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Event-based surveillance systems are at the crossroads of human and animal (and plant and ecosystem) health,
epidemiology, statistics, and informatics. Thus, their deployment faces many challenges specific to each domain
and their intersections, such as relations among automation, artificial intelligence, and expertise. In this context,
ourwork pertins to the extraction of epidemiological events in textual data (i.e. news) by unsupervisedmethods.
We define the event extraction task as detecting pairs of epidemiological entities (e.g. a disease name and loca-
tion). The quality of the ranked lists of pairs was evaluated using specific ranking evaluation metrics. We used a
publicly available annotated corpus of 438 documents (i.e. news articles) related to animal disease events. The
statistical approach was able to detect event-related pairs of epidemiological features with a good trade-off be-
tween precision and recall. Our results showed that using a window of words outperformed document-based
and sentence-based approaches, while reducing the probability of detecting false pairs. Our results indicated
that Mutual Information was less adapted than the Dice coefficient for ranking pairs of features in the event ex-
traction framework. We believe that Mutual Information would be more relevant for rare pair detection (i.e.
weak signals), but requires highermanual curation to avoid false positive extraction pairs.Moreover, generalising
the country-level spatial features enabled better discrimination (i.e. ranking) of relevant disease-location pairs
for event extraction.
© 2021 The Author. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Increases in the emergence or re-emergence of animal and human
infectious diseases have been evident in many parts of the world for
several years. Beyond thewell-known role of human and animal mobil-
ity in the spread of pathogens, climate change and biodiversity loss are
likely to exacerbate the global disease burden (Keesing et al., 2010;
Ostfeld, 2009). National and international institutions are currently
experimenting with a global paradox—reconciling trade extension
with the control of the risk to public and animal health.

The growing availability of digital data represents an unprecedented
source of real-time disease information (Paolotti et al., 2014). Online
news, social media and electronic health records are among the so-
called informal sources that have proven to be valuable sources of
Montpellier, France.
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disease information (Soto et al., 2008; Wilson and Brownstein, 2009).
Through the epidemic intelligence (EI) concept, their mainstreaming
into surveillance systems has been a paradigm shift for disease surveil-
lance and control. Driven by the International Health Regulations (IHR)
(WHO, 2005), EI integrates two components in a single surveillance sys-
tem: indicator-based surveillance (collection of structured data through
traditional surveillance systems) and event-based surveillance (collec-
tion of unstructured data from informal sources) (Paquet et al., 2006).
Combining these two components has proven to enhance surveillance
systems' performance by increasing outbreak detection timeliness and
number (Arsevska et al., 2018; Bahk et al., 2015; Dion et al., 2015;
Barboza et al., 2013).

Informal sources cover a diverse spectrum, but they all share the
information in textual format. Peculiarities of textual data include
linguistic ambiguities, redundant and noisy information, a lack of
normalisation, etc. Besides, daily amounts of such information can rap-
idly overwhelm surveillance systems, including moderation steps per-
formed by experts. Event-based surveillance (EBS) systems thus
nications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://
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increasingly marshal text-mining and NLP (Natural Language Process-
ing) methods to alleviate the amount of manual curation of the contin-
uous flow of free text (Hartley et al., 2010; Drury and Roche, 2019).

In this setting, the Platform for Automated extraction of Animal Dis-
ease from the Web (PADI-web1) is an open-access EBS system dedi-
cated to the detection of new and emerging animal infectious disease
events (Arsevska et al., 2018). It was developed to meet the needs of
the French Epidemic Intelligence System (FEIS, or Veille sanitaire
internationale in French) via online news monitoring. FEIS has been in-
volved in activities of the French Platform for Animal Health Surveil-
lance (ESA Platform) since 2013. FEIS aims to identify, monitor and
analyse reports of animal health hazards (including zoonotic diseases)
threatening France as a whole by monitoring official and unofficial in-
formation sources. PADI-web monitors Google News in real-time and
automatically retrieves animal disease related news articles, classifies
them and extracts epidemiological entities (Valentin et al., 2020b).
The classificationmodule of PADI-web is based on a supervisedmachine
learning approach (e.g. Random Forest, Support Vector Machine, and
Multilayer Perceptron) to filter relevant news with an overall accuracy
of 0.94 (Valentin et al., 2020a).

This paper tackles issues related to knowledge-based systems in ag-
riculture (i.e. livestock farming and epidemiological surveillance) using
an unsupervised machine learning approach. Many applications based
on unsupervised approaches exist, e.g. clustering, anomaly detection,
association extraction. Our work focuses on association mining. This
task consists of identifying sets of items that often occur together in
datasets (e.g. databases, textual data, etc.).We propose an unsupervised
method for pattern recognition (i.e. co-occurrence of epidemiological
features) applied to animal disease surveillance (i.e. PADI-web data)
to extract events in news.

The motivation of this work is to use simple and effective statistical
measures to extract epidemiological events that are easy to analyse by
experts. The measures studied and extended in this paper use weak
knowledge based on the number of examples in textual data without
the need to determine counter-examples. The main objective is to de-
termine which parameters that we need to integrate. We focus on 2
main parameters associated with our statistical methods and unsuper-
vised approaches: (i) what textual context to use (i.e. document, sen-
tence, and word) for extracting pairs of elements to define an
epidemiological event for animal disease surveillance and (ii) which
pairs of entities and generalisation to apply for event extraction. This
type of results could be relevant insights for integration in embedding
approach architectures.

Section 2 presents the relatedwork on event-based surveillance sys-
tems, entity extraction, entity normalisation and linking and event ex-
traction applied to animal disease surveillance. Section 3 presents our
global process in order to extract relevant events. Sections 4 and 5 dis-
cuss the results obtained with different strategies.
2. Related work

2.1. Event-based surveillance systems

The development of EBS systems aims at meeting the challenges
posed by the integration of unstructured data in the formalised EI pro-
cess. Below we present the EBS systems that encompass the animal
health threat in their scope.

EBS systemswere pioneered in 1994 by the International Society for
Infectious Diseases (ISID), through the Program for Monitoring Emerg-
ing Diseases (ProMED). ProMED is a human-curated system that relies
on an extensive network of expertsworldwidewhodetect and share re-
ports on disease outbreaks using a common platform (Carrion and
Madoff, 2017). Moderators validate the information.
1 https://padi-web.cirad.fr/en/
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BioCaster and the Platform for Automated extraction of animal Dis-
ease Information from the web (PADI-web) rely on fully automated
pipelines. BioCaster was a public health surveillance system supported
by the University of Tokyo from 2006, with a priority focus on the
Asia-Pacific region (Kawazoe et al., 2008). BioCaster is no longer opera-
tional, but it is included in our review because it relied on a unique and
well-documented ontology-based approach. PADI-web was created in
2016 to monitor online animal health-related news for the French Epi-
demic Intelligence System (FEIS) (Arsevska et al., 2018; Valentin et al.,
2020b).

Between these two extremes of pure automation and pure manual
data collection and analysis, other prominent systems combine auto-
mated text-mining based steps and a dedicated team of curators to as-
sess and verify the outputs. Semi-automated systems include
HealthMap, founded by the Boston Children's Hospital in 2006, the Ca-
nadian Public Health Agency Global Public Health Intelligence Network
(GPHIN), the European Union MediSys, Argus and AquaticHealth.net.

2.2. Entity extraction

2.2.1. Entity extraction approaches
Information extraction (IE) in EBS systems aims at locating specific

pieces of data in natural-language documents, thereby extracting struc-
tured information fromunstructured text (Mooney andBunescu, 2005).
Entity extraction, also called named entity recognition (NER), is an IE
subtask that seeks to locate and classify textual elements into
predefined categories, such as locations (e.g.’Lagos', ’China’), temporal
expressions (e.g. ‘lastmonth’, ‘July 28, 1990′), organisations (e.g. ‘Minis-
try of Health’), person names, quantities (e.g. ‘2′), etc.

Regardinggeographical entities in onlinenews, it is important to dis-
tinguish: (i) geographic entity extraction and resolution from (ii) iden-
tification of the event-related location. Geographic entity extraction and
resolution aim at correctly extracting and identifying all locations froma
text.

The dictionary-based approach involvesmatching terms from a doc-
ument with a list of words to extract entities from texts. Geographical
dictionaries are usually called gazetteers. Some dictionaries can have
an ontological structure rather than a simple list of terms. Ontologies
aim at modeling the relations between entities (Guarino et al., 2009).
For instance, in the GeoNames ontology (i.e. gazetteer), spatial entities
are structured into different hierarchical classes identified by a letter,
with each of the letters corresponding to a specific category (e.g. for ad-
ministrative borders). In the health domain, an ontology can represent
the causality relationships between a disease and a pathogen
(Chanlekha et al., 2010).

To overcome the rigidity of the dictionary-based approach, another
approach consists of considering NER as a classification task, where
the type of entity is the label to assign. Extraction rules can be generated
by hand or automatically. The method of the latter case relies on ma-
chine learning trained onmanually annotated data. Conditional random
fields (CRF) is among the most prominent classifier used for NER
(Lafferty et al., 2001), at the core of well-established pre-trained NER
tools, including StanfordNER (Manning et al., 2014) and NLTK (Bird
and Loper, 2004). This approach is designed for sequential data: CRFs
predict the probability of the output sequence according to a given
input sequence (Song et al., 2019).

The classification approach is particularly suitable for misspelt loca-
tions or texts short in length, such as tweets. The gazetteer lookup suf-
fers from low precision due to irrelevant matches (Inkpen et al.,
2017). While classifier-based approaches achieve good results, they
are limited to the predefined categories upon which they are trained,
i.e. nonspecific domain entities (dates, locations, etc.). Recently, neural
network training algorithms have shown great success in several NLP
tasks, including named entity recognition. These models have achieved
state-of-the-art results while alleviating the burden of the amount of
feature pre-processing (Chiu and Nichols, 2016). The RNN-based
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algorithm from spacy package allows users to add new types of entities
to NER algorithms by training its model on annotated datasets
(Honnibal and Montani, 2018).

2.2.2. Domain non-specific entities
HealthMap extracts locations using a dictionary of 2300 location-

place patterns. The extraction is consolidated with heuristics to infer
people's job titles and full names as well as to decipher the acronyms
of organisations. Redundant locations are further filtered out based on
container relationships by retaining the highest granular level of infor-
mation. For instance, if ’Boston’ and ‘Massachusetts' are identified as lo-
cations, ‘Massachusetts' is eliminated (Freifeld et al., 2008). PADI-web
extracts locations by matching the text with GeoNames (Ahlers,
2013), and identifies dates using the HeidelTime rule-based system
(Strotgen and Gertz, 2010). GPHIN extracts several domain-unspecific
entities (e.g. person names, organisations and locations) with the
classifier-based Stanford CoreNLP NER. AquaticHealth only extracts lo-
cations using the Alchemy Location Extraction application program-
ming interface (API) developed by IBM. Users can further manually
add or refine locations from a report (Lyon et al., 2013).

2.2.3. Thematic entities
In all EBS systems, thematic entity extraction is dictionary based. The

lists used are either external knowledge resources (GPHIN) ormanually
built by domain experts (AquaticHealth.net, PADI-web, HealthMap,
MedISys, BioCaster). GPHIN extracts medical entities (i.e. syndromes
and disease vectors) by combining UMLS and expert heuristics. A
hand-curated list of frequent false positive terms is applied to filter
out irrelevant terms. All EBS systems extract at least the disease name.
GPHIN, MedISys, BioCaster and PADI-web extract symptoms. PADI-
web also detects the host species and the number of cases using regular
expressions. Both MedISys and BioCaster use their own ontologies to
extract both thematic and domain-nonspecific entities (Collier et al.,
2007; Ralf et al., 2008). The multilingual BioCaster ontology (BCO) con-
tains 18 classes encompassing both epidemiological concepts (e.g. virus,
symptom) and generic concepts (e.g. locations) (Kawazoe et al., 2008;
Kawazoe et al., 2006). Ontologies dedicated to the agriculture domain
can be used (Drury et al., 2019).
2.3. Entity normalisation and linking

2.3.1. Domain non-specific entities
Mapping locations to an external gazetteer has several advantages,

as it allows: (i) geocoding to map the detected location via latitude-
longitude coordinates, (ii) inferring parent-child relationships between
different granularity levels to group synonymous mentions or to syn-
thesise local information from a global perspective (e.g. at the country
level), (iii) geotagging a document to improve information retrieval
from EBS databases. Both PADI-web and GPHIN detect geographical en-
tities with the GeoNames gazetteer. In PADI-web, location mapping is
merged with the entity extraction step described above, while these
twophases are separate inGPHIN. Using a classification-based approach
before matching with an external knowledge resource reduces geo-
graphical and non-geographical ambiguities when a noun is the same
as an existing location name. For instance, the term ’More’may errone-
ouslymatch the city ofMore in England in the PADI-web pipeline. How-
ever, in both cases, a place name has multiple gazetteer entries, thus
creating geographical-geographical ambiguities. In GPHIN, such issues
are resolved through heuristic rules that takewhere an article was pub-
lished into account, but further details on the procedure are not avail-
able. PADI-web does not address this problem, and all entries are
retained. In AquaticHealth.net, locations are geocoded using the Google
Maps API so that reports can be presented on a Google Map on the sys-
tem's website.
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2.3.2. Thematic entities
Thematic entities are usually normalized to their canonical form (e.g.

disease acronyms are converted into the full disease name). GPHIN pro-
vides a link between the detected entities and UMLS terminology and
definitions. BioCaster Ontology provides access to term definitions, syn-
onyms and translations in eight languages, along with a link to medical
ontologies (including ICD-10, MedDRA, MeSH and SNOMED-CT)
(Collier et al., 2008).

2.4. Event extraction

Event extraction methods have been extensively studied in many
domains such as business and financial (Du et al., 2016), biomedical
(Zhu and Zheng, 2020), and outbreak-event detection (Piskorski et al.,
2011) domains. (Xiang and Wang, 2019) propose a comprehensive
and synthetic survey of event extraction methods. Briefly, they include
pattern-based methods, machine learning methods (supervised or
semi-supervised), deep learning methods, and unsupervised methods.

In the studied EBS systems, HealthMap, PADI-web, BioCaster and
MedISys include an event extraction step, all of which rely on a different
approach.

2.4.1. Unsupervised approach
HealthMap event extraction is unsupervised, i.e. it does not train any

event extraction models. Typically, in the unsupervised approach, the
detection of triggers and arguments is based onword distributional rep-
resentations. In HealthMap, the event mention and trigger detection
steps are ignored. Instead, the approach relies on the document struc-
ture, based on the hypothesis that the most relevant information (i.e.
event attributes) appears at the beginning of a news report. Diseases
and locations are first searched in the title, then in the document head-
lines, and finally in the full content. If the algorithm cannot extract rel-
evant elements from these three levels, the name of the online news
source is used instead. This last step relies on the assumption that
news articles that do not contain any specific location refer to a place
near the publication source. Erroneous extractions are further corrected
by analystswhen necessary (Brownstein et al., 2008). This approach de-
creases the risk of false-positive extraction (i.e. extraction of locations
that are not true event attribute). Two shortcomings should be noted:
the spatial granularity is reduced since the attribute extraction stops
at the first entity detected, and also, this approach cannot address
cases of news articles containing several events.

2.4.2. Pattern-based approach
Both MediSys and BioCaster rely on pattern-based methods, which

were the earliest approaches proposed for event extraction. They con-
sist of matching text with specific event templates. Patterns are con-
structed manually or automatically. Manual event construction
typically relies on domain expert proposals, thereby achieving high ac-
curacy. However, manual construction is time-consuming, and expert
bias can lead to a lack of recall. A weakly-supervised method or
bootstrapping can automatically generate patterns from a pre-
classified training corpus or seed patterns. In MediSys, event extraction
is performed by the Pattern-based Understanding and Learning System
(PULS) developed at the University of Helsinki. PULS relies on a cascade
of patterns applied to each news article's sentence structure to extract
the event attributes. For instance, the pattern in Fig. 1 uses both syntac-
tical and semantic information of the sentence.

This pattern matches a noun phrase (NP) of semantic type (i.e. ‘dis-
ease’) with a verb phrase (VP) headed by the verb ‘kill’ (or its synonyms
in the ontology) and has the adverbial phrase ‘so far’, etc. The square
brackets indicate an optionalmatch. If the location is omitted in the sen-
tence, it is inferred from the surrounding context. Verb phrases are not
rigid and allow the presence of modifier elements, such as an auxiliary
verb (e.g. ‘has') or adverb (e.g. ‘so far’) (Steinberger et al., 2008). PULS
implements weakly-supervised learning to reduce the amount of

http://AquaticHealth.net
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Fig. 1. Pattern associated with an event.
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manual labour as far as possible by automatically learning new patterns
via bootstrapping (Grishman et al., 2002).

BioCaster event extraction uses a simple rule language (SRL), in-
spired by the so-called declarative information analysis language
(DIAL) (Feldman et al., 2001). SRL creates sophisticated matching pat-
terns combining entity classes, string literals, regular expressions, entity
types including verbs of infection, common victim expressions, occupa-
tion names, etc.

Several machine-learning and deep learning-based methods have
been proposed for event extraction (Margineantu et al., 2010). RNN-
basedpre-trainedmodels, known asword embeddingmodels, are capa-
ble of capturing the meaning of terms depending of their context (i.e.
their surrounding words) (Mikolov et al., 2013) or GloVe (Pennington
et al., 2014). Such models can be integrated into event extraction pipe-
lines, surpassing most existing methods (Yang et al., 2019). Word em-
bedding models have yet been applied to several linguistic tasks in the
disease surveillance domain, including disease taxonomy development
(Ghosh et al., 2016), epidemiological feature extraction from WHO re-
ports (Ghosh et al., 2017) and veterinary necropsy report classification
(Bollig et al. (2020)). To our knowledge they are not yet implemented
in any operational EBS system for animal health surveillance.

The PADI-web pipeline is based on four steps (i.e. data collection,
data processing, data classification, and information extraction) sum-
marized in Fig. 2. The extraction module aims at identifying disease,
host and location which are the attributes of an event. The aim of this
paper is to identify relevant associations between elements using unsu-
pervised approaches for highlighting relevant events.

3. Event extraction approach based on an unsupervised approach

In this section, we define the event extraction task as detecting pairs
of epidemiological entities from textual data (e.g. a disease nameand lo-
cation). Two entities form an event-related pair if they are attributes of
the same event. Event-related pairs of attributes are hereafter referred
to as”relevant pairs”.

To address this issue, we propose association mining methods (i.e.
unsupervised machine learning approaches) in order to extract entity
co-occurrence in news articles. More precisely, our approach involves
two steps: (i) the detection of pairs of entities based on their relative po-
sition in the news article content, and (ii) their ranking based on two
state-of-the-art term association measures (pointwise mutual informa-
tion and Dice coefficient). Our contribution addresses the following
questions:

1. What are the best co-occurrence parameters to select relevant pairs
of entities from a corpus of news articles?
Fig. 2. PADI-We
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2. What is the impact of two associationmeasures for the ranking of rel-
evant pairs of entities?

3. How can contextual aspects be integrated for the rankingmeasures?
4. Does the generalisation of spatial entities improve the retrieval of rel-

evant pairs?

Below we outline the proposed statistical approach and further de-
scribe the protocol and corpus used for the evaluation.

3.1. Detection and ranking of pairs of entities

The computation of the association strength between two or
more words (i.e. co-occurrence) is applied in several tasks, such as
the discovery of association rules (Blanchard et al., 2005), feature
extraction (Torkkola, 2003) and document summarization (Aji,
2012). Our objective is to identify the best parameters regarding
entity co-occurrence and spatial hierarchy to improve the retrieval
of relevant pairs, using the Dice coefficient and pointwise mutual
information. In the following, pointwise mutual information will
be referred to as Mutual Information (MI) for reason of simplifica-
tion. MI has been used to discover and cluster words specific to
events in a stream of tweets (Preotiuc-Pietro et al., 2016). Our ap-
proach is based on the same rationale. Rather than taking all the
words into account, we compute the association measure only be-
tween predefined epidemiological entities (i.e. disease, host and lo-
cation). Several other text-mining association metrics could be
applied to our task, such as Jaccard, Cubic MI (Niwattanakul et al.,
2013) or other measures such Bayes Factor, as applied in the data
mining domain (Lallich et al., 2007). However, we opted to focus
on Dice and MI due to their simplicity, interpretability, and highly
different behaviour regarding co-occurrence counts (Roche and
Prince, 2010).

Mutual Information (MI - Eq. (1)) measures the relative difference
between observed word co-occurrences, and their expected co-
occurrence assuming independence (Church and Hanks, 1989). MI is
defined as the probability that two words co-occur in the same context
(the context concept is discussed below), divided by the product of the
probabilities of each word occurrence in a corpus.

MI ¼ log 2 �
Pxy

Px � Py
ð1Þ

where Px is the probability of occurrence of x, Py is the probability of
occurrence of y, and Pxy is the probability of co-occurrence of x and y
(joint probability). Mutual Information is sensitive to rare and specific
co-occurrences (Roche et al., 2004).
b pipeline.
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Dice coefficient (Eq. (2)) is also based on the joint probability, di-
vided by the sum of the individual occurrence probabilities. Dice is
less sensitive to low-count co-occurrences (Smadja et al., 1996).

Dice ¼ 2� Pxy

Px þ Py
ð2Þ

In both Eqs. (1) and (2), Px ¼ Nx
N , Py ¼ Ny

N and Pxy ¼ Nxy

N , whereNx is the
number of occurrences of x,Ny is the number of occurrences of y andNxy

is the number of co-occurrences of x and y. Moreover, as both metrics
are used in a ranking purposewhile the log function is a strictly increas-
ing function, we can simplify Eqs. (1) and (2) as:

MI ¼ Nxy

Nx � Ny
ð3Þ

Dice ¼ Nxy

Nx þ Ny
ð4Þ

The results of both metrics heavily depend on the context chosen to
compute the co-occurrence between two words. In our approach, this
context controls the detection of pairs of features. In this paper, we pro-
pose three definitions of co-occurrence contexts, hereafter referred to
as”levels”:

1. At the document-level: Nxy is the number of documents in which x
and y co-occur;

2. At the sentence-level: Nxy is the number of sentences in which x and
y co-occur;

3. At theword-level:Nxy is the number of times that x and y co-occur in
a w word window.

Word and sentence levels rely on two parameters, i.e. the window
size and the window side. The window size corresponds to the number
ofwords (or sentences) separating two entities. Thewindow side canbe
positive (y appears after x), negative (y appears before x) or bi-
directional (y appears before or after x). For both disease-location and
disease-host pairs, disease entities are considered as ”pivot”. Thus, a
positive (resp. negative) window of w words corresponds to searching
for another entity within the w words on the right (resp. on the left)
of the disease feature. A bilateral window consists of searching for an
entity on the right or left of a disease feature in a sliding window of w
words.

We illustrate the influence of the window parameters on pair detec-
tion with an example extracted from a news article.2 Location features
are in bold while disease features are in italic (Fig. 3).

When setting the word window size at 15 words and the sentence
window size at 1 sentence, 3 the disease-location pairs are:

– At the document level: {African swine fever, Więckowice}, {African
swine fever, Poznań}, {African swine fever, Poland}, {African swine
fever, Germany};

– At a word level, right side, window of 15words: {African swine fever,
Więckowice}, {African swine fever, Poznań};

– At a word level, left side, window of 15 words: no co-occurence;
– At aword level, both sides, windowof 15words: {African swine fever,

Więckowice}, {African swine fever, Poznań};
– At the sentence level: {African swine fever, Więckowice}, {African

swine fever, Poznań}, {African swine fever, Poland}, {African swine
fever, Germany}.
2 https://www.theguardian.com/environment/2020/apr/08/african-swine-fever-
outbreak-reported-in-western-poland

3 These parameters were chosen as an example, but a range of values are evaluated in
Section 4.3.
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3.2. Spatial generalisation

As illustrated in the previous example, spatial information can be
provided at different granularity levels (e.g. city and administrative
level). These levels generate different pairs of entities while repre-
senting the same location. Thus,we evaluated the impact of generalising
the spatial entities on different granularity levels. More precisely, based
on the GeoNames hierarchy, we converted the location entities into
lower granular levels (e.g. converting ”Allier” into ”France”), hereafter
referred to as ”generalisation”. We evaluated three generalisation
levels:

– Level 0: No generalisation. This level corresponds to raw location
values without applying any generalisation. It includes spatial enti-
ties with heterogeneous granularity levels (e.g. cities, villages, coun-
tries, etc.)

– Level 1: Administrative generalisation. This level corresponds to the
conversion of spatial features into their first administrative level.
This conversion is applied if the initial spatial granularity is higher
than the first administrative level. This level thus still includes het-
erogeneous granularity levels, such as administrative regions and
countries.

– Level 2: Country generalisation. This level corresponds to the con-
version of spatial features into their country. This last level only con-
tains countries and supranational entities (e.g. Asia and the
European Union).

We illustrate the impact of generalisation on co-occurrence weights
with the previous example (Fig. 4):

At level 1, all locationswith a lower granularity than the first admin-
istrative level (i.e. Więckowice and Poznań) are converted into their
administrative level (Greater Poland). At level 2, all locations are con-
verted into their country level, which increases the joint probability of
the pair {African swine fever, Poland}:

– Level 0: {African swine fever, Więckowice}: Nxy = 1, {African swine
fever, Poznań}: Nxy = 1, {African swine fever, Poland}: Nxy = 1,
{African swine fever, Germany}: Nxy = 1;

– Level 1: {African swine fever, Greater Poland}: Nxy = 2, {African
swine fever, Poland}: Nxy = 1, {African swine fever, Germany}:
Nxy = 1;

– Level 2: {African swine fever, Poland}: Nxy = 3, {African swine
fever, Germany}: Nxy = 1.

The combination of association measures (Eqs. (3, 4)), co-
occurrence contexts and spatial generalisation provides a mixed mea-
sure to evaluate both the detection quality and the ranking of relevant
pairs:

– The window parameters control pair detection;
– The associationmeasure (MI or Dice) controls the ranking of the de-

tected pairs;
– For disease-location pairs, the spatial generalisation level jointly

contributes to the detection of a pair and its ranking.

In the following section,we describe the evaluation protocol and the
corpus used for the experiments.

4. Experiments

To evaluate the proposed approach, we first annotated a corpus of
news articleswith events (Section 4.1).We further used the list of anno-
tated events as a gold-standard to automatically determine the rele-
vance of the retrieved pairs of entities (Section 4.2). The quality of the

https://www.theguardian.com/environment/2020/apr/08/african-swine-fever-outbreak-reported-in-western-poland
https://www.theguardian.com/environment/2020/apr/08/african-swine-fever-outbreak-reported-in-western-poland


Fig. 3. A news article content extract (The Guardian, 8 April 2020).

Table 1
Descriptive statistics of the number of articles (Narticle) per event and number of events
(Nevent) per articles in the event corpus.

Min Median Mean Max

nevent per article:
Articles with Nevent > = 1 (n = 229) 1 2.0 5.1 208
Articles with Nevent > = 2 (n = 127) 2 3.0 8.4 208

Narticle per event:
Events with Narticle > = 1 (n = 771) 1 1.0 1.5 11
Events with Narticle > = 2 (n = 230) 2 3 2.8 11
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ranked lists of pairs was evaluated using specific ranking evaluation
metrics (Section 4.3).

4.1. Event corpus

We used a publicly available annotated corpus of 438 documents
(i.e. news articles) related to animal disease events (either describing
a recent outbreak or providing complementary insight regarding con-
trolmeasures, economic impacts, etc.) (Rabatel et al., 2019). This corpus
was initially designed for training and evaluating the PADI-web infor-
mation extraction module. The corpus contains information about the
news article itself (publication date, title, content, URL, etc.), as well as
epidemiological features (locations, diseases, hosts, dates and symp-
toms), which were first automatically identified by data mining and
rule-based approaches. A veterinary epidemiologist and a computer sci-
entist subsequently labelled each candidate as correct or incorrect. For
each document and type of feature (i.e. disease, host, date and location),
only candidates manually labelled as correct in the corpus were
retained for analysis (including the geographical-geographical disam-
biguation of locations).

An epidemiologist read each of the 438 documents to detect all dis-
ease events contained within them. To ensure consistent and reproduc-
ible annotation, events found in the documents were compared to a
gold-standard database, i.e. the Emergency Prevention System for Prior-
ity Animal and Plant Pests and Disease (EMPRES-i) database. EMPRES-i
is a publicly available animal disease information system created by the
Food and Agriculture Organization of the United Nations (FAO) (Martin
et al., 2007). Among other sources, EMPRES-i stores the official notifica-
tions from the World Animal Health Organization (OIE). Each detected
event was labelled using the unique EMPRES-i identifier. When the ep-
idemiologist could not link an event to an official one, she created a new
event identifier and manually recorded the epidemiological features
(location, date, disease and host). The final corpus annotated with the
event identifiers is hereafter referred to as the event corpus.

The number of news articles containing at least one event repre-
sented 53% of the corpus (n = 229/438). Among them, 52% (n = 127/
229) reported several events, with a median number of 3 events
(Table 1). One news article contained amaximumnumber of 208 events
due to the reporting of 200 avian influenza outbreaks in Taiwan on 28
January 2015.

Overall, 771 events were detected in the corpus. Among them, 70%
(n= 541/771) were reported in a single news article. The events pres-
ent in several news articleswere reported in up to 11news articles (me-
dian number of 3 news articles).
Fig. 4. Generalisation levels of spatial entities. The level of eac
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In the following experiments, we selected only news articles con-
taining at least one event (a corpus of 229documents). Even if stillmod-
est in size, our corpus is highly specialized regarding both its domain
(i.e. animal health) and its nature (i.e. online news articles).

4.2. Relevant pairs

From the annotated event corpus, we canmap each publication date
datei with the set of its corresponding events (i.e. the events annotated
in the news articles published on datei). Sets including the publication
dates and their epidemiological attributes are used as gold-standard
lists to evaluate the relevance of extracted pairs of features. We created
a gold-standard list specific to each type of pairs, as follows:

1. We aggregated news articles from the event corpus by publication
date;

2. For each distinct date datei, we extracted all events eventi labelled in
the set of news articles published on datei (gold-standard list);

3. For each event eventj, we retrieved its disease (diseasej), host (hostj)
and country (countryj);

4. The gold-standard lists include all of the formed datei, diseasej,
countryj and datei, diseasej and hostj sets.

Identifying the extracted events for each publication date was re-
quired to avoid false positive matches between retrieved pairs and the
gold-standard lists. As the event corpus covers a 2-year period, a pair
of features extracted at datej could erroneously correspond to a pair
corresponding to a different event.

The disease-location and disease-host gold-standard lists contained
248 and 228 sets, respectively. Each retrieved pair extracted from a set
of articles at date datei was relevant if it matched at least one pair
from the gold-standard list corresponding to date datei (Fig. 5). To
match the gold-standard terms (disease names, species names and
h location (based on the GeoNames hierarchy) is shown.



Fig. 5. Steps to evaluate the relevance of the disease-location pairs extracted from a news article. After extraction (1), disease and location features are normalized (2). A pair present in the
gold-standard list is considered relevant (3).
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country codes from the EMPRES-i database), diseases and hosts were
normalized to their canonical form using a manually built dictionary,
and locations were normalized to their country code.

Note that the normalisation of locations differs from the spatial gen-
eralisation described in Section 3.2. Normalisation aims at matching a
pair with the gold-standard list features. Locations from the same coun-
try are not aggregated and are considered as two distinct values in the
pair extraction step. In the example from Fig. 5, ”Henan” and”China”
are considered as two distinct values, even though they are normalized
to the same country code.

4.3. Evaluation

4.3.1. Pair extraction and ranking
We extracted all the disease-host and disease-location pairs using

the co-occurrence parameters described in Section 3.1. The word win-
dow size ranged from 1 to 200 words on each side (left, right, and
both). This window was chosen by (Piskorski et al., 2011) for an event
extraction task, assuming that most relevant information would be
present in the first 200 words. The sentence window size ranged from
0 to 20 sentences per side. We ranked the retrieved pairs in decreasing
order based on their Mutual Information or Dice values. We evaluated
the quality of the ranked list according to the parameters and associa-
tionmeasures' ability to assign a better rank to relevant pairs than to ir-
relevant ones. The ranking was evaluated in terms of normalized
precision (Pnorm), normalized recall (Rnorm) and F-measure (Fnorm).
Rnorm and Pnorm are based on the difference between the sum of ranks
of R relevant pairs obtained by a ranking function, and the sum of
ranks of an ideal list, where all relevant pairs are retrieved before all
the irrelevant pairs (Kishida, 2005; Salton and Lesk, 1968):
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Rnorm ¼ 1−
1

R∗ N−Rð Þ �∑
R

i¼1
ri−∑

R

i¼1
i ð5Þ

Pnorm ¼ 1−
1

log C N,Rð Þð Þ �∑
R

i¼1
log rið Þ−∑

R

i¼1
log ið Þ ð6Þ

where N is the total number of pairs, ri is the rank of the ith relevant pair
in the ordered list, and C(N,R)= N!

R!� N−Rð Þ!.
Graphically, Rnorm corresponds to the area under curve (AUC) of the

receiver operating characteristics (ROC) curve, or AUC. Fig. 6 provides
an example of how ROC curves work regarding ranking evaluation.

Let R1 and R2 being the two ranked lists of pairs Pi:

• R1 = P2, P1, P4, P6, P5, P3
• R2 = P3, P4, P6, P5, P1, P2

For each relevant pair (in bold), the curve increases oneunit in theY-
axis direction. For each irrelevant pair, the curve increases one unit in
the X-axis direction. Consequently, the AUC of the best ranking function
(here, R1) is greater than that of a function giving a poorer ranking
(here, R2).

The normalized F-measure Fnorm is the harmonic mean of Rnorm and
Pnorm (Eq. (7)).

Fnorm ¼ 2� Rnorm � Pnorm

Rnorm þ Pnorm
ð7Þ

We also evaluated the quality of the 5 first pairs retrieved by calcu-
lating the precision at k (P @ k), recall at k (R @ k), and the F-measure
(F @ k), with k=5. We chose this threshold because it provides the



Fig. 6. ROC curves obtained by two different rankings, R1 and R2. The pairs in bold correspond to the relevant pairs, and the blue areas correspond to the AUC.

Table 2
Performance of MI and Dice to retrieve and rank relevant disease-host pairs at document
level, based on Pnorm, Rnorm and Fnorm.

Mutual information Dice

Rnorm Pnorm Fnorm Rnorm Pnorm Fnorm

Document level 0.79 0.80 0.80 0.83 0.85 0.84
Sentence level 0.78 0.81 0.80 0.84 0.88 0.86
Word level 0.82 0.85 0.87 0.90 0.92 0.91

For sentence-level and word-level windows, the performance corresponds to the best
values among the range of window sizes and sides.

Fig. 7.Performance ofMI andDice to retrieve and rank relevant disease-host pairs in terms
of Fnorm, depending on the window parameters used for the co-occurence count.
For the left side, distances were converted into their positive values. Horizontal lines
correspond to the Fnorm values obtained at the document-level for MI (orange line) and
Dice (blue line). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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local ranking quality, and 95% of the sets of relevant pairs had 1 to 5 el-
ements (pairs).

4.4. Results

4.4.1. Disease - host pairs
Table 2 summarises the best results obtained among all the window

parameters evaluated and the document-level performance. The word-
level window outperformed document-level and sentence-level win-
dows in terms of normalized precision and recall. The highest precision
and recall values were obtained with Dice using a window of 26 words
on the right side (Rnorm=0.90, Pnorm=0.92). The performance obtained
with Dice values exceeded that with the MI values.

The maximum recall at 5 (R@5) ranged from 0.89 to 0.92, while the
precision at 5 (P @ 5) reached a maximum value of 0.88 (Table 3). The
word-level obtained the best recall-precision balance (F @ 5 = 0.88).

Fig. 7 shows the normalized F-measure (Fnorm) among the word
window sizes and sides. The horizontal lines correspond to the Fnorm
values obtained at the document level. At a given window size and
side, Dice systematically outperformed MI. For both metrics, we
achieved better Fnorm values using a right or bilateral window, clearly
outperforming the left-side windows. For all curves, the slope rapidly
increased when the word distances increased from 1 to 100. The MI
Table 3
Performance of MI and Dice to retrieve and rank relevant disease-host pairs, based on P@
5, R @ 5 and F @ 5.

Mutual information Dice

R @ 5 P @ 5 F @ 5 R @ 5 P @ 5 F @ 5

Document level 0.91 0.81 0.86 0.92 0.81 0.86
Sentence level 0.89 0.85 0.87 0.90 0.85 0.87
Word level 0.90 0.84 0.87 0.91 0.84 0.88

For sentence-level and word-level windows, the performance corresponds to the best
values among the range of window sizes and sides.
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performance decreased with window sizes of more than 100 words.
Dice exhibited a different behaviour, where the performance remained
stable among all the window sizes when the values peaked (100 to
200 words).

In contrast to the global ranking, Dice and MI obtained similar per-
formance in retrieving the first five pairs (Fig. 8). The F-measure behav-
iour was identical to the global ranking, with right and bilateral sides
obtaining the best results while remaining stable among the window
sizes.

4.4.2. Disease-location pairs
The maximal normalized F-measure values for disease-host pairs

ranged from 0.62 (document-level, MI) to 0.88 (word-level, Dice)
(Table 4). At the document level, the generalisation at the administra-
tive level (level 1) slightly improved performance. The second level
(country level) improved the Dice ranking's recall and precision at the
word level (improving the F-measure from 0.81 to 0.88). However, it
decreased the MI ranking performance (at the word level, the F-
measure decreased by 0.11).

Fig. 9 highlights the different behaviours of Dice and MI regarding
the generalisation level. Without generalisation (level 0), the best F-
measures were obtained for both metrics with a window of 25 words



Fig. 8.PerformanceofMI andDice to retrieve and rank relevant disease-host pairs in terms
of F @ 5, depending on the window parameters used for the co-occurence count.
For the left side, distances were converted into their positive values. Horizontal lines
correspond to the P@5 values obtained at the document level for MI (orange line) and
Dice (blue line). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 4
Performance of MI and Dice based on Pnorm, Rnorm and Fnorm to retrieve and rank relevant
disease-location pairs at the document level according to the spatial generalisation level.

Mutual information Dice

Generalisation Rnorm Pnorm Fnorm Rnorm Pnorm Fnorm

Document-level Level 0 0.73 0.73 0.73 0.75 0.76 0.76
Level 1 0.76 0.76 0.76 0.77 0.80 0.78
Level 2 0.64 0.60 0.62 0.81 0.82 0.81

Sentence-level Level 0 0.73 0.74 0.74 0.75 0.75 0.75
Level 1 0.73 0.74 0.74 0.75 0.76 0.75
Level 2 0.63 0.66 0.64 0.62 0.66 0.64

Word-level Level 0 0.72 0.78 0.75 0.78 0.84 0.81
Level 1 0.71 0.74 0.73 0.77 0.82 0.80
Level 2 0.68 0.73 0.71 0.88 0.88 0.88

Level 0: no generalisation, level 1: first generalisation level, level 2: second generalisation
level.

Fig. 9. Performance of MI and Dice to retrieve and rank relevant disease-location pairs in
terms of Fnorm depending on the window parameters used for the co-occurrence count
and two spatial generalisation levels.
For left side, distances are converted to their positive value. Horizontal lines correspond to
the normalized F-measure values at document-level. Level 0: no generalisation, level 2:
generalisation at the country level.
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(on both sides), and the scores slightly decreased with the largest win-
dow sizes. At the country level, the MI F-measure remained below 0.70
while that of Dice ranged from 0.80 to 0.88. The Dice ranking reached
maximum values between 100 and 125 words (both sides) and
remained increased for all window sizes.

The ranking quality at 5 was sensitive to the word windows regard-
ing both the level and generalisation (Fig. 10, Table 5), with the best F-
measures reached within a 50-word window.
5. Discussion

5.1. Behaviour of statistical measures

The statistical approaches used in this paper (i.e. Dice and MI) de-
tected event-related pairs of epidemiological features with a good
trade-off between precision and recall. Our results showed that using
a window of words outperformed document-based and sentence-
based methods while reducing the probability of detecting false pairs.

Our results indicated thatMutual Informationwas less adapted than
the Dice coefficient for ranking pairs of features in the event extraction
framework. This was especially true when generalising spatial features
and increased occurrence counts. Besides, Dice ranking was found
more resistant to larger word windows, in line with the findings of
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(Bouma, 2009), who proposed to add a normalisation factor to the MI
formula to address low-count issues. We believe that MI would be
more relevant for rare pair detection (i.e. weak signals) but requires
higher manual curation to avoid false-positive extraction pairs.

MI tends to extract rare and specific co-occurrences that is
highlighted in several studies (Thanopoulos et al., 2002) (Agnihotri
et al., 2016). Some variants have been proposed, they consist in intro-
ducing factors to the numerator to empirically correct the bias of MI
that extracts low frequency events (Roche and Prince, 2010; Role and
Nadif, 2011).Dice coefficient does not favor numerator as these variants
ofMI do but denominator value is less important for computing the sum
of both elements.

5.2. Specificities of the corpus

The use of the BERT (Bidirectional Encoder Representations from
Transformers) model for event extraction could represent an attractive
future work as discussed in Section 6. But the use of pre-trained lan-
guage models has some limitations with respect to the specific domain
addressed in this paper. For example, we studied the use of embedding
methods like theWord2vec model that consists in a 2-layer neural net-
work. We used a pretrained corpus (i.e. Google News corpus with 3



Fig. 10. Performance of MI and Dice to retrieve and rank relevant disease-location pairs in
terms of F@5 depending on the window parameters used for the co-occurrence count and
two spatial generalisation levels.
For the left side, distances are converted into their positive value. Horizontal lines
represent the F @ 5 values at the document level. Level 0: no generalisation, level 2:
generalisation at the country level.

Table 5
Performance of MI and Dice based on P @ 5, R @ 5 and F @ 5 to retrieve and rank relevant
disease-location pairs at the document level according to the level of spatial
generalisation.

Mutual information Dice

Generalisation R @ 5 P @ 5 F @ 5 R @ 5 P @ 5 F @ 5

Document-level Level 0 0.89 0.78 0.83 0.95 0.77 0.85
Level 1 0.90 0.77 0.83 0.95 0.77 0.85
Level 2 0.95 0.67 0.79 0.98 0.68 0.80

Sentence-level Level 0 0.90 0.85 0.87 0.89 0.86 0.87
Level 1 0.90 0.85 0.88 0.90 0.85 0.88
Level 2 0.93 0.76 0.84 0.93 0.76 0.84

Word-level Level 0 0.91 0.85 0.88 0.91 0.85 0.88
Level 1 0.91 0.80 0.84 0.92 0.80 0.85
Level 2 0.84 0.87 0.85 0.85 0.86 0.86

Level 0: no generalisation, level 1: first generalisation level, level 2: second generalisation
level.
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billion words) for a classification task (e.g. classification of sentences
based on 6 classes: Descriptive epidemiology, Protection and control
measures, Concern and risk factors, Transmission pathway, Economic
and political consequences and Distribution) using supervised machine
learning techniques. The pre-trainedWord2vecmodels (CBOW)did not
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improve the resultswith the best classification algorithm (i.e.multilayer
perceptron): the accuracy was 0.69 with pretrained models and 0.74
using a specialized corpus (i.e. PADI-web data with 33 million words)
for the learning step. Some details of the experiments conducted are
given in (Valentin, 2020). These results highlight the limitation of trans-
fer learning approaches. Evenwith this limitationwe plan to investigate
other methods that consists in generating labelled data by using the in-
formation about the role (Yang et al., 2019).

5.3. Disease-location detection and retrieval

The results obtained for retrieving disease-location pairs without
any generalisation suggested that relevant spatial features tended to
occur within a small window around the disease feature (25 words, bi-
lateral window). Beyond this window range, the global ranking perfor-
mance decreased. However, global ranking with the Dice coefficient
after country-level generalisation exhibited a different behaviour, i.e. re-
maining stable and close to its maximum value throughout thewindow
size range. Event-related spatial features are provided at different gran-
ularity levels. Spatial generalisation allowed us to aggregate related lo-
cations in single features, thus increasing event-related pairs' weights.
Moreover, spatial generalisation overcomes possible location extraction
and disambiguation errors. For instance, news articles often refer to
where the sample analyses are performed, thus citing a laboratory loca-
tion. If the laboratory-based city is extracted as an event-related candi-
date, using the city feature itself would generate a false alarm. This issue
may be overcome by converting the location value into its country,
which would lead to lower spatial precision. In the epidemic intelli-
gence framework, the country-level is acceptable for signal analysis,
but this approach may not relevant if fine-grained location extraction
is needed.

Several gold-standard disease-location pairs were not detected due
to a linkage between GeoNames and the Global Administrative Unit
Layers (GAUL) used by the EMPRES-i database. In the latter, Taiwan
and Hong Kong are considered distinct countries. On the contrary, the
GeoNames hierarchy considers them as administrative units of China.
(Claes et al., 2014) used a manual procedure to link both databases.

Manual analysis of irrelevant retrieved pairs showed that most of
them were due to multiple events, which no statistical approach
succeeded in separating.

5.4. Disease-host detection and retrieval

The detection and ranking of disease-host pairs achieved better re-
sults than the retrieval of disease-location pairs. The variation in the
word window had less impact than for the disease-location pairs. This
finding indicates that the precision also remained high when the
highest recall valuewas achieved. This resultwas expected because the-
matic features are much less prone to ambiguity than spatial or tempo-
ral features.When additional eventswere present in a news article, they
were often summarized in a few sentences containing only the disease
and location, thereby reducing the probability of creating false
disease-host pairs. Several pairs were detected because irrelevant host
terms were extracted from two disease variants, i.e. “small ruminant
plague” and “cattle plague”. As these two expressions were not in the
dictionary, theywere not recognised as diseases, which led to erroneous
extraction of ”small ruminant” and ”cattle” as hosts. Both cases were
corrected by adding the new variants to the dictionary and recon-
ducting the experiments. Animal disease expressions are often com-
posed of several terms containing epidemiological entities such as
hosts and symptoms, so the information extraction performance (and,
in this particular case, the coverage of dictionary-basedmethods) is crit-
ical for event extraction.We observed that we did not achieve a recall of
1 when using the broader co-occurrence detection level (i.e. document
level). After manual investigation, we discovered that 5 news articles
did not contain any reference to a host. Four out of 5 news articles
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were about the foot-and-mouth disease in endemic areas, and the last
article referred to a suspected case of African swine fever. Such cases
were rare in the studied corpus. Still, it should be noted that the host at-
tribute is not necessarily communicated in news content, either because
the disease is yet well known (e.g. endemic disease in an area) or be-
cause the event is only a suspicion. The host is thus implied because
this information is secondarily compared to spatial features. This behav-
iour may bias models that determine news articles' relevance based on
the presence or absence of a host's name.

6. Conclusion and future work

This paper highlights that the detection of relevant epidemiological
entity association based on unsupervised approaches depends on the
textual context, i.e. the window used to retrieve the features in the
news. Restraining the context to a fixedwindow of words achieved bet-
ter results than retrieving all pairs occurring in a document. Association
measures, such as Dice andMutual Information, could also compute the
co-occurrence strength in a simple and interpretable way. Besides,
generalising the country-level spatial features enabled better discrimi-
nation (i.e. ranking) of relevant disease-location pairs.

A comprehensive comparison of the state-of-the-art association
metrics could provide an extensive overview of their performance as
further work.

Before applying extractionmethods, expansion of text content could
be proposed using word embedding architectures like the BERT model.
BERT produces word representations that are dynamically informed by
the words around them (i.e. context dependent). This model achieved
new state-of-the-art results for several NLP tasks (Piskorski et al.,
2020; Torregrossa et al., 2021; Trieu et al., 2020).

Moreover, we would like to identify weak signals (i.e. weak pairs of
epidemiological information). This concept should be precisely defined
in event-based surveillance to formalise specific research questions and
assess adapted methods. Rare occurrences of event attributes, such as
disease-location pairs, are potential weak signals. They can also signal
an event that has not yet been confirmed at the national or international
level. In this context, a weak signal could be defined as a temporal
anomaly of the frequency of a term or an association of terms compared
to a baseline. Detection of weak signals by event-based systems could
consist of implementing alerts based on terms-weighted metrics
which take the temporal dimension into account.
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