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1.  Introduction
Fractures are ubiquitous in the Earth's crust. They strongly impact the mechanical stability, strength, and 
permeability of geological structures or rock masses and thereby play an essential role in many societally 
important processes in the upper crust as well as in the management of subsurface engineering operations. 
The most common are the so-called opening mode (extension or tensile/tension) fractures or joints. They 
often form regular sets of parallel, orthogonal, or more complex fracture networks. Because of their prac-
tical importance, notably for the oil and gas industry, joints have been extensively studied for more than 
a century (e.g., Pollard & Aydin, 1988), mostly in sedimentary basins composed of alternating layers with 
contrasted lithology (Figures 1a–1c) and hence mechanical properties. Particular attention has been paid 
to the joint spacing S or the ratio D of the fractured layer thickness T to S (D=T/S). The main practical 
aim has been to predict the fracture spacing at depth from bed thickness. The spacing of natural fractures 
cannot be observed directly in the subsurface, whereas the bed thickness can be defined from petrophysi-
cal well data or core analysis. These works stimulated research in rock/fracture mechanics and modeling 
(Bai & Pollard, 2000; Cherepanov, 1997; Gross et al., 1995; Guo et al., 2017; Hobbs, 1967; Ji et al., 1998; 
Li et al., 2012; Price, 1966; Schöpfer et al., 2011). Geological observations (e.g., Bogdanov, 1947; Engelder 
et al., 1997; Gross, 1993; Huang & Angelier, 1989; Ji et al., 1998; Narr & Suppe, 1991), mechanical analysis, 
and modeling (Bai & Pollard, 2000; Cherepanov, 1997; Gross et al., 1995; Hobbs, 1967; Ji et al., 1998; ; Li 
et al., 2012; Price, 1966) have shown that values of T and S are linearly related and ratio D commonly varies 
in a small range around 1. All this has been explained within the framework of a simple elastic analysis of 
the mechanical interaction between the layers (e.g., Bai & Pollard, 2000; Gross et al., 1995; Jain et al., 2007; 
Ji et al., 1998). However, several field studies revealed much higher D values and strongly nonlinear T(S) 
relations (Figure 1d) when sedimentary beds with large T (T>1−2 m) like in Figure 1c were included in the 
analysis (Ladeira & Price, 1981; McQuillan, 1973; Sagy & Reches, 2006). Based on the extensive data sets 
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Figure 1.  (a–c) Field examples of layered and fractured sedimentary rocks. (a) Alternating incompetent (mudrocks) and fractured competent (limestone) 
layers in Lilstock Bay, Somerset, UK (rock hammer for scale) from Schöpfer et al. (2011). (b) Marly shale and fractured limestone layers of different thicknesses 
in Aalenian rocks of Sainte Beaume Range, Provence, SE France. (c) Thick densely fractured (with D>>1) (Lamarche et al., 2012) Urgonian limestone layers; 
Cassis, Provence, SE France. (d) Field measurements of fracture spacing S in Asmari limestone layers in major folds in Zagros by McQuillan (1973) in the 
presentation of Ladeira and Price (1981). There are six data groups corresponding to different ranges of layer thicknesses T shown by vertical error bars. Ranges 
of S variation are also shown for each group with average values indicated by red circles. The blue line is the plot of function T=bS/(1−aS), which fits the 
modeling results reported here and is discussed below. (e) The same points as in (d) but plotted in the coordinates (D, T), where D=T/S. The blue line is a plot of 
D=aT+b, where coefficients a and b are the same as in (d): a=0.61 m−1 and b=0.18 m.
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from different tectonic settings, McQuillan (1973) and Ladeira and Price (1981) concluded that the T(S) re-
lation is quasilinear with a relatively shallow slope D of the T(S) curve only up to a certain T value of about 
1.5 m on average. At larger T, S increases very slowly with T (Figure 1d) or does not increase at all.

Ladeira and Price (1981) and Price and Cosgrove (1990) suggested that at large T, the fracture mechanism 
is not directly related to the layer interaction and is due to the elevated pore pressure that exceeds the com-
pressive least stress and allows the tensile failure. The near-constant S was explained by the fact the fluid 
pressure drops in the vicinity of the forming fracture. The formation of the next fracture could be possible 
only at a certain distance (constant for given conditions) where the fluid pressure is not affected by the for-
mation of the previous fracture. Other researchers did not take up this conceptual scenario. Neither were 
any other mechanisms proposed to our knowledge, and most of the studies were focused on the sedimenta-
ry sequences characterized by T values limited to several decimeters. Here we reproduce dependencies T(S) 
and D(T) like those in Figures 1d and 1e in three-layer numerical models and show that they are entirely (or 
at least mostly) due to the mechanical interaction between the layers. This study is based on theoretical and 
numerical models developed by Chemenda (2019). They are summarized in the next two sections where the 
modifications made for this study are shown.

2.  Constitutive Model
As in the previous numerical modeling studies (e.g., Bai & Pollard,  2000; Gross et  al.,  1995; Schöpfer 
et al., 2011), we investigate here three-layer 2-D models (Figure 2). Only the central layer (layer 2) can frac-
ture, whereas two others (layer 1 and 3) are purely elastic. The constitutive model for layer 2 includes the 
following composite yield function

F
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where Ft and Fs are the yield functions for the tensile and shear failure mechanisms, respectively; σt and 
σc are the tensile and unconfined compression strengths, respectively; σint is the abscissa of the intersec-
tion point of the envelopes Ft = 0 and Fs = 0 in the (σ1, σ3) space. We use a rock mechanics convention for 
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Figure 2.  Setup of 3-layer 2-D numerical models. (a) Series of alternating incompetent (pink) and competent (blue) layers. (b) An elementary (repeating) 
element of this series which corresponds to the complete three-layer modeling setup. (c) A half-symmetry modeling setup, with thicknesses of layers 1 and 
2 being T1/2 and T/2, respectively. (d) The attached two layers of the grid used to reduce the grid anisotropy that can influence the strain localization. Vx and 
Vz are the velocities applied in the corresponding directions to layers 1 and 3. Vx causes deformation and fracturing of layer 2 and Vz is to maintain constant 
average vertical stress at the horizontal model boundaries. The y-normal model boundaries are fixed in the y-direction. The models are prestressed in the y- and 
z-directions as described in the text. Layers 1 and 3 are purely elastic and layer 2 is elastoplastic.
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stresses:    1 2 3; the compressive stress is positive; all stresses are effective. The parameters σt, σc, and 
σint are functions of the accumulated inelastic volume strain εp

           
     

              

       

   

   

0 0 0 0 0
int int

0
int

, ,

0

p p p p p p p
t t c c

p p p p
t c

k if

if
� (2)

where ε0 is the εp value at which σt and σc reach zero during failure;       01 /p p ; σt
0, σc

0, and σint
0 are 

the initial (at εp = 0) values of σt, σc, and σint; αc is the dimensionless material (friction) parameter defined 
from the experimental data and related to the Coulomb internal friction angle φ as
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A 3-D plot of the defined yield function (1 and 2) is given in Chemenda (2019).

Considering (1), the plastic potential function Φ can be written
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where Φt and Φs are the plastic potentials for the tensile and shear failure mechanisms, respectively; βc is 
the material coefficient. Chemenda (2019) assumed, for simplicity, complete associativity (or normality) 
of the flow rule, Φ=F, meaning that    constantc c . βc defines the dilatancy factor β, which is known, 
however, to depend on inelastic strain (e.g., Mas & Chemenda, 2015; Sulem et al., 1999). Here we consider 
this dependence as described below.

The dilatancy factor is usually defined as    /p pd d , where  pd  is the increment of inelastic equivalent 
shear strain
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(superscript “p” stands for plastic or inelastic). For the tensile failure/damage mechanism,   3 / 2 (Che-
menda, 2019), and for the shear mechanism, it is defined by βc
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as can be obtained from (4, 5) and the flow rule
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where dλ is the nonzero scalar function (dλ is different for the different failure mechanisms introduced), 
j = 1, 2, 3.

β in (6) reaches zero (no inelastic volume change) at βc = 1. The simplest, therefore, would be to assume 
that βc linearly decreases with εp from the initial value βc

0 to 1. It is logical to relate the end of the inelastic 
volume change to the complete material failure when both σt and σc become zero. In this case, βc reaches 1 
at εp = ε0 and is expressed as
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The pattern of the fractures generated in the models with  0
c c,  0 1c  (  0) as well as    constc c  

is the same. Some difference was observed only in the speed of fracture propagation, which is discussed 
below. Here we present modeling results for βc defined in (8) with   0 1c c .

To deal with the mesh dependence of the modeling results, the mesh (numerical zone) size Δz is included 
in the constitutive formulation by relating ε0 and Δz (Chemenda, 2019)

 
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0 0

Δ
C

z
� (9)

where C is a constant coefficient, and 0 is equal to ε0 when Δz = C. This is similar to the approach applied 
by Bažant & Oh (1983) in fracture modeling. Including Equation 9 into constitutive model is necessary 
because joints are not treated here as clear-cut fractures but as more complex objects evolving from pure 
dilation deformation localization bands, as is suggested by the experimental (Chemenda et al., 2011a) and 
field (Chemenda et al., 2011b) data. The deformation banding results from a constitutive or material insta-
bility captured by finite-element and finite-difference numerical models. This process, however, is known 
to be mesh-dependent. Relation (9) allows to strongly reduce this dependency, as is shown in Chemen-
da (2019) and below in this study. The physical sense of this relation can be understood from the following 
simple analysis. After the initiation, the dilation band borders move apart during extension at a distance Δd, 
which is accompanied by progressive damage (inelastic deformation) of the material within the band until 
complete failure or fracture formation. To obtain the same (physically similar) banding (fracture) process 
in the models with different resolutions (different Δz), the rate of inelastic energy dissipation W within 
the band during its extension in the models should be the same for different Δz. During the tensile failure, 
only σ3-parallel component of inelastic strain is nonzero and is equal to εp as follows from (4 and 7). This 

strain occurs under σ3 equal to    p
t  defined in (2). Assuming that inelastic straining within the band is 

uniform, that the band width d0 is proportional to Δz (d0∼Δz), and   0Δ / Δ / Δp d d d z, the energy dis-
sipation rate W per unit height and thickness of the band can be written as
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It is seen that W will be constant for a given Δd when  0Δ constantz . This condition is equivalent to (9), 
implying that the reduction of σt within the band for a given Δd is independent of Δz. This means that the 
hardening modulus should decrease with the increase of Δz, which is discussed below. The energy dissipa-
tion during the complete material failure within the band (the fracture energy)
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0
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0 0
0

1
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p p
f t t tW d d d C�

is also Δz-independent. Therefore, Wf does not vanish when Δz→0 and the structural load-deformation 
response is the same for different Δz (provided that Δz is much smaller than the model size).

The d0 value in the models presented below is ~1 cm, which is a few orders of magnitude larger than in reality 
(in rocks). Therefore, the ε0 value in these models cannot be equal to that for real rocks and must depend on 
Δz as indicated above (Equation 9). d0 depends on (is proportional to) Δz as well. This dependence can be re-
duced in the models using regularization procedures (see the related discussion and references in Chemenda 
(2019)). They allow avoiding the ill-posedness of the initial value problem during deformation localization 
but do not fundamentally affect the modeling results, as can be seen in Figure 2 of Prevost and Loret (1990).
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We have implemented the formulated constitutive model into the finite-difference dynamic time-match-
ing explicit code FLAC3D (Itasca, 2013), used in a quasistatic mode (i.e., steady-state solution of a fully 
dynamic problem is obtained by a dynamic relaxation method). The elastic behavior is modeled by Hooke's 
equations.

3.  Modeling Setup
A three-layer model is subjected to the velocity boundary conditions as shown in Figure 2b and is pre-
stressed to the initial stresses  ini

zz  and  ini
yy  in the z- and y-directions, respectively. Layers 1 and 3 are subjected 

to the horizontal extension, which creates shear stresses at the layer interfaces driving the extension and 
fracturing of the central layer 2. This layer has free vertical boundaries that correspond, therefore, to preex-
isting fractures. This means that we do not consider models that are uniformly stressed and strained until 
fracturing that would correspond to infinitely long unfractured layers. Instead, we model a layer segment 
limited by two already formed (preexisting) fractures. It will be shown below that the modeling results 
obtained with these two types of boundary conditions do not differ significantly. To maintain a quasistatic 
deformation regime, velocity Vx applied to layers 1 and 3 is servo-controlled and varies between ∼0 and 
1 × 10−7 m/s.

Following Chemenda (2019), the models have two attached grid layers in the y-direction with grid elements 
having the different regular geometry for layer 2, Figure 2d (the attach logic is given in Itasca, 2013). This 
considerably reduces the grid anisotropy that may affect strain localization, particularly when the orienta-
tion of the fracture/band changes during its propagation.

The horizontal extension applied to the model causes its vertical shortening. To maintain the average verti-
cal stress constant and equal to  ini

zz , we apply servo-controlled vertical velocities Vz to the horizontal bound-
aries of the models (Figure 2b) that vary between ∼0 and 1×10−9 m/s. This stress corresponds to a constant 
effective lithostatic stress produced by the overlying layers (that are not modeled). It could be applied direct-
ly to the top and bottom of the model, as has been done in Chemenda (2019). Such a constant-stress bound-
ary condition corresponds to a zero stiffness of the overlying layers. The velocity boundary condition used 
here corresponds to the infinite stiffness. The reality lies between these two end-member cases. Although 
the modeling results obtained for these two cases do not differ much (as shown below), the vertical velocity 
boundary conditions appear to be more realistic.

Figure 2b shows the complete modeled structure, but to reduce the calculation time, most of the simu-
lations have been carried out with the half-symmetry models in Figure 2c. The layers are connected by 
frictional and cohesive interfaces whose shear strength 0

i  is defined by the interface friction coefficient μi 
and cohesion ci

   0
i i i

n c� (11)

where σn is the effective normal to interface stress, which is equal to the vertical normal stress σzz. The nor-
mal (kn) and shear (ks) stiffnesses of the interfaces are set to (Itasca, 2013)
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E
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z
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where E and ν are Young's modulus and Poisson's ratio; "max" means that the maximum value over all zones 
adjacent to the interface is to be used.

3.1.  Model Parameter Values

We assume that alternating limestone and shale/marl layers of a thickness of a few tens of centime-
ters (Figures 1a and 1b) are representative of many sedimentary basins. It is much more difficult to de-
fine the layers' mechanical parameters, even of such widely measured and used ones as elastic moduli. 
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The available values of these moduli and, to a higher degree, of the strength parameters vary in very 
wide ranges for both limestones and shales (as well as for other rocks). Therefore, it is even difficult 
to find out which rock type is stiffer or stronger (e.g., Chang et al., 2006; Colmenares & Zoback, 2002; 
Hoek & Martin,  2014; Mohammed & Mahmood,  2021; Parent et  al.,  2015; Rybacki et  al.,  2016; Shao 
et al., 2019; Vajdova et al., 2004; Xu et al., 2016). The data from these papers suggest the following ap-
proximate ranges of parameters for limestones: E=(15−90) GPa,   0.17 0.33,    20 200 MPa,c  

      2 20 MPa, 20 40t  where E and ν are Young's modulus and Poisson's ratio, respectively. For 
shales, the elastic moduli are      20 90 GPa; 0.25 0.4E . All values are defined from experimental 
testing. One can suppose that these values will be much smaller at the geological time- and spatial-scales, 
particularly for incompletely lithified rocks fractured during burial. Therefore, the values (first of all those 
for the strengths) chosen for the modeling in this work are closer to the lower limits of the indicated 
ranges:         20 GPa; 0.25; 60 MPa, 7 MPa, 30c tE . These parameter values are applied for 
the limestone (or competent) layers. The same elastic moduli are used for the shale (incompetent) layers. 
No other mechanical parameters for shale are needed as it is assumed to behave elastically. This is obvi-
ously a simplification as shales can relatively easily creep, although there is a correlation between creep 
compliance and Young's modulus (e.g., Sone & Zoback, 2013). It should be noted that several models were 
run with different elastic moduli. A reasonable estimation for density ρ of both limestone and shale layers 
is =2,600 kg/m3.

The reference thickness of all the layers in our models is T1=T2=T=20 cm (see Figure 2a for definitions); 
it becomes 10 cm for the half-symmetry setup in Figure 2c. Two more parameters 0 and C (Equation 9) 
are needed to characterize the limestone layer. They are not known at all for rocks. Parameter 0 is a 
reference inelastic strain at complete failure, ideally to be defined from the experimental data and hence 
characterizing properties of real material. Using   0 0 in the models would require that the fracture 
(band) thickness in the models is equal to that in real rocks where it is of several grain sizes. This means 
that Δz should be smaller than the grain size, which is impossible when addressing most of the real-life 
geological problems. Therefore, we must use larger Δz, and to obtain the same (similar) fracture process 
and fracture pattern as in real material, ε0 for the modeling should be defined by Equation 9. Coefficient 
C corresponds to the reference mesh size and can be evaluated by comparing fracture patterns in numer-
ical models and the experimental tests conducted under similar conditions. That is what has been done 
in Chemenda (2019) based on the experimental models of synthetic rock analog material GRAM. Values 
 0 310GR  and C=CGR=2.5×10−4 m were assumed for GRAM models (here and below, subscript “GR” 
stands for GRAM). The models in this study are much larger, stiffer, and stronger. Therefore, CGR value 
cannot be used and should be upscaled. We do it below using the normalized hardening modulus h for 
the tensile failure

  
  

 

0

0
1 Δ ,

p
t t

p
zh

G GC



 
� (13)

which is critical for deformation localization (bifurcation) phenomenon, and defines its onset (Rice, 1976; 
Rudnicki & Rice, 1975), the rate of the formation and spacing of the initiating deformation bands (Chemen-
da, 2007, 2009 ), as well as the brittleness/ductility of the fracture process. This dimensionless parameter 
should be considered a similarity criterion (i.e., be constant) when we change the scale of a phenomenon 
but want to keep its physics (ensure physical similarity). Condition h=constant results in the following 
relation





 
 

 s
GR

G
C C� (14)

where   /s GRT T ,   /G GRG G ,        t tGR GR
0 0 0 0

/ /,   ; TGR=1 cm, GGR=0.67 GPa, and  0 0.07t  
MPa (Chemenda, 2019). It is assumed here that the numerical resolution of small and large models in 
terms of geometrical sizes is the same or that T/TGR=Δz/ΔzGR. Value 10−3 used for 0

GR seems to be also 
applicable to rocks and thus can be assumed for 0. Therefore,   1 and C defined by (14) should be 
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about two orders of magnitude larger than CGR. We assume C = 0.1 m, but also show modeling results 
for C one order of magnitude smaller and larger. In should be noted, that what matters is not merely 
the C value but the value of the product 0C , Equation 9. Therefore, one can vary 0 instead of C, which 
has been done in (Chemenda, 2019) where 0 was varied in wide limits,     4 0 25 10 5 10 , show-
ing the impact of this parameter on fracturing. Note that the increase of the model resolution (reduc-
tion of Δz) requires the growth of the negative hardening modulus (Equation 13), which corresponds 
to a more ductile material response in terms of constitutive description. However, the macro-response 
of such a model or, more precisely, the fracture process and pattern, will be similar to those in low-res-
olution models.

For the vertical (lithostatic) stress  ini
zz  applied to the models, we assume the value of 10 MPa and for the 

horizontal stresses,  ini 0xx  and  ini ini / 2yy zz . As indicated above, all stresses are considered effective. 
Therefore, assuming that the pore pressure is equal to the hydrostatic pressure, the lithostatic stress  ini

zz  is 
related to the depth z as

    ini
zz w gz� (15)

where   310w  kg/m3 is the water density, and g is the acceleration of gravity. For the chosen value 
of  ini

zz , z=640 m. The depth of fracture generation in natural sedimentary basins is not well known. 
It probably varies from a few kilometers (e.g., Fall et al., 2015) to very shallow depths corresponding 
to the onset of lithification. Early embrittlement processes are common, particularly for carbonates 
or marly lithology (e.g., La Bruna et al., 2020), allowing fracture generation even in the first few hun-
dreds of meters (e.g., La Bruna et al., 2020; Lavenu & Lamarche, 2018; Lavenu et al., 2013; Matonti 
et al., 2017). At the early (small-depth) fracturing, σt can be much smaller than the assumed value. To 
have the same (similar) fracturing conditions,  ini

zz  and hence z should be reduced proportionally to the 
σt reduction.

Regarding the interface properties, preliminary numerical simulations have shown that what matters in the 
models is the interface shear strength 0

i  independently on the values of its friction and cohesion compo-
nents in Equation 11. Therefore, for simplicity, we set   0i  and hence 0

i  is equal to ci. This parameter is 
varied in the models, with the reference value being  0 2i ic  MPa.

4.  Modeling Results
Since only the central layer (layer 2, Figure 2) can fracture in the models, only this layer is shown below on the mod-
el images. We conducted most of the models using the half-symmetry setup in Figure 2c. Only models in Figures 
4g and 4h were run using the complete setup in Figure 2b for comparison. The reference parameter values de-
fined above are summarized here:           0 0 020 GPa; 0.25; 60 MPa, 7 MPa, 3, 1, 0.1mc t c cE C , 

 0 2 MPai ic , kn=ks=9.6×1012 Pa/m,  ini 10zz  MPa,  ini ini / 2yy zz ,      ini
1 30, 20 cm, 3 mxx T T T L .  

The reference grid zone size is Δz=2.5×10−2 m.

The mechanism driving the deformation and fracturing in the models is a horizontal extension of layers 1 
and 3, which is quantified by the nominal normal horizontal strain   Δ /xx L L, where ΔL is the length-
ening of these layers. The fracture pattern is shown in terms of the tensile strength σt. When σt is equal to its 
initial value  0

t , there is no material damage, and when   0t , the material is wholly fractured/failed. The 
case    00 t t  corresponds to the dilatant damage of the material. Localization of such damage within 
a narrow band corresponds to dilation or dilatancy band, which can evolve to fracture with the following 
damage accumulation.

The modeling results are presented in six groups, Group 1 to Group 6 in Figures 3–8, respectively. Models 
in Groups 1 to 5 differ only by one parameter values: in Group 1 this parameter is εxx; in Group 2, Δz; in 
Group 3, ci; in Group 4, T, and in Group 5, T as well but in one-layer elastic models described later. In 
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Group 6, we present models showing a sensitivity of the modeling results to the boundary conditions and 
the C value.

Group 1: Figure 3 shows six stages (from a to f) of the evolution of fracture pattern (3 in the figure), the 
least stress σ3 (2), the interface shear stress τi (4) along the layer, and the interface slip history (1) in the ref-
erence model (having the reference parameter values). The initial elastic and nonlocalized inelastic loading 
stages are omitted, and the first stage shown in (a) corresponds to the formation of a set of dilation bands 
(Figure 3a3) that are marked by the steps in the τi(x) curve in Figure 3a4 (positive τi is oriented to the left 
and negative, to the right). One can see that although the minimum σt value is less than  0 7t  MPa, it is 
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Figure 3.  Group 1. (a–f) Evolution of the reference model at different εxx: 
                             4 4 4 4 4 33.4 10 in a ; 3.6 10 in b ; 4.3 10 in c ; 5.4 10 in d ; 8.7 10 in e ; 5 10 in fxx . The interface slip history (1) detailed in (a), 

the contour plots of σ3 (2) and σt (3), as well as the interface shear stress τi (4) along the layer are shown for each fracturing stage. The slip history is presented by 
a bar with segments of different colors along the layer (its upper interface). The colors correspond to the three possible states at the interface points, as shown in 
(a1). For example, the bar in (b1) shows that the slip between the layers occurs only along the segment with the center at the left fracture. At the end segments 
of the layer and in the vicinity of the underdeveloped right fracture (dilation band), slip occurred during the previous deformation stages and was not active at 
stage (b). Along the remaining part of the interface, the layers did not slip past each other at all (slip occurs there during later deformation stages). (b2') is the 
same as (b2), but the lower limit of the σ3 color-scale is reduced to −4 MPa.
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far from zero at this stage. The σ3 field is very heterogeneous near the ends of the layer corresponding to 
stress shadows produced by the preexisting fractures (corresponding to the vertical boundaries of the layer) 
and is relatively uniform and close to    0

3 t  in its central part (Figure 3a2). In fact, there is a reduction 
in 3 , but it is too small to be seen in this figure; it is seen in Figure 2b2'. The slip at the interface occurs 
only at the end segments of the layer (Figure 3a1) where τi has reached the interface shear strength  0 2i  
MPa (Figure 3a4).

In Figure 3b, one fracture in the left part of the model is wholly formed, and one dilation band, located 
symmetrically in the right part of the model underwent significant evolution and is seen on the σ3 plot 
in b2. Other dilation bands formed at stage a are not visible on this plot, but they are seen as 'weak stress 
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Figure 4.  Group 2. Fracture patterns in the models deformed with the half-symmetry (b–e) and complete (g–h) modeling setups shown in (a) and (f), 
respectively. All models have reference parameters except for the grid zone size Δz, which is 2.5×10−2 m in (d, e, and h); 1.125×10−2 m in (c) and (g), and 
6.25×10−3m in (b). The models were run to     35 10xx . In the model in (e), ε0 was not defined from Equation 9 but set to the same value as in the model in 
(b),   0 21.6 10 .

Figure 5.  Group 3. (a–f) Fracture patterns and the interface shear stress τi between layers 1 and 2 in the reference models with different interface shear 
strength 0

i . The models are shown for     35 10xx , but the fracture patterns presented were formed at lower εxx: −4.6×10−4 for  0 1i  MPa (a); −1×10−3 for 

 0 2i  MPa (b); −2×10−3 for  0 3i  MPa (c); 3.6×10−3 for  0 5i  MPa (d); −4.1×10−3 for  0 7i  MPa (e); −4.2×10−3 for  0 10i  MPa (f). (g) Ratio D in these and 
other models plotted versus ratio   0/i

t .
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Figure 6.  Group 4. (a–i) Fracture patterns in the models with different thickness T run to     36 10xx . T is 0.125, 0.2, 0.5, 0.75, 1.5, 3, 4, 6, and 10 meters 
in (a–i), respectively (note that the models presented are half-symmetry). The length L of the models is 3 m in (a–c), and 6 m in (d–i). In (c'), L=3.3 m and 
T=0.5 m as in (c). (j) Plots T(S) obtained from numerical models. 1, Points (T, Sav) from the models shown in this figure, where Sav is the average over the model 
length fracture spacing; 2, Points (T, Smin) obtained in another set of models where L was progressively reduced until the fracture could not cut the entire layer 
thickness at     36 10xx . The minimum fracture spacing Smin was defined then as Smin=L/2. (k) Points (T, Smin) approximated by function T=bS/(1−aS) from 
(Equation 17). The inset shows a zoom-in of the plot T(Smin) for small Smin. (l) the same points as in (j), but plotted in coordinates (D, T), are approximated by 
linear function D=aT+b, where coefficients a and b are the same as in (k): a=0.89 m−1 and b=0.27 m.
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shadows' in b2', where the lower limit of 3  is increased to 4 MPa. Their presence is also reflected in the 
steps of   i x  curve in Figures 3b4, 3c4, and 3d4. In Figure 3c, two fractures are formed and produce stress 
shadow in c2, and so on until the formation of six fractures in Figure 3f. In this figure     35 10xx , but 
the set of six fractures was already formed at     31 10xx  and does not change to     22 10xx  to which 
the models were run.

In Figure 3f4, the entire interface has been broken and repeatedly slipped at different deformation stages 
from a to f. Note that the fracture spacing S is not constant along the layer; one layer segment separated by 
fractures is clearly longer, but not long enough to accommodate one more fracture. Small modifications of 
any model parameter, for example, a slight increase in L, can lead to the reorganization of the fracture loca-
tions and increase (or on the contrary, reduce) their number, changing the average S value. This variability 
of S will be discussed below.

Group 2: Figure 4. The models of this group show the dependence of the fracture pattern on model resolu-
tion Δz and the setup. For the setup in Figure 4a (corresponding to Figure 2c), Δz increases by factor four 
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Figure 7.  Group 5. One-layer elastic modeling. (a) Setup showing the layer (its quarter-symmetry model) deforming 
under shear ( xz) and normal ( ini

zz ) stresses applied to the layer top.   2xz  MPa is equal to the reference value of 0
i . 

 ini 10zz  MPa, the same as in previous models. The right vertical boundary of the layer is fixed in the x-direction, and 
the left boundary is free (i.e., corresponds to the preexisting fracture). A series of simulations have been carried out 
with the layer length L=1 m and different thicknesses T/2. (b) Vertical profiles of  xx along the right layer boundary for 
different T indicated in the figure. (c)  xx values at the right upper corner of the model plotted against T.

Figure 8.  Group 6. (a–e) Models with reference parameters except C (from Equation 9) which varies for two orders of magnitude: in (a) C=0.01 m, in 
(b) C=0.03 m, in (c) C=0.1 m (the reference value), in (d) C=0.3 m, and in (e) C=1 m. (f and g) Models with reference parameters but different boundary 
conditions. In (f), a constant vertical stress   ini

zz zz  is applied directly to the top of the model instead of the velocity Vz in all previous models. In (g), a 
horizontal extension (velocity Vx) is applied to all three layers of the model instead of only the elastic layers in the previous models. (g') is the same as (g), but 
the lower limit of the  t color-scale is increased from 0 to 4 MPa. In (g' and e), color-scales are just above the models, and for all other cases, it is in the right 
lower part of the figure. All models were run to     36 10xx .



Journal of Geophysical Research: Solid Earth

from 6.25×10−3 m in Figure 4b to the reference value of 2.5×10−2 m in Figure 4d. As expected, the fracture 
(band) width d increases linearly with Δz, but the fracture pattern changes little. In Figures 4b and 4c, there 
are six, and in Figure 4d, seven fractures formed. This small difference is due to the S variability indicated 
above, and which is also seen in Figures 4g and 4h showing models with the full layer thickness. Here the 
result is inverted; the model with smaller Δz contains seven fractures (Figure 4g) and that with higher, 
reference Δz value, six fractures (Figure 4h). Therefore, the conclusion is that the modeling results are not 
very sensitive to the model resolution (if it is not very small, smaller than the ones used in this work) or 
the setups in Figures 4a and 4f. Despite very different d0 values, the average apparent fracture aperture Δl 
calculated as defined in (Chemenda, 2019) is close in the models in Figures 4b, 4c, and 4h with different Δz 
and the same fracture number: it is around 2 mm. This suggests that the mesh size has been appropriately 
integrated into the constitutive formulation in Equation 9. If this equation is ignored, the results are very 
different for different Δz (compare models in Figures 4d and 4e having the same resolution). In the model in 
Figure 4e, ε0 is the same as in the model with smaller Δz in Figure 4b. One can see that in this case, a dense 
set of dilation bands is formed, and only some of them evolve to fractures.

Group 3: Figure 5. Here we investigate the impact of the interface shear strength 0
i  on the fracture pattern. 

Figures 5a–5f show that this impact is strong and consists in the increase of D (D=T/Sav) with 0
i  which ceas-

es as the ratio   0
0 /i

t  approaches unity (Figure 5g). Similar fracture densification with the increase of the 
interface strength was obtained in Discrete Element Method models by Schöpfer et al. (2011). The interface 
slip also ceases as   0

0 /i
t  approaches to unity: in Figure 5f it occurs only within the fracture bands. Note 

that in this case (this figure), the upper part of the layer is strongly damaged, which leads to the τi reduction 
and explains the absence of plateaus in the   i x  curve, which are seen in Figures 5a–5e.

Group 4: Figure 6. Here we vary T, with other parameters being equal to the reference values. The model 
length is L = 3 m for small T (Figures 6a–6c) and L = 6 in Figures 6d–6i. One can see that for relatively small 
T (T<1.5 m), S rapidly increases with T (Figures 6a–6f), but for larger T, S scarcely changes (Figures 6f–6i). 
In Figures 6h and 6i with T = 6 and 10 m, not all fractures cut through the entire layer thickness at the 
chosen εxx value of −6×10−3. In Figure 6h, all the fractures completely cut the layer at     36.3 10xx  and 
in Figure 6i, at     21 10xx . The average fracture spacing Sav obtained from the images in Figures 6a–c 
and 6d–6i, is plotted against T in Figure 6j (black squares). For the cases when not all fractures cut through 
the entire layer thickness, Sav was calculated as


av ,

2
LTS

T l
� (16)

where l is the total length of the fractures formed in the half-thickness layer. This formula also is valid 
when all the fractures completely cut the model. The plot T(Sav) can be divided into two parts. The first one 
(Sav<∼1.5 m) has a shallow dip, and the second (Sav>1.5 m) is very steep. In fact, one can distinguish the 
third segment at Sav≈1.5 m, where the plot is practically vertical. The Sav values can vary in certain limits in 
the models with the same T but different L. This can be seen by comparing Figures 6c and 6c' where T is 
the same, T=0.5 m. The explanation is that for a given set of model parameters, there exists a minimum S 
value, Smin. The spacing S between adjacent fractures can vary along the layer between Smin and 2Smin and 
thus is not constant. Smin characterizes a fracture set more objectively and the plot T(Smin) is physically more 
pertinent. To define Smin for different T, we run a series of models where L was progressively decreased 
under the same other conditions to define the minimum L=2Smin value at which a single fracture cuts the 
layer completely. The corresponding points T(Smin) are plotted in Figure 6j (red triangles). Again, one can 
distinguish three segments with different dip. Both curves T(Smin) and T(Sav) are very close at relatively 
small T and deviate from each other with the T increase. Both curves are generally strongly nonlinear, but 
at relatively small T (T<∼50 cm), they can be approximated by a straight line (inset in Figure 6k) quite sat-
isfactorily. On the other hand, the relation D(S) is much more linear (Figure 6l) particularly up to T∼3 m. In 
this domain, the points D(T) can be approximated by a straight line D=aT+b (Figure 6i). As a consequence, 
the corresponding points in coordinates (T, S) are approximated by a nonlinear function


1
bST

aS
� (17)
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(Figure 6k) with the same coefficients a and b, given in the caption of Figure 6.

At large T, the pure dilation deformation bands form only in the interfaces' vicinity, unlike the model in 
Figure 3a3, showing dilation bands cutting through the entire layer. The bands give way to the fractures 
propagating within the layer. The fracture aperture Δl is maximum in the vicinity of interfaces and increases 
during the fracture propagation. In the far-right fracture in Figure 6i, Δl≈2 mm near the layer top, and when 
the fracture tip reaches the layer bottom, Δl≈5.2 mm. This aperture progressively increases during the frac-
ture propagation with the  xx  increase from 4.7×10−3 (when Δl≈0 and fracture is just initiated) to 9.5×10−3 

when it reaches the layer bottom, which corresponds to the middle of the entire layer 2. Therefore, the frac-
ture propagation is quasistatic contrary to the deformation banding (bifurcation), which is a dynamic phe-
nomenon (Hill, 1962; Mandel, 1964). Note that the   i x  profiles in all the models in Figure 6 have the same 
aspect as in Figure 3f4, corresponding to the extension of the models after their saturation with fractures.

More numerical simulations were conducted under the conditions of the models in Figure 6 but with differ-
ent dilatancy coefficients c. In all presented models,   0 1c c  in (8), which corresponds to zero dilatan-
cy factor  , meaning that the dilatancy can occur only during the tensile failure. Two other cases discussed 
in Section 2, were tested as well as:  0

c c in (8), and    0
c c c. The latter case corresponds to an 

associated flow rule used in Chemenda (2019). The obtained fracture patterns were the same in all cases, 
which is not surprising as fracture initiation occurs in a tensile failure regime through the dilation banding 
when the shear failure mechanism is not yet activated. This mechanism is activated later within the bands 
during their evolution (Chemenda, 2019), that is, too late to affect the fracture pattern. On the other hand, 
c affects the rate of fracture growth. For example, the last fracture formed in the model in Figure 6f is  
the one furthest to the right. During its propagation through the entire layer thickness in this model,  xx  

increased by 3.4×10−4, in the model with  0
c c in (8), this value is 7×10−5, and for    0

c c c, 4×10−5. 
The dilatancy of the material within the fracture thus promotes fracture propagation. This parameter is part 
of a constitutive formulation for shear failure (Equations 1–4) and should have a much more substantial 
impact on shear fracturing.

Group 5: Figure 7. The models of this group were carried out to understand the cause of the steepening of 
the T(S) curves in the range 1 m < T < 2 m. One-layer elastic models were subjected to almost the same 
initial and boundary stresses as above shown in Figure 7a, including shear stress   2xz  MPa applied to the 
top of the layer to simulate the interfacial shear stress in the previous models. The maximum tension with 
this setup occurs at the right, fixed in the x-direction vertical boundary of the layer; this is the potential frac-
turing (failure) location. The left boundary corresponds to a preexisting fracture. Therefore, L has a sense 
of fracture spacing S in this quarter-symmetry model. We set L (or S) to 1 m which corresponds to T ≈ 2 m 
in the T(Smin) curve in Figure 6k and vary T in different models. The vertical profiles   xx z  along the right 
ends of these models are shown in Figure 7b for different T. As expected,  xx  is the largest at the model 
surface in all the cases and decreases with depth. At a relatively small T, the profiles are very different, but 
starting from T∼2m, they almost coincide although obviously continue to different depths z=T/2.

This “stabilization” of the stress is also seen in Figure 7c, showing  xx at the far-right point of the layer 
surface for different T. The absolute value of this stress rapidly decreases with T increase and reaches a 
minimum at T≈1 m that is very close to the L or S value in these models. It then slightly increases again and 
stabilizes at T∼2 m.

The stabilization (verticalization) of the T(S) curves in Figure  6j occurs at approximatively the same T, 
T≈2S≈2 m. The geometry of the T(S) (Figure 6k) and   xxT  (Figure 7c) curves is similar as well, which 
makes understandable a rapid change of the slope of T(S) curve at T≈2S in the presented three-layer mod-
els: a stabilization of S at large T is due to the stabilization of the   xx z  profiles in the upper and lower 
parts of the layer, as is discussed below. Note that the slope of the curve in Figure 7c stabilizes at   14xx  
MPa, which is more than twice  0

t  in magnitude. Such stresses are not reached in the elastoplastic models 
presented (where the maximum possible tensile stress is  0

t ) because of the inelastic deformation of the 
layer that starts well before the fracture initiation and is needed for this initiation to occur.

Group 6 includes auxiliary models showing the dependence of the fracture pattern on the parameter C 
(Figures 8a–8e) and on the boundary conditions applied to the vertical (Figure 8f) and horizontal (Figures 
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8g and 8g') boundaries of the models. The C value is varied here for two orders of magnitude from 0.01 
(in Figure 8a) to 1 m (in Figure 8e) with the reference value C=0.1 m (in Figure 8c) in the middle of this 
range. One can see that the average fracture spacing systematically increases from Figures 8a–8e with 
the increase of C or of the negative hardening modulus h from Equation 13. Less negative h corresponds 
to less brittle/more ductile material behavior. The critical h value, hcr, for the tensile failure in the model 
(1–4) is zero. At this value, the spacing of the initiating deformation bands is theoretically infinite, and 
it should decrease with the h reduction (Chemenda, 2007, 2009). This is what is seen in Figures 8a–8c. 
In Figure 8a, C and hence h are the smallest; therefore, the material is the most brittle and fracture spac-
ing is the smallest. The fractures initiate at the layer top, and many of them do not cut the entire layer 
thickness. In Figure 8e, C is the largest and h approaches zero. Therefore, deformation bands and hence 
fractures could not form. In the model in Figure 8d with C=0.3 m, there are many undeveloped fractures 
that are the dilation bands with a high degree of material damage, but they do not evolve to fractures. In 
this relatively ductile model, the bands and fractures were initiated within the layer's body or in its lower 
part (corresponding to the middle of the entire layer 2 in Figure 2b) rather than at the top. The same result 
was obtained by Chemenda (2019).

In Figure 8f, a constant vertical stress   ini
zz zz  is applied to the top of the model instead of the velocity Vz 

in all other models (except those in Figure 7). Comparison of this model with the reference one in Figure 8c 
does not reveal any fundamental difference. Finally, the model in Figure 8g was conducted to appreciate 
the effect of the way the horizontal velocity Vx is applied to the model. In Figure 8g, Vx is applied to all three 
layers, leading to the model's uniform stressing up to the fracture initiation. In the reference model, where 
Vx is applied only to the elastic layers, the stress field is not uniform at all near the vertical ends of the model 
corresponding to the preexisting fractures, but it is practically uniform sufficiently far from the ends (Fig-
ure 3a2). One can see, that the maximum S value in Figure 8g is somewhat larger than in Figure 8c, but the 
number of the layer segments between the fractures is the same, 7. The longest layer segments in Figure 8g 
are not sufficiently long to form new fractures within them, but in Figure 8g' with a different color scale, one 
can see that these fractures have already been initiated.

5.  Concluding Discussion
The strongly nonlinear relation between fracture spacing S and thickness T (Figure 1d) of a fractured layer 
for T∼> 1 m known since detailed field measurements by McQuillan (1973) and Ladeira and Price (1981) 
is now reproduced in the numerical models (Figures 6j and 6k). At a relatively small T (T < ∼50 cm), this 
relation is close to the linear one (inset in Figure 6k), which is in line with the previous theoretical and 
numerical models, as well as numerous field studies mostly carried out on the T values within the indicated 
range. The complete T(S) curves includes this quasilinear shallow segment and much steeper segment at 
T > ∼ 1–1.5 m both in nature (Figure 1d) and the model (Figure 6j). Our results show that both segments 
of the T(S) curve are defined by the mechanical interaction between the layers. It is not necessary to involve 
external factors such as pore pressure gradient induced by fracture formation as suggested by Ladeira and 
Price (1981). The transition between the segments occurs when ratio D=T/S increases to a critical value 
Dcr of about 2, Figure 6k (note that D increases near-linearly with T, both in nature Figure 1e and model 
Figure 6l). The critical T and S values are therefore related as Tcr≈2Scr. Dcr is reached when the horizontal 
normal stress σxx in the middle of the layer (at distance z=−T/2 from its top) becomes zero. The thickness 
of the central part of the layer with zero or slightly compressive σxx increases with the T > Tcr increase. 
Outside this part, σxx is tensile and |σxx| increases toward the layer top and bottom, the profiles   xx z  be-
ing practically the same for any T>Tcr (Figure 7b). Therefore, if fracture cuts though the layer of thickness 
T=Tcr, it will also cut through the thicker layer at almost the same S. This is the reason why S stabilizes at 
large T. This stabilization is however not total in the models as the distance of the vertical propagation of 
fracture increases with T increase (this distance is simply equal to 0.5T). At depths > ∼1 m (z<∼−1 m in 
Figure 7b), the propagation occurs within the material with a slightly compressive background stress  xx 
and is quasistatic. A larger propagation distance (larger T) requires a larger extension of the adjacent layers 
or larger strain  xx . Since these layers are assumed to be elastic, the  xx value should be limited; otherwise, 
these layers will start deforming inelastically in natural conditions. In the models in Figure 6,  xx was arbi-
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trarily limited to −6×10−3, but without this limitation, all the fractures in Figure 6i cut through the entire 
layer thickness at larger  xx. There is only one way to make the fracture propagate to the bottom of a thicker 
layer with the limited  xx, to increase the distance between the existing fractures and hence, to increase 
Smin. That is why the vertical segments of the T(S) curves in Figure 6j are followed by less steep segments at 
larger T. If the behavior of layers 1 and 3 (Figure 2a) were not purely elastic but included inelastic (plastic 
and/or viscous) component, there would be no limitations on  xx. The ductile horizontal extension of such 
layers could even occur without tension, under the differential stress if it is large enough compared to the 
layers' strength. Therefore, in future models, layers 1 and 3 should be allowed to deform inelastically, which 
will complicate the modeling and bring additional uncertainties, but which will make models more ade-
quate as the available data suggest that shale layers can creep (e.g., Sone & Zoback, 2013) and undergo both 
shear and tensile fracturing (e.g., Gross & Eyal, 2007) seen in Figure 1a. The present, as well as the prior 
mechanical/modeling studies, show however that the elastic analysis in combination with more realistic 
constitutive models remains useful. It allows to deepen our understanding of natural fracturing without the 
excessive complication of modeling and its theoretical framework that would inevitably render the results 
less physically transparent.

Although it is difficult to precisely define the slope of T(S) curves from the geological data, they suggest 
some inclination of the curve at large T (Figure 1d), which may correspond to function (17) plotted in 
Figures 1d and 6k. Ladeira and Price (1981) suggested that S can be assumed to be constant at large T. 
This is not contradicted by the results obtained. Indeed, the length of slowly propagated "underdevel-
oped" fractures in Figure 6i is about 2 m. Can such fractures be stable in natural conditions, given that 
they should be filled with fluid exerting pressure on their walls and degrading the material strength in 
stress concentration zones around the fracture tips? Probably not; there is for instance little doubt that 
introducing in the models a progressive reduction of the tensile strength in the tip zone of a fracture 
during its propagation will lead to the fracture cutting through the entire layer at smaller  xx. Reduction 
of the tensile strength with the increase in T (size effect) and chemically assisted fracturing (Laubach 
et al., 2019) will lead to the same result.

The impact of the thickness of the incompetent layers at different strength of the interfaces 0
i , of the lithos-

tatic pressure and the elastic moduli values should be studied as well, although several tests performed with 
different moduli values did not show any significant influence on the results.

As indicated, the inelastic properties of all the layers should be taken into account in future studies. This 
could lead to new effects such as fracture clustering, even though this can also be caused by the varia-
tion of a degree of layer coupling, brittleness (defined by 0 or C, Figures 8a–8e) or of the strength 0

i  of 
interfaces between the layers. This strength was shown to strongly affect both fracture nucleation and 
spacing (Figure 5). Relatively small 0

i , comparable to the tensile strength  t is sufficient to lock the layer 
interface. If  0

i
t, the adjacent beds will behave as one single thick layer. This layer can include many 

stratigraphic beds and correspond to a mechanical unit (Cooke & Underwood, 2001). Figure 1c shows an 
example of such a situation where adjacent thick limestone beds form a mechanical unit. The interfaces 
between such a type of beds often undergo pressure solution and become stylolite planes (Lamarche 
et al., 2012) with highly rough surfaces (Schmitbul et al., 2004) that ensure strong coupling between the 
beds. This is quite a typical situation for limestone-limestone and marl-limestone interfaces (Toussaint 
et al., 2018). Pressure solution is also known to enhance cementation/embrittlement locally (Fabricius & 
Borre, 2007; Rustichelli et al., 2012). It can occur relatively early during the burial (e.g., Bruna et al., 2019; 
Koehn et al., 2012; Lamarche et al., 2012) at a depth of a few hundred meters, mainly where sharp me-
chanical or depositional contrast exists. Such a contrast can also occur in siliciclastic deposits between 
the beds with different granulometry and may increase the layer coupling. Therefore, a detailed study of 
the bed interfaces in the field, cores, and laboratory can provide constraints on the interface strength for 
future modeling.
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