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Abstract 
Grapevine yield is defined as the quantity of harvest, expressed as either grape mass or wine volume units, 
which has been collected per surface unit and per crop cycle. The information about current and future 
yield, termed a yield report in this paper, is an essential decision-making element for the grape and wine 
industry. Crop management, wine-making, commercial, accounting and strategic operations are all adapted 
to and all impact on the expected yield of the current vintage. Numerous yield reporting approaches have 
been proposed in the scientific literature but only a few of them consider their adaptation to the operational 
context, which requires the constraints, needs and strategies of commercial vineyards and wineries to be 
taken into account. However, the few studies that have worked on the operational implementation of yield 
reporting methods have only partially addressed this issue, concentrating their improvement efforts on a 
single step in the yield reporting process. This paper therefore proposes to first review the characteristics 
of yield development in an operational context that must be taken into account by yield reporting methods 
: i) addressing the complex temporality of yield development, ii) ensuring a local monitoring of yield 
development and iii) fitting the operational needs to relevantly support decision-making in the field. The 
approaches of yield estimation, prediction and forecast are discussed in the way they address these 
challenges. In a second step, the paper proposes an understanding framework for the yield reporting 
process. It includes a review of the variables that are used to explain grapevine yield. Issues and proposals 
from the literature associated respectively with measurement, sampling and modelling yield are reviewed 
and the need for better modelling of relationships between explanatory variables and the desired, reported 
yield variable is discussed. The yield reporting methods found in the literature are categorised and 
compared according to measurement, estimation and modelling approaches, and then according to how the 
local, operational contexts influence the characteristics of yield development and the method of yield 
reporting, such that the report is adapted to commercial needs, and not to research objectives. In conclusion, 
concrete proposals for new grape yield reporting methods are discussed in order to investigate the as yet 
unexplored opportunities for improvement in yield reporting that have been identified in the paper. These 
considerations could easily be transposed to other perennial crops. 
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1. Introduction 
For the wine industry, yield is agronomically defined as the quantity of harvest, either expressed in grape 
mass or wine volume units, that has been collected per surface unit and per crop cycle. Since the 
introduction of wine regulations at the beginning of the 20th century, grape and wine production has been 
seen as a trade-off between harvest quantity, i.e. yield, and quality (Ravaz, 1911 ; Champagnol, 1984 ; 
Guilpart, 2014). However, this trade-off is not bijective i.e. a given harvest quality does not imply a unique 
yield but can exist across a range of possible yields (Tardaguila et al., 2008 ; Intrigliolo and Castel, 2009 ; 
McClymont et al., 2012 ; Martinez et al., 2016). Therefore, grape yield can be optimised for a given harvest 
quality by applying appropriate technical operations throughout the production chain. To this end, 
decisions on  operations, both in the vineyard and in the winery, are based on an expected final yield and 
expected growing conditions from the start of the season. Numerous approaches to report the expected 
final yield have been proposed in the scientific literature (Clingeleffer at el., 2001 ; Diago et al., 2012 ; 
Cunha et al., 2016 ;  Nogueira et al., 2018 ; Sirsat et al., 2019 ; Zhu et al., 2020). In this paper, they are 
referred to as yield reporting methods when considered as a whole.  Most of these studies are conducted in 
a context of research experiments aimed at statistically linking total yield to a yield component (Diago et 
al., 2012 ; Lopes et al., 2016 ; Cuhna et al., 2016), another plant-related variable (Cunha et al., 2010 ; 
González-Flor, 2014 ; Sun et al., 2017) or environmental variables (Nogueira et al., 2018 ; Sirsat et al., 
2019 ; Zhu et al., 2020).  

However, there are only a few studies that consider the adaptation of yield reporting approaches to the 
operational context of the production system. As a result, yield reporting methods are often adopted by the 
wine sector on the basis of scientific work although they have not necessarily been defined to be effective 
or even valid in such operational conditions. Indeed, the operational context includes additional needs and 
constraints to be met to ensure the smooth running of the production chain of any commercial 
vineyard/winery. The operational context also refers to data differing from those collected for a research 
experiment. Operational data is collected throughout the season for immediate decision-making purposes, 
e.g. weather data or field observations, but it is usually not intended to support any statistical analysis. The 
raised issue is hence about scientific studies accounting for operational needs, constraints and capabilities 
in terms of data acquisition in order to enable wine sector professionals to rigorously apply the methods 
proposed by literature in a production context.  

Such a question is also of real interest from a scientific research perspective since adapting to production 
conditions requires reporting on a wide variety of grape yield development situations, which is likely to 
generate knowledge on this subject. In that respect, operational datasets often offer larger amounts of data, 
particularly in terms of time series, which can be used to improve yield modelling by supporting novel 
statistical approaches. However, the development of operational methods presents scientific challenges 
related to the quality, heterogeneity and low number of local, i.e. site specific, data to be taken into account. 
It is also dependent on the definition of indicators to be used, which in turn depends on the working habits 
of each enterprise. Finally, yield reporting methods constitute both a technical and social issue for the wine 
industry and it is the role of scientific research to address both. In particular, the development of more 
relevant reporting methods should encourage their adoption by the wine industry, promoting a virtuous 
approach to developing agri-services that collect data for their own improvement and to support further 
research studies.  
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The few studies that have adapted yield reporting to operational conditions have often focussed on 
improving only one step of the yield reporting process. For example, some studies have attempted to 
improve measurement issues by working on the automation of yield components counting (Aquino et al., 
2015 and 2018 ; Liu et al., 2020) or total yield weighing (Tarara et al., 2014 ; Lopes et al., 2016). Others 
studies have sought to optimize sampling strategies (Araya-Alman et al., 2019 ; Oger et al., 2019). 
Although relevant, these studies remain limited in the way that they respond to operational issues since 
they aim to improve only one constitutive step of the yield reporting process. As a consequence, the yield 
reporting methods that are currently available to the industry have significant limitations, such as a high 
degree of imprecision and an inability to characterize the uncertainty associated with the yield reporting. 
Moreover, the extent of these limitations is difficult to quantify in regard to what can be reasonably 
expected under operational conditions since no single yield reporting approach has dealt with the problem 
in its entirety. 

Any proposal for an operational yield reporting method can not be based solely on the optimisation of any 
single step of the yield reporting process. Instead, it must collectively assess issues associated with 
measurement and sampling approaches for both the estimation of explanatory variables and the estimation 
of the yield variable to be explained, as well as modelisation issues for the development of a yield reporting 
model. New methods will also require an analytical approach that considers the entire yield development 
process in relation to the operational needs and constraints resulting from the production context. However, 
there is no holistic synthesis of the existing literature on yield reporting methods to help to identify the key 
research and industry questions that remain to be addressed in order to achieve a robust, accurate method 
of yield reporting in commercial vineyards. To address this deficit, this paper first provides an overview 
of the yield development process under operational conditions and a summary of the subsequent 
operational needs and constraints related to yield reporting to finally identify the challenges to be 
accordingly addressed. Secondly, a knowledge framework of yield reporting methods is proposed. It is 
framed in terms of measurement, sampling and modelisation approaches for a yield reporting purpose. For 
each of these three topics, issues and literature propositions are presented. Finally, the methods proposed 
in the literature for yield reporting are reviewed with regard to their characteristics in terms of 
measurement, sampling and modelisation and to the challenges identified in the first part. In conclusion, 
concrete proposals for a new grape yield reporting method are discussed. These considerations are 
primarily aimed at the production of wine grapes, which constitutes the vast majority of published 
literature, but could easily be transposed to the production of table grapes, juice grapes or potentially to 
other perennial crops. 
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Definitions 
Here are the definitions that support the discussion presented in this paper. They are listed according to the 
reading chronology of the paper. 

GRAPE (ACTUAL) YIELD : quantity of harvest that is effectively reached, expressed in mass (kg or t) 
or volume units (L or hL) per plant or surface units (ha or a). 

YIELD DEVELOPMENT CYCLE : overall process of grape or wine production, which includes different 
stages depending on the enterprise and target markets  

YIELD COMPONENTS : grapevine reproductive anatomical structures that are successively settled 
during the vineyard part of a yield development cycle  

VINEYARD : refers to both grapevine blocks and the company that cultivates it, as understood in vineyard 
estate 

WINERY : refers to both the cellar in which the operations of wine-making take place and the company 
that actually produces wine and commercializes it. N.B.: sometimes the terms vineyard and winery refer 
to the same enterprise. 

LOCAL: site-specific i.e. including effects of the environment (soil, climate, topography etc.), cultural 
practices, operational constraints, needs and strategies in particular the qualitative orientation of the 
production. 

INPUT VARIABLE : a variable that influences yield development without being reciprocally influenced 
by yield development 

MEASUREMENT : observation in the vineyard or in the winery, may be performed with or without the 
help of instrumentation 

SAMPLING : choice of measurement sites (spatial sampling) and dates (temporal sampling) according to 
their representativity of a considered phenomenon 

MODELISATION : establishing a statistical relationship between explanatory variables and a variable to 
be explained (here, grapevine yield). 

YIELD REPORT : any kind of yield information, including yield estimation, prediction and forecast 
without distinction. Any yield reporting method involves : i) the estimation of explanatory variables and 
of the yield variable to be explained by means of a data collection (measurement and sampling methods), 
ii) the modelisation of the yield variable as a function of the explanatory variables. 

YIELD ESTIMATE : assessment, based on data available at a given date, of a yield component or yield 
that is effectively reached at this same date and that cannot be exhaustively measured at the desired scale 
(temporal or spatial). The uncertainty accounted for by the estimate relates only to measurement and 
sampling issues and not to any future divergent evolution of the yield development process.  

YIELD PREDICTION :  assessment, based on data available at a given date, of a yield component or yield 
that will effectively be reached at a future date. Using estimates as explanatory variables and yield variable 
to be explained, it implies an additional modelisation approach. The uncertainty accounted for in the 
prediction interval refers only to the variability found in the training dataset.  

YIELD FORECAST : assessment, based on data available at a given date, of a yield component or yield 
that will effectively be reached at a future date. The uncertainty accounted for in the forecast interval refers 
to the yield variability found in the training dataset and the natural variability of yield development that is 
never fully illustrated by the dataset. 
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2. Challenges of yield reporting methods in an operational context 

2.1 Definition of grapevine yield development process in an operational context 

Grape actual yield corresponds to the quantity of harvest that is reached in the field when limiting and 
reducing external influences have interfered with potential yield (Van Ittersum et al., 2013; Savary et al., 
2018). External influences will be described in a further section of this paper. Grape actual yield, also 
called grape yield, is expressed in mass units per stock (Guilpart et al., 2014 ; Nogueira et al., 2018) or per 
area units (De la Fuente et al., 2015 ; Araya-Alman et al., 2019). It is the output of a yield development 
cycle, which is spread over at least two seasons before the harvest, starting in season n-1 and ending with 
the harvest in season n (Howell, 2001 ; Clingeleffer et al., 2001 ; Carmona et al., 2008 ; Vasconcelos et 
al., 2009 ; Guilpart et al., 2014). In an operational context, the definition of a yield development cycle often 
extends to harvesting and wine making operations e.g. the reproductive cycle does not only refer to the 
production of grapes but also of wine. From an operational perspective, external influences determining 
grape yield also transcend purely environmental factors to include cultural practices. The list of operations 
that are included in the operational yield development cycle and the subsequent yield units are therefore 
specific to each vineyard or winery. In particular, the yield range that can be elaborated in an operational 
context corresponds to a reduction in the range that would naturally have been possible without taking into 
account the production objectives (quality and yield) and the constraints of the winery. The operational 
actual yield could hence also be named marketable yield as suggested for vegetable crops by Viguier et al. 
(2018).  

2.1.1 Description of an operational yield development cycle 

Grapevine physiology is divided into vegetative development, characterized by one-season cycles, and 
reproductive development whose cycles last two seasons. At any given time, one vegetative cycle and two 
reproductive cycles are occurring simultaneously, leading to inter-cycle dependencies as a result of nutrient 
and water partitioning over the season (Petrie et al., 2000 ; Bates et al., 2002 ; Zapata et al. 2004 ; Zufferey 
et al., 2015 ; Zhu et al., 2018). Moreover, within each development cycle, a competition for nutrients and 
water is also observed between organs of the same plant, which are implemented either simultaneously or 
successively (Keller et al., 2010 ; Carrillo et al., 2015 ; Poni and Gatti, 2017). The yield development cycle 
process is therefore constantly integrating inter- and intra-cycle dependencies. Furthermore, in scientific 
literature, grapevine physiology is usually described at the organ or plant scale, whereas vineyard and 
winery operations are often managed at the block scale or larger. As the intent here is to present an 
operational yield development cycle that accounts for both vineyard and winery operations, the discussion 
will necessarily alternate between these two scales. 

The grapevine yield development process is considered to start in the latent buds (Figure 1), which 
generally include three structures, or buds, that follow the same organizational pattern, but are in different 
states of progress (Pratt, 1971). Two of the structures, termed secondary buds, will only develop in season 
n if the primary bud is damaged (Vasconcelos et al., 2009). Within each of the three buds, a shoot apical 
meristem (SAM) first undergoes a phase of vegetative development and forms leaf primordia. Once three 
to five leaves have been produced, the SAM keeps growing in a succession of two nodes featuring a lateral 
meristem opposite a foliar primordium and a node that only features a foliar primordium (Pratt, 1971; 
Morrison, 1991). The lateral meristems are also called anlage or uncommitted primordium and may later 
result either in a tendril or an inflorescence. The physiological process of inflorescence induction is still 
being debated by scientists. It is defined as being the modification of gene expression that alters the balance 
of endogenous hormones in response to environmental stimuli (Boss et al., 2003 ; Vasconcelos et al., 2009 
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; Li-Mallet, 2017). Noyce (2019) suggests that the stimuli is not received by the leaves but by the SAM 
itself. The subsequent floral initiation is characterized by repeated branching, which promotes immature 
inflorescences. Depending on the experimental conditions, the floral initiation seems to occur 
approximately four to seven weeks after bud break in season n-1 (Vasconcelos et al., 2009).  Once there 
are one to four inflorescences established, the latent bud may enter into different levels of dormancy (Lavee 
and May, 1997 ; May 2004 ; Jones et al., 2009). Tourmeau et al. (1976) further suggested that some of the 
inflorescence primordia may also be implemented prior to the floral differentiation in season n. 

 

 
Figure 1: Outline of a longitudinal section of  A) a grapevine latent bud (x10) and B) the upper zone of a 
grapevine primary bud (x100) with BI : primary bud, BII : secondary bud, SAM : shoot apical meristem, 
L : leaf primordium, I: inflorescence primordium,  A : anlage 

At the end of winter, only a portion of the latent buds are left after pruning. Shortly before and during the 
budbreak of season n, inflorescence primordia differentiate into flowers (Srinivasan and Mullins 1981 ; 
May, 2000 ; Vasconcelos et al., 2009). Inflorescence architecture has been described by May (2004) and 
Meneghetti et al. (2006). Self-pollination before the cap dehiscence is sometimes observed (Vasconcelos 
et al., 2009), although prevention mechanisms are implemented (Meneghetti et al., 2006). During 
flowering, cross-pollination by insects or wind has also been reported (Pratt, 1971). A few days are required 
for the completion of the pollination and fertilization stages that lead to the fruit set (Vasconcelos et al., 
2009). Berries develop for approximately a hundred days after the flowering period in a double sigmoid 
pattern with two phases of active growth separated by a latency phase (Ollat et al., 2002 ; Bigard et al., 
2019). After fertilization, the herbaceous phase corresponds to an accumulation of water (mainly via the 
xylem) and various assimilates, including malic and tartaric acids (via xylem and phloem), as well as to 
seed formation (Ollat et al., 2002). During this stage, operations of bunch thinning, foliar fertilization and 
irrigation may be undertaken using different strategies to promote berry development. Veraison is 
commonly detected by a change in berry colour but it seems to be more accurately approximated by the 
observation of berry softening (Bigard et al.; 2019). This stage marks the turn in berry metabolism. From 
then on, phloem unloading of sugars and polyphenols increases while xylem water supply is progressively 
stopped. During the ripening phase, sugar accumulation results in a second berry auxesis (Keller et al., 
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2015). Part of the malic acid is also metabolized (Ollat et al., 2002). The phloem flow then progressively 
stops and a decrease in berry volume may be observed due to dehydratation in relation with microclimatic 
conditions rather than plant water status. (Keller et al., 2015 ; Gambetta et al., 2020). This last stage is 
called the berry concentration phase and may last until the harvest is triggered.  

 

Figure 2 : Overlapping successive reproductive and vegetative cycles that compose grapevine physiology 

2.1.2 Observable yield structures in the vineyard and the decomposition of yield estimation 

Earlier stages of the yield development process occur in the bud at a cellular level and are not observable 
without specialised laboratory equipment. It is not until after bud break that producers can obtain a clear 
picture of yield potential. Since expected final yield in any given year is critical to within-season vineyard 
management, most of the successive reproductive structures, e.g. flowers, bunches and berries, expressed 
in the vineyard at the plant level are used as indicators of the vine’s on-going reproductive development 
(Pagay and Collins, 2017). Table 1 shows a successive list of the main reproductive development stages 
post-bud break and the key indicators that could be measured at each stage. Counting these structures is 
often used to establish a percentage of the successful or deficient completion of the reproductive stages 
and an evolution in changes in expected final yield during the season. For example, the counting of flowers 
that turned into berries establishes the fruit-set rate. In some stages, counterpart phenomena, associated 
with a loss of yield, can also be observed and these are also indicated in Table 1. These yield loss 
phenomena can equally provide information on a changing expected final yield if correctly observed. 
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Table 1 : Most common vineyard yield indicators described in literature 

Main reproductive 
development stage 

Counter-part 
phenomenon Indicators References 

Inflorescence induction 

Bunch necrosis 

Bud fertility 
(number of primary inflorescences 

per latent bud) 

Fertility index 
(number of inflorescences per cane) 

Number of inflorescences 
per vine stock 

May, 2000 

Collins et al., 2006 

Guilpart et al., 2014 

Inflorescence  evocation 

Inflorescence 
differentiation 

Floral differentiation - 
Number of flowers per 

inflorescence 

May, 2000 

Gourieroux et al., 2016 

Bloom 

Pollination 

Fertilization 

Fruit set 

Millerandage 

Coulure 

Pollen concentration 

 

Number of berries per bunch 

May, 2000 

Collins and Dry, 2009 

Guilpart et al., 2014 

Baby et al., 2015 

Cunha et al., 2016 

Berry growth - Berry mass 

Dokoozlian and Kliewer, 1996 

May, 2000 

Guilpart et al., 2014 

 

Few indicators tracing on-going yield development during the harvesting and winemaking operations are 
reported in literature. However, any estimate of the total yield may be considered as an indicator of the 
final total yield as expressed according to the winery practices. For example, the number of harvest baskets 
or containers may be an indicator of a final yield that would be captured after bottling.  

The yield components in Table 1 are commonly associated within a formulae of the same type as Equation 
1 to provide an estimate of grape yield in units of mass at the plant or block scale (Dry, 2000 ; Clingeleffer 
et al., 2001) by decomposing actual yield into its constituent components. Please note that some of the 
components of equation 1 are fixed (vines/field) while others are sequentially set during the reproductive 
cycle and will be dependent on effects in previous stages. As it relies on berry mass at harvest, Equation 1 
is a theoretical equation that can only be fully derived retrospectively (post-harvest). Of course, growers 
and winemakers need information on yield potential in-season, not post-harvest, therefore historical 
averages or surrogate observations can be substituted into Equation 1 for early or mid-season estimations 
of yield. For example, the number inflorescences at bloom can be used instead of final bunch counts. The 
implications of the different timing of each yield component implementation are not considered in this 
section but are discussed further in the paper. 
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𝐴𝑐𝑡𝑢𝑎𝑙	𝑔𝑟𝑎𝑝𝑒	𝑦𝑖𝑒𝑙𝑑	(𝑚𝑎𝑠𝑠	𝑢𝑛𝑖𝑡) 		= !".		"%	&'()*
+'),-

× !".		"%	./-*
&'()

×	!"."%	./(01)*
./-

×	!".		"%	.)22')*
./(01

× 	𝑏𝑒𝑟𝑟𝑦	𝑚𝑎𝑠𝑠	(𝑚𝑎𝑠𝑠	𝑢𝑛𝑖𝑡)   

Equation (1) 

In the literature, yield decomposition approaches, such as described in Equation 1, may be understood 
spatially, temporally or both. For instance, using a regularly distributed sampling design on an intra-field 
scale (nine vineyard blocks in one season), Carrillo et al., (2015) showed that the number of bunches per 
plant spatially explained 60% of mean field yield variability, while the number of berries per bunch, the 
berry mass and the interaction between the number of bunches per plant and the number of berries per 
bunch respectively explained 11%, 4% and 20% of the spatial yield variability. Clingeleffer et al. (2001) 
also reported that the number of bunches per vine explained 61% of the spatial yield variability along a 
130 m long vineyard row in Australia. However, when separately studying several fields for 7 seasons, 
Clingeleffer et al. (2001) found that the role of bunches per vine was more variable when explaining 
temporal yield variability, explaining from 39% to 99% of the temporal yield variance. Guilpart et al. 
(2014) analysed several vine treatments for 3 seasons and reported that respectively 55%, 14% and 26% 
of the yield variability was explained by the mean number of bunches per vine, the mean number of berries 
per bunch and berry mass.  

2.1.3 Overview of major factors influencing yield development 

Operational yield is driven by internal plant factors (Boss et al., 2003 ; Carmona et al., 2008 ; Houel et al., 
2015)  as well as external factors that include environmental influences, interactions with neighbouring 
plants and cultural practices. Environmental influences are biotic or abiotic and are defined according to 
their nature, date of occurrence in relation to the grapevine development stage, duration and intensity. 
Abiotic environmental influences mainly refer to resource availability in relation to climatic conditions 
(e.g. temperature, light, rain, relative humidity and wind) and soil properties (Coipel et al., 2000 ; Van 
Leeuwen et al. 2018). Biotic environmental influences correspond to disease or pest development (Valdes-
Gomez et al. 2008 ; Leroy et al., 2013 ; Guilpart et al., 2017 ; Ouadi et al., 2019). Inter-plant interactions 
may refer to intra-species interactions with neighbouring stocks or inter-species interactions with cover 
and inter-row crops or under-vine weeds. They are mainly described in terms of competition for light, 
water and nutrients (Champagnol, 1984 ; Garcia et al., 2018 ; Van Leeuwen et al., 2019). Cultural practices 
are relative to the vineyard’s establishment i.e. vine density and spacings (Champagnol, 1984 ; Van 
Leeuwen et al., 2019), training system and canopy manipulation (Duchêne et al., 2003a and b ; Reynolds 
and Vanden Heuvel, 2009 ; Poni and Gatti, 2017) , pruning and fruit thinning (Naor et al., 2002 ; Keller et 
al., 2005 ; Reynolds and Vanden Heuvel, 2009), soil preparation (Ripoche  et al., 2011 ; Guerra and 
Steenwerth, 2012), cover cropping (Celette and Gary., 2013 ; Garcia et al., 2018), fertilisation (Metay et 
al. 2015) and irrigation (Intrigliolo and Castel, 2009 ; Scholasch and Rienth, 2019). They may affect yield 
by modulating abiotic and biotic environmental factors as well as inter-vine competition.  

The process of grapevine operational yield development is thus subject to numerous external influences 
and interactions. Effects of such interactions are difficult to identify and analyze separately. However, the 
most important from an operational perspective is to understand when the yield development process is 
influenced and the intensity of the influence. To this end, the problem is simplified in this section by 
considering only the factors initiating external complex influences. These input factors primarily influence 
yield development without any reciprocal influence. They are also identified as members of the active 
environment in the method for agrosystem conceptualization described in Lamanda et al. (2012). For 
example, weather variables are considered as input factors because they are not influenced back by yield 
development. In contrast, biotic aggressions are both influenced by climatic conditions and yield 
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development. They are therefore not considered as input factors but as part of the studied yield 
development system.  

By considering input factors, the goal of the next section is to determine the broad timeline for yield 
development. Each influence is described from literature results in terms of involved input factors, date of 
occurrence in relation to the grapevine development stage, duration and intensity. 

Temperature 

Temperature is mainly studied by computing the average, minimum and maximum of daily observations 
at a time scale from a day to several weeks (Guilpart et al., 2014 ; Gonzalez-Antivolo et al., 2018). Climatic 
indicators, for example focusing on heat accumulation or minimum temperature, may also be calculated in 
order to more specifically describe grapevine growing conditions (Tonietto and Carbonneau, 2004 ; Zapata 
et al., 2015 ; Badr et al., 2018). Both night and daytime temperature seem to play a significant role in 
determining yield development (Tombesi et al., 2018 ; Gaiotti and al., 2018). 

Many studies have shown that the induction and initiation of undifferentiated primordia in season n-1 
requires high temperatures. The necessary minimum and sustained maximum temperature may differ from 
one variety to another with an optimum temperature for primordia formation seemingly around 25-28°C 
(Buttrose, 1974 ; Srinivasan and Mullins 1981 ; Dunn et Martin, 2000 ; Petrie and Clingeleffer, 2005 ; 
Vasconcelos et al., 2009). Zhu et al. (2020) suggested that daily maximum temperature around flowering 
in season n-1 is the main driver of inflorescence initiation i.e. the number of bunches per vine. A short 
exposure of a few hours to high temperatures is sufficient to allow good bud fertility (Buttrose 1969b ; 
Srinivasan and Mullins, 1981). 

Recent studies showed that the level of cold hardiness reached during the dormancy period between year 
n-1 and n is dependent on the plant material but also on the winter thermal history e.g. a vine subjected to 
warmer early and mid-winter conditions will be less resistant to cold events in late-winter or spring. 
However, the correct way to summarize the winter thermal history, e.g. via extreme or average temperature 
or by describing temperature trends over both short (days) and long (weeks, months) time steps is still an 
area being debated (Badulescu et Ernst, 2006 ; Ferguson et al.,  2011 and 2014 ; Gonzalez Antivilo et al., 
2018 ; Camargo-Alvarez et al., 2020). 

During the period around bud break in season n, higher temperatures slightly increase the number of 
inflorescences per bud (Pouget, 1981), but reduce the number of flowers per inflorescence (Pouget, 1981 
; Dunn and Martin, 2000 ; Petrie and Clingeleffer, 2005, Jones et al, 2009 ; Keller et al., 2010). Higher 
temperatures may boost the growth of already formed organs to the detriment of flower differentiation or 
inhibit flower differentiation through enhanced production of cytokinines by already formed flowers 
(Pouget, 1981 ; Dunn and Martin, 2000 ; Petrie and Clingeleffer, 2005 ; Jones et al., 2009 ; Li-Mallet et 
al., 2016). 

Temperatures favouring the largest number of flowers and flowers turned into berries are comprised in the 
range of 20 to 30°C for most varieties (Staudt 1982 ; Ebadi et al., 1996 ; Dokoozlian, 2000 ; May, 2000 ; 
Keller et al., 2010; Zhu et al., 2020). Optimal temperature for berry growth and maturation is between 25 
and 30°C (Hale and Buttrose, 1974). A short but extreme heat event, i.e. superior to 35°C, applied at the 
pea size stage significantly decreased berry mass and repetitive heat events during berry growth may have 
cumulative effects on berry physiology and mass (Gouot et al., 2019b). Greer and Weston (2010) 
demonstrated that berry mass is more impacted by extreme heat events at veraison and mid-ripening than 
at fruitset. 
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Light 

The main light characteristics that have been associated with grape yield development are intensity 
(radiation), quality and photoperiodism. Light intensity may have an indirect effect on all yield components 
through photosynthesis and assimilate availability, and a direct effect on buds by controlling gene 
expression or hormonal concentration (Vasconcelos et al., 2009 ; Li-Mallet, 2016 and 2017). Light 
intensity seems to be positively correlated to bud fertility when applied during the growth period of season 
n-1 (Buttrose, 1969a ; Buttrose, 1970 ; Morgan et al., 1985 ; Sánchez and Dokoozlian, 2005 ; Zhu et al., 
2020). Light requirements may differ according to grape varieties (Buttrose, 1970 ; Sánchez and 
Dokoozlian, 2005). Light intensity doesn’t seem to influence the development of flowers during the bud 
break period of season n (Ebadi et al., 1996). In contrast, light deficit occurring during flowering of season 
n does induce a consequent decrease in fruit set and therefore in the number of berries per bunch in season 
n (Ebadi et al., 1996). Later, between fruit set and berry softening, a lack of light reduces both the size and 
mass of the berries (Dokoozlian and Kliewer, 1996) and this delay cannot be recovered even with a high 
luminosity applied during the maturation phase. This can be explained in part by a slowdown in the cell 
division and expansion rate (Dokoozlian and Kliewer, 1996). The effects of light quality (Morgan et al., 
1985 ; Serat and Kulkani, 2013) and photoperiodism (Li-Mallet, 2016) on yield components have been 
little studied and remain unclear. Long continuous light periods seem to have more impact than shorter and 
alternate ones (Buttrose, 1970). 

Water status 

Water status is the difference between grapevine water absorption and transpiration. It conditions the 
implementation of most plant physiological processes (Champagnol, 1984). Both water deficit and excess 
are considered as water stresses, although the effects of a water deficit are most often studied. A persistent 
water deficit during season n-1 seems to decrease both bud fertility and the number of berries per bunch 
by impacting inflorescence formation and the bunch necrosis rate during winter (Buttrose, 1974 ; Guilpart 
et al., 2014 ; Li-Mallet 2016). The period of highest sensitivity to water deficit in season n-1 seems to 
happen after flowering (Guilpart et al., 2014). Similarly, persistent water deficit in season n appears to be 
detrimental to the number of berries and berry weight (Triolo et al., 2019). Rainy conditions prevent the 
dehiscence of the flower cap (May, 2004) or the pollen from being carried away by the wind (Cunha et al., 
2003) and thus disrupts fertilization (Zhu et al., 2020). In contrast, low humidity conditions lead the stigma 
of the female flowers to dry out, preventing the pollen from adhering to it (Cunha et al., 2003). An early 
water deficit during the first period of berry growth is more detrimental than a late deficit because it 
irrevocably affects the auxesis processes and the resulting berry size (Matthews and Anderson, 1989 ; 
Ojeda et al., 2001 ; Scholasch and Rienth, 2019 ; Zhu et al., 2020). Roby and Matthews (2004) reported 
the existence of a threshold value of the midday leaf water potential involved in the inhibition of berry 
growth. Zhu et al. (2020) indicate that rain occuring around veraison of season n has a strong positive 
effect on berry mass at harvest. 

Carbon and nitrogen nutrition 

Leaf or bunch thinning operations aimed at modulating the leaf/fruit ratio show that both the number of 
inflorescences per plant (Vaillant-Gaveau et al., 2014) and the number of berries per inflorescence 
(Duchêne et al., 2003b) are impacted from the second year of treatment onwards. Reserve accumulation 
occurring in season n-2 may therefore impact the yield in season n, probably by affecting the start of floral 
differentiation in season n-1. From flowering n-1 onwards, the uptake of resources from the environment 
seems to be dominant and plant physiology becomes dependent on the nutrient supply (Lebon et al., 2008, 
Metay et al., 2015 ; Zufferey et al., 2015). Bud fertility, the number of flowers per inflorescence and the 
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number of berries per bunch seem to be reduced by low nutrient status without the fruit set being impacted. 
Berry mass seems to be increased as a consequence (Duchêne et al., 2003a ; Bennett et al., 2005 ; Guilpart 
et al., 2014). Wood reserves and especially soluble sugars are correlated with cold hardiness of latent buds 
and therefore bunch necrosis. The nutrition dynamics of the reproductive development during season n 
seems to follow the same pattern as during season n-1 but the effects of nutritional stresses on yield 
development are less pronounced (Guilpart et al., 2014 ; Bennett et al., 2005).  

The results from the literature on the influence of input factors on yield components implementation have 
been synthetized into a timeline for yield development. This timeline is presented in Figure 3.  

 

 
Figure 3 : Influences of temperature, light, water status and nutrition storage influence from season n-1 
to n on yield components observed in season n that have been reviewed in literature. A null correlation 
means that the relationship has been shown to be absent by at least one study whereas empty cells mean 
that no study has been conducted on the considered influence.  

2.2 Operational needs, constraints and challenges for yield reporting 

2.2.1 Operational needs and constraints for yield reporting 

Need for yield reporting with different characteristics depending on use cases 

At the vineyard and winery scale, for each yield development cycle, a yield report is needed to support 
decision making associated with cultural practices, harvest, wine-making logistics, commercialisation and 
managing inputs and outputs for accounting. On a supply area or territorial scale, yield reporting is also an 
important decision-making support for trade purposes. On a longer term, yield reporting may be used for 
strategic purposes, either at the vineyard or winery scale or even larger (label area, supply area etc.). Table 
2 summarizes the main expectations related to these different use cases. It is based on the consolidated 
interpretation of numerous conversations that the authors held in the field, in France and abroad. 
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Table 2 : Summary of the main uses cases for grape yield capturing (based on technical conversations) 
The expected date, spatial scale and unit respectively refer to the date, the spatial scale and unit to report 
final yield that are desired by the industry. The associated operational decisions refer to the operations of 
the vineyard/winery whose decision is based on a yield report. The expected benefits refer to the reason 
for using a yield report to decide on such operations. 

Expected 
date 

Expected spatial 
scale 

Expected 
unit Associated operational decisions Expected benefits 

before bud 
break of 
season n 

field or within-field 
zones 

mass per unit 
area 

vineyards operations : reasoning pruning intensity and 
soil fertilization 

optimized management of 
marketable yield 

wine blends 
volume of 

wine blends 
after press 

winery logistics : purchase of the barrels 
costs saving, possibility to 
order any required material 

during 

season n 

block or within 
blocks zones 

mass per unit 
area 

vineyard operations : reasoning bunch thinning 
intensity, eventual fertilisation and irrigation level 

optimized management of 
marketable yield 

one or several blocks 
final volume 

of wine 
blends 

accounting : managing stocks, planning revenue 
good accounting, 

investment reasoning 

production area 
final volume 

of wine 
blends 

territorial agency : planning marketing and 
commercialisation 

wine traders : purchase contracting 

profitable sales and 
purchases 

just before 
harvest n 

field or within-field 
zones in regards to 
all the fields to be 

harvested 

mass per field 
vineyards operations : organizing harvest, planning 

work force and allocating transport equipment 
optimized harvest decision 

one or several blocks 
mass per wine 

blend 

winery logistics : making and allocating space in tanks, 
purchasing wine-making consumables, planning tasks 

and work force, scheduling  harvest intakes and 
treatment 

optimal harvest blending 
and gain in wine quality 

production area 
wine final 

volume 
territorial agency : announcement of an eventual 

regulation for harvest volumes 
optimized 

commercialisation 

longer term production area 
wine final 

volume 

whole industry : anticipation of the effects of  future 
contexts on wine production,  market price etc. for 

research orientation and strategic development 
business sustainability 

 

Operational constraints and subsequent needs for yield reporting 

If a yield reporting method respects operational requirements in terms of spatial scale, implementation date 
and yield unit, then its in-vineyard implementation depends on the operational criteria related to its ease of 
use. Concomitant workload and measurement time (including automation approaches) are considered 
reciprocally as a choice criterion: the higher the workload, the shorter the possible measurement time 
becomes and the more beneficial automation becomes. Easy to use equipment, as well as an easy protocol, 
will favour adoption. Cost also undeniably influences adoption but is rarely evaluated in scientific literature 
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as equipment is seldom tested and designed under commercial conditions. Requirements for labour are 
also crucial, and access and cost of labour may vary considerably from one vineyard/winery to another. 

Methods of determining yield components may be destructive or non-destructive. A destructive method 
may be adopted if its timing of implementation and/or the yield margin lost does not affect the yield goal. 
Therefore destructive methods are more likely to be used before crop load adjustment is made in a vineyard 
(e.g. shoot or bunch thinning). Advances, particularly in sensor technology, are changing the spatial density 
of observations and permitting the geolocalisation of these data. As a result, high resolution yield reporting 
is becoming possible (Taylor et al., 2019) to support spatial vine and crop management or differential, 
selective harvest. 

2.2.2 Challenges to be addressed by yield reporting methods in an operational context 

Temporality of yield development is complex 

Yield development is a dynamic process punctuated by key steps that are dependent on the individual 
concerned and succession of the previous steps. The proportion of yield variability explained by each of 
these key steps varies depending on whether the decomposition of yield (cf. Eqn 1) is considered spatially 
or temporally and according to production conditions. Thus, the classical rule of thumb, according to which 
the number of bunches per vine, the number of berries per bunch and the mass of a berry respectively 
explain 60%, 30% and 10 % of yield variability, should not be taken as granted in any situation. Instead, 
it should be locally checked with a temporal, not spatial, analysis of yield variability if done for the purpose 
of yield reporting i.e. from year to year. The decomposition of yield variability varies because it depends 
on the external conditions of the vintage and on inter- and intra-reproductive cycle regulation mechanisms. 
The analysis of long time series data are therefore encouraged to better account for temporal correlations 
that may result in compensation and trajectory and even memory effects in the plant response to external 
influences (Duchêne et al., 2003 a end b ; Sadras et al., 2017 ; Vaillant-Gaveau et al., 2014 ; Guilpart et 
al., 2014 and 2017 ; Netzer et al., 2019). Successive operational needs in the vineyard and winery will 
require dynamic reporting to monitor yield development throughout the season. However, as Figure 2 
shows, some yield components develop to a point where they become fixed and constant for the remainder 
of the season. Hence, there appears to be optimal periods during the growing season for capturing the best 
information on yield variability. Therefore, to optimise field observations and to consolidate yield report 
reliability, it would seem relevant to perform observations and yield modelling on a few key dates in the 
season. These dates will be driven by the grapevine phenology in a given season and will not be inter-
annually fixed dates. To identify when these key dates are, or will, occur, yield components could be 
associated with variables that vary at an intra-seasonal time step, e.g. temperature data, and that are known 
to influence grapevine phenology and yield development. 

Operational data are key to locally monitor yield development 

As indicated in Table 1, operational yield development is a dynamic process that can be progressively 
described by observations of yield indicators. These indicators are only estimates as the measure is never 
exhaustive and final yield is dependent on berry mass at the time of harvest. The definition of final yield, 
and therefore the importance of the different yield indicators, varies from one vineyard/winery to another. 
For example, one vineyard may be in the habit of weighing harvest baskets directly in the vineyard while 
another winery estimates the volume of must after pressing or wine after fermentation. Moreover, 
environmental and managerial conditions that affect the yield development cycle are specific to each 
vineyard/winery, even each block, and to each year. Therefore, there is a real need for any form of yield 
reporting to use local data to capture the effects of local external influences on yield development as 
realistically as possible for each vineyard/winery. 
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In parallel, any yield report can be characterized by three criteria that summarize a typical use case : i) the 
definition of the reported final yield in relation to the stage of the production chain it is estimated at and 
the units it is expressed in, ii) the date at which the yield report is provided and iii) the spatial scale at 
which the yield report is provided. Please note that the date of yield reporting is necessarily concomitant 
or later than the production stage at which yield is assessed. According to the operational needs of the 
vineyard or winery, these three criteria may vary. For example, a yield report may refer to grape yield that 
will be reached just before harvest and therefore be expressed in mass units. This given yield report may 
be provided at the block scale and before bunch thinning i.e. before veraison. In contrast, another yield 
report may refer to bottled wine expressed in volume units. It may be provided at the whole production 
area scale just after harvest. A second interest of using local data is therefore to comply with the operational 
habits in terms of data collection and thus available indicators to monitor yield development. 

From an operational point of view, such local data can only be collected by the vineyards or wineries 
themselves. The need to use local data to develop a more precise understanding of yield development raises 
issues of how to analyse these commercial, operational data. These data are characterized by a strong 
heterogeneity and parsimony in terms of the indicators available for analysis and for the implementation 
method. Moreover, these operational data inevitably contain noise (error) associated with data collection 
as well as errors on data traceability and management in the daily operational functioning of the 
vineyard/winery. Differential or variable management of operations that influence yield development in 
the vineyard and/or in the winery may vary, generating mismatches or overlaps that makes data traceability 
a real issue for a comprehensive analysis. For example, grapes from two blocks that underwent different 
bunch thinning may be picked together and then assembled in different proportions into two tanks, or a 
vineyard operation may be carried out imprecisely in time and/or space, which then causes a subsequent 
heterogeneous influence on yield development that is not captured, or is unable to be captured, in the yield 
report. A yield reporting method based on local data should permit an improved assessment of the inherent 
noise in these data. The sources of noise and error in these data will be explored later in the paper. 

Yield reporting methods should comply with operational needs to support relevant decision-making 

Grape yield development is a complex multifactor and dynamic process with numerous possible outcomes. 
This complexity can’t be assessed with the same accuracy throughout the season since the development of 
reproductive organs is successive and some key components that determine the final yield (Eqn 1) are not 
determined until very late in the season (e.g. berry mass). Therefore, uncertainty regarding the temporal 
evolution of yield has to be handled by yield reporting methods in order to provide the user with sensible 
information for a sound, operational decision support system. The level and management of uncertainty 
for yield reporting will depend on whether the reporting is based on yield estimation, yield prediction or 
yield forecasting. A yield estimate is restricted to a temporary and immediate assessment of a quantity that 
cannot be exhaustively measured at the desired spatial or temporal scale. As illustrated in Figure 4, the 
uncertainty handled by a yield estimation is the irreducible noise that accompanies each attempt to estimate 
yield from the estimation of an explanatory variable. It is related to measurement and sampling errors 
(when collecting data) that can be reduced but never completely cancelled out. This is why, any observation 
in the field is always referred to as an estimate and not a real value. Moreover, a yield estimate is 
operationally interpreted to anticipate final yield. To do so, some human expertise is engaged to introduce 
a notion of uncertainty relating to the future outcome of yield development, which represents a poorly 
traceable and reproducible approach. As presented in Figure 4, the user expertise is engaged to expand 
from the technical uncertainty to be handled through the yield estimation process to the uncertainty that is 
required to be addressed when assessing yield future evolution. A more objective and reproducible way to 
do this is to use a prediction or a forecasting approach, that does take into account the uncertainty linked 
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to the future evolution of a yield component or total yield. On one hand, a yield prediction quantifies this 
uncertainty on the basis of the available data. The uncertainty related to future yield development that is 
taken into account by a yield prediction therefore depends on the knowledge that has been developed 
through the collection of a historical dataset. On the other hand, a yield forecast also takes into account the 
uncertainty associated with the fact that yield development is a complex biological phenomenon whose 
possibilities are not fully contained in the historical dataset. As illustrated by Figure 4, the uncertainty 
handled by prediction methods is smaller and included in the uncertainty addressed by forecasting methods. 
Prediction methods are based on an example from a specific dataset of the natural uncertainty that is fully 
addressed by forecasting methods. In other words, both a yield prediction and a forecasting approach 
provide an assessment of the final yield in the form of an interval centered on a statistical expectation. 
However, the forecast interval may be broader and more fluctuating because it takes into account more 
sources of uncertainty, related to the natural variability of yield development, even in an operational 
context, and to any understanding that has been developed from the historical dataset (Wonnacott and 
Wonnacott, 1990 ; Saporta, 2011).  Figure 4 illustrates the fact that forecasting methods address the widest 
level of uncertainty, including the uncertainty that is handled by prediction methods, which themselves 
include the sources of uncertainty associated with yield estimation methods or the estimation of any 
explanatory variable.  

 

 
Figure 4 : Schematic illustrating the hierarchical nature of uncertainty associated with different 
approaches to yield reporting - estimation, prediction and forecasting. Uncertainty associated with more 
central approaches is intrinsically captured in more distal approaches. 

Another issue that needs to be considered for the adoption of a yield reporting method in the field is the 
requirement that common operational constraints are taken into account in data collection. First and 
foremost, yield reporting methods need to be quick and easy to perform, as well as robust. In that sense, 
using a low number of variables (yield indicators) whose development and influence on final yield are well 
understood and modelled should be preferred. Measurement or modelling of input factors in the yield 
development system should be prioritised because their upstream influences on yield development are 
better understood both in terms of the conceptualization of the yield development process and in data 
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analysis (Lamanda et al., 2012). Weather data and physical soil characteristics are particularly 
advantageous in this regard. SMART, i.e. Specific, Measurable, Attainable, Relevant and Time bound, 
indicators (Niemeijer et al., 2008) will encourage adoption, regardless of the yield reporting method, by 
providing ease of use and increasing operator trust by fostering robustness in the reporting. Finally, 
destructive field observations by their nature reduce any final yield potential and should be used sparingly 
and only for yield reporting at a few key dates during the growing season where the value of information 
gained is greater than the loss in yield potential.  

3. Literature analysis on yield reporting methods  
The previous section outlined the diversity of phenological stages in the reproductive process and the 
possibilities for external influences to impact on yield development in vineyards with very different 
operational contexts. This diversity of issues for yield reporting has resulted in a multiplication of methods 
that address different improvement objectives but which all need to be interfaced or integrated with each 
other and with the operational realities and challenges described earlier in the paper. Therefore, the focus 
of this section is to review the scientific literature on yield reporting in viticulture, identify strengths and 
limitations to current approaches and to develop and populate a framework to assist the development of 
future yield reporting methods. Some industry papers have been included in situations where commercial 
entities, and sometimes only a single entity, have addressed specific yield reporting issues. 

3.1 A conceptual framework for yield reporting 

The actual harvest yield can only be known if it is directly measured at harvest, and, as discussed in the 
previous section, this harvest yield is not always the marketable yield as there will be losses in the supply 
chain from the vineyard to the consumer (e.g. spoilage in table grapes or losses in the wine-making process 
for wine production). Yield reporting is needed to provide information on the expected yield (in the 
vineyard or to the consumer) to assist vineyard, winery and logistics management. Yield reporting is 
constrained by what can be observed and the relevance of the variables observed (measurement), how 
much data and/or how often the data can be obtained (sampling) and the models available to use these data 
(modelisation). To recall, data collection aims at building a dataset containing yield data as intended to be 
reported, ie. collected at the yield defining stage, yield data for training and other data collected for 
explanatory use. Modelisation aims at establishing a statistical relationship between training yield data and 
explanatory data. This conceptual framework is illustrated in Fig. 5. 
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Figure 5 : A framework for constitutive steps of any yield reporting method 

Collectively, the notion of Measurement and Sampling interact to generate an estimation of explanatory 
variables for yield reporting (Fig. 5). Explanatory variables may be yield components, ancillary plant 
variables associated with yield-determining processes (e.g. water status, canopy conditions etc.) or external 
factors (management or environmental effects) that have known or expected influences on the on-going 
yield development process. It is important to note that the yield components available will vary according 
to the characteristics of the intended yield report, particularly in regards to the timing and scale of the 
report. Consequently, these varying yield components will require adjustment of the theoretical yield 
decomposition equation (Equation 1). For example, if yield is aimed to be reported at the block scale, total 
yield per plant may be considered as a yield component, which is multiplied by the number of vines per 
block to report the total block yield. However, the total yield per vine may be measured directly (e.g. 
destructive harvest) or estimated through measurement of other yield components, such as the number of 
bunches per plant and bunch mass. Regardless of the explanatory variables to be observed, the quality of 
these data depends on the chosen measurement method and also on the method of sampling employed. 
Explanatory data may be measured exhaustively (full scale attempt) or estimated from punctual data 
(sampling design for upscaling) but remain estimates in any case. In the example previously, the total yield 
per vine was a full scale measurement of yield (at the vine-scale), while a decision on how many individual 
vines to measure would need to be made to allow a sufficiently accurate reporting of block yield (design 
for upscaling). Exhaustive (full scale) measurement has tended to be destructive in nature to date. However, 
imaging and sensing technologies are being developed at a rapid pace with the aim to observe the entirety 
of a yield component in the field (Sun et al., 2017 ; Millan et al., 2018 ; Ballesteros et al., 2020), although 
the complete measurement of yield components during the season (number of bunches, number of berries, 
berry mass, etc.) is not yet possible. 

The final step in yield reporting is the modeliastion of the expected yield step (Fig. 5). Again, the model 
chosen will depend on the data and knowledge available as well as the objectives of the yield reporting. 
There are two main modelling strategies indicated (Fig 5) based on either : 
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i) using available scientific knowledge on yield development and on establishing an a priori mechanistic 
model. This may help to capture and understand the dominant mechanisms of yield development but it 
restricts the modelling to knowledge already discovered by previous work and may rely on generic, rather 
than local, interactions. 

ii) using a data-driven approach in order to adapt the method to local schemes of yield development, which 
may lead to the detection of non-significant or erroneous relationships depending on the dataset and may 
not always be easily interpreted from an agronomic point of view. This is especially enhanced by new 
methods that use artificial intelligence. 

3.2 Issues and methods associated with estimating the variables needed for yield reporting 

3.2.1 Issues and methods for measurement of yield components 

Issues for measurement are component specific 

Issues with measurement differ between the different yield components. In chronological order, the first 
measurement of yield potential is gained through bud counts and bud dissection to determine the proportion 
of fertile buds and the number of potential bunches per bud. The number of fertile buds should preferably 
be assessed during a short period at the very end of winter when the final necrosis rate has been reached. 
Destruction is compulsory to observe bud content. The primordia dimensions are small and some of the 
undifferentiated inflorescences may not be detected or incorrectly counted. Following bud break, 
inflorescences are visible to the naked-eye in the developing shoots and can be more easily differentiated 
from canopy if counted early in the season (Wolpert and Vilas, 1992). As the canopy develops, identifying 
the inflorescence becomes more difficult. Bloom is a short phenological stage. Flowers are of small 
dimensions, high number and some of them may be hidden in the inflorescence architecture or whole 
inflorescences may be hidden in the rapidly developing canopy. The destruction of whole inflorescences 
for flower counting is often a sensitive issue for grape growers so early in the season as the risk of loss of 
inflorescences due to an external event is still high, and removing inflorescences reduces yield potential. 
Inflorescences become bunches, which are of a larger dimension, but may still be hidden in the canopy, 
which is continuing to develop and becoming more dense, depending on the trellis design and vine 
management (Nuske et al., 2014 ; Rose et al., 2016). While bunch number per vine and berries per bunch 
is fixed after fruit set, berry development is highly variable and the differentiation of verjuice, shoulder or 
deteriorated berries is not trivial in the field. Berries are numerous, relatively small and the more compact 
the bunch, the more hidden the berries may be. Moreover, still green or mature white berries are not easily 
distinguished from the canopy. Unripe berries are sometimes not counted according to the protocol adopted 
by a particular vineyard/winery. Mature berries may be damaged during handling, thus creating a 
difference between harvested yield and delivered yield. Additionally, berry dimensions change 
continuously during their growth and maturity, including the possibility for berry mass to decrease before 
the harvest due to dehydration. Table 3 summarizes from the authors knowledge the measuring issues to 
be considered for each yield component. The different difficulty levels should be considered as benchmarks 
that have been qualitatively settled from a consolidated interpretation of numerous conversations that the 
authors held in the field, in France and abroad. 
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Table 3: Operational issues for grape yield components measurement 
 +++ : very high difficulty, ++ : high difficulty, + : medium difficulty, empty cell : low difficulty (based 
on technical conversations). 

Measured 
yield 

component 

Short 
implemen

tation 

Small 
dimension

s and 
mass 

High 
number 

Risk of 
visual 

obstructio
n 

Risk of 
misinterp
retation 

Destructio
n 

requireme
nt 

Concomit
ant 

workload 

Total 
difficulty 

Inflorescences 
in the bud + ++  + ++ +++  +++ 

Inflorescences 
post-budbreak   + +     

Flowers +++ ++ +++ +++ + ++ + +++ 

Bunches   + ++ +++  ++ + 

Berries ++ + +++ +++ + ++ ++ +++ 

Review of currently proposed approaches for yield components estimation 

There are three methods of measuring yield components: counts, area and volume measures (sizing) and 
weights. Counting inflorescences, bunches and berries per vine(s) are the most common in-vineyard 
measurements. Sizing pre-harvest usually focuses on berry dimensions and berry mass to generate berry 
maturity curves to assist with yield reporting and with harvest logistics. Sizing post-harvest relates to 
volume measurements within pressing or wine-making processes. Weighing is used to generate actual yield 
mass, either by use of on-harvester yield monitors, weighting baskets/bins/gondolas in the field or truck 
weights on delivery to a grape crushing facility. 

Measurements can be considered as either destructive or non-destructive and performed manually or using 
sensor technology. Destructive measurement implies a loss of grape production and therefore the number 
of pre-harvest destructive measurements performed is usually limited. Destructive sampling often requires 
the measurement to be performed quickly after removal or the yield component to be stored, e.g. frozen, 
for later analysis. Destructive sampling does allow measurements to be performed indoors in more 
controlled conditions and to overcome field difficulties posed by visual or handling obstructions, as well 
as changing environmental conditions. At-harvest or post-harvest, measurements are by definition 
destructive, but in-season vineyard measurements may be performed destructively or not. 

Manual measuring is still commonly performed for in-vineyard or in-laboratory measurements. It often 
implies a limited investment in equipment and allows a better observation of occluded organs. However, 
manual measurements are prone to errors of concentration, perception and protocol interpretation as well 
as to the different capabilities and decisions of different operators (Carrillo et al., 2015). Moreover, manual 
measuring often involves time and labour costs, which constrains the number of measurements that can be 
performed. Given these limitations in manual sampling for yield reporting, there has been more research 
into the development of non-destructive yield component sensors in the past decade. This has been enabled 
by advances in computer science. The main sensing method is image analysis coupled to modern artificial 
intelligence (Aquino et al., 2015 and 2018a et b; Liu et al., 2018 ; Coviello et al., 2020). Image analysis 
has focussed on developing on-the-go automated sensing systems, often installed on vehicles for 
measurements (Lopes et al., 2016 ; Millan et al., 2018) and increasingly on unmanned aerial platforms 
(UAVs) (Di Gennaro et al., 2019) to generate high-resolution information on yield components. However, 
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image sensors can also be deployed either in a laboratory, to speed up measurements, such as berry counts 
and berry dimensions, or manually in a field, typically as a low-cost mobile phone application to automate 
counting of yield components (Aquino et al. 2015; Aquino et al., 2018b). Manual picture taking is still 
subject to operator error but the prevalence of smartphone technology makes it very accessible. Different 
artificial intelligence algorithms allow yield component detection based on differences in colour, shape or 
texture (Nuske et al. 2014, Liu and Whitty, 2015 ; Pothen and Nuske, 2016 ; Abdelghafour et al., 2017 and 
2019). Image analysis generally implies an increased repeatability and a reduced measurement time 
compared to traditional manual measurement, especially for components that are numerous, of small 
dimensions or of very short duration in the field.  On-board image analysis methods aim to further improve 
measurement repeatability and reproducibility but are challenged by picture overlapping and geometrical 
referencing (Nuske et al., 2014). Image analysis requires the yield components to be completely visible 
and recognisable by artificial intelligence. For example, it cannot count berries on the reverse side of a 
bunch, nor can it see through leaves to count occluded bunches or berries. To circumvent this limitation, 
calibration methods to correct observed total yield in images have been proposed. Results have been 
positive but these have only been tested on limited datasets to date and their reproducibility is poorly 
evaluated (Nuske et al., 2014).  When performed in the vineyard, methods based on image analysis are 
challenged by the varied shapes, dimensions and colour of grape yield components as well as a changing 
background and variable light conditions within the picture frame (Nuske et al., 2014 ; Grimm et al. 2019). 
Finally, the feasibility of in-vineyard imaging sensor systems is also dependent on the need to correctly 
deploy and to maintain the system. 

It should also be noted that some direct mass measurements in-season within vineyards are possible, 
although not always commercially relevant. Commercial yield monitoring systems on grape harvesters 
have been demonstrated as a possible method of destructive yield estimation in mid-season in juice grapes 
(Taylor et al. 2016 ; Bates et al., 2018) as well as for yield-mapping at harvest. Alternatively, measuring 
the change in wire tension in single high-wire trellis systems (Blom and Tarara, 2009 ; Tarara et al., 2014) 
has been proposed as the only dynamic method to follow crop development via changes in mass, but it 
requires a permanent infrastructure that is likely cost-prohibitive outside of research activities. 

Table 4 presents the main methods established for yield component measurement. Most of them are mainly 
used for research so far. Some of them also provide an estimation or forecasting method of grape yield, 
alike methods that directly link pixel detection to yield conclusions (Dunn and Martin, 2004 ; Diago et al., 
2015). 
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Table 4 : Methods for yield components measurement reviewed in literature  

Type of 
measure 

Type of 
technology 

Yield 
compone

nt 
measure

d 

Date of 
measurement Experimental dataset Announced results Rreferences 

C
ou

nt
 

de
st

ru
ct

iv
e  

im
ag

e 
an

al
ys

is
 in

 la
bo

ra
to

ry
 

flowers bloom  

3 inflorescence 
development stages 

4 varieties 
533 images 

percentage error of 15.7% 
on validation dataset  Liu et al., 2018 

berries 

just prior to 
harvest 

10 varieties 
100 bunches 

r2=0.71 on calibration 
dataset Ivorra et al., 2015 

just prior to 
harvest 

7 varieties 
10 bunches per variety 

r2=0.62 to 0.95on 
calibration dataset Diago et al., 2015 

m
an

ua
l 

bud 
fertility 

before 
budbreak 

3 blocks 
1 variety 

no reference data Rawnsley and Collins, 
2005 

flowers bloom  no published data no published data commonly used on field 

berries 
after veraison 
up to just prior 

to harvest  
no published data no published data commonly used on field 

no
n-

de
st

ru
ct

iv
e 

im
ag

e 
an

al
ys

is
 in

 fi
el

d  

m
an

ua
lly

 ta
ke

n 
pi

ct
ur

es
 

flowers  bloom 
11 varieties 
2 devices 

140 images 
recall from 0,80 to 0.91 vitisFlowers® 

Aquino et al., 2015a 

berries 

from bloom to 
veraison 

1 device 
150 images 

r2= 0.92 between observed 
and simulated data Grossetête et al., 2012 

8 varieties 
multiple devices 

145 images 

mean absolute error of 
0.85% to 11.73% on 
calibration dataset 

Coviello et al., 2020 

2 varieties 
529 images 

r2= 0.88 to 0.95 on 
calibration dataset Liu et al., 2020 

pea-size stage 
to bunch 
closing 

12 varieties 
2 devices recall from 0.96 to 0.98 vitisBerry® 

Aquino et al. 2018b 

on
-b

oa
rd

 

flowers bloom 
6 varieties 

16 vines per variety 
1 device 

recall from 0.84 to 0.89 on 
validation data set Palacios et al., 2020 

 
bunches 

unknown 
1 variety 

5 meters of wire 
2 treillis systems 

recall of 77 and 82% Rose et al. 2016 

harvest 
respectively 190 and 35 
images of white and red 

wines 

respectively 91% and 97% 
of images with correct 

count 
Reis et al., 2012 

berries 

around veraison 
3 varieties 
229 plants 
1 devices 

undetected berries from 
53.9 to 73.9 % of the total 

count 

Nuske et al., 2011 
Grocholsky et al., 2011 

from fruitset to 
harvest 

6  varieties 
1 device 

1212 images 
recall from 0.12 to 0.96 Nuske et al., 2014 
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before and after 
thinning, just 

prior to harvest 

3 dates 
3 varieties (2019) and 2 
training systems (2020) 
60 images (2019)  or 38 

images (2020) 

from 85.3 to 93.9% of 
total berries correctly 

detected (2019) 
and r2= 0.972 to 0.988 on 

calibration dataset 

Zabawa et al., 2020 

unknown 1 variety 
10 bunches recall of 77.2 and 77.6% Rose et al. 2016 

m
an

ua
l 

infloresce
nces around bloom no published data no published data commonly used on field 

bunches after bloom and 
before veraison no published data no published data commonly used on field 

Si
ze

 

de
st

ru
ct

iv
e 

im
ag

e 
an

al
ys

is
 in

 
la

bo
ra

to
ry

 

bunches 
just prior to 

harvest 
10 varieties 
100 bunches 

r2=0.82on calibration 
model 

Ivorra et al., 2015 

berries r2=0.83 on calibration 
dataset  

berries prior to harvest no published data no published data Dyostem® 

manual berries just prior to 
harvest no published data no published data commonly used in field 

no
n-

de
st

ru
ct

iv
e 

im
ag

e 
an

al
ys

is
 in

 fi
el

d  

manual
ly 

taken 
pictures 

berries 
pea-size stage, 

veraison, 
harvest 

3 varieties 
3 phenological stages 

750 berries per 
phenological stage 

r2=0.88 between observed 
and simulated data Roscher et al. 2014 

on-
board 
(but 

manual
ly 

moved) 

bunches at harvest 
49 bunches,  

1 device 
average absolute error of 

67% on calibration dataset Kurtser et al., 2020 

W
ei

gh
t  

de
st

ru
ct

iv
e m

an
ua

l bunches just prior to 
harvest no published data no published data commonly used in field 

berries just prior to 
harvest no published data no published data commonly used in field 

im
ag

e 
an

al
ys

is
 in

 
la

bo
ra

to
ry

 bunches just prior to 
harvest 

7 varieties 
10 bunches per variety 

r2= 0.65 to 0.97  on 
calibration dataset Diago et al., 2015 

berries just prior to 
harvest 

7 varieties 
10 bunches per variety 

r2=0.84 between observed 
and simulated data Diago et al., 2015 

no
n-

de
st

ru
ct

iv
e  

im
ag

e 
an

al
ys

is
 in

 fi
el

d manual
ly 

taken 
pictures 

bunches 
fruitset, bunch 

closing and 
veraison 

6 seasons, 
4 varieties 

50 to 200 bunches per 
varieties 

prediction error from 6 to 
15%   

on validation dataset 
 Serrano et al., 2005 

on-
board bunches after veraison 

1 season 
1 block 

1 row of 30 contiguous 
plants 

r2= 0.80 between observed 
and simulated data 

Lopes et al., 2016 
VINBOT® 

w
ire

 
te

ns
io

n 

total yield dynamic 

3 seasons 
2 blocks 

2 installations of 3 
consecutive rows per 

block 

r2=0.84 to 0.98 on 
calibration dataset 

Blom and Tarara, 2009 
Tarara et al., 2014 



 

 

24 

 

3.2.2 Issues and methods for measurement of ancillary plant variables and external factors 

The ancillary plant variables associated with grape yield reporting are mainly related to vine water status, 
nutrient status and canopy conditions. In this section, only an overview of the numerous and diverse 
measurement methods is provided for each type of variable, with an emphasis on methods that are used in 
operational vineyard situations (not just in research). Specific references are given for more details in Table 
5. 

In any case, it is important to note that plant water and nutritional status as well as canopy conditions are 
complex parameters that can be addressed in many different ways. The choice of the parameter that is 
measured and the element or plant organ on which the measurement is made is therefore very influential 
on the yield reporting process. The methods are also very different in terms of cost, ease of implementation 
and temporal and spatial support of implementation (punctual or continuous). This often involves a trade-
off between the information desired and the methods implemented. Depending on methods available and 
local operational expertise, more expertise and additional parameters may be required for a good 
interpretation in the context of yield reporting. 

In the field, plant water status may be estimated by direct observation. Methods such as the Shoot Tip 
Index (Rodriguez Lovelle et al., 2009) have been developed to guide visual assessment (Brunel et al., 
2019). Grapevine water status may also be indirectly and roughly estimated through soil moisture 
measurement, especially with tensiometric measurements (Dobriyal et al., 2012 ; Rienth and Scholasch, 
2019). Tensiometers are economical and relatively easy to use sensors that can be used all year long, 
including in winter to assess the soil water recharge. Tensiometric measurements are therefore largely 
deployed in the field. However, the reference method to measure plant water status still remains the leaf 
water potential measurement using a pressure chamber. Measurements in the pressure chamber are 
supposed to directly represent the water conditions experienced by the plant at a certain punctual time. 
However, the stability of the balance between the potential measured on the petioles and the water potential 
of the rest of the plant is debated (Rienth and Scholasch, 2019). Pressure chambers are more expensive 
than tensiometers and their use requires a demanding protocol, particularly in terms of timing (cf. predawn, 
midday or stem water potential) and the time needed for a single observation. This permits only a few 
measurements to be performed per day. Continuous measurements are possible using sap flow 
technologies, but this also corresponds to more expensive semi-permanent installations (installed for a 
season). Other methods exist to directly measure plant water status but are mainly used for research 
purposes (Santesteban et al., 2015 ; Lavoie-Lamoureux et al., 2017). 

Grapevine nutritional status is either estimated during winter by measuring wood biomass (usually number 
and diameter of shoots) or during the season thanks to petiole laboratory analysis or via an optical 
measurement of Nitrogen content. Wood biomass gives an indication about the amount of carbohydrate 
reserves (Demestihas et al., 2018). It is also used to measure vine crop load with the Ravaz Index 
(Champagnol, 1984).  Wood biomass is measured manually or thanks to on-board equipment (e.g. 
Physiocap® sensor, E.RE.C.A). Laboratory analysis of petioles provides detailed information on the 
concentration of nitrogen and other minerals, especially potassium (Cozzolino et al., 2020). However, they 
are destructive methods that require a demanding protocol to be performed quickly. Leaf nitrogen content 
can be estimated using chlorophyll fluorescence sensing (Cerovic et al. 2015), which can be performed 
manually and non-destructively in the field. Canopy dimensions are still mostly evaluated by manual 
measurement but remote sensing is becoming more common, with new companies entering the market. 
Remote sensing is primarily used to identify areas of differing vigour in vineyards. There is a shift toward 
using proximal and remote sensing for biophysical vine parameters but this is still mostly research-
oriented. Remote sensing can be performed manually (pedestrian transport) or on-board a terrestrial 
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vehicle, air-borne vehicle (UAV, plane) or satellite. Remote sensing performed on land (pedestrian 
transport or with terrestrial vehicles) may also be called proximal sensing in some publications. The 
characteristics of these remote sensing methods are very different depending on the signal characteristics 
(active or passive, wave length etc.), the need for correction of the raw signal and the spatial and temporal 
resolution of the captured images (Weiss et al., 2020 ; Gautam et al., 2020). Based on these characteristics, 
numerous vegetation indices have been proposed to serve different operational applications. 

Table 5 : Main methods for plant ancillary variables measurement in commercial vineyards 
Plant ancillary 

data Type of measure Type of technology Temporal 
support 

Spatial 
support References 

w
at

er
 st

at
us

 

soil non- 
destructive 

mass water 
content gravimetric method punctual punctual 

 
Rienth and Scholasch, 

2019 
Dobriyal et al., 2012 

volumetric soil 
moisture content 

- neutron probe 
- time domain 
reflectometry 
-  capacitance 
- gamma ray 
attenuation 

- ground penetrating 
radar 

 

punctual or 
continuous punctual 

water potential tensiometer 
pressure plate method 

punctual or 
continuous punctual 

atmospher
e 

non- 
destructive evapotranspiration  weather sensors continuous punctual or 

continuous 

 
Rienth and Scholasch, 

2019 

water 
balance 

non- 
destructive 

total or fraction of 
transpirable soil 

water computation 

weather sensors, soil 
granulometric analysis, 

root depth 
measurement 

continuous punctual or 
continuous 

 
Rienth and Scholasch, 

2019 

plant 

destructive 

carbon isotope 
discrimination mass spectrometry punctual punctual 

Brunel et al., 2020 
Rienth and Scholasch, 

2019 
Lavoie-Lamoureux et al., 

2017 
Santesteban et al., 2015 
Herrero-Langreo et al., 

2013 
 

water potential pressure chamber punctual punctual 

non- 
destructive 

visual observation field observation,  
apex method 

punctual punctual 

stomatal 
conductance 
and leaf gas 

exchange 

porometer or infrared 
gas analyzer punctual punctual 

sap flow stem heat balance continuous punctual 

nu
tri

tio
n 

an
d 

sto
ra

ge
 wood non- 

destructive 
shoot number and 

diameter  

manual punctual punctual Champagnol, 1984 

laser image analysis punctual continuous Demestihas et al., 2018 
Physiocap® 

leave and 
petiole 

destructive nitrogen and 
minerals content 

laboratory analysis  
including near infra-

red spectroscopy 
punctual punctual 

 
Cozzolino et al., 2020 
Cerovic and al., 2015 non- 

destructive 
chlorophyll 

content transmittance sensing punctual punctual 
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fruit and 
must destructive nitrogen and 

minerals content 

laboratory analysis 
including near infra-

red spectroscopy 
punctual punctual 

ca
no

py
 

height, 
leaf area, 
porosity 

non- 
destructive 

sizing manual punctual punctual 

Weiss et al., 2020 
Gautam et al., 2020 

passive 
reflectance 

visible or RGB image 
analysis punctual continuous 

active reflectance 
visible, laser or 

multispectral image 
analysis 

punctual continuous 

vegetation 
indices 

non- 
destructive 

active reflectance 
RGB, multispectral 
and thermal image 

analysis 
punctual punctual or 

continuous 

passive 
reflectance 

RGB, multispectral 
and thermal  image 

analysis 

punctual or 
continuous continuous 

 

Weather data is the other main external variable to be measured in vineyards. This is often done using fixed 
weather stations (either on-farm or from a nearby reference point) together with some form of extrapolation 
from the weather station position to the vineyard. Weather stations for agriculture are well developed and 
temperature, rainfall, relative humidity, wind and global radiation information can be routinely obtained at 
very high temporal resolutions. The authors have chosen not to venture into a description of weather 
sensors here although it is important to note that the appearance of virtual weather stations, through weather 
modelisation, has opened up a new and easier access to local weather data for producers beyond having 
fixed weather stations.  

3.2.3 Issues and methods associated with sampling for yield reporting 

Grapevine yield has been shown to be highly variable, both temporally at the block-scale (Chloupek et al., 
2004; Clingeleffer et al., 2001) and spatially at a within-block scale in a variety of different production 
systems (Taylor et al., 2005). To achieve a representative yield value from point measurements, the number 
of measurements needs to reflect the expected variance in the system. However, yield related data 
measurement represents a significant effort in terms of labour and cost, logistical organisation and 
increasingly in equipment and technology costs. It is often an arduous task that is usually required (and 
performed) at periods during the season when concomitant workload is high. Thus, there is an optimisation 
function to be solved between the value of the yield report, the cost of the effort required to obtain the 
report and the offset cost of not performing other concomitant vineyard activities. While this optimisation 
function has not been formally defined or solved to our knowledge, sampling designs are a first answer for 
yield reporting at a seasonal or block scale under commercial operating conditions. A sampling design 
corresponds to a reasoned number, timing and location of measurements aimed at estimating yield 
components or total yield that is operationally acceptable in terms of precision and effort required. It is 
important to note that each grower is likely to have a differing idea of the level of precision required and 
the affordable effort available, although to date, proposed sampling designs for grape yield reporting have 
not considered this constraint. Issues and constraints in grape yield sampling that have been addressed in 
the literature are reviewed in the following sections. 

Issues related to the selection of representative sites 

The collection of yield component data is more relevant during key phenological periods when components 
of the final yield potential (Eqn 1) become fixed (Wolpert and Vilas, 1992). The optimal timing of 
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measurements can be determined by considering the date when a yield component is no longer evolving. 
However, it may not be easy to identify these key dates in the field, especially when they occur 
asynchronously in space and time (Verdugo-Vasquez et al., 2020). This is further complicated by a lack of 
consolidation in the literature on the method of reporting of timings. Some studies have reported the timing 
of their observations in terms of calendar days from the completion of a commonly observed phenological 
stage e.g. bud break, bloom, fruitset, veraison (Petrie and Clingeleffer, 2005 ; Molitor and Keller, 2017). 
The start and end of these stages are open to different interpretations in different years and in different 
regions or locales. The use of a fixed day time step also ignores local environmental effects, particularly 
thermal time effects, on vine and berry development. This limits any global comparison or the derivation 
of general conclusions on the timing of reproductive development in vineyards outside the studied and 
reported areas. This shows the necessity to work with a time expression that captures the reproductive 
development conditions being experienced by the vine. 

Within the field, environmental influences may generate random or structured spatial patterns that may or 
may not be temporally stable (Clingeleffer et al., 2001 ; Tisseyre et al., 2008). Therefore, every berry, 
bunch, vine and zone within a block or a vineyard can be considered as experiencing a different 
combination of environmental conditions that are rarely measured. Furthermore, as grapevine physiology 
and development is subject to fixed acrotony rules under spatially heterogeneous environmental influences, 
phenological asynchronicity is expected at all scales, from berries within a bunch (Bigard et al., 2019) to 
zones within a field (Verdugo-Vasquez et al., 2015, 2017 and 2020). This phenological asynchronicity also 
implies that every berry, vine or every block will not respond in the same way to these external influences, 
which in themselves will vary spatially. Correctly sampling under these conditions implies the selection 
and location of samples that are able to represent population distributions in the area to be studied i.e. in 
the geographic space, for example by using a grid design, and/or across the known variability in yield 
components i.e. in the attribute space. It is therefore preferable to avoid measurements associated with rare 
events or abnormal values, e.g. dead vines, diseased vines or vines suffering from a localised stress and 
vines located on the edge of a row or block etc. Nevertheless, the number of missing plants must be 
accurately estimated in order to upscale any yield that would have been reported at the individual vine 
scale. This is investigated in particular through remote sensing approaches (Robbez-Masson et al., 2005 ; 
Primicerio et al., 2017). Taken altogether, the measurements undertaken at the chosen sites should 
summarize the sampled area in either or both the spatial and attribute spaces. When upscaling 
measurements, the weight given to each sample site may depend on the number of individuals in the 
population that it represents. This weight may vary when the variance is not uniform across the block (or 
sampled area). In most cases, the yield variance is not known, or its spatial structure is unknown, prior to 
sampling.  

Consequently, ensuring a representative criterion for yield or yield components when sampling is 
challenging. When no a priori information on yield is available, methods for targeting sampling sites 
(stratified sampling schemes) are limited. Sampling design is then often restricted to either a random 
sampling or to a systematic gridded pattern (Clingeleffer et al., 2001). Both of these options have 
acknowledged operational bias as the actual sampling sites are not really randomly selected but driven by 
operator expertise and visual observations. To circumvent this problem, some approaches propose to use 
stratified sampling schemes by integrating ancillary data, under the hypothesis that there is a relationship 
between the ancillary data and the yield components or that the ancillary data spatial structure reflects the 
spatial yield variability. Ancillary data is defined as any variable that provides information on the spatial 
variability of another variable of interest i.e. yield components in this paper. Ancillary data can then 
correspond to other yield components, plant ancillary variables or other variables, such as input variables.  
These data often have the advantage of already being collected or being accessible at a low cost before 
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sampling. In this case, the easily obtained ancillary data, that can be locally related to yield, can be used to 
help inform sampling designs (Meyers et al., 2020). In the case of grape yield components or yield 
sampling, ancillary data may correspond to vegetation indices derived from canopy imagery, such as NDVI 
(Carrillo et al., 2015 ; Meyers et al., 2020) or historical yield data (Araya-Alman et al., 2017). Since the 
correlation between yield and ancillary data can vary greatly depending on location and time, the use of 
such data must be carefully considered and integrated (Carrillo et al., 2015). The resolution of the ancillary 
data, as well as the transformations carried out to upscale the measurement information (aggregations, 
interpolations, changes in resolution), must be tailored to the objective pursued.  

Another point to consider is the ease of travelling from one sample site to another in the field. Most grape 
blocks are trellised, thus restricting movement across rows within a block. Travel time between sample 
sites may be considerably increased if the sampling design is poorly organised (Oger et al., 2019). Slopes 
or difficulties when walking around, such as the absence of grass cover, may also increase the effort 
required. For these reasons, sampling has to meet a trade-off between the effort or time invested and the 
desired sampling accuracy.  The number of sampling sites needed to achieve sufficient estimation precision 
depends on the local stochastic variance (Wolpert and Vilas, 1992) and the size of the area sampled. On 
average, the number of recommended measurements required is in the range of 20 to 30 (Clingeleffer et 
al., 2001). However, operational constraints do not always permit an operator to achieve a sufficient 
number of measurements. This recommendation is also based on generating an average yield estimation 
for a block/vineyard and does not consider the effects of intra-block spatial variance in the yield 
components. 

Review of currently proposed approaches for spatial yield sampling  
Different sampling schemes presented in the literature are in use for sampling in agriculture or a fortiori 
in viticulture (Oliver et al., 2013). These approaches can be adapted to all explanatory variables, 
particularly to yield components. The required sampling effort always needs to be considered in relation 
to the effort required to measure the yield component. 

Random sampling 
In a situation where no a priori information is available, a random sampling method is generally 
recommended. This sampling strategy gives each site of the population an equal chance to be selected in 
the final sample. The lack of information does not allow for the preferential selection of one individual 
over another, so the choice of sampling sites is therefore completely random. This approach may appear 
difficult to implement in the field, as randomness is often biased by practical constraints, such as the 
distances to be covered or the point of entry into the block. Therefore, samples often tend to be located 
disproportionally close to block edges.  

Grid/Systematic sampling 
Alternatives to random sampling under conditions with no a priori information are based on carrying out 
measurements on a regular basis. This can be achieved by locating measurement sites on the nodes of a 
regular grid overlying the block (grid sampling) or by visiting all the rows of the block and carrying out a 
measurement each time a certain number of vine stocks have been covered (systematic sampling) 
(Wulfsohn et al., 2010). Regular grid sampling or systematic sampling is open to bias from periodicity in 
the data e.g. an individual row that was pruned differently or perhaps missed a spray application may be 
selected and may not be representative of the block. If grid or systematic sampling is used, some degree of 
randomness needs to be included to minimise this risk. 

Target sampling 
When available, integrating ancillary data into the sampling design can significantly improve the quality 
of the estimate. Approaches, such as target (or stratified) sampling, exploit the link between these variables. 
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Target sampling simply proposes to select sites to be measured based on their ancillary data value. The 
statistical process for selecting target sites can vary (e.g. using quantiles or k-means classification) but with 
the same objective of defining a set of sampling sites that ensures a certain representativity of the ancillary 
data distribution. These approaches are widely used, especially in soil studies (Adamchuck et al., 2011) 
and have been proposed for yield reporting in viticulture (Bramley, 2001 ; Carrillo et al., 2015 ; Meyers et 
al., 2020) but not widely adopted in commercial vineyards. Some variants, such as the Ranked Set 
sampling, have also been deployed into other perennial horticultural fruit crops (Uribeetxebarria et al. 
2019) or for other vineyard parameters. 

Model sampling 
Model sampling follows the principles of target sampling but goes further in exploiting the available 
ancillary data. This sampling strategy uses the observations made at the measurement sites to calibrate the 
parameters of a model linking the yield variable to the ancillary data. In a second step, the constructed (or 
newly calibrated) model is used to predict values for the yield variable from the set of available ancillary 
data. The final estimation is then performed using the mean of all the predicted values. This approach has 
already been presented for grape yield estimation (Carrillo et al. 2015). 

Sampling more complex populations 
Other methods are used to sample complex populations that can be divided into subpopulations. The 
criteria used to form these subpopulations should be selected according to the sampling objectives. For 
instance, this type of method can be used at the territory scale to select blocks belonging to different areas 
or at the vine scale to select bunches on different shoots. There are different ways of sampling these 
populations, such as cluster sampling. Cluster sampling proposes to choose measurement sites by randomly 
selecting a subpopulation and then an individual from the subpopulation, leaving the freedom to assign 
different probabilities to sub-population and individuals. The weight assigned to each observation in the 
final mean may also vary according to the original subpopulations. Some variants of these stratified 
sampling approaches have already been applied in agronomy (Wulfsohn et al 2010). 

Sampling to build a yield map 
In certain situations, such as that of selective harvesting, it can be beneficial to build an accurate yield (or 
yield component) map instead of reporting a mean yield estimation. If this is done from point observations, 
then the sampling design (number and location of samples) needs to respect limitations with the 
interpolation method (e.g. kriging or nearest neighbour or inverse distance) and the desired resolution of 
the map. The same sampling design is not appropriate for estimating mean block statistics and for mapping 
intra-block spatial patterns. Interpolation and map production tends to require a larger number of samples 
to generate useful information (e.g. kriging typically requires ~100 samples; Webster and Oliver, 1992) 
and manually measured yield component maps have only been reported in research studies to date. It is 
cost prohibitive in commercial situations to map yield estimates from manual measurements, despite the 
desire to have this information. The need for affordable, timely, higher resolution data to map yield 
components is a principal reason for the recent activity in the development of on-the-go sensors for yield 
components. 

3.2.4 Issues and methods for yield modelisation 

A first requirement for yield modelisation is to properly formulate a model that is adapted to the local 
conditions of yield development as well as the type of data available to populate the model. Field 
observations are often collected on the same block over several vintages or on multiple blocks in the same 
vintage. Assumptions of independence in errors must be respected or taken into account in the modelling 
approach, for example by using mixed effects (Zhu et al., 2020). When available, data time series analysis 
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should permit the dynamic and time-correlated aspects of yield development to be accounted for. However, 
most reported studies will typically only study a few punctual indicators that focus on a few phenological 
stages or time steps, and these data are assumed to be independent but are rarely validated as such (Guilpart 
et al., 2014 ; Molitor and Keller, 2017). The management of uncertainty, both in terms of the inherent noise 
(error) in the data itself and in the yield development modelling, must be taken into account, for example 
by dealing with confidence intervals or even statistical distributions rather than punctual values. Regarding 
the type of statistical model considered, most reported studies have used a linear model (Dunn and Martin, 
2004; Cunha et al., 2016; Zhu et al., 2020). However, a more complete consideration of environmental 
influences and of the vine-management-environmental dynamics on temporal yield development 
(accumulation, threshold effect, succession or trajectory effect etc.) is likely to require other, more complex 
types of models. Models need to permit data to be fitted non-linearly for an explicit aim and be robust to 
the introduction of new data to extrapolate or expand applications (e.g. Parker et al., 2020). Models based 
on artificial intelligence methods may be more suitable for this (Sirsat et al., 2019). In such cases, it is not 
just the model but also the criteria for model selection that needs to be changed. Criteria such as the Akaike 
or Bayesian information criteria (respectively AIC and BIC) may be preferable to the coefficient of 
determination (r2) when assessing model performance. Similarly, models using cross-validation methods 
(Cunha et al., 2010 and 2016 ; Molitor and Keller, 2017) or evaluating their results on a different validation 
dataset than the calibration set (Serrano et al., 2005 ; Cunha et al., 2010 and 2016 ; Diago et al., 2012 ; De 
la Fuente et al., 2015) seem more appropriate. The size of the calibration dataset and the number of different 
modalities it contains will also give an indication of the adaptability and transferability of the modelling 
approach. 

3.3 Review of yield reporting methods 

3.3.1 According to different constitutive steps 

Table 6 summaries the different yield reporting methods that have been reviewed. It mainly contains 
references from the scientific literature, as the methods used by the industry are poorly documented. This 
is evidence of the fact that commercial wineries still have their own practices and often empirical habits 
when it comes to yield reporting methods. In Table 6, yield reporting methods are presented according to 
the use case they address. These use cases are described according to three characteristics : i) the date at 
which the yield report is provided,  ii) the spatial scale at which the yield report is realised and iii) the 
definition and units that are used to express the final yield. Afterwards, the propositions are split in terms 
of the measurement and sampling strategies associated with the estimation of the explanatory variables 
and in terms of modelling the relationship between these variables and final yield. Finally, the experimental 
datasets that have been used to establish the method are indicated as an appraisal of the reproducibility and 
robustness of the method in order to properly interpret the results.  

The use case in which the method is positioned determines the sources of uncertainty that will have to be 
managed. The earlier the yield report, the greater the spatial scale of the yield report, the later in the wine 
production chain that the final yield is defined and/or the more numerous the sources of noise are in the 
collected data, the more uncertainty will be present. If the method is based on the observation of yield 
components as explanatory variables, the use case often dictates which components can be sampled 
according to the timing of the reproductive cycle. For example, only flowers and pollen can be observed 
at flowering time. Some of these components also define a spatial scale for the yield report. For example, 
pollen concentration in the atmosphere can only be estimated at a scale greater than or equal to the block, 
since the plant that produced the collected pollen cannot be identified.  
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It should be noted that few studies have investigated sampling issues, even though the estimation of yield 
components at plot scale or larger based on plant observations at the vineyard block scale, or larger scale, 
is often proposed. Few models based on artificial intelligence have been proposed, perhaps demonstrating 
a phenomenon that is too complex to be reported in a coherent and interpretable way by these methods, 
that data sets are too small relative to the phenomenon complexity or that artificial intelligence methods 
are not yet advanced enough. Non-linear relations thus seem to have mainly been explored by mechanistic 
models. Data-driven models have focussed on the use of the linear, uni- or multivariate models. Finally, 
the bias due to data dependency or over-fitting is rarely taken into account since mixed effects or cross-
validation methods are rarely used. Results are generally announced in terms of data fitting (r2) while other 
selection criteria seem more interpretable from an operational point of view (e.g. Root Mean Square Error). 

Table 6 : Methods for yield estimation and prediction reviewed in literature 
Use case Data collection 

Modelisatio
n 

Experimental 
dataset 

Announced 
results Reference 

Date Spatial 
scale 

Yield 
unit 

Variables 
type 

Explanatory 
variables 

Measurement 
method 

Sampli
ng 

method 

season n-1 

plant kg ancillary plant 
variables 

- leaf predawn water 
potential 

 
- leaf nitrogen content 

- water potential : 
pressure chamber 

- nitrogen content : 
destructive measure 

in laboratory 

random 
sampling 

mechanistic 
modelling 

3 seasons 
2 blocks 

5 treatments, 
8 to 30 plants per 

treatment 

r2 from 0.65 to 
0.7 between 
observed and 

simulated data 

Guilpart et al. 
2014 

territorial hL/ha ancillary plant 
variables NDVI imagery NDVI : satellite 

1 km resolution no 

data driven : 
linear 

regression with 
cross-

validation 

10 seasons 
36 images per 

season 
4 regions of 3x3 

km 

- r2 from 0.73 to 
0.88 

- relative 
prediction error 

from 3.8 to 7.8% 
on validation 

dataset 

Cuhna et al., 
2010 

- after 
budbreak, 
- bloom 
- after 
fruitset 

- close to 
harvest 

of season n 

block t yield 
decomposition 

- various historical yield 
data 

- various yield 
components 

manual 
measurements 

random 
sampling 

empirical 
modelling 

1 to 4 seasons 
40 blocks 

r2 from 0.40 to 
0.95 on 

calibration 
dataset 

Clingeleffer, 
2001 

- bloom 
- veraison 
- close to 
harvest of 
season n 

block kg/ha input variables 

- weather data 
- phenological dates of 

bloom, veraison and 
maturity 

unknown no 

artificial 
intelligence : 

random forest, 
lasso, 

elasticnet, 
spikeslab 

3 seasons, 
128 blocks 

relative root 
mean squared 

error from 24.2 
to 28.6% 

Sirsat et al., 
2019 

anytime in 
season n 

block t/ha input variables 

calibration parameters : 
- weather 

- soil 
- crop management 

- genetic data 
(see Brisson et al., 2003) 

manual measuring random 
sampling 

mechanistic 
modelling : 

STICs 

3 seasons, 
3 blocks 

2 varieties, 
5 plant per block 

r2= 0.88 to 0.91 
between 

observed and 
simulated data 

Valdés-
Gómez et al., 

2009 

intra-
block kg/m input variables 

- weather data 
- calibration parameters: 
geography, morphology, 

soil hydrology, treillis and 
spacing, canopy and crop 

management 

manual measuring random 
sampling 

mechanistic 
modelling 

calibration : 
2 seasons 
1 block, 

2 treatments, 
4 plants per 
treatment 

 
validation : 
5 seasons 

unspecified blocks 

r2= 0.96 on 
validation dataset 

Cola et al., 
2014 

plant kg input variables 

- weather data 
- calibration parameters: 

density, coefficient of 
light extinction, base 
temperature, thermal 

- manual measuring 
- literature review no mechanistic 

modelling 

2 seasons, 
1 block, 

1 variety, 
60 plants 

r2 = 0.97 between 
observed and 

simulated data 

Nogueira et 
al., 2018 
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requirements for 
phenology 

bloom of 
season n territorial 

kg/ha yield 
decomposition airborne pollen 

pollen :suction trap 
with optical 

microscopic analysis 
at 10m above 
ground level 

no 
data driven : 

linear 
regression 

5 seasons 
r2=0.92 

on calibration 
dataset 

Cristofolini 
and 

Gottardini, 
2000 

hL yield 
decomposition 

- airborne pollen 
 

- weather data 

pollen : filter trap 
with optical 

microscopic analysis 
at 15m above 
ground level 

no 

data driven : 
logistic 

regression 
with cross-
validation 

15 seasons 
1 site 

-r2= 0.790 
- average relative 

error = 5.6% 
on validation 

dataset 

Cunha et al., 
2016 

between 
bloom and 
veraison of 

season n 

block 

t yield 
decomposition 

- number of shoots per 
plant 

- historical number of 
bunches per shoot 

- historical bunch mass 

on-board video-
analysis no mechanistic 

modelisation 

2 seasons 
4 blocks 

1 video per row 

undefined error = 
1.2% to 36.0% 
on calibration 

dataset 

Liu et al., 
2017 

t/ha 
yield 
map, 
3m 

resoluti
on 

ancillary plant 
variables 

- NDVi imagery 
- LAI imagery 

NDVI and LAI : : 
satellite, 30m 

resolution 

target 
sampling 

data driven : 
linear 

regression 

2 seasons, 
2 blocks 

NDVI : r2 from 
0.63 to 0.77 

LAI : r2 from 
0.48 to 0.77 

on calibration 
dataset 

Sun et al., 
2017 

territori
al kg/ha 

input variables 
and yield 

decomposition 

- weather data 
- number of inflorescences 

per vine 

inflorescences coun 
: manual no 

data driven : 
multivariate 

linear 
regression with 

cross-
validation 

10 seasons,  
10 plants, 

 one region 

r2= 0.989 
 between 

observed and 
simulated on 

validation dataset  

González-
Fernández et 

al., 2020 

between 
fruitset and 
veraison of 

season n 

block kg input variables 
- downy mildew spore 

concentration and 
cumulative rainfall 

spore : suction trap 
with optical 

microscopic analysis 
at 2 m above ground 

no 

data driven : 
multivariate 

linear 
regression 

6 seasons 
1 block 

1 variety 
20 plants per 

block 

r2 = 0.98 on 
calibration 

dataset 

Fernández-
González et 

al., 2011 

intra-
block 

kg/m yield 
decomposition 

- historical average bunch 
mass 

- average berry mass 

manual counting 
and weighing no empirical 

modelling 

4 seasons 
14 blocks, 

4 rows per block 

r2 from 0.6 to 
0.75 of between 

observed and 
simulated on 

validation dataset 

De la Fuente 
et al., 2015 

kg/vine yield 
decomposition 

bunch count and 
dimensions image analysis target 

sampling 

data driven : 
linear 

regression 

2 seasons,  
1 block 
2 zones 

r2=0.82 
between 

observed and 
simulated data 

Di Gennaro 
et al., 2019 

bunch g yield 
decomposition bunch dimensions manually taken 

pictures on field no 

data driven : 
linear 

regression with 
cross-

validation 

6 seasons, 
4 varieties 

50 to 200 bunches 
per varieties 

prediction error 
from 6 to 15% 
on validation 

dataset 

Serrano et 
al., 2005 

veraison of 
season n 

block t/ha yield 
decomposition 

- historical yield maps 
- post-harvest pruning 

weight 
- NDVI imagery 

- number of buds per plant 
- number of shoots per 

plant 
- number of bunches per 

plant 

- yield : yield 
monitor installed on 

harvester 
- NDVI : satellite 

imagery, 1-2m 
resolution 

- plant components : 
manual counting, 
10m resolution 

no 

data driven : 
multivariate 

linear 
regression 

1 season 
9 blocks 

r2 from 0.2 to 
0.72 

on calibration 
dataset 

Martinez-
Casanovas et 
Bordes, 2005 

plant 

kg ancillary data weather data weather station no 

data driven : 
mixed effects 

linear 
regression 

15 seasons 
4 blocks 

8 replicates 
4 plants by 
replicate 

r2=0.8 
between 

observed and 
simulated data 

Zhu et al., 
2020 

kg ancillary plant 
variables 

- NDVI imagery 
- WI imagery 

NDVI : ground-
based passive 

sensing 
no 

data driven : 
linear 

regression 

2 seasons, 
7 blocks 

3 plants per block 

NDVI : r2 up to 
0.63 

WI: r2 up to 0.56 
on calibration 

dataset 

Serrano et 
al., 2012 

;González-
Flor et al., 

2014 
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close to 
harvest of 
season n 

territorial hL/ha input variables weather data weather : provided 
by a national service no 

data driven : 
window pane 
analysis and 

linear 
regression with 

cross 
validation 

21 seasons 
regional 

production 
records 

r2=0.82 and 0.85 
on calibration 

dataset 

Molitor and 
Keller, 2017 

block 

kg yield 
decomposition proportion of fruit pixels 

image analysis in 
field, manually 
taken pictures 

no 
data driven : 

linear 
regression 

1 season 
10 plants with 2 

stages of 
defruitation 

0.73 of observed 
data variability 
explained by 

predicted yield 
for validation 

dataset 

Diago et al., 
2012 

kg/plant yield 
decomposition 

- actual yield per plant 
- historical geolocalized 

yield per plant 
manual weighing target 

sampling 

data driven : 
principal 

component 
analysis and 

linear 
regression 

one season 
3 blocks 

2 to 10 plots of 5 
plants per block 

estimation error 
lower than 10% 
for more than 5 
sampling sites 

Araya-Alman 
et al., 2019 

kg ancillary plant 
variables 

- NDVI imagery 
- yield per plant 

- manual weighing 
- NDVI : airborne 

passive sensin, 
0.25m resolution 

target 
sampling 

data driven : 
linear 

regression with 
bootstrap 

2 seasons, 
1 block 
54 sites 

1m per site 

r2= 0.33 and 0.46 
on calibration 

dataset 

Hall et al., 
2011 

kg/plant ancillary plant 
variables NDVI imagery airborne (UAV) no 

artificial 
intelligence : 

artificial 
neuronal 
network 

1 season,  
1 block 

relative error of 
5.1% 

Ballesteros et 
al., 2020 

intra-
block kg/m yield 

decomposition proportion of fruit pixels on-board image 
analysis no 

data driven : 
linear 

regression 

1 season 
16 plants with 4 

stages of 
defruitation 
1 picture per 

meter 

r2=0.85 on 
calibration data 

set 

Dunn and 
Martin 2004 

plant 

kg yield 
decomposition proportion of fruit pixels on-board image 

analysis no 
data driven : 

linear 
regression 

1 season 
1 block 

1 row of 30 
contiguous plants 

mean absolute 
percent of error = 

27.8% 

Lopes et al., 
2016 

kg yield 
decomposition fruit pixel on board-image 

analysis no 
data driven : 

linear 
regression 

1 to 3 seasons 
6 blocks 

yield prediction 
error from 2.5 to 

29% on 
calibration data 

set 

Nuske et al., 
2014 

t yield 
decomposition 

- number of nodes per 
plant 

-number of bunches per 
plant 

- number of berries per 
bunch 

- number of seeds per 
berry 

- bunch mass, 
- minimum december 

temperature 

manual counting 
and weighing 

blocks 
typology 
accordin

g to 
historical 

yield 
level 

data driven : 
linear and non-

linear 
regression 

13 seasons 
8 blocks 

2 rows per block 
4 plants per row 

mean absolute 
percent error 
from 7.3 to 

11.8% 
on calibration 

dataset 

Folwell et al., 
1994 

bunch kg yield 
decomposition proportion of fruit pixels on board image 

analysis no 
data driven : 

linear 
regression 

25 non-occluded 
bunches error of 17% Font et al, 

2015 

 

3.3.2 According to identified challenges for improving yield reporting methods in an operational context 

Challenges to be addressed by yield reporting methods in an operational context have been identified in 
the first section of this paper. They are summarized in three categories : i) addressing temporal yield 
development, ii) addressing yield development as being a local phenomenon and iii) accounting for 
operational constraints. The main practical implications of these challenges for the establishment of yield 
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reporting methods are detailed in Table 7. They are used to comprehensively compare the methods that 
have been presented in Table 6.  

Few methods have addressed the temporal nature of yield development. There has been no reported use of 
time-series analysis for yield reporting, regardless of the type of explanatory variables used. Intra-seasonal 
variables, such as weather variables, are most likely to support time series analysis because of their 
recording modalities (continuous records daily to 15 minutes time steps). However, most data-driven 
methods that use weather variables are based on the computation of indicators, e.g. the mean temperature 
around the bloom period (Zhu et al., 2020) or the amount of rain accumulated during a hundred growing 
degree days (Guipart et al., 2014), which are considered independent for statistical analysis. Most 
mechanistic models can be applied at any time of the season as long as the data is available (Valdés-Gómez 
et al., 2009 ; Cola et al., 2014 ; Nogueira et al., 2018). They are not dynamic models as such, but they can 
be used to provide yield reports at regular time periods. Finally, there have only been scientific and 
industrial proposals for yield estimation or prediction methods to date. No yield forecasting method for 
yield reporting have been proposed yet. This implies that the actual methods in use in operational situations 
only address part of the uncertainty associated with the elaboration of future yield development and 
therefore do not meet the operational need to have a yield report that is inclusive of all sources of 
uncertainty. 

The challenge related to the consideration of a local system for yield development is only partly addressed 
by methods that have worked on improving sampling strategies (spatial or temporal) that can adapt to 
various local indicators (De la Fuente et al., 2015 ; Araya-Alman et al., 2019). Methods that have worked 
to improve the measurement of explanatory variables, particularly those that offer automated measurement 
of yield components, assume the measurement of a specific indicator, which may be different from the 
indicator historically used by the local vineyard/winery (Lopes et al., 2016 ; Liu et al., 2017). In the 
reported literature, there is no method that offers to deal with data noise, which comes from a wide variety 
of sources in the case of operational data. For instance, no attempt has been made at typology to group 
together data likely to contain the same type of noise or to identify preferred use-cases for adapted 
modelling methods. This gap clearly shows that scientific viticulture research has yet to address the issue 
of using operational data to support a yield reporting method.  

Most methods have grasped the operational importance of proposing a yield report based on non-
destructive (pre-harvest) observations that can be automated. Data-driven methods do assume a number of 
parameters small enough to be operationally accessible. This is not true for mechanistic methods, whose 
possibilities of operational implementation are therefore much more limited. Operational implementation 
is also limited by the fact that about half of the methods reported do not provide a yield report at the spatial 
scale required by the operational needs, thus forcing the user to upscale the results with limited means and 
additional sources of uncertainty. Finally, the fact that most of the required equipment is not accessible to 
the industry, and that most of the methods are not yet commercially implemented, shows that the transfer 
from scientific research to the industry on the subject of yield reporting is still very restricted.  
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Table 7 : Comparison of operational advantages of  yield estimation and prediction methods reviewed in 
literature  

 
Reference 

Addressing yield development temporality Locally addressing 
yield development Accounting for operational constraints 

Times 
series 
data 

leveragin
g 

Intra- 
seasonal 
variables 

Dynamic 
method 

Natural 
uncertaint

y 
manageme

nt 

Data 
noise 

manage
ment 

Adaptati
ve to 
local 

indicator
s 

No 
required 
upscaling 

for 
operatio

nal 
interpret

ation 

Low 
measurin

g time 
Automati

sable 
Non 

destructi
ve 

Low 
number 

of 
paramete

rs 

Accessibl
e 

equipem
ent 

Already 
impleme
nted on 

field 

Araya-Alman et al., 2019    estimation  x x    x x  

Ballesteros et al., 2020              

Clingeleffer, 2001    prediction  x x     x x 

Cola et al., 2014  x x prediction   x  x x    

Cristofolini and 
Gottardini, 2000    prediction   x  x x x   

Cuhna et al., 2010  x  prediction   x x x x x   

Cunha et al., 2016  x  prediction   x  x x x  x 

De la Fuente et al., 2015    prediction  x      x x 

Di Gennaro et al., 2019              

Diago et al., 2012    estimation    x x x x   

Dunn and Martin 2004    estimation    x x x x   

Fernández-González et 
al., 2011  x  prediction    x x x x   

Folwell et al., 1994    prediction   x     x  

Font et al, 2015    estimation    x x x x   

Guilpart et al. 2014    prediction      x x   

Hall et al., 2011    prediction    x x x x   

Liu et al., 2017    prediction   x  x x    

Lopes et al., 2016    estimation    x x x x   

Martinez-Casanovas et 
Bordes, 2005    prediction   x       

Molitor and Keller, 2017 x x  prediction   x x x x x x  

Nogueira et al., 2018  x x estimation     x x    

Nuske et al., 2014    prediction    x x x x   

Serrano et al., 2005    estimation      x x x  

Serrano et al., 2012 
González-Flor et al., 2014    prediction    x x x x   

Sirsat et al., 2019  x  prediction  x x x x  x   

Sun et al., 2017    prediction   x x x x  x  

Valdés-Gómez et al., 
2009  x  estimation   x  x x    

Zhu et al., 2020  x  prediction    x x x x x  
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4. Conclusion : what are the perspectives to improve yield reporting ?  
The adaptation of yield reporting approaches to the production conditions of any commercial viticulture 
enterprise raises interesting scientific questions linked to the management of operational needs, constraints 
and data that the scientific literature only partially addresses. Based on the assumption that an entire survey 
of the yield reporting process is required to improve yield reporting in a production context, this paper 
proposed to review issues and answers in the literature that have already been developed for data collection, 
including measurement and sampling, and modelisation (cf. Figure 5). Comparing literature contributions 
to the operational needs and constraints of yield reporting has highlighted the need for new yield reporting 
methods that are readily transferable to and between commercial, operational systems. Three still 
unaddressed scientific topics have thus been identified for their potential of yield reporting improvement 
based on operational data.  

4.1 Aiming at operational relevance 

First, there is a need to comply with the practical nature of operational constraints, which are common to 
all vineyards/wineries. This mainly refers to the ease of implementation of the yield reporting methods in 
the field and interpretability of the provided yield report information. Ease of implementation requires the 
yield development conceptualization to be as simple and robust as possible and therefore a parsimonious 
number of accessible indicators to be taken into account. According to the methodology presented by 
Lamanda et al. (2012), the effects of input and output factors would thus be easier to model and would 
require fewer parameters to be taken into account. Yield components, which can be considered as outputs 
of the yield development system, have been foremost and most commonly studied in the literature. 
Numerous studies have therefore sought to automate their measurement (Diago et al., 2012 ; Nuske et al., 
2014 ; Aquino et al., 2015a and 2018b ; Liu et al., 2017) . At this time, these efforts do not allow for an 
exhaustive measurement of any component, and the observation of yield components therefore remains 
subject to spatial sampling issues (Carrillo et al., 2015 ; Araya-Alman et al., 2019 ; Oger et al., 2019).  

Similarly, with yield components being time-defined and representing evolving indicators of the dynamic 
process of yield development, their observation also involves temporal sampling issues (Wolpert and Vilas, 
1992), which combine biological and operational difficulties (cf. Table 3). Given this, the potential of 
considering ancillary input factors, such as weather data, that can be continuously and automatically 
recorded, has been poorly explored (Guilpart et al., 2014 ; Molitor et Keller, 2017 ; Zhu et al., 2020). Yield 
reporting should benefit from the availability of automated, continuous records that are free from the issues 
of temporal sampling. Often already available in the vineyards/wineries, these factors could complement 
or even remove the need for some observations of yield components in the field.  

With regard to statistical formalism, an effort of parsimony and robustness should similarly be made for 
the selection of explanatory variables, which mainly prevents mechanistic models from being used in an 
operational context (Valdes-Gomez et al., 2009 ; Cola et al., 2014 ; Nogueira et al., 2018). 

Good interpretability of yield reports involves providing unequivocal information as accurately as possible. 
The objective is to remove the need for the user to exercise their judgment, and therefore their subjectivity, 
in their understanding of the provided yield report. This is achieved by ensuring that sources of uncertainty 
related to the yield reporting method are already identified and managed. This also implies expressing the 
expected yield with an operationally used definition and units, i.e. corresponding to the right stage of the 
production chain, as well as at the correct spatial and temporal scales to avoid the need for up- or down-
scaling by the user. These last two points commit to improving knowledge of yield development from both 
a local and temporal perspective. 
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4.2 Accounting for yield development temporality 

Operational datasets that may support a local modelling of yield development often contain time series. So 
far in the literature, these times series have been used to compute indicators based on a few phenological 
stages or time steps and are often considered independent when analysed with linear regression analysis 
(Guilpart et al., 2014 ; Molitor and Keller, 2017). This approach significantly restricts the potential of time 
series data analysis by considering only part of the contained information. However, yield development 
has been recognised in this paper as a dynamic process that includes trajectory or memory effects due to 
temporal inter-dependencies in grapevine physiology. Thus, the use of novel methods, such as specific or 
functional time series analysis, could help in further extracting information from time series data. Non-
linear relationships could also be investigated in order to improve the modelling of some biological yield-
determining phenomena. Such methods could advance the detection of external influences to be primarily 
considered in a local model of yield development (Laurent et al., 2019) and support the reconceptualization 
of the actual yield reporting model. However, leveraging time series for yield reporting also requires 
improved noise reduction methods in the analysis that may be induced by phenological shifts between 
blocks or years of the same dataset. Computing Growing Degree Days to express time in a more grapevine 
phenology consistent metric has been a first answer to this issue (Zapata et al., 2015). However, recent 
work has challenged the way thermal indicators are computed (Parker et al., 2020 ; Camargo-Alvarez et 
al., 2020) or the time step at which temperature is summarized (Gaiotti et al., 2018 ; Gouot et al., 2019a 
and 2019b) to model grapevine physiology. This should inspire future work aimed at expressing the timing 
of grapevine development in a more precise and accurate metric. For the expression of time to be locally 
relevant, it also seems important to adapt the calculation of these metrics to the block conditions i.e. plant 
material, pedo-climate, topography, orientation and cultural practices. The date when the reproductive 
cycle is considered to start may also be reconsidered (Duchêne et al., 2003a ; Vaillant-Gaveau et al., 2014 
; Pagay and Collins, 2017).  

The interpretability of a yield report is dependent on an assessment of final yield and not on the currently 
achieved yield in order to support as far as possible the user in their understanding of the provided yield 
information. Yield prediction and forecasting methods should therefore be preferred to estimation methods 
(cf. Figure 4). To the authors’ knowledge, only estimation or prediction methods have been proposed in 
the literature in that sense and current operational models only assume but part of the uncertainty associated 
with the yield development process. However, yield development is a complex, dynamic process that 
responds to many interacting influences whose temporal interactions need to be taken into account. 
Prediction methods only assess the uncertainty in this complexity on the basis of the available dataset, 
when in reality the range of possibilities (and the level of uncertainty) is much greater. Thus, a significant 
improvement for yield reporting would be to move towards forecasting methods so as to better inform the 
user of the uncertainty associated with the provided yield information. 

Finally, the literature has identified some key steps in the dynamics of yield development when a portion 
of final yield variability is fixed by the stable implementation of successive yield components (cf. Figure 
3). These steps permit a consideration of what can be expected of yield reporting methods in terms of 
accuracy. Conducting a yield decomposition analysis (cf. Equation 1) from a temporal perspective on a 
local dataset should provide an indication on the accuracy that can be expected at each yield component 
implementation date through the portion of yield variability explained by this component. For example, if 
the number of bunches per vine is found to temporally and locally explain 40% of final yield variability, 
then around 40% of accuracy could be expected from yield reporting methods at the date when 
inflorescences are observed in the field. Such a number should nevertheless be only considered as an 
approximate indication for reasons of physiological dependencies in the yield development cycle that may 
affect other, subsequent components (Duchêne et al., 2003b ; Pagay and Collins, 2017). In order to 
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accommodate operational needs and to dynamically monitor yield development, it seems relevant to 
develop a yield forecast at several dates in the season, with accordingly increasing accuracy and certainty. 
Depending on the case, these dates could correspond to the progression of certain yield components, to the 
availability of key ancillary data or to periods that are identified as highly influential at the end of which it 
would be justified to update the yield forecast. 

4.3 Understanding the local organisation of yield development  

Operational yield definition, units and scales vary from one vineyard/winery to another. Similarly, there 
will be enterprise-specific differences in other agronomic indicators and ancillary data that may be 
collected during the season. As a result of this, the use of operational data in yield reporting models is 
likely to generate new knowledge on yield development by allowing a wide variety of situations to be 
studied with large datasets. Data heterogeneity amongst vineyards/wineries should not be a reason for not 
using operational data in yield reporting. However, a sufficiently general yield development formalisation 
and reporting method will be necessary to permit the model to adapt to local production conditions. Such 
a method should be flexible enough to allow for different conceptual schemes of yield development to be 
considered according to the main external influences and the locally available data, independently of the 
chosen yield indicators and data quality. It first implies that a dataset must be properly characterized in 
order to be correctly managed by this method. The aim is to find out what each variable corresponds to, 
how it has been collected and to assess what level of contribution it might bring to a model as well as its 
quality i.e. to evaluate the source of uncertainty it may constitute for the yield report. It also means that the 
main external influences that drive the yield development must be correctly identified in each dataset in 
order to use them as explanatory variables and to adapt the conceptual model to the local production 
conditions. To identify such local variables, data-driven approaches may be used to support expert 
conceptualization. There is a real issue for vineyards/wineries to consolidate data, whose modalities of data 
collection remain constant over time and space, so that it can be analysed in its entirety as a spatio-temporal 
dataset and it can rigorously support data-driven approaches. Faced with the growth of artificial 
intelligence, the challenge for research is also to develop more complete and objective methods if supported 
by sufficiently large datasets, without losing the possibility of interpreting the results at a local level so that 
they can be fully exploited from an agronomic point of view.   
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