
HAL Id: hal-03324043
https://hal.inrae.fr/hal-03324043

Submitted on 17 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Potential of high-spectral resolution for field
phenotyping in plant breeding: Application to maize

under water stress
Maxime Ryckewaert, Nathalie Gorretta, Fabienne Henriot, Alexia Gobrecht,

Daphné Heran, Daniel Moura, Ryad Bendoula, Jean-Michel Roger

To cite this version:
Maxime Ryckewaert, Nathalie Gorretta, Fabienne Henriot, Alexia Gobrecht, Daphné Heran, et
al.. Potential of high-spectral resolution for field phenotyping in plant breeding: Application
to maize under water stress. Computers and Electronics in Agriculture, 2021, 189, pp.106385.
�10.1016/j.compag.2021.106385�. �hal-03324043�

https://hal.inrae.fr/hal-03324043
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Potential of high-spectral resolution for field1

phenotyping in plant breeding: application to maize2

under water stress3

Maxime Ryckewaerta,b, Nathalie Gorrettaa, Fabienne Henriotc, Alexia4
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Abstract10

Spectroscopy is today and for two decades strongly used in many fields11

(pharmacy, agriculture, process, medicine...). This use in a very large number12

of applications is linked to the great spectral richness of the measurement13

and therefore to the large amount of accessible chemical information. For14

plant breeding, spectral reflectance in the visible and near-infrared range15

(VIS-NIR) embeds a lot of information about vegetation (pigments, struc-16

ture, water, etc.). Discriminatory power between genotypes can be greatly17

improved by using high spectral resolution. NIR spectroscopy is still limited18

in the field for phenotyping compared to existing imaging solutions that are19

easier to implement.20

In this study, we will address the potential of high spectral resolution data21

by using NIR spectroscopy to describe phenotypic responses of maize geno-22

types to water stress. To that end, data acquired following an experimental23

design with water-deficient environment are processed using an analysis of24
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variance method adapted to multivariate data called REP-ASCA. For each25

factor, this method gives its significance, the loadings describing the im-26

pacted spectral regions and the scores to classify observations. For a date27

with proven water stress, the treatment and genotype factors and the inter-28

action term are significant with a p-value threshold at 0.05. Treatment term29

loadings highlight the spectral regions impacted by the change in irrigation30

while those of the genotype factor allows to group genotypes according to the31

yield potential regardless the irrigation. The interaction term loadings are32

used as a phenotyping trait related to water stress response. Based on this33

signature, tolerant genotypes are differentiated from sensitive genotypes ac-34

cording to a ranking based on final yield (R = 0.81). This spectral signature35

was then applied to another environment with a moderate water deficit. For36

most genotypes, we were able to recover the ranking previously established37

by the stressed environment (R = 0.60).38

Keywords:39

Plant Breeding, Phenotyping, Spectroscopy, REP-ASCA, Drought, Water40
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1. Introduction42

In an agricultural context, drought is defined as any lack of water that43

prevents crops to reach their yield potential or that affects quality of har-44

vested products. This stress induces changes in yield and quality of many45

crops around the world. Periods of drought are increasingly frequent and46

severe and require the development of new genotypes adapted to extreme47

water stress conditions [1, 2, 3].48
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Furthermore, stress will have a different impact depending on the devel-49

opment stage at which it occurs [4, 5, 6]. For example, water stress will have50

less impact on the plant when it occurs during the vegetative stage than the51

flowering stage. In order to select genotypes according to their ability to52

respond to this stress, it is necessary to have rapid and efficient phenotyping53

tools to characterize plants in many situations. Therefore, efforts to improve54

high-throughput phenotyping tools must be made [7, 8].55

Technologies with high spectral resolution are ideal for plant phenotyp-56

ing [9, 10, 11]. High spectral resolution in the visible and near-infrared range57

(VIS-NIR) provides rich information on bio-chemical content and plant struc-58

ture [12]. Indeed, the use of highly resolved spectral data has shown its in-59

terest in crop monitoring [13, 14, 9] or in early detection of biotic or abiotic60

stresses [15, 16, 17]. Additionally, some studies have shown the interest to use61

high spectral resolution in plant breeding, particularly for yield prediction62

[18, 19].63

In recent years, technologies tend to jointly increase spectral and spatial64

resolution with the use of hyperspectral cameras for phenotyping crops [20].65

These technologies still present operational constraints for agricultural ap-66

plications (cost, weight, ease of use or acquisition time). On the other hand,67

less expensive solutions such as micro-spectrometers provide a high spectral68

resolution at the expense of spatial resolution [21].69

However, analyzing spectral data acquired on vegetation is challenging,70

particularly in plant breeding where the objective is to compare genotypes71

with similar behaviors. Besides, data collected on several experimental sites72

with different agronomic and pedoclimatic conditions brings an additional73
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difficulty. Indeed, the environment has a strong influence on the expres-74

sion of a large quantity of genes [22, 23] and hence on the phenotypic traits75

measured. These effects must be taken into account to ensure the represen-76

tativeness of measured phenotypic traits regardless of the environment and77

the development state of the plant.78

In chemometrics, methods can be used to exploit spectral data [24, 25].79

The choice of the method to be used depends on the objective of analysis80

of the spectral data. We can dissociate four cases of use of spectral data in81

the order of the most commonly used. First, many applications of NIR spec-82

troscopy are aimed at predicting biochemical variables from spectra. In this83

case, the best known and most commonly used method is partial least squares84

regression (PLSR) [26]. A second use case is the use of spectra to predict85

a class which combines partial least square (PLS) and discriminant analy-86

sis (DA) [27]. A third use case is the exploration of spectral data through87

unsupervised approaches such as Principal Component Analysis (PCA) [28].88

The last case, very little used but nevertheless very useful when performing89

experiments, is the use of methods for the analysis of variance of spectral90

data.91

Experimental design, often called Design of Experiments (DoE) [29] and92

ANalysis Of VAriance (ANOVA)[30] are commonly used in plant breeding93

[31]. On the one hand, DoE is a way of organizing experiments so that they94

allow genotypes to be tested optimally against several variability factors. On95

the other hand, the analysis of variance is a statistical method to separate96

different factors of variability.97

Usually, methods of analysis of variance are not adapted to spectral data.98
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Indeed, variables are highly correlated with each other and normality assump-99

tions are not satisfied [32]. The most commonly used method is Analysis of100

variance - Simultaneous Component Analysis (ASCA) [33] which is widely101

used in data analysis of laboratory experiments.102

In the case of spectral measurements made in the field, errors related to103

the lack of repeatability of the measurements may affect analysis conclusions.104

An analysis of variance method called Reduction of repeatability error for105

Analysis of variance-Simultaneous Component Analysis (REP-ASCA) [34]106

has recently been developed to reduce this repeatability error and to describe107

identified factors. REP-ASCA also highlights spectral regions associated with108

each factor and reduces uncontrolled effects (such as leaf angle, sunlight,109

temperature, ...).110

In this study, we are assessing the potential of high spectral resolution111

to phenotype different maize genotypes, specifically in the context of adap-112

tation to drought. We will show how REP-ASCA approach applied to spec-113

tral data collected in the field can identify spectral signatures as phenotypic114

traits to describe genotype responses to water stress. For this purpose, two115

experimental campaigns were set up to study the response of different maize116

genotypes.117

In this article, we will first describe the two experimental campaigns.118

Then, REP-ASCA will be used to analyze spectra collected in the highest119

drought environment to obtain spectral signatures related to the different120

studied factors. Finally, the relevance of these signatures will be discussed121

in the second environment.122
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2. Materials and methods123

2.1. Field experiments124

Two experimental campaigns were conducted on Limagrain experimental125

sites. The first one took place in 2017 in Aubiat (France) and the second one126

in 2018 in Nérac (France). The same experimental design was used for both127

campaigns (Table 1).128

Table 1: Summary of the experimental conditions in 2017 and 2018.

Year Location Irrigation Number of genotypes Number of replicates Plant density

2017 Aubiat Irrigated 10 Genotypes 2 Replicates 9.6 Plants/m2

2017 Aubiat Rainfed 10 Genotypes 2 Replicates 8.5 Plants/m2

2018 Nérac Irrigated 10 Genotypes 2 Replicates 8.5 Plants/m2

2018 Nérac Rainfed 10 Genotypes 2 Replicates 8.5 Plants/m2

This design was organized in a complete and balanced randomized block129

design to compare ten commercial genotypes under two irrigation conditions.130

The irrigation conditions or treatments were as follows: one under optimal131

irrigation conditions with irrigation triggering and another without irrigation,132

i.e. rainfed.133

Ten commercial genotypes, chosen to have contrasting tolerances to water134

stress, were identified by letters from A to J. Genotypes A and C were known135

to be highly sensitive while genotypes B, E and F were known to be tolerant.136

The remaining genotypes (D, G, H, I and J) were selected for their average137

behavior to water stress. These behaviors differed according to water stress138

severity. This experimental design had two replicates (two micro-plots) of139

the same genotype per treatment. For both experimental campaigns, forty140

micro-plots were sowed in four rows and 6m-long each. In Nérac (2018)141

6



the density was 8.5 plants/m2 for both treatments. In Aubiat (2017), the142

densities were 8.5 plants/m2 and 9.6 plants/m2 respectively under rainfed143

and optimal irrigation conditions.144

2.1.1. Meteorological data145

Temperature, sunshine, rainfall and humidity were locally measured using146

meteorological stations installed in the fields. In addition, tensiometers (Wa-147

termark probes) were installed to describe water reserves for both irrigation148

conditions. Weather data were collected every hour whereas tensiometric149

data were collected four times a day.150

Besides, vapour pressure deficit (VPD) was used to describe the evapo-151

rative demand [35].152

2.1.2. Agronomic data153

Several agronomic data were collected during plant growing and at har-154

vest: flowering dates, plants counts, grain yield and moisture. All plots were155

harvested with a twin-plot combine DP4000 BAURAL, collecting grain yield156

and grain moisture. Grain moisture was measured by NIR (POLYTECH in-157

strument). Grain yield was determined by weighing all the grains in each plot,158

adjusted to 15% grain moisture and converted to tons per hectare (q/ha),159

considering the differences in the plot size across trials. Flowering dates were160

measured as the number of days from June 1st, to the time when silks had161

emerged on 50% of the plants in a plot. Plant counts were measured as the162

numbers of plants after emergence. The micro-plot qualitative scorings were163

measured throughout the period of the experiment in order to eliminate plots164

where issues other than genotypic related occurred.165
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2.1.3. Spectral measurements166

Spectral measurements were performed with a device designed specifically167

for this study to collect data over the maize canopy.168

This device was designed to address the UAV specifications (Fig. 1).169

It included a spectrometer (MMS1, Carl Zeiss Spectroscopy GmbH, Ger-170

many) with 256 spectral bands defined in a spectral range from 310 nm171

to 1100 nm and a spectral resolution of 3 nm, an integrating sphere (30-172

REFL, AvaSphere), a microcomputer (pico-ITX, VIA) and three optical173

fibers (550 µm-core diameter, numerical aperture of 0.22, Sedi-ATI). Each174

spectrometer measurement S was normalized by the corresponding integra-175

tion time ts to have the signal I as follows:176

I = S/ts (1)

The incident sunlight I0 was measured with the integrating sphere con-177

nected to the spectrometer. Light reflected by the vegetation Iv was mea-178

sured at a distance of approximately 1 m above the canopy corresponding to179

an imprint of a 16 cm-diameter circle. Dark measurements Id were performed180

with a shutter in front of the spectrometer to subtract electronic noise from181

signals. A manual switch was used to toggle between the measurement of182

incident radiation and canopy radiation with the same spectrometer (Fig.183

1).184

Finally, reflectance spectrum was obtained according to the following185

equation:186

R =
Iv − Id
I0 − Id

(2)
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Figure 1: Diagram of the acquisition system; A manual switch was connected to the

spectrometer (dot-line), to the integrating sphere (red) and a fiber (grey) for measuring

light from vegetation with a numerical aperture (θ = 0.22)

A wheelbarrow as support vector (Fig. 2) was designed to embed the187

spectral acquisition system. The height being adjustable, it was set at the188

beginning of each acquisition date at a height of approximately 1 meter from189

the top of the canopy.190

2.1.4. Protocol for spectral field measurements191

Spectral measurements were performed on 6 dates per year using the192

device presented in section 2.1.3. Measurements were made on one of the two193

central rows of each micro-plot to avoid border effects from the two adjacent194

genotypes. Acquisition path was defined according to the orientation of the195

field and the acquisition time in order to minimize shadows caused by the196

measuring device. A reference measurement with the integrating sphere was197

acquired systematically for each measurement on vegetation. At the end, 12198

spectral reflectances were obtained per micro-plot and 480 spectra over the199

whole field for each acquisition date.200
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Figure 2: Image of the wheelbarrow embedding the spectral acquisition system, next to a

car to visualize the height of the device.

2.2. Data analysis201

2.2.1. Theory of REP-ASCA202

REP-ASCA method [34] is used to analyze multivariate data associated203

with a design of experiments. The specificity of REP-ASCA is to reduce204

effects due to a lack of repeatability of measurements. As detail in [34],205

REP-ASCA requires a multivariate data set represented by a matrix X for the206

analysis of variance and a data set represented by a matrix W to describe the207

repeatability error. In this matrix notation, rows correspond to observations208

and columns to spectral bands. The matrix W contains centered measures209
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per packet of repeated measurements and carries only the information related210

to the repeatability error. The centered measures per packet are obtained211

by removing, for each spectrum, the average spectrum of the corresponding212

packet. This operation provides a set of observations containing within-213

variance.214

REP-ASCA approach aims to define first a subspace representative of215

the repeatability error and then to perform an orthogonal projection of the216

multivariate data X to remove this subspace, as detailed in [36]. To define217

this repeatability error subspace, a Principal Component Analysis (PCA) is218

performed on W to give principal components. The choice of the first k219

components according to criteria specific to the dataset to be realized allows220

to define this vector subspace named here D.221

The orthogonal projection is then performed to obtain a corrected matrix222

X⊥. This projection can be written as follows:223

X⊥ = X(I−DDt) (3)

2.2.2. Application of REP-ASCA224

The algorithm REP-ASCA , available at github.com/RYCKEWAERT/REP-225

ASCA, has been implemented with Matlab R2015b (The Mathworks, Natick,226

MA, USA).227

No pretreatment was performed on spectra. Data acquired on the most228

representative date of a stressed environment were used for REP-ASCA. This229

dataset of 480 acquired spectra was randomly split into 2 datasets to form230

the two matrices X and W required for REP-ASCA. X was thus composed231

of 2/3 of the measurements, i.e. 320 spectra. The remaining measurements232
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were centered in packets of repeated measures to form the matrix W. W233

was thus made up of 160 spectra.234

The classical ASCA method [33] was then applied to the corrected spec-235

tral data X⊥, obtained after orthogonalization (eq. 3). As all analysis of236

variance of multivariate data [33, 34], X⊥ was decomposed into matrices237

according to the variances associated with the effects studied and their inter-238

actions, namely here genotype, treatment effects and genotype-environment239

interaction. This decomposition is written as follows:240

X⊥ = µ+ XG + XT + XG×T + E (4)

Where µ denotes the overall mean matrix of X⊥. Here, XG, XT and241

XGxT are matrices corresponding to the genotype, treatment and genotype242

x treatment interaction effects, respectively. The matrix E represents the243

residuals. Each spectrum (line) from X is then decomposed as a sequence244

of average spectra per modality. For example, the matrix XT contains for245

each row corresponding to an observation, either the average spectrum of the246

irrigated condition or the average spectrum of the non-irrigated condition.247

The second step is to perform a permutation test to compute p-values248

to determine if the factors are significant. The last step is to reduce the249

dimensionality of each significant factor by simultaneous component analysis250

(SCA). For a given factor i, the corresponding matrix Xi is then written as :251

Xi = TiP
t
i + Ri (5)

Where Pi is the matrix containing loadings of the principal components252

(PC), Ti the scores and Ri the residuals of the SCA.253
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Figure 3: Flow chart to summarize REP-ASCA method.

3. Results and discussion254

3.1. Description of experimental campaigns255

3.1.1. Climatic conditions256

Water stress results from a combination of a lack of water in the soil, high257

evaporative demand and high temperatures. The assessment of the water258

stress intensity on the micro-plots and for each date was performed using259

the available meteorological, i.e. measurements of maximum temperatures,260

tensiometry and vapour pressure deficit (VPD).261

All climatic variables at the acquisition dates are providing in the table262

2). In the first column, the acquisition dates are numbered from 1 to 6 in263

chronological order for each year for descriptive convenience.264

For all other dates and with differences that do not exceed 5◦C between265
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Tmax,d and Tmax,−3d, Over this period, there were therefore no abrupt changes266

in temperature.267

Tensions at the acquisition dates for the two treatments and differences268

between treatments are given in table 2. A tension value represents the force269

required to extract water from the soil, so the higher the tension, the drier270

the soil. In Aubiat (2017), tension values for both treatments are very low,271

with maximum tensions being reached on the third date with values equal272

to 73.42 and 50.08 cbar for the rainfed and irrigated treatments respectively.273

At this date, the difference δP is maximal with a value equal to 23.34 cbar.274

In Nérac (2018), the tension value of the rainfed plot is high with a275

maximum value equal to 231.5 cbar at the third date. For irrigated plot,276

the tension value increases to 78.5 cbar that is already higher than all value277

in Aubiat (2017), even in irrigated condition. On this date, a difference of278

153 cbar is then observed for tension values between irrigated and rainfed279

conditions and decreases on the following dates.280

In Aubiat (2017), tensiometry and VPD values are very low. In addition,281

tension differential between irrigated and non-irrigated plots is very low due282

to the presence of significant rainfall events. These two plots are therefore283

under optimal water reserve conditions even if a slight differential appears284

between the two plots.285

In Nérac (2018), the tensiometric value is high for the rainfed condition,286

combined with average evaporative demand and high temperatures. The287

values obtained in Nérac (2018) are those expected for trials under water288

stress conditions.289

Although the maximum temperatures recorded in 2017 and 2018 are al-290
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most identical, rainfall and evaporative demand are different between these291

two environments. Aubiat (2017) has a low value for tension difference be-292

tween treatments corresponding to low water stress. On the other hand,293

Nérac (2018) is the environment with the highest water stress on the rainfed294

condition.295

At the measurement dates, plant transpiration is higher in Nérac (2018)296

than in Aubiat (2017) where rainy episodes occurred. High values correspond297

to a high evaporative demand. In this situation, the air is dry and increases298

plant transpiration.299

These findings are confirmed by the tensions values. We therefore select300

the most contrasted dates in terms of drought intensity with the maximum301

differences in tension values between the two treatments.302

On all available acquisition dates, the third date (07/30/18) of Nerac303

(2018) is the acquisition date when the water stress is the most severe. Spec-304

tral data acquired on this date is used for the REP-ASCA study. The third305

date (02/08/17) of Aubiat (2017) is the acquisition date with a maximal306

difference between treatments. This date is used as a second environment307

with low water stress. These two dates correspond to the grain filling stage308

which is one of the most sensitive stages to water stress. Indeed, at this date309

drought has an impact on grain filling and therefore on the thousand kernel310

weight (TKW) [37, 5].311

3.1.2. Agronomic variables312

The table 3 shows, by treatment, means and standard deviations of yield313

values obtained at harvest.314

In 2017, average yield values for irrigated and rainfed conditions are high,315
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Table 2: Description of the climatic conditions for each acquisition date: Maximum tem-

peratures Tmax,d(◦C) for the acquisition dates and averaged over the 3 previous days of

the acquisition dates Tmax,−3d (◦C), rainfed cumulated during the 3 days preceding the

acquisition date R−3d(mm), vapour pressure deficit (VPD)(kPA), tensiometry P(cbar) for

both treatment and difference between treatments δP (cbar).

N◦ Location Date Tmax,d Tmax,−3d R−3d VPD P (cbar) δP

(◦C) (◦C) (mm) (kPA) rainfed irrigated (cbar)

1 Aubiat 19/06/17 34.5 30.0 6.75 1.53 5.83 5.83 0

2 Aubiat 19/07/17 28.0 33.0 6.75 0.89 13.08 11.41 1.67

3 Aubiat 02/08/17 33.5 31.0 3.5 0.95 73.42 50.08 23.34

4 Aubiat 17/08/17 29.5 30.5 0.25 0.80 43.92 26.01 17.91

5 Aubiat 01/09/17 19.5 34.5 19.8 0.31 2.92 1.42 1.5

6 Aubiat 28/09/17 25.0 24.0 18.3 0.47 1.42 1.42 0

1 Nérac 26/06/18 31.6 29.1 0 1.60 x x x

2 Nérac 10/07/18 28.8 31.1 0.6 1.19 145.08 x <145.08

3 Nérac 30/07/18 30.8 34.2 0.4 1.25 231.5 78.5 153

4 Nérac 20/08/18 29.5 29.9 0.2 1.30 145.17 86.67 58.5

5 Nérac 27/08/18 29.8 30.6 4.0 1.23 229.5 121 108.5

6 Nérac 10/09/18 26.9 29.4 11.8 0.83 239 168 71

with 133.5 q/ha and 116.2 q/ha respectively. In 2018, average yield values316

are much lower with 104.42 q/ha for irrigated condition and 85.46 q/ha for317

rainfed condition. Standard deviations are of the same order of magnitude318

for all the experimental campaigns with values between 9 and 13 q/ha.319

Obtaining lower yield values in rainfed condition compared to irrigated320

condition was expected. In 2017, yield values in both conditions are high.321

Indeed, as stress is very low (Tab. 2), yield values in rainfed condition remain322

high (Tab. 3).323
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Table 3: Average and standard deviation of the yield obtained at harvest for both irrigation

conditions and for each environment.

Year Yield (q/ha)

Irrigated Rainfed

Average Standard deviation Average Standard deviation

2017 133.5 9.36 116.2 10.85

2018 104.42 12.48 85.46 9.12

3.1.3. Genotypes classification based on yield324

In our study, the percentages of yield loss between two irrigation condi-325

tions are used to describe genotypes responses to water stress. Thus, for a326

given genotype, the lower the percentage of loss between the two irrigation327

conditions, the less sensitive the genotype will be to water stress. On the328

contrary, a high percentage of loss between the two irrigation conditions will329

show a high sensitivity of the genotype to water stress. The yield value of330

the irrigated condition is also important. Indeed, it shows the yield potential331

of genotypes under optimal irrigation conditions.332

In general, several criteria are needed to characterize resistance to water333

stress [38]. Climatic variables help to put yield values obtained into con-334

text. The 2017 environment does not correspond to a stressed environment.335

Therefore, it is difficult to assess genotype sensitivity to irrigation conditions336

in this particular environment. The year 2018 was therefore used to verify337

that the genotypes were correctly classified according to their sensitivity to338

water stress.339

For each genotype, yield values and the percentage of yield loss between340

the two irrigation conditions for 2018 are given in table 4.341
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Table 4: Average yield per treatment and percentage losses for each genotype for 2018.

Genotype Yield 2018 (q/ha)

Irrigated rainfed Loss (%)

A 103.22 83.17 19.42

B 105.85 97.01 8.34

C 115.39 88.92 22.94

D 100.82 93.30 7.45

E 78.39 77.13 1.61

F 103.63 92.49 10.74

G 118.55 86.65 26.91

H 104.16 76.29 26.75

I 114.51 81.64 28.70

J 99.68 77.99 21.75

In irrigated conditions, some genotypes have very high yields such as342

genotypes C and G with average values of 115.39 q/ha and 118.55 q/ha343

respectively. Others have very low yield values such as genotypes E and344

J with average values equal to 78.39 q/ha and 99.68 q/ha respectively. In345

rainfed conditions, genotypes with high yield values are genotypes B and D346

with respectively 97.01 q/ha and 93.30 q/ha. Genotypes E and J have the347

lowest yields with values of 77.13 q/ha and 77.99 q/ha respectively.348

Genotypes that have a low percentage of losses between irrigated and349

rainfed conditions are genotypes B, D and E with a loss of 8.34%, 7.45%350

and 1.61% respectively. Very sensitive genotypes are genotypes A,C G, H,351

I and J with losses of 19.42%, 22.94%, 26.91%, 26.75%, 28.70% and 21.75%352

respectively.353

Based on agronomic data, this analysis allows us to establish two classes354
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of genotypes: the first class includes tolerant genotypes (B, D, E and F). For355

these genotypes, a change in irrigation has little impact on yield. The second356

class is composed of sensitive genotypes (A, C, G, H, I and J). For these357

genotypes, yield is strongly impacted by the change in irrigation. Genotype358

E is atypical as it seems to reach its yield potential even in the absence of359

water.360

3.2. Reduction of repeatability errors with REP-ASCA361

3.2.1. Descriptions of the spectral measures362

Wavelength (nm)
400 500 600 700 800 900 1000 1100

R
ef

le
ct

an
ce

0

0.2

0.4

0.6

0.8

1

Figure 4: Spectral data for the chosen date (30/07/18 - Nérac).

Figure 4 shows spectra acquired in 2018 corresponding to characteristic363

spectra of vegetation: presence of specific hollows at 450 nm and 650 nm364

related to chlorophyll content; the slope between 700 nm and 800 nm corre-365

sponding to the red-edge; a large reflected part related to internal structure366

beyond 750 nm and a hollow at 950-980 nm related to water content. It367

can be seen that these spectra are affected by a systematic variation effect368

consisting of a vertical translation visible at 400 nm (additive effect) and369

a multiplicative effect visible between 800 and 1000 nm. This last effect is370

particularly visible when reflectance signal intensity is high.371
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Additive and multiplicative effects are classically observed on vegetation372

spectra [39]. Additive effects are mainly due to variations in angles formed373

between normal at the leaf surface and measurement axis [40] during spectral374

acquisition. Multiplicative effects show variations as a function of wavelength375

and are essentially related to the increase of optical path [40]. Additive and376

multiplicative effects are generally addressed by the application of standard-377

ization methods such as Standard Normal Variate (SNV) [41] and Variable378

Sorting for Normalization (VSN) [42]. However, these pretreatments can379

have deleterious effects on spectra [43, 44, 42]. For this reason, no pretreat-380

ment has been applied here.381

3.2.2. Selection of the dimension k of the detrimental space382
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Figure 5: Impact of projections on explained variances for each factor in the analysis of

variance on spectral acquired at the chosen date (30/07/18 - Nérac).

The objective is to determine the k dimension of the detrimental subspace383

corresponding to the repeatability errors. k must be judiciously chosen to384

define the detrimental subspace corresponding to the repeatability error while385

avoiding removing any part of the variance related to a factor of interest.386
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This choice can be driven by various criteria. Here we choose to look at the387

impact of the components number k removed by orthogonal projection on388

the variances carried by each factor of the data set X⊥.389

Figure 5 shows the evolution of the explained percentage variance of the390

matrix X⊥ for each of factors studied as a function of the number k of391

orthogonal projections performed.392

Without correction, the percentage of explained variance of the residual393

term is very high and reaches 65.01% of the total variance. It is always394

higher than other factors regardless of k. This percentage reaches a minimum395

of 46.63% for k=2. For values greater than 2, this percentage increases396

progressively to reach a maximum value of approximately 65% for k=10.397

For the treatment factor, the percentage variance explained is 4.45% of398

the total variance when no correction is made ( k=0). After orthogonal399

projection according to the first component (k=1), this percentage is then400

29.32%. It then varies between 22% and 36% for k ranging between 2 and 10.401

The treatment term seems to be strongly impacted by the first component402

related to repeatability error. For the genotype factor, the percentage of403

variance explained decreases progressively when k increases from 14.5% when404

k=1 to 8.03% when k=10. For the interaction term, the percentage variance405

explained increases slightly for k=3 to reach 13.09%. But from 4 projections,406

it drops sharply to around 3-4% of the total variance. For a value of k greater407

than or equal to 4, the variance explained for the interaction term no longer408

changes. The projection then has a negative effect and removes the variance409

related to this factor. k must therefore be less than 4.410

We choose a value of k that minimizes the percentage of residual variance411
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while maximizing those of the factors of interest. The choice was therefore412

k=2.413

3.2.3. Loadings of the principal components related to the repeatability error414
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Figure 6: Description of W: Loadings of (a) PC1, (b) PC2.

Loadings of the first component (PC1) of the matrix W are visible in415

figure 6a. They represent 96.5 percent variance in repeatability error. These416

loadings are all positive and are similar to the spectra obtained on vegetation417

(Fig. 4). This corresponds to a systematic variation corresponding with418

the average spectrum. It can therefore be seen that a large part of the419

repeatability error is due to the systematic effects described above (Fig. 4).420

The loadings of the second principal component (PC2) can be seen in421

figure 6b. These loadings show an opposition between the visible region (300422

- 700 nm) and the near-infrared one (700 - 1100 nm). The repeatability error423

within a micro-plot is expressed here as a difference in the slope between the424

pigment-sensitive visible part and the structure-sensitive near-infrared part425

of the cells. In addition, they show a pronounced negative spike at 709 nm.426

The peak corresponds to a variation in the position of the red-edge and more427

specifically the start of the red-edge [45].428
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It is known [46, 47] that the balance between the visible and near-infrared429

parts, as well as the position of the red-edge can vary from leaf to leaf for430

the same plant and obviously from one plant to another. It is therefore431

not surprising to find these deformations in the repeatability error because432

the acquisitions were done at different points in the plants row and indeed433

capture the plants under different angles of view.434

3.3. REP-ASCA results435

The repeatability error of the dataset having been reduced by orthogonal-436

ization (k=2), ASCA is performed on the corrected dataset X⊥. All factors437

in equation 4 are significant with p-values < 0.05 according to permutation438

tests. ASCA thus provides loadings and scores for each term of the equation439

4.440

The number of principal components obtained for each term is equal to441

the number of levels minus one. The treatment term is a two-level factor442

(irrigated/rainfed). So, only one principal component is obtained. For other443

terms (genotype and interaction), many principal components are obtained.444

However, for simplicity, results on the first two components will be described.445

3.3.1. Treatment term446

Loadings. The loadings of the principal component are shown in figure 7. In447

the visible and near-infrared region, we observe two peaks with the same sign,448

separated by a hollow centered at 739 nm. There are also two positive peaks449

located at 945 nm and 1040 nm, surrounding a hollow at 970 nm. A positive450

slope is also visible between 300 and 420 nm. The hollow located at 739 nm451

corresponds to the region of the red-edge and more precisely to its inflection452
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Figure 7: Decomposition of the treatment term : (a) Loadings of the principal component,

(b) average scores obtained by genotype.

point (maximum of the first derivative). The hollow at 970 nm corresponds453

to the water absorption [48, 49]. The presence of the two peaks at 945 nm454

and 1040 nm express an enlargement of the hollow at 970 nm. The slope455

between 300 and 420 nm shows a difference in absorption in the ultraviolet456

(UV) region between the irrigated and stressed areas. In this region there457

are both the UV-A absorption and the beginning of the region corresponding458

to the UV-B absorption [50].459

Changes in reflectance in this spectral region can be induced by different460

levels of flavonoids and phenylpropanoids. Indeed, theses chemical compo-461

nents absorb strongly in UV radiation [51]. UV absorption directly impacts462

photosynthetic activity, and so, yield [52, 50].463

Scores. Average scores obtained on each genotype are proceeded by project-464

ing their mean spectra onto this principal component. The scores obtained465

for each genotype are presented in figure 7b. The projection corresponds466

to the vector product between a spectrum measured and this component467
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producing a score.468

The scores obtained in irrigated condition (round symbol) are mainly469

negative. Conversely, scores obtained in rainfed condition (star symbol) are470

mainly positive. However, genotype I in rainfed conditions and C in irrigated471

conditions have scores close to zero. Extreme positive values are also observed472

with genotype E (in rainfed condition) and negative with genotypes A and I473

in irrigated condition.474

By jointly analyzing scores and loadings of this component (Fig. 7a),475

we can thus deduce information on traits related to genotype in response to476

the average behavior per treatment. With negative loadings in 739 nm, a477

positive score will correspond to a genotype with a low red-edge slope. And478

conversely, with positive loadings between 970 nm, a positive score will have479

high reflectance values around the dip at 970 nm. Results are reversed when480

scores are of different sign. For example, On the other hand, scores produced481

by this component will be negative when the initial spectra show a marked482

red-edge and a widening of the absorption peak related to water.483

In general, genotypes in rainfed conditions show positive scores (Fig. 7b).484

Their reflectance spectrum has a less marked inflection point and also a485

shallower absorption dip than the same genotypes under irrigated conditions.486

These phenomena can express a reduction in leaf water content and changes487

in plant metabolism for defense mechanisms regarding drought [53].488

Indeed, under water stress, the closure of stomata plays a protective role489

by reducing water loss and limiting gas exchanges [5, 54]. This stomatal490

closure could slow down the photosynthetic process of the plant leading to a491

reduction in yield when sporadic stress occurs [55].492
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The study of the treatment term by loading interpretation allow to iden-493

tify the spectral regions impacted by the irrigation change. It is possible to494

identify atypical behaviors with respect to other genotypes tested for a given495

treatment. Genotypes with scores close to zero will not have the same mech-496

anisms as other genotypes when faced a given treatment. On the other hand,497

genotypes with extreme score values will have more pronounced behaviors.498

3.3.2. Genotype factor499
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Figure 8: Loadings of the genotype term on (a) PC1, (b) PC2.

Loadings. Loadings of the first two principal components (PC1 and PC2)500

of the genotype term are shown in figure 8. On PC1 (Fig. 8a), loadings501

in the spectral range 300-500 nm are close to zero. There are two negative502

peaks located at 545 nm and 736 nm and two positive peaks located at503

672 and 980 nm. A slope break at 769 nm occurs in the increasing slope504

visible from 736 to 980 nm. The dips at 545 nm and 736 nm correspond to505

the anthocyanin content and the inflection point of the red-edge, respectively.506

The peaks at 672 nm and 980 nm correspond to the absorption of chlorophyll507

and water, respectively. PC1 will therefore produce negative scores for plants508
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having high chlorophyll and water contents and positive scores for those with509

high anthocyanin contents and a less pronounced slope of the red-edge. This510

component therefore contrasts genotypes with good photosynthetic activity511

(negative scores) and genotypes with a high anthocyanin content that may512

result from the presence of various environmental stresses (positive scores)513

[56]. The latter therefore will have a lower photosynthetic capacity.514

The loadings of the second principal component (PC2) (Fig. 8b) have a515

large negative part between 350 nm and 500 nm, a peak at 719 nm and a516

constant slope from 760 nm to 900 nm. The negative part of 350 nm to 500517

nm relates to the region of pigment absorption, particularly carotenoids and518

chlorophyll pigments. The peak at 719 nm is the first part of the red-edge.519

This component provides additional information to PC1 and also more spe-520

cific information on the carotenoid content. These pigments can protect the521

photosynthetic system from excess light [57, 58]. Positive scores on PC2 will522

reflect lower reflectance at 500 nm and therefore higher carotenoid content.523

Genotypes with a high carotenoid content may be selected for their ability524

to be tolerant to excess light [59].525

Scores. The plot scores obtained on PC1 and PC2 are shown in figure 9.526

According to the previous study of loadings (Fig. 8a and 8b), score value527

per genotype is due to differences in red-edge slope and pigments contents528

(chlorophylls, anthocyanins and carotenoids). Genotypes B, C, E, H and J529

have positive scores on PC1. These genotypes and have therefore a higher530

anthocyanin content and a spectral response with a less pronounced red-531

edge slope. PC2 mainly separates genotype C and I (negative scores) from532

genotypes D, E, F and H (positive scores). Genotypes C and I appear to have533
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Figure 9: Genotype scores on the first two components (PC1 and PC2) of the genotype

term.

higher carotenoid levels than genotypes D, F and H. Genotypes A, G, and534

I have a higher chlorophyll content and will therefore favor yield potential535

[59, 60, 61]. Based on these scores, we can describe each genotypes or see536

the grouping of certain genotypes, i.e. genotypes F and D, genotypes A, G537

and I and genotypes E and H.538

3.3.3. Interaction term539
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Figure 10: Loadings of the interaction term on: (a) PC1, (b) PC2.
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Loadings. The loadings of the first two components (PC1 and PC2) are540

shown in figure 10. On PC1 (Fig. 10a), a dip is located at 545 nm and541

a hump is located at 672 nm. Another major hollow is located at 729 nm542

and another bump appears from 800 to 922 nm. After 950 nm, loadings543

values are close to zero. The first part of the loadings of this component544

(Fig. 10a) has a similar shape to the loadings of PC1 of the genotype term545

(Fig. 10a) relating to anthocyanin and chlorophyll content.546

The loadings of PC2 are shown in figure 10b. Surprisingly, loadings values547

are equal to zero between 400 and 700 nm. After a sharp decrease between548

700 to 750 nm, loading values increase and a positive slope is visible from 750549

nm to 1,000 nm. PC2 carries strictly no information on the visible spectral550

region and thus no information on the pigment content. On the other hand,551

it expresses changes in the internal structure of the leaves. Indeed, changes552

such as changes in turgidity and intercellular space can be significant even in553

the presence of very low water stress [62]. In the short term, this stress can554

lead to wilting or leaf curling.555
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term.
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Scores. Average scores obtained on PC1 and PC2 for each genotype are556

presented in figure 11. Some genotypes are grouped together: genotypes E557

and F have negative scores on both axes; genotypes G, H and J have scores558

close to zero on both axes.559

According to the loadings of PC1 (Fig. 10a), negative scores for geno-560

types E and F are due to their good chlorophyll and anthocyanin content in561

irrigated conditions. On this same component, the positioning of genotype562

A changes very little between irrigation conditions. For this genotype, the563

change in irrigation condition has very little impact in the spectral regions564

related to anthocyanins and the position of the red-edge. For this same geno-565

type, the score observed on PC2 is strongly negative. The difference between566

the two irrigation conditions then seems to be a difference in the desiccation567

of internal cells and therefore in the wilting of the leaves. Genotypes B, C568

and D have positive scores on PC2. Considering that this component re-569

flects internal modification effects of the cells, it can be assumed that these570

genotypes do not undergo internal structural degradation under water stress.571

3.4. Principal components used as proxies572

In this part, we study correlation between scores obtained on the differ-573

ent components of the different factors with yield variables measured during574

experimental campaigns. This study will enable us to classify genotypes ac-575

cording to their tolerance to water stress for the 2018 experimental campaign.576

A classification of genotypes for the 2017 experimental campaign will then577

be carried out on the basis of the results of the 2018 campaign.578
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3.4.1. Correlation between scores and agronomic variables579

The table 5 shows correlations between the agronomic variables average580

yield for the two irrigation conditions (rainfed/irrigated), the percentage of581

losses and the scores previously calculated for all the terms studied i.e. treat-582

ment, genotype and interaction.583

Table 5: Correlation between yield-based agronomic variables and treatment term scores

TT ; genotype scores on PC1 (TG,1) and on PC2(TG,2); and interaction term scores on

PC1(TGxT,1) and PC2 (TGxT,2).

agronomic variables TT TG,1 TG,2 TGxT,1 TGxT,2

Yield (irrigated) -0.42 -0.48 -0.59 0.69 0.17

Yield (rainfed) -0.12 -0.34 0.03 -0.2 0.71

Average yield -0.36 -0.51 -0.38 0.41 0.47

Loss percentage (%) -0.33 -0.24 -0.59 0.81 -0.34

For the treatment term or the genotype term, scores are weakly correlated584

to the agronomic variables with absolute values of the correlation coefficient585

below 0.60.586

The highest values are obtained for the interaction term: scores on PC1587

(TGxT,1) are positively correlated (R=0.69) to the yield in irrigated condition.588

Those on PC2 (TGxT,2) are correlated (R=0.71) to yield in rainfed condition.589

This confirms that pigment content and steep red-edge slope (Fig. 10a)590

are related to the photosynthetic capacity of the plant and thus its yield591

under optimal irrigation conditions. Under rainfed conditions, variations in592

cell structure (degradation) and plant morphology (drying, wilting, coiling)593

affect yield values.594

The correlation between the scores on PC1 of the interaction term (SGxT,1)595
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and the percentage of yield loss is highest and equal to 0.81. The study of596

loadings (Fig. 10a) indicate that the scores obtained for the different geno-597

types express the plant ability to mobilize its photosynthetic system to water598

stress. It is therefore possible to retrieve the sensitivity ranking of genotypes599

to stress previously established directly from the scores of this component.600

Negative scores will therefore correspond to tolerant genotypes and positive601

scores to stress-sensitive genotypes.602

Figure 12, shows the SGxT,1 scores for all genotypes (Fig. 11) as a func-603

tion of the percentage of losses. Indeed, genotypes B, D, E and F are then604

classified as tolerant while genotypes J, C, G, H, A and I are classified as605

rather sensitive. We can find this classification by using the table 4. All606

genotypes with negative score have a percentage of yield loss below 11%. On607

the other hand, genotypes with positive scores on this axis have a percentage608

of yield loss greater than 20%. Genotype E is very atypical, as it is extremely609

tolerant with a yield loss of less than 2% but this genotype has also a very610

low yield potential. On the other hand, genotypes B and D are well disso-611

ciated from genotypes E and F on the second principal component. These612

two pairs are therefore dissociated from each other in terms of leaf structure613

(Fig. 10b).614

3.4.2. Application to another environment615

Components obtained by REP-ASCA to the data acquired during the616

2018 campaign were applied on another environment. The objective is to617

study the influence of the environment on the scores obtained. As previously618

mentioned, there was no significant water stress on the 2017 experimental619

campaign. We will nevertheless apply the principal component of the inter-620

32



Yield loss (%)
0 5 10 15 20 25 30

S
co

re
 o

n 
P

C
1

-0.1

-0.05

0

0.05

0.1

0.15

A

B

C

D

E
F

G
H

I

J

Date :3

Figure 12: Scores according to the percentages of yield loss.

action term obtained in 2018 to data collected in 2017.621
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Figure 13: Scores by genotype obtained for 2017 observations based on percentage yield

loss in 2018.

In 2017, the water reserve of the rainfed part is slightly reduced without622

any significant impact on yield. Percentages of yield loss obtained in 2018 are623

then used to provide a yield-based ranking describing genotypes responses to624

water stress.625

When comparing genotype rankings obtained for the 2018 (Fig. 12) and626

2017 (Fig. 13) data, we find strong similarities in behavior. Thus, genotypes627

B, E and F scored negative in both environments and are classified as toler-628

ant. Genotypes A, C, G, H and I have positive scores in both environments629

and are classified as sensible to water stress. These similarities are very en-630
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couraging and show that the loadings obtained from an environment with631

high water stress can be applied to another environment with lower water632

stress.633

Only genotypes D and J do not meet this classification. It can be hy-634

pothesized that these genotypes do not put in place responses identified by635

the components on the different factors when the intensity of the stress is636

not sufficient. The spectral signatures obtained on these genotypes in this637

low water stress environment are not affected in the same way when they are638

under intense stress.639

Although water stress was very limited during the 2017 campaign, we640

were able to link the scores obtained on this environment with the ranking641

established on a water-stressed environment. The scores obtained on this642

component are positively correlated (R = 0.60) with their ability to respond643

to water stress.644

This demonstrates that the method described is appropriate to identify645

differential responses of genotypes to water stress even in a situation where646

this stress is ad hoc, without a major impact on yield. This approach offers647

a promising solution for phenotyping a larger number of genotypes for their648

drought tolerance without implementing a specific and costly experimental649

device.650

4. Conclusion651

In this study, we investigated the added value of using high spectral res-652

olution to describe genotype responses to water stress using the REP-ASCA653

method. Two experimental campaigns were conducted in 2017 and 2018654
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where spectra were acquired from a panel of genotypes with different sen-655

sitivities to water stress. The 2018 season having a significant difference656

between the two irrigation conditions was used as a reference study of water657

stress situation. The spectra acquired during this campaign were analyzed658

by REP-ASCA. This method reduces errors due to lack of repeatability and659

provides scores and loadings for each of the identified terms.660

We demonstrate that the treatment term loadings highlight the spectral661

regions impacted by the change in irrigation. When looking at yield potential662

regardless of treatment, genotypes can be grouped according to the loadings663

provided by the genotype term. And finally, we found out that the interaction664

term provides loadings used as new phenotyping traits describing genotype665

response to stress.666

By projecting the observed spectra on these new components, we obtain667

scores that are useful to describe genotypes. The scores obtained for the668

interaction term were directly related to the percentage of the yield loss669

between the two irrigation conditions in a stressed environment. By applying670

these same components to spectra acquired on the same genotypes but in671

an environment with moderate water stress, we find the same classification672

for the majority of genotypes. This component seems to be best expressed673

when water reserves are limited, but is still relevant in the characterization674

of genotypes when the stress is light. This shows that REP-ASCA provides675

robust components applicable to environments with occasional stresses that676

do not impact yield. The analysis of scores simultaneously with loadings677

highlights the different strategies used by genotypes to manage water stress.678

Genotypes without adaptive mechanisms can suffer serious damage in terms679
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of growth, development and thus yield.680

This study shows that the use of high-spectral resolution data, when681

linked to a method reducing repeatability error, is interesting to classify the682

behavior of maize genotypes to water stress.683

Using NIR spectroscopy could be a preliminary study. A variable se-684

lection step on the spectral signatures obtained with REP-ASCA could be685

performed. New spectral indices could be created from a targeted breeding686

objective. While increasing the number of spectral bands, we need to be687

cautious about the possible redundancy of the spectral information. The use688

of high spectral resolution may be less useful in other applications, where689

spectral indices based on low resolution have proven to be very effective.690

But, provided that the right precautions are taken when processing the data,691

as here with REP-ASCA, high spectral resolution will be able to do as well692

as spectral indices, since the latter can be retrieved from high resolution693

information.694

However, it would be interesting to build up a larger spectral database695

containing more genotypes and several drought typology environments. In696

addition, increasing the number of measurement dates for an experimental697

campaign would make it possible to monitor genotypes by focusing on their698

resilience to occasional water stress.699

This study focused on identifying responses of different maize genotypes700

to water stress. The approach combining the REP-ASCA method with spec-701

tral data is adapted to other breeding objectives (diseases, hot stress or702

nitrogen deficiency) or even other crops.703
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