transcriptomic analysis.

Our study is a preliminary work suggesting different metabolic reprogramming
and signaling pathways according to the severity of fibrosis (Figure 4A,B). However,
NMR spectroscopy has its own weaknesses. It is not the optimal technique for lipidomics.
Moreover, it is not a very accurate method for the identification of phospholipids, especially
glycerophospholipids. Therefore, our results need confirmation and further exploration
using mass spectrometry and transcriptomics.
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Figure 4. Discriminant metabolites identified and putative pathways involved in HCC according to
the severity of fibrosis HCC-F0F1 (A) and HCC-F3F4 (B). Upregulated and downregulated metabo-
lites are in red and blue, respectively. Upregulated and downregulated putative metabolic pathways
are in red and blue, respectively. Abbreviations (in alphabetical order): BCAA, branched aminoacids;
CK, choline kinase; EK, ethanolamine kinase, FAS, fatty acid synthetase; G6P, glucose-6-phosphate;
GLS, glutaminase; GNMT, glycine N-methyltransferase; GS, glutamine synthetase; MUFA, monoun-
saturated fatty acids; NAD, nicotinamide adenine dinucleotide; PC, phosphocholine; PE, phospho-
ethanolamine; PEMT, phosphatidylethanolamine N-methyltransferase; PtCho, phosphatidylcholine;
PtEth, phosphatidylethanolamine; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine;
SCD, stearoylcoA desaturase; SFA, saturated fatty acid; TAG, triacylglycerol; TCA, tricarboxylic acid.

4. Patients and Methods
4.1. Patients and Collection of Specimens

Liver tissue specimen were collected from the French Liver Biobank and selected
(n = 56) according to the following criteria: (1) dysmetabolic liver disease without other
associated causes, (2) stage of fibrosis defined with the METAVIR score by histological
analysis, and (3) a balanced distribution of the stage of tumor differentiation (well or
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moderately). Tissue pairs with fibrosis at stage F2 were excluded (n = 9) from this analysis
to obtain distinct and non-confusing groups. Indeed, previous studies demonstrated that
fibrosis assessment using METAVIR classification was a source of disagreement with the
lowest concordance observed for intermediate fibrosis grades (F1, F2, and F3 fibrosis) [47].
In addition, tissues from 5 patients undergoing hepatectomy at the University Hospital
of Clermont-Ferrand were included with their written informed consent. Thus, 26 paired
tissues of NAFLD-HCC F0F1 and 26-paired tissues of NAFLD-HCC F3F4 were analyzed
(n = 52). The study was approved by the Ethic Committee Sud-Est VI Clermont-Ferrand
(Agreement number AU887, 04/03/2011).

4.2. Histology

Tissues were fixed in 10% formalin and embedded in paraffin for light microscopy.
Paraffin sections with a thickness of 5 µm were stained with hematoxylin and eosin method.
HCC type and grades of differentiation (WHO Classification) were established. NTT was
characterized by the presence or not of lesions of chronic hepatitis, fibrosis, steatosis,
steato-hepatitis, and the METAVIR Score.

4.3. Sample Preparation for NMR-Spectroscopy

Tissue samples were processed to obtain aqueous and lipid extracts. A piece of tissue
(0.075 g) was mixed with cold acetonitrile/water (1:1, v:v, 1.75 mL) and then homogenized
over ice, using a polytron. Samples were centrifuged (17,000× g, 20 min, 4 ◦C), and
the aqueous supernatant was centrifuged (17,000× g, 15 min, 4 ◦C) twice and dried to
obtain the water-soluble fraction of liver extracts. The organic phase was dissolved in
cold chloroform/methanol (2:1, v:v, 1.5 mL), homogenized, centrifuged (17,000× g, 20 min,
4 ◦C), and then filtered and dried to obtain the lipid phase. All reagents are conserved at
4 ◦C, and all experiments are conducted in ice. All dried samples were stored at −20 ◦C.

4.4. 1H-NMR Spectroscopy

Spectroscopy was performed at room temperature using a Brucker Advance 400
spectrometer (Brucker Corporation, Billerica, MA, USA) operating at 400.13 MHz. The
dried extracts were rehydrated in 500 µL of D2O containing Phosphate Buffer (1%) (aqueous
extract) or 500 µL chloroform-d/methanol-d (2:1, v:v) (lipid extract) in 5 mm diameter
NMR tubes. For all samples, a one-dimensional 1H-NMR spectrum was acquired using
a ZGPRESAT sequence with water signal suppression at low power and the following
parameters: 8 µs −90◦ pulse length, 10-s relaxation delay, 10-parts per million (ppm)
spectral width, 128 transients, and 32 K complex data points. Resonance assignment was
carried out according to chemical shift values reported in the literature and the free access
database Human Metabolome Database [48,49].

4.5. Data Processing

A line broadening factor of 0.3 Hz was applied to Free Induction Decay before Fourier
transformation. 1H-NMR spectra were manually corrected for phase and baseline using
MestReNova (Mestrelab Research chemistry software solutions, Santiago de Compostela,
Spain). Peak referencing was done on the signal of creatine at 3.035 ppm for aqueous
extracts and PtdCho at 3.26 ppm for lipid extracts. The spectra were binned into 0.02 ppm
width data samples (from 0.5 to 9.5 ppm and from 0.5 to 7.0 ppm for the aqueous and lipid
phases spectrum, respectively). All spectra were normalized to the total area under spec-
trum, after removing spectral regions containing solvent resonances: 4.69 to 5 ppm, 3.33 to
3.43 ppm, 7.20 to 7.80 ppm, corresponding to water, methanol, and chloroform, respectively.

4.6. Statistical Analysis

A pre-screening was proposed to remove useless features (ppm locations) according
to discrimination: we removed technical artefacts, constant, and redundant features. We
applied the latter two steps independently for each comparison (Figure 5).
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A univariate analysis is not likely to highlight the best synergistic subset of features.
Hence, a multivariable analysis using a combination of several metabolites is a more infor-
mative approach. However, after this pre-screening, it was impossible to test all feature
subsets within a reasonable amount of time. We chose genetic algorithms (GAs) to perform
the selection of subsets. GAs are optimization algorithms, based on the process of natural
selection [50,51]. They provide approximate solutions to complex optimization problems.
In a first step, a population of potential solutions is randomly generated. Then, this popula-
tion evolves through the iterative application of mutation, cross-over and selection.

In our model, solutions were subsets of features. The mutation randomly altered
each solution by addition, removal, or substitution of a feature. The cross-over randomly
combines the features of two solutions. Selection is the only operator increasing the quality
of solutions across generations. It relies on a fitness function quantifying the solution quality.
A Linear Discriminant Analysis (LDA) was applied on each solution [52]. To avoid over-
fitting, a two-fold cross-validation was used to evaluate the accuracy. The fitness function
uses this accuracy penalized by the subset size to favor parsimonious solutions. For this
purpose, we chose 10 as the maximal size for subsets. The GA was run 10 times, and the
solutions obtained on the last generations were evaluated by the average cross-validated
LDA accuracy. In order to identify the most interesting features, we used the frequency of
selection of each feature in the final generations (Figure 5). Indeed, the more frequently
a feature is selected to survive across generations, the more likely it is to play its part in
discrimination. The value of the frequency threshold has been set using “random” GAs
without any learning step.
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Figure 5. Complete workflow of the discrimination process: HCC-F0F1 compared to HCC-F3F4; Raw
Nuclear Magnetic Resonance (NMR) aqueous spectra of HCC-F0F1 ≈ 4500 ion peaks (A); removal of
technical artefacts, constant and redundant features = 1275 ion peaks (B); choice of the most discriminant
metabolites in the aqueous phase by using Genetic Algorithm with Linear Discriminant Analysis =
5 ion peaks (minimum 45 selections), Final solution = 3 discriminant identified metabolites (C).
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5. Conclusions

Two metabolomics phenotypes of human HCC developed in NAFLD according to
the degree of fibrosis have been revealed by proton NMR spectroscopy in our study. We
highlighted the impact of the underlying pathology on metabolic reprogramming of the
tumor. Except the common “Warburg effect”, the two groups of NAFLD-HCC exhibited
distinct metabolomics alterations. HCC-F0F1 displayed abnormal levels of Plp derivatives
and an increased content of Gln suggesting an overexpression of choline kinase and GS,
respectively. In contrast, HCC-F3F4 exhibited an increased amount of BCAA implying a
possible activation of the mTOR pathway and an increased content of glucose suggesting
an enhanced neoglucogenesis.

The proposed metabolic signature might help to understand the specific molecular
mechanism of NAFLD-HCC according to fibrosis level. Our results may lead to the
development of new screening tools in NAFLD, especially in patients with no or mild
fibrosis. Moreover, as a surrogate for tumor liver biopsy, MRI-based metabolic imaging
may become relevant to discriminate subtypes of NAFLD-HCC according to the severity of
fibrosis. Finally, NAFLD-HCC patients could be treated depending on their metabolomics
signatures. Oncology care should be directed towards personalized therapies in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-198
9/11/1/54/s1, Figure S1: Distribution of the size of the largest nodule according to the severity of
fibrosis, Figure S2: Recurrence free survival (2A) and overall survival (2B) according to the severity
of fibrosis, Figure S3: ROC (Receiver Operating Characteristic) curves of each subset of significant
metabolites identified in aqueous (3A) and lipid phases (3B) for the discrimination of HCC from
NTT in F0F1 fibrosis, Figure S4: ROC curves of each subset of significant metabolites identified
in aqueous (4A) and lipid phases (4B) for the discrimination of HCC from NTT in F3F4 fibrosis,
Figure S5: ROC curves of each subset of significant metabolites identified in aqueous (5A) and lipid
phases (5B) for the discrimination of HCC-F3F4 from HCC-F0F1, Table S1: Discriminant metabolites
between HCC-F0F1 versus NTT-F0F1 according to the number of selections in the aqueous and lipid
phases. Upregulated (red) and down-regulated (blue) metabolites in tumors, Table S2: Discriminant
metabolites between HCC-F3F4 versus NTT-F3F4 according to the number of selections in the
aqueous and lipid phases. Upregulated (red) and down-regulated (blue) metabolites in tumors,
Table S3: Discriminant metabolites between HCC-F0F1 versus HCC-F3F4 according to the number of
selections in the aqueous and lipid phases. Upregulated (red) and down-regulated (blue) metabolites
in HCC-F0F1.
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Abbreviations

HCC hepatocellular carcinoma
NAFLD non-alcoholic fatty liver disease
MS metabolic syndrome
MAFLD metabolic associated fatty liver disease
NAFLD-HCC NAFLD associated HCC
NMR nuclear magnetic resonance
NTT non-tumoral tissue
ppm parts per million
FA fatty acids
AA Aminoacids
Plp Phospholipids
Lac Lactate
Glc glucose
Gln glutamine
GS glutamine synthase
His histidine
GSx glutathione
Asc A ascorbic acid
PC phosphocholine
PtdCho Phosphatidylcholine
CK choline kinase
MUFA monounsaturated fatty acids
TCho total cholesterol
AUC area under curve
BCAA branched chain aminoacids
Val Valine
Leu Leucine
IsoLeu Isoleucine
Sar Sarcosine
GNMT Glycine N-methyltransferase
NAD nicotinamide adenine dinucleotide
SFA saturated fatty acids
DNL de novo lipogenesis
FASN fatty acid synthase
SCD stearoyl coA desaturase
FCho free cholesterol
TAG Triacylglycerol
PE phosphoethanolamine
PET positron-emission tomography
FDG fluorodeoxyglucose
ROS reactive oxygen species
TCA tricarboxylic acid
AAA aromatic aminoacid
Gly Glycine
THF tetrahydrofolate
CDP cytidine diphosphate
PtdEth phosphatidylethanolamine
PEMT phosphatidylethanolamine N-methyltransferase
MestReNova Mestrelab Research chemistry software solutions
GA Genetic Algorithm
LDA Linear Discriminant Analysis
ROC Receiver Operating Characteristic
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