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Abstract
To move today’s agricultural and urban systems towards tomorrow’s circular economy and respond to climate change, it is 
imperative to turn organic residues and wastewater into resourceful assets. This article discusses the changes that are needed 
in research to drive this paradigm shift and to go from a “losses and waste” situation to a “resource and opportunities” ambi-
tion. The current lines of research aim to maximise the use and value of biomass or organic residues and wastewater and 
propose new organisational schemes driven by technical innovations. Exploring the pathways to a sustainable future through 
many domains let us identify five challenges to structure the research efforts and find circular bioeconomy solutions for 
organic residues and wastewater: (1) proposing innovative processes and integrated multi-process systems; (2) promoting 
the emergence of multi-scale and cross-sectoral organisations; (3) developing multi-performance evaluation methods, (4) 
rethinking research–society intersections, and (5) enhancing research–legislation interactions. We end by outlining prospects 
for moving forward past current limitations: beyond increasing knowledge, research will continue its own transition. Our 
responsibility today is not to think about what we could do for a better world but what we should do to make our ever-changing 
world even better and more sustainable.
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Statement of Novelty

This article is a position paper from researchers involved in 
engineering related to bioeconomy and having a long-term 
expertise in the coordination of collaborative projects. As 
such, its main interest is to gather all-important multidisci-
plinary aspects. The manuscript provides a framework by 
identifying five challenges for future research. The novelty 
is to assemble them in one location in a coherent framework 
in which researchers and engineers can think about their 
research and fully realize what they are in charge in. Even 
if some ideas may sound familiar, in each of the five sec-
tions, the challenges are briefly illustrated by examples from 
diverse biomass and waste valorisation that could inspire 
anyone involved in this field.

Introduction

For the past century, society has grown along a linear para-
digm of extracting resources on one side of the planet to 
transform, exploit and most often dump residues in other 
places of the world, resulting in a total disconnection within 
natural organic and inorganic matter cycles. This is the case 
of the extraction of petroleum, coal, phosphorus, rare earths, 
raw materials used in animal feed, and even for the produc-
tion of materials such as plastics. Modern value chains are 
often split into separate areas in the world between extrac-
tion, production, consumption and waste, which does not 
facilitate life-cycle approaches and circular bioeconomies. 
Furthermore, this globalised pattern of intensive resource 
use charts a trajectory to near-total depletion [1–3] with ‘col-
lateral’ damage and impacts. They include climate change, 
water, air and soil pollution, loss of biodiversity and, ulti-
mately, threaten the continued health and geopolitical stabil-
ity of the planet.

According to the latest FAO (Food and Agricultural 
Organization of UN) estimates [4], roughly a third of all 
food produced ends up as residues (by-products and waste), 
which amounts to about 1.3 billion tons worldwide each 
year. It results from edible food lost during food produc-
tion and postharvest handling and from discarded foodstuff 
such as unsold food, food preparation leftovers and uneaten 
food from households, restaurants and large producers, as 
collective caterers and supermarkets [5]. At the same time, 
according to the World Bank figures for 2016, the world’s 
cities generate 2.01 billion tons of waste per year, with 3.40 
billion tons expected in 2050, half of which being organic 

waste [6, 7]. All this organic waste induces health–hygiene 
problems and nuisances that put strong environmental, eco-
nomic and social pressure on urban centres. However, it 
is also an underexploited resource that, if better managed, 
could be used to produce materials, added-value products, 
soil amendments and energy, to support the development of 
a more sustainable societal model [8–10], as illustrated for 
agriculture by-products on Fig. 1. In this regard, scientists 
(illustrated by a magnifying glass on Fig. 1) lead research to 
enable (i) a cascade-valorization of food–industry by-prod-
ucts into resource added-value molecules while (ii) minimiz-
ing the waste. The development of such research parallels 
the increasing in the knowledge of the composition of raw 
materials for theirs optimal valorization, easing bottlenecks 
for ad-hoc extraction/treatment processes to recover valuable 
molecules and determining applications for their functionali-
ties in target fields (Fig. 1).

The United Nations, through its 2030 sustainable devel-
opment goals report [11], states the necessity “to accelerate 
responses to the world's gravest challenges—from eliminat-
ing poverty and hunger to reversing climate change”. This 
global objective opens wide perspectives for innovation but 
requires a rethink of usual scientific approaches to adopt a 
more systemic vision of all sectors of society. Actually, the 
core idea for initiating innovations can have multiple origins. 
Innovations can be incremental, by optimising a transforma-
tion chain step-by-step, or can stem from scientific discov-
eries generating new technologies that must then find their 
way to the market. New regulations, societal demand or eco-
nomic constraints can also trigger new technology develop-
ments or innovative process chain structuration. In the field 
of organic residues and wastewater management, the role of 
scientists is no longer to simply reduce and eliminate waste 
and by-products but to maximise resource recovery in a 
safe and sustainable way. It is mandatory to face those chal-
lenges that will be reinforced with the growing population 
and the denser cities that are predicted for the near future. 
In this context, international researchers involved in waste/
wastewater management question their role in the innovation 
process and how their activities are influenced by the new 
paradigm (from waste to resource), and vice-versa. So, how 
are researchers working to rise to these challenges? How 
do they imagine waste-to-value or wastewater-to-resource 
solutions engaging in the circular economy for today and 
tomorrow?
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How Can Research Help Forge a Sustainable 
Future?

For research scientists, the task of imagining a sustainable 
future is far from straightforward, as it requires a thor-
ough and thoughtful evaluation of all plausible scenarios 
of soon-to-come patterns of socio-economic changes as 
well as their impacts on production systems at various 
scales. A system based on circular economy aims not 
only to give new added value to bio-waste and residual 
resources, but also to maintain the value of all types of 
resources for as long as possible, without harming the 
environment. In particular, bio-based products, bioenergy 
and wastewater reuse are key sectors in which research 
and innovation have a key role to play in the near future to 
develop technological and chain solutions supporting the 
deployment of circular bioeconomies [12]. To illustrate 
the challenges and potential impacts related to circular 
bioeconomy, one can mention Ronzon and Piotrowskiwe 
[13] who estimated that 395 million tonnes of dry matter 
(Tdm) of primary agricultural residues was produced in 
Europe in 2013 from more than 130 crop commodities, of 
which 69 million Tdm is collectable as feedstock for the 
biobased material and bioenergy sectors.

By Proposing Innovative Processes and Integrated 
Multi‑Process Systems

The trajectory of innovation in biomass, organic residues 
and wastewater management has so far been driven by sani-
tary and environmental concerns (generally supported by 
regulation) and economic development needs (including pro-
cess efficiency and optimisation of energy consumption). 
Today’s research challenges revolve more around develop-
ing innovative integrated systems that mobilise smart new 
approaches and technologies to readapt our transformation 
and production systems. Flexibility is needed to cope with 
market-driven changes in substrates and products, and make 
the multi-process system as sustainable as possible.

In agri-food industry, such as starch and sugar manu-
facturing industries, the valorization of side streams was 
already developed to produce a large panel of products. The 
“whole crop biorefining” also offers a portfolio of various 
products from grains and plant side streams such as straws 
and brans, [14, 15]. More recently, intensive investigation 
was put into reengineering the pretreatment processes con-
ventionally applied to improve plant residues deconstruction 
and facilitate the recovery of high-value, low-concentration 
specific fractions. However, concerning animal by-products, 
innovative and non-conventional processes still need to be 

Fig. 1  The role of research scientists in the valorization of agricul-
tural and industrial by-products. Scientists (illustrated by a magni-
fying glass) enable the processes’ design from the fractionation of 
the agri by-products to the subsequent extraction and purification of 
high-value molecules. The fields of application are wide like surface 
cleaning, material and pharmaceutic. Scientists also make it possible 
to increment processes for a cascade valorization of the by-products. 

To do so, they develop innovative sustainable processes including 
digester and composter that are integrated in systems providing new 
opportunity for economic development, e.g. energy and heat, and 
animal feed and soil amendment. Multi-disciplinary approaches such 
as biochemistry, chemistry, physico-chemistry, microbiology and 
process engineering are required to ensure an efficient and complete 
value-chain
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implemented to harness their biological and technical poten-
tial. Here, the concept of “innovation” could materialise 
through a raw-matter resource (the discarded animal tissues) 
that is largely under valorised worldwide for the recovery of 
specialty chemicals (just 1–2% for opotherapy and 1% for 
the recovery of gelatine; [16]). Harnessing this innovative 
resource requires processes that differ from those conven-
tionally used to convert animal by-products into low-value 
products (mainly pet food) which were mainly designed to 
minimise the huge amounts generated, estimated to be 20 
and 100 million tons worldwide, each year, from fisheries 
and meat (cattle, pigs and poultry) respectively, where ca. 
5.2 and 16.5 million tons, respectively, arise from the sole 
European Union [16].

The concept of environmental biorefinery was also 
explored for waste and wastewater treatment [17, 18]. It 
involves the incremental integration of mature processes into 
existing plants to give added value [9, 19, 20]. For example, 
such an approach could reduce the energy consumption of 
wastewater treatment plants by a factor of more than 10 and 
could even make wastewater treatment plants energy positive 
while they represent today about 5% of the energy consump-
tion of a developed country [21]. Although the proposed 
technologies are not necessarily disruptive, their integration 
into a multi-process system provides new opportunities for 
economic development. In the future, combining biologi-
cal and physical–chemical technologies will turn anaero-
bic digestion and wastewater treatment plants into biore-
source factories that goes beyond energy production. This 
could produce a wide range of valuable end-products, from 
biofuels and bioenergy (via biogas, biohydrogen and alga-
culture) to bio-based platform molecules  (H2, short-chain 
or medium-chain organic acids) and biopolymers such as 
alginate-like extracellular polymeric substances [22, 23] and 
even protein sources [19]. Also of interest are the remaining 
elements, which are recalcitrant to biodegradation. They will 
be recovered in sludge and digestate that have lower eco-
nomic value but high value in terms of ecosystem services 
(e.g., recycling nitrogen and phosphorous but also produc-
ing biopesticides, biosurfactants and composite materials 
for agricultural purposes) [24]. Furthermore, improved val-
orisation of sludge and digestate can be performed through 
post-treatment as filtration, evapo-concentration, compost-
ing, pyrolysis or co-gasification, etc. [25].

Lastly, introducing sustainability and circularity into pro-
cess development adds a challenge for researchers since it 
co-addresses production performance, energy conservation, 
environmental safety, and the health–hygiene credentials of 
the end-products. Indeed, an optimised multi-process sys-
tem differs from the sum of its individually optimised core 
technologies. For example, some processes used to remove 
organic micro pollutants (antibiotics, detergents, etc.) or 
microbial contaminants (pathogens, virus, etc.) are heavily 

energy-intensive, but alternative processes that are less 
energy-consuming cannot be developed at the expense of 
end-product quality. Downstream usages are also crucially 
important to sustain the use of new technologies. Technolog-
ical innovations investigating the effect of anaerobic diges-
tion on digestate quality and the fate of nutrients after soil 
amendment give a case-in-point illustration of the kind of 
tradeoffs researchers have to handle. Given the high number 
of parameters to deal with, it has become crucial to develop 
numerical multi-objective optimisation models to design 
efficient and sustainable multi-process systems. With this 
in mind, it is essential to model basic and applied research 
on each of the core technologies and bring them together 
into an integrated system to move innovation up towards 
competitive industry operation.

By Promoting the Emergence of Multi‑Scale 
and Cross‑Sectoral Organisations

For years, specialization, centralization and search for an 
economy of scale have pushed developers towards high 
capacity processes. In this context, the challenge to face 
was often process up scaling. Nowadays, the development 
of local economies, based on the creation of short food chan-
nels or for example on decentralized waste management, 
drives the adaptation of the process scale to a chain or a 
territory. However, downscaling of optimised large-scale 
processes involves critical issues in terms of scale limit and 
end-products production and valorisation. Beyond the tech-
nological aspects, making the chain economically viable 
is also a challenge. The need for economies of scale and 
return on investment still favours larger centralised facili-
ties, but different scales of processes can probably coexist 
within the same territory depending on the resources they 
use and the services they generate. Looking for example 
at breweries, there are still a small number of large groups 
mass-producing big brand beers, but the growing market is 
for small ‘craft’ breweries whose economic model is very 
different. Waste/wastewater management could follow the 
same trajectory, with a few large centralised plants operating 
alongside and smaller-sized tailor-made facilities adapted 
to each territory and dedicated to specific waste-to-value 
streams with higher added value [20]. Another example 
of how multi-scale infrastructures can coexist comes from 
integrated nature-based solutions for wastewater or leachate 
treatment in urban areas, where they are seen as good candi-
date solutions to increase urban resilience while contributing 
to the circular water economy [26, 27].

Actually, organisational factors are source of innovation. 
A biorefinery or an anaerobic digester system has a radius 
of action, i.e. the maximum distance from which resources 
can be recovered, which makes it vital to properly size and 
localise. For biogas plants, the location of the digester will 
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also dictate the valorisation pathway of the biogas, i.e. grid 
injection, heat and electricity production, or as biofuel. It 
is also important to consider properly the stability of the 
organic residues and waste streams to ensure good storage 
and transport management without degradation and sani-
tary nuisance that would blunt the extraction yield of target 
functional molecules.

In this context, why not imagine a future where citizens 
self-manage their local waste community and profit from it? 
Such innovative project in circular micro-bioeconomy would 
require citizens and local stakeholders to become actors in 
their end-to-end biowaste management chain, from waste 
collection to process supervision. The drivers for this kind of 
change in chain pathway are much diverse. They can encom-
pass economics, regulatory pressure, or technology-related 
constraints, but also reflect a more proactive engagement 
supported by community consensus, new opportunities or 
fresh ideologies. Here is a challenge for researchers to meet 
with companies and many stakeholders to engage in dia-
logue. In fact, moving outside of his or her core competen-
cies and their comfort zone is a true challenge for everyone. 
Furthermore, a multisector strategy also hinges on potential 
complementarities or competition from different economic 
sectors in the same territory. This makes it important to 
consider the different by-products generated within a ter-
ritory, particularly by agro-industry, in order to assess the 
potential for waste-to-value synergies. The transformation of 
wastewater treatment plants into recovery facilities of water 
resource requires a move from a pollution removal scheme 
to a biorefinery and energy supply scheme.

By Developing Multi‑Performance Methods 
to Evaluate Systems and Organisations

Efforts to evaluate processes and process chains in a circular 
bioeconomy run up against several difficulties, partly due 
to the existing evaluation methodologies and partly due to 
the lack of data [28, 29]. The first difficulty arises from the 
constructs of ‘sustainability’ and ‘circularity’ used to define 
bioeconomy. Sustainability requires that the processes and 
process chains developed safeguard the environment and 
support economic activity. It also requires a projection over 
time of the positive and negative impacts of the process or 
the sector, sometimes within territorial boundaries. Circular-
ity raises questions about safety and nuisance that are very 
important issues in the field of wastewater reuse and waste 
valorisation, especially when there are conflicts over how to 
use the local resource, as is the case with treated wastewater 
reuse. Both require new value indicators to be developed and 
integrated into existing assessment tools such as life cycle 
assessment and efficient multi-objective optimization [30, 
31], as proposed in social life cycle assessment for instance.

Other difficulties arise from multi-scale processes and 
the complexity of the network created by circularity [32]. 
The evaluation of multi-scale processes means that chain 
services that were usually evaluated separately now need 
to be evaluated as a single process route. Moreover, when 
a circular bioeconomy network interconnects matter, water 
and energy flows between three or more stakeholders, it may 
become extremely difficult to decipher and assess the entire 
network. Finally, if an innovative process is really disrup-
tive with existing technologies or process chains, researchers 
need to extrapolate laboratory data to industrial processes 
with evident uncertainties, making it difficult to assess its 
risks and benefits compared to existing reference routes [33]. 
Therefore, new evaluation methods and multi-performance 
indicators are necessary making this topic of research a rap-
idly expanding area [34] to be further used for risk assess-
ment and policy development.

By Rethinking Research–Society Intersections

Researchers play a key role in the diffusion of scientific 
and technological knowledge in society. However, public 
acceptance and appropriation of new technologies, products 
or practices is never a foregone conclusion. What are the 
obstacles to organic residues and wastewater valorisation? 
There are several aspects to consider. The first concerns 
the products obtained from residual matter. Even if socio-
economic and legislative landscapes are changing—largely 
thanks to increasing public awareness of the value of natu-
ral resources and the importance of sustainable production 
ways—consumers are not always receptive to the idea of 
using products obtained from what is currently considered 
‘waste’. This is particularly true for products derived from 
animal residues, organic waste or treated wastewater [35]. 
How many people today are ready to use cosmetics made 
from animal by-products or organic waste? How many are 
ready to drink purified treated wastewater? This is where 
research can play a transformative role in helping to change 
consumer conceptions by bringing the data to demonstrate 
that molecules obtained from today’s residues are entirely 
safe and have unique value.

Public readiness to accept a biotech innovation can be 
interpreted through the construct of Technology Readi-
ness Index (TRI). TRI is defined as “people’s propensity to 
embrace and use new technologies for accomplishing goals 
in home life and at work” [36]. For example, the public feed-
back was estimated for a new technology whose principle 
is to produce molecules by microbial electrosynthesis that 
is driven by organic waste oxidation [37]. Analysis identi-
fied three main trends of opinion: (i) a group that ‘adhered’ 
to the new technology on the basis of rational arguments 
related to the necessity to valorise waste and to positive 
perception of biotechnologies (high TRI); (ii) a group that 
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rejected the technology on the basis of rational arguments 
related to potential negative effects of massive waste treat-
ment processes on waste reduction and negative percep-
tion of technologies in general (low TRI); (iii) a group of 
non-specialists that questioned whether it was possible to 
scale down the technology for a small community or even 
a household. This third group was generally well informed 
about waste-to-value and often referred to recent trends in 
micro-anaerobic digestion (medium TRI). Major transdisci-
plinary research, including social science, stakes should then 
be to first enhance the knowledge of these trends of opinion 
in the field of environmental biotechnologies, and second 
assess their impact on the general acceptance of innovative 
technologies and evaluate whether they are impacted by the 
involvement of technology researchers in the public debate.

Finally, concerning the installation of new waste treat-
ment plants, public opposition is often characterised through 
the NIMBY (‘not in my back yard’) concept [38]. Analy-
sis of many case studies on opposition to anaerobic diges-
tion plants in Europe has found that the limiting steps are 
rather “non-technological” barriers [39–41] that can be col-
lapsed into four categories: economic (investments, grants), 
administrative (policy and support measures, overwhelm-
ing bureaucracy), market-related barriers (new technologies 
know-how, supply-chain coordination), and public accept-
ance issues. Public opposition often relies on the trust citi-
zens are ready to invest in policymakers and business, and 
includes the concepts of equity in the distribution of costs 
and benefits of the project. Participatory and community-
based research projects have proven to be more successful 

than projects sponsored by local institutions, agencies or 
businesses [38, 42–44]. The experiments reported by Zero 
Waste Europe demonstrate that new strategies for organic 
waste management with a better involvement of citizens and 
better communication among stakeholders can contribute 
to improved recycling rates and boost local employment 
[45, 46]. In this aim, the Horizon2020 EU R&I programme 
subsection ‘societal challenges’ served to frame the DECI-
SIVE project [47] which proposes an innovative biowaste 
management scheme based on a network of short circuits for 
recycling urban biowaste in local urban or peri-urban farm-
ing. The concept turns biowaste into a resource to produce 
energy and bioproducts for local farming and food produc-
tion (Fig. 2).

All these examples underline the need for stronger 
involvement of local stakeholders, and particularly citi-
zens, and social sciences in innovation processes. With that 
vision, the European Commission birthed a programme 
called SwafS–Science with and for Society to build interplays 
between science and society at national and international 
level. Starting from 2015, the programme set out three stra-
tegic priorities: Open innovation, Open science, Open to the 
world (the ‘three Os’ strategy; [48]). These three Os have 
revolutionised the whole conception of research, develop-
ment and innovation and brought a paradigm shift in sci-
entist–policymaker relations. In line with the EU strategy, 
researchers are increasingly developing projects based on 
participative science where programmes are co-designed 
with citizens, stakeholders and end-users. An example 
was the Companion Modelling approach [49] that created 

Fig. 2  The DECISIVE biowaste management concept scheme for 
recycling urban waste in local urban farming. Food from urban farm-
ing is locally consumed at home or in restaurants, thus generating 

wastes being themselves treated in a micro anaerobic digester to pro-
duce energy and digestate used in urban farming. So that the cycle is 
closed. A magnifying glass illustrates scientists
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a role-playing game (WasteWAG, Ter'Aguas) to guide the 
creation and optimisation of sanitation services adapted to 
developing countries.

By Enhancing Research–Legislation Interactions

Innovations brought by scientific developments on residual 
biomass valorisation may not fit the older established legis-
lative framework; as such, certain bottlenecks in the regula-
tions may warrant review. Even though much progress has 
been made on the high-value recycling of agri-food residues 
and wastewater, provisional exemptions to governing regula-
tions could, for instance, open a pathway to novel applica-
tions for molecules recovered from that biomass, which in 
turn could bring about novel organisational systems and new 
forms of employment. In many countries worldwide, the 
precautionary principle [50] may be sometimes interpreted 
as a damper to innovation and then represent a dilemma for 
decision makers in residual biomass valorisation. Recourse 
to that principle is generally used when potentially negative 
effects from a product or process have been clearly iden-
tified and/or when the scientific data needed to determine 
the risk is deficient. Other cases require what the legislative 
EU communication calls “examination of the benefits and 
costs of action or lack of action”, which should be based on 
socio-economic considerations. As also established therein, 
scientific research has a crucial role to play, since the pre-
cautionary principle is periodically revised according to the 
latest developments and data.

It is now widely accepted that scientific advice is hugely 
important for public policy and decision-making [51], 
and over the last decade, governance organisations have 
increased their commitment to informing policy decisions 
with the best scientific knowledge available. This has in turn 
generated the creation and expansion of several types of sci-
ence advisory structures in several countries [52]. A hierar-
chy of values and aim to reconcile the diverse and sometimes 
divergent interests and expectations of society’s constitu-
ent groups and communities should always guide changes 
in regulations. Population wellbeing, environmental stew-
ardship, and new jobs and growth opportunities through a 
cleaner and greener production industry (technologies, phar-
maceuticals, food, land fertilisation, etc.) can also coexist 
peacefully with profitable industry thanks to academic sci-
entific research bringing new products/processes to market.

In the European Union, independent scientific policy 
advice comes through the European Commission’s Science 
Advice Mechanism, which consists of the Group of Chief 
Scientific Advisors and the Science Advice for Policy by 
European Academies (SAPEA) consortium composed of 
academic researchers. The advisors are consulted each time 
science advice based on public research is critical to devel-
oping EU policy and legislation [53]. The recent directive on 

waste [54] and the brand new regulation on fertilisers [55] 
are both examples of the latest progress made by scientific 
research on agriwaste management and valorisation. Direc-
tive EU 2018/851 [53] amends the 2008 text by promot-
ing better waste practices to support the transition toward a 
circular economy and guarantee long-term competitiveness 
for the European Union. The new regulation on fertilisers 
amends the 2003 text by including animal by-products as 
sources of nutrients for soil and soil improvers and consid-
ering them as promising raw materials for the production 
of innovative fertilisers in a circular economy. Regulation 
EC 1069/2009 [56] on animal by-products has thus been 
amended, and changes entered into force from 8 April 2020.

To inform these new regulations and support the advisory 
groups, results from research have to be mobilised beyond 
the scientific literature. Involving researchers in cross-disci-
plinary scientific assessment is a key way forward to gather 
worldwide knowledge on a specific question and bring it to 
the attention of decision-makers.

Conclusions

Forging new circular bioeconomy pathways is one of the 
most exciting challenges for research. It is no easy task, as 
it requires a firm cohesive understanding of science, society, 
human behaviour, the environment, and regulatory, indus-
trial and economic landscapes in order to strike the right 
balance between creativity and practicality as we map out 
possible scenarios for the future.

All of this has changed the way researchers conduct 
their studies. Just a few years ago, it was still possible 
to optimise the productivity or profitability of a process 
by focusing on one single factor or on a short to medium 
time horizon. Today, processes cannot be understood as 
standalone units, and the criteria for optimisation have to 
include multiple dimensions and to be analyzed on a long 
term. The main consequences are that: (i) processes for 
circular economy have to be engineered for modularity 
(due to multiple and scarce sourcing channels, variable 
quantity–quality of the resources, and other constraints), 
for resilience (due to unexpected events such as shortages 
in available raw feedstocks) and must combine strong pub-
lic health and safety credentials; (ii) mathematical tools 
and multi-criteria optimisation have to be accounted for 
and embedded in experimental studies to evaluate the 
relevance of their objectives in terms of their economic, 
environmental and social dimensions; (iii) public accept-
ance has to be factored in from the beginning and not, as 
was often done in the past, after the innovation has been 
optimised; (iv) legislation has to be reassessed regularly 
to adapt to new scientific knowledge and technical devel-
opments. In addition, in terms of bio-sourced products, 
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it is important to move forward from producing added-
value biomolecules to replace oil-sourced molecules to a 
bio-functionality paradigm—in other words, it is not the 
molecule itself that has to be replaced but the service that 
it brings.

One last important aspect shaping today’s studies is 
the time and geographic scales in which they have to be 
conducted to avoid inconclusive experiments. To drive 
change, public and private researchers need the freedom 
to experiment new technological and organisational sys-
tems at relevant spatial (i.e. large) and temporal (i.e. long) 
scales. This will require longer-term public funding, i.e. 
some grants running longer than the current 3 to 4-year 
model, and possibly also at least a temporary readjustment 
of the current rules and regulations over test territories. 
With that vision, research will also certainly need to cap-
ture public support and consent and committed political 
backing, which is another challenge in itself.
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