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A B S T R A C T

Close-range spectral imaging (SI) of agricultural plants is widely performed for digital plant phenotyping. A key
task in digital plant phenotyping is the non-destructive and rapid identification of drought stress in plants so as to
allow plant breeders to select potential genotypes for breeding drought-resistant plant varieties. Visible and near-
infrared SI is a key sensing technique that allows the capture of physicochemical changes occurring in the plant
under drought stress. The main challenges are in processing the massive spectral images to extract information
relevant for plant breeders to support genotype selection. Hence, this study presents a generic data processing
workflow for analysing SI data generated in real-world digital phenotyping experiments to extract meaningful
information for decision making by plant breeders. The workflow is a combination of chemometric approaches
and deep learning. The usefulness of the proposed workflow is demonstrated on a real-life experiment related to
drought stress detection and quantification in Arabidopsis thaliana plants grown in a semi-controlled environment.
The results show that the proposed approach is able to detect the presence of drought just 3 days after its in-
duction compared to the well-watered plants. Furthermore, the unsupervised clustering approach provides
detailed time-series images where the drought-related changes in plants can be followed visually along the time
course. The developed approach facilitates digital phenotyping and can thus accelerate breeding of drought-
tolerant plant varieties.
1. Introduction

Agricultural plant phenotyping is the task of monitoring plant traits
during their growth in interaction with their surrounding environmental
conditions [1,2]. The main aim of plant phenotyping in plant breeding is
to select the best performing genotypes by pre-screening them based on
their performance in contrasted environmental conditions [2–5]. Such
pre-screening of genotypes allows the plant breeders to select the best
performing genotypes for breeding purposes so as to enhance the desired
trait in a plant variety [1–4]. For example, a key interest of plant breeders
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nowadays is to pre-screen genotypes that can tolerate drought stress
[6–9] due to climate change depleting water resources and increasing
unpredictable drought events [7,8]. To do this, the breeder needs to find
the best genotypes by exploring several candidate genotypes [1,10]. A
typical exploration for drought resistant genotypes includes growing
several genotypes under normal watering conditions and then inducing
drought stress [6,7]. During the drought stress period, the genotypes are
monitored and those that best resist the drought are identified and taken
for further analysis [8]. The decision regarding the best genotypes is
based on the observation of physical and functional traits [1,2,10]. The
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Table 1
Summary of activities during the monitoring of Arabidopsis with spectral
imaging.

Dates (DD-M-YYYY) Days after sowing Activities

26/5/2020 0 Seed sowing
06/7/2020 42 SI (1st imaging)
09/7/2020 45 SI
13/7/2020 49 SI
15/7/2020 51 SI
20/7/2020 56 SI
23/7/2020 59 SI þ Drought induction
26/7/2020 62 SI
28/7/2020 64 SI
30/7/2020 66 SI
02/8/2020 69 SI
04/8/2020 71 SI (last imaging)

P. Mishra et al. Chemometrics and Intelligent Laboratory Systems 216 (2021) 104373
physical traits are the number of leaves, height, width, 3D (3 Dimen-
sional) structure and other physically observable traits [10]. The func-
tional traits are more related to the photosynthetic activity of plants and
ranges from the concentration of plant pigments, macro and micro-
nutrients, and photosynthesis-related parameters such as transpiration
rate, stomatal conductance, as well as herbicide resistance [1–3,10,11].

Nowadays, plant phenotyping is widely performed under both
controlled conditions, such as greenhouses, and under field conditions
[2,3,11,12]. Preliminary knowledge is usually acquired in the controlled
conditions of a greenhouse and is then validated under field conditions.
However, the manual monitoring of plants traits throughout the growing
season is a cumbersome task as the number of genotypes explored in
breeding programs is often large (i.e., hundreds and even thousands) and,
in many cases, the climatic conditions are harsh for humans to work for
long hours monitoring each plant [2,13–16]. Therefore, the concept of
digital plant phenotyping has recently emerged [17] to promote the use
of novel non-destructive sensing technologies such as imaging, spec-
troscopy, fluorometers and advanced data analytics to monitor plant
traits in a minimally invasive and automatic way [13–15,17]. Another
main aim of digital plant phenotyping is to accelerate plant phenotyping
and make it a high-throughput task, where several hundreds or even
thousands of genotypes can be explored automatically and rapidly to
support the fast development of new plant varieties [3,18–20]. Within
the framework of high-throughput digital plant phenotyping, several
new automated phenotyping facilities have emerged around the world
[4,7,17,21].

Visible and near-infrared (400–1000 nm) spectral imaging (SI) is
emerging as a key non-destructive sensor for the rapid assessment of
plant traits within the framework of digital phenotyping under semi-
controlled conditions as well as in the field [17,22,23]. The advantage
of SI is that it allows the simultaneous extraction of morpho-physiological
traits by capturing spatially resolved spectral properties of plants, unlike
classical RGB colour imaging which allows extraction of morphological
traits [17,22]. The visible region (400–700 nm) of the spectrum captures
information related to key plant pigments such as chlorophyll, antho-
cyanins, and carotenoids [17,24]. These pigments are related to the
photosynthetic activity of plants and are affected by external influences
[24]. The near-infrared (NIR; 700–1000 nm) range of the spectrum
captures the molecular properties of samples such as the compounds
containing OH, CH, and NH bonds, as well as the internal structural
properties of leaves such as the cellular structure and leaf thickness [17,
24,25]. The NIR part captures the chemical properties through light
reflection affected by absorption and transmission and the internal
structure properties through light scattering [26]. However, light ab-
sorption and scattering effects are mixed in the NIR signal and data
modelling techniques are required to extract the information efficiently
[27].

Although much innovation has taken place in the development of low
cost, high-quality and easy-to-use spectral camera systems, the main
challenge is still related to the extraction of key information relevant to
plant breeders for decision-making purposes [17]. Commonly, plant
breeders are non-experts in computer vision and in the advanced data
analysis approaches required for SI data processing. The huge informa-
tion present in spectral images is of no interest to plant breeders, as their
main interest is the quantifiable patterns in the spectral images which can
help them in decision making for genotype selection. However, to extract
meaningful patterns and to quantify them, the spectral images must go
through several steps of data processing [17]. Several data analysis ap-
proaches have been tested [17,22], but there is currently no standard
workflow to process spectral images generated in digital phenotyping
experiments. In fact, the SI data has often been treated simply as RGB
images with extra bands, and have been processed with traditional
computer vision approaches (working on the spatial context level)
[28–30]. Sometimes the SI data has been considered simply as multi-
variate spectral data (working at the pixel level on unfolded images) and
so classical chemometric approaches were then used [6,7,9,31,32].
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However, SI data is a combination of spatial and spectral information
[33,34], and thus requires combinations of computer vision and che-
mometric approaches at several stages of the processing. For example,
the removal of illumination effects from the spectral images of plants
requires the use of chemometric normalisation techniques [6,7,35]; the
easy handling of huge spectral images requires the use of latent space
modelling techniques [34]; the segmentation of plants from the back-
ground soil and pots requires advanced computer vision techniques; and
finally to quantify the traits into interpretable plots for breeders requires
the use of multivariate data processing approaches such as spectral
clustering [6,7,35]. To the best of our knowledge, based on recent review
articles in the domain [6,17,22,23], the present work is the first of its
kind to provide a unified workflow scheme to process SI data generated
for the rapid detection of drought stress in Arabidopsis plants which are
commonly studied in digital phenotyping experiments.

The data processing workflow presented here is a combination of
chemometric and deep learning (DL) approaches. There are four main
steps in the workflow: first, the reduction of illumination effects in
spectral images using chemometric spectral normalisation techniques
[27]; second, reduction of the size of the spectral images by principal
components analysis (PCA) [36]; third, separation of plants from back-
ground soil and pots using DL-based semantic segmentation; fourth,
either unsupervised clustering to capture the changes in the plants in
response to the drought onset and progression, or repetitive measure
analysis of variance simultaneous component analysis (REP-ASCA) [37]
to extract patterns from a designed experiment. The proposed workflow
was demonstrated on an experiment related to drought-stress detection
and quantification in Arabidopsis thaliana plants grown under
semi-controlled conditions. Arabidopsis thaliana was used as it is a model
widely used in plant biology and for screening genes in phenotyping
experiments [9,18].

2. Materials and methods

2.1. Plant material

Arabidopsis thaliana (ecotype: Columbia) was grown in the green-
house facilities of the Hebrew University, Jerusalem, Israel. The soil
material was universal potting soil with base fertilizers, the soil was
lightweight substrate with porous texture and high water retention.
Sowing was performed on a black plastic pot tray with 18–300 cm3

volume pots with one plant in each pot. 18 plants were well-watered
while another 18 plants were subjected to the drought-stress treatment.
The semi-controlled conditions were Temperature ¼ 22–24 �C and RH ¼
40–50%. The plants were sown on 26/May/2020 and were watered
regularly until 23/July/2020 at which moment the drought stress was
induced in half of the plants (i.e., plants were no longer irrigated). The
remaining well-watered class was the control group for comparison with
the drought treated plants.



Fig. 1. A typical RGB image of plants before and after the drought stress trial.
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2.2. Spectral image acquisition

The plants were monitored by visible and near-infrared spectral im-
aging at discrete intervals (Table 1) with a HySpex VNIR-1800 (Norsk
Elektro Optikk, Oslo, Norway) line scanner that captures a line of 1800
pixels in each shutter opening. The camera was positioned at nadir, 1 m
above the top of the canopy. To assemble the whole scene, the pots were
placed on a translation stage synchronized with the camera frame rate.
The raw data were converted into radiance using a radiometric calibra-
tion file specific to the camera and then converted into relative reflec-
tance based on a 50% Zenith Alucore reference panel (Norsk Elektro
Optikk, Oslo, Norway). All pre-processing was performed in the Hys-
pexRef software environment (Norsk Elektro Optikk, Oslo, Norway). The
spectral range was 407–997 nm with a sampling interval of ~3.26 nm
giving a total of 186 bands. The spatial resolution was 6 pixels per mm.
During each imaging day, two sets of images were acquired, the first set
consisting of images of the 18 well-watered plants in a single scene, the
second set being the 18 plants under drought-stress conditions. Hence,
two spectral images of size 3958 � 1800 � 186 were generated each day
for a total 11 days, giving a total of 22 images. The size of a single image
was ~2.5 GB. An example of images from well-watered and drought-
stressed plants at start and end of the trial is shown in Fig. 1. It can be
Fig. 2. A summary of the different steps invo
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noted that on the last day the well-watered plants were greener and
healthier than the plants under drought stress.
2.3. Data analysis workflow

A summary of the four-step approach is also illustrated in Fig. 2.

2.3.1. Image preparation and pre-processing
The first step of the workflow is the preparation of the spectral im-

ages. This step starts when the reflectance spectral images are ready to be
analysed. SI during digital phenotyping experiments involves monitoring
several plants over many days during which some images may be badly
acquired or human errors may occur. Such spectral images can be
considered as outliers and should be identified and removed from the
data set. As is often the case in such experiments, only a small number of
plants in each group survived for the whole period of the experiment. At
first, due to a low gemination rate of the seeds, several of the pots were
eliminated, and later, as many pots partially germinated or fell out prior
to the drought treatment, other pots were eliminated. In the end this led
to a choice of only three plants each for well-watered and drought class.
In the following parts of the manuscript, the 3 well-watered plants will be
referred to as W1, W2 and W3, and the 3 drought-stressed plants will be
referred to as D1, D2 and D3. The pre-processing of spectral reflectance
images involves several steps. The first step is to check the spectral signal
noise. To improve the smoothness of the spectra for further analysis, a
smoothing operation using a 2nd order polynomial was performed using
the Savitzky-Golay (SAVGOL) [38] approach with a window size of 13.
The next step of spectral image pre-processing is spectral normalisation
[27] to eliminate the illumination effects caused by the interaction of the
light with the complex plant geometry [17,22]. Various effects such as
shadowing, multiple reflections, scattering and a combination of several
effects are present in the spectra of plants [17]. These effects are like the
additive and multiplicative effects commonly encountered in the che-
mometrics domain [9,17,31] and the use of spectral normalisation
techniques was recently proposed to remove them [6,7,17]. Spectral
normalisations are fast and easy to implement and do not require any
additional measurements [17]. Of the several spectral normalisation
techniques available, two have become popular i.e., standard normal
variate (SNV) [39] and variable sorting for normalisation (VSN) [40].
VSN has been shown to outperform SNV [17,35], and for this reason was
used in this study to correct the illumination effects in the spectra of the
plants [40]. A key point to note is that both the spectral smoothing and
normalisation were performed on the unfolded spectral data cubes. After
lved in the proposed generic workflow.
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the spectral normalisation, the matrices were folded back into 3D (3
Dimensional) cubes.

2.3.2. Dimensionality reduction
Several approaches are available in the machine learning and che-

mometric domain for dimensionality reduction, but methods based on
the use of latent variable are the most practical. The main reason for this
is that the latent variable modelling methods not only perform the
dimensionality reduction by concentrating all major variations into a
small number of latent variables, but also provide loadings and weights
vectors which can be used to understand the physicochemical back-
ground of these new variables [36]. In this study, principal components
analysis (PCA) based latent space modelling was performed on the
unfolded data cubes [36], transforming the highly correlated Vis-NIR
data into a set of decorrelated variables carrying the important vari-
ance in the data [36]. After the PCA analysis, the data matrix was
refolded into cubes. The optimal number of PCs was chosen based on the
shoulder point of the explained variance plot. Following the PCA, the
spectral dimension of the images was reduced from 186 to only 4.

2.3.3. Segmentation of plants from background soil and pots
Once the spectral images pre-processed and their dimensionality

reduced, the next step was the segmentation of the plant pixels from the
non-plant background which is necessary since the data analysis must be
based solely on the pixels of the plants, and the presence of background
material could influence the analysis. The segmentation can be performed
in several ways. Themost common approach is the use of a threshold in the
normalized difference vegetation index (NDVI) images [6,7,22]. The
values of NDVI ranges from�1 to 1, where a healthy green plant has values
near 1, while, the non-plant background material has values close to 0. A
simple threshold can be set and a binary segmentation of plant and
non-plant background can be attained. However, the main challenge with
the NDVI approach is that in many cases the background can contain
material that can also have high NDVI values, for example, partially
germinated plants andmosses, inwhich case a suitable threshold cannot be
found. Another approach is to train a pixel-based classifier and predict the
class for each pixel [22], but this approach is not ideal for two reasons;
firstly, it does not use the spatial context of the image and secondly, ma-
terial with similar spectral properties as the leaves will be misclassified.
Recently, a DL-based semantic segmentation approach for plant segmen-
tation was proposed [41]. The approach jointly uses the spatial and
spectral information to achieve semantic segmentation. The DL model was
based on a U-net, which is widely used for the segmentation of multivariate
images. A key point to note is that although a U-net based DL approach is
used here, other DL networks can be explored and the best one for each
particular application selected. In this study, the ground truth labels were
generated manually in MATLAB 2018b (The MathWorks, Natick, MA,
USA) using the ‘roipoly’ function. The U-net was implemented using the
Python (3.6) language and Keras/TensorFlow (2.1.0). The model weights
were initialized with the ‘he normal’ initializer in Keras, the adaptive
moment (ADAM) optimizer was used to minimize the categorical
cross-entropy loss function, and a batch size of 32 was used for model
training. Automatic learning rate adaptation based on monitoring the
intersection over union (IoU) score was implemented with the ‘Reduc-
eLROnPlateau’ function from Keras. An early stop was implemented using
the ‘EarlyStopping’ function from Keras, where the training process was
automatically stopped if no further significant improvement was noted in
the validation loss during the training process. Each model was trained for
1000 epochs but due to the ‘EarlyStopping’ function, model training was
always terminated in~100 epochs. Checkpointer was used to save the best
model weights during the training process.

2.3.4. Pattern recognition during plant growth

2.3.4.1. K-means clustering. Once the plants were segmented from the
4

background, the next step was to reveal the pattern from time-series
spectral images related to the plant growth. The patterns also need to
be quantified into simple plots or graphics for decision making by plant
breeders. An easy approach to process this data is to perform clustering
over time and treatment [6,7,9]. To perform such a clustering, a random
subset of plants was selected from different time points and treatments
i.e., well-watered and drought-stressed. Not all the time points and
treatments can be processed simultaneously due to memory limitations.
In the domain of spectral image processing spatial or spectral binning can
be implemented to reduce data size [34]. However, in this study, in order
to keep all the spatial and spectral information, no binning or image
compression was performed. The k-means clustering can be performed
pixels-wise on the random subset of HS images. In this study, the optimal
numbers of k-means clusters were estimated using the Calinski-Harabasz
criterion [42] and were implemented in MATLAB with functions avail-
able in the ‘Statistics and machine learning toolbox’. Once the k-means
clustering performed, the cluster centroids were saved and later cluster
maps for all the images were obtained using the Euclidean distances.
Such clustering allows exploring hidden data patterns that can be visu-
alized as time series trajectories of the cluster pixels. The evolution of
clusters can further be quantified as pixel proportions for easy interpre-
tation by plant breeders. In this study, the cluster proportion trajectories
over time were quantified using the ‘histcount’ function in MATLAB
individually for each image.

All data analyses were performed on a workstation equipped with a
NVidia GPU (GeForce RTX 2080 Ti), an Intel® Core™ i7-4770k @3.5
GHz and 64 GB RAM, running Microsoft Windows 10 OS.

2.3.4.2. REP-ASCA. In this study, REP-ASCA [37] was performed to
extract patterns and to study effects of the factors day, drought treatment
and their interaction. REP-ASCA as an analysis of variance method for
spectral data has the advantage of reducing errors related to the lack of
measurement repeatability which may be due to factors that are not
identified or nested in the experimental design.

The REP-ASCA approach required, on the one hand, a dataset X
dedicated to the analysis of variance and, on the other hand, another
datasetW to describe the repeatability error. In our case,Xwas randomly
formed from the large number of spectra available from spectral images.
The same number of spectra was used for eachmodality to strictly respect
a balanced design. The remaining spectra were used forW to describe the
repeatability error. Then, components were obtained from W to remove
them from X.

X was decomposed according to the model established as follows:

X¼μþ XT þ XD þ XTxD þ R

Where μis the average of X. The terms XTand XD and XTxD are matrices
corresponding respectively to treatment, date and interaction between
treatment and date. Each of these matrices associates each observation
with a mean spectrum of a particular modality. For example, XT assigns
the average spectrum for all observations of the irrigated condition and
the average spectrum for those of the non-irrigated condition. R matrix
represents the residuals.

REP-ASCA uses a permutation test to estimate the level of significance
of each factor. The loadings of each significant factor highlight the
spectral regions influenced by that specific factor while the scores can be
used to classify observations.

3. Results and discussion

3.1. Step 1: Image pre-processing to remove illumination effects

The spectral images were pre-processed with the VSN algorithm to
minimize the illumination effects on Arabidopsis leaf reflectance (Fig. 3)
giving rise to large variations in the signal intensity within and between



Fig. 3. An example of illumination correction by VSN pre-processing. The image represents the spectral band of 883 nm. (A) Before pre-processing, and (B) after pre-
processing with VSN. It can be noted that before pre-processing the image was affected with the illumination effect and the intensity differences between pixels within
leaves was high, while after VSN pre-processing the intensity of plant pixels was homogenous.
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leaves. In particular, the tip gave higher or lower signal intensities, due to
the non-flat geometry of the leaves. Spectral normalisation by VSN
reduced the variability in the signal intensities of the leaves (Fig. 3B), in
agreement with previous work using VSN in this way [35]. A low vari-
ation in the signal intensities of leaves was expected in this case, as that
plant was under no stress or external influence which could cause high
within-leaf variability in signal intensity.

3.2. Step 2: Dimensionality reduction

After pre-processing, all the spectral images were transformed into
principal component (PC) scores images (Fig. 4). The first four PCs
(Fig. 4A) were retained, hence the image cubes were transformed from
186 variables to 4. The first PC (Fig. 4B) had near-zero weights in the
visible region but increasing weight in the NIR region, which is not
related to the plant as chlorophyll gives a peak in the visible region
around 550 nm. In the scores image for the 1st PC (Fig. 4C), it can be
noted that the plant had scores close to 0, while the other background soil
Fig. 4. A summary of the results of the PCA performed on the spectral images. (A)
retained PCs, (C) PC1 scores image, (D) PC2 scores image, (E) PC3 scores image, an
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material had higher scores. This confirms that PC1 is not related to the
plant in the image. The loadings for PC2 (Fig. 4B) and the corresponding
scores image (Fig. 4D) suggest that it is also not related to the plant but to
some background material such as green moss present in the soil. PC3
was related to the Arabidopsis as the loading weight vector (Fig. 4B) is a
typical spectrum of green vegetation with peaks for photosynthetic pig-
ments, the red-edge region and high signal intensity in the NIR region
[43]. The scores image for PC3 (Fig. 4E) also shows that the plant pixels
had higher scores than the background. The loading weights for the PC4
(Fig. 4B) were close to zero in the NIR region, but have several peaks in
the colour region as well as non-zero signal in the red-edge region. The
scores image suggests that PC4 (Fig. 4F) was not related to green vege-
tation in the scene as the Arabidopsis pixels had scores close to zero.

3.3. Step 3: Deep semantic segmentation of plants

After the PCA transform, the next task of semantic segmentation was
performed to distinguish plant pixels from the background. For semantic
explained variance plot - 4 PCs were retained, (B) loadings weights for the 4
d (D) PC4 scores image.



Fig. 5. A summary of the U-net model training and validation performance as a function of the number of epochs. (A) Loss vs. epoch, and (B) Validation accuracy,
Intersection over Union score vs. epoch.
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segmentation, a U-net was trained. The training and validation perfor-
mances of the U-net are shown in Fig. 5. Less than 100 epochs were
required for the training. The validation and IoU scores were higher than
0.98 (Fig. 5B). The segmentation model managed to cover the entire time
series (Fig. 6A). As can be seen in Fig. 6B, in the case of one of the
drought-stressed plants, the segmentation model supplied a clear binary
Fig. 6. An example of semantic segmentation performed by the U-net based DL mode
image, and (B) segmentation mask. Red circles mark drought-stressed Arabidopsis par
is referred to the Web version of this article.)

Fig. 7. A summary of the k-means clustering results performed combining time and
and (B) cluster centroids. A key point to note is that the k-means clustering was per
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segmentation of the plant pixels from the background (Fig. 6A). The
segmentation model was trained on the data from the complete time
series, covering all the variability in the plant pixels. Thus, the model
performed as expected, not only segmenting the green plants from the
background, but also segmenting senescing as well as drought-stressed
plant parts (Fig. 6A and B).
ls for the complete time series monitoring of a drought stressed plant. (A) 1st PC
ts. (For interpretation of the references to colour in this figure legend, the reader

treatment data. (A) Plot for the selection of 2 as the optimal number of clusters,
formed on the PCA transformed data to reduce the computational cost.



Fig. 8. Cluster maps for the complete
time series of 3 well-watered (W1, W2,
and W3) and 3 drought-stressed (D1,
D2, and D3) plants. The drought stress
was initiated at 23/07/2020. There
were only two clusters identified in the
k-means modelling. The green and red
pixels correspond to the two clusters.
The red pixels are indicative of the
drought effect and can be seen as pro-
gressively increasing after the initiation
of drought conditions. (For interpreta-
tion of the references to colour in this
figure legend, the reader is referred to
the Web version of this article.)
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3.4. Step 4: Pattern recognition over time

3.4.1. k-mean clustering along time
Once the segmentation of plants was done, the pattern explaining

differences in time and water status (i.e., well-watered and drought-
stressed) was extracted from the data. In this study, k-means clustering
of the PCA transformed data was used for unsupervised pattern extrac-
tion. The Calinski-Harabasz criterion indicated that just 2 clusters were
sufficient to explain the pattern in the data (Fig. 7A). The first cluster has
zero scores for PC1 and PC2, and high scores for PC3 (Fig. 7B). Since PC3
is related to the green healthy plant pixels, a higher weight of PC3 for
cluster 1 suggest that cluster 1 was related to green healthy plant pixels.
On the other hand, cluster 2 had positive weights for PC1 and PC2, and
high negative weights for PC4, all were related to unhealthy plant pixels.
Fig. 9. Plots showing the evolution of cluster proportions. (A) Evolution of healthy
cluster 2. Day 0 in the x-axis indicates the induction of drought stress.
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The differences between well-watered and drought-stressed Arabidopsis
plants are presented in a cluster map for the complete time series (Fig. 8).
For the well-watered plants, cluster 1 dominated over the complete time
series, indicating that the well-watered plants stayed healthy. For the
plants under drought stress, a progressive increase in cluster 2 was noted
after the drought induction. Hence, the cluster maps provided a clear
understanding of the effect of the drought-stress compared to the well-
watered plants. A point to note is that the well-watered plants in the
late time points also had a few pixels corresponding to cluster 2 (red), but
they were not dominant as in the case of the plants under drought stress.
The small number of cluster 2 (red) pixels in the late time point can be
related to the natural senescence of the plants.

The cluster maps gave visual insight into the patterns in the data that
need to be quantified so that the plant breeders can use them for easy
plant pixels i.e., cluster 1, and (B) Evolution of drought stress related pixels i.e.,



Fig. 10. A summary of the REP-ASCA analysis on the spectral data of plants. (A) Scores corresponding to the factor related to treatment, and (B) loadings vector
corresponding to the effect of drought treatment.
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comparison of plants under study. To achieve this quantification, it was
proposed to use the evolution of cluster pixels over time, where the
proportion of pixels for each cluster map is plotted as time series tra-
jectories (Fig. 9). Fig. 9A and B shows the trajectories for cluster 1 and 2,
respectively. In Fig. 9A, it can be noted that the cluster proportions for
well-watered plants (W1, W2 and W3) remained >0.90 for cluster 1
during the complete time series, while for the plants under drought stress
(D1, D2 and D3) the cluster proportion decreased after the day of drought
induction i.e., 23/07/2020. Similarly, for cluster 2, the well-watered
plants kept cluster proportions <0.1, while for the plants under
drought stress the cluster proportions drastically increased after the day
of drought induction. Either Fig. 9A or B can be used for decision making
purposes as they both provide the same trend: Fig. 9A showing how the
healthy pixels decreased; Fig. 9B showing how the pixels related to
drought increased along the time of drought progression. The well-
watered and drought-stressed plants can be separated from day 3 on-
wards. A key point to note in Fig. 9 is that, for plant D1, it seemed that on
the last day the total number of healthy pixels increased. However, this
was not the case. A reason we can give for an apparent slight increase in
healthy pixels in drought stress suffering plants on the last day of the
experiment could be related to the shrinking of dehydrated leaves. Such a
shrinkage can reduce the proportion of plant pixels suffering from
drought-stress with respect to the total number of plant pixels.

3.4.2. REP-ASCA
In addition to the previous analysis, the analysis of variance REP-

ASCA method studies the effect of factors on the variance of the obser-
vations. On this dataset all factors, i.e., day, drought treatment and their
interaction, are significant (p-value<0.05). In order to target drought
detection, scores and loadings for the treatment factor are shown in
Fig. 10A and Fig. 10B, respectively.

Before the induction of drought stress, the scores obtained for the
well-watered condition are negative and close to those obtained for
drought stressed condition. In contrast, after induction, the separation
between the two conditions gradually increases and scores of the
drought-condition become positive while those for well-watered condi-
tion remain negative. This temporal evolution shows that the installation
of stress is progressive. This dissociation between the two conditions
appears as early as the third day after induction.

The loadings vector (Fig. 10B) related to the treatment factor high-
lights the spectral regions involved in this dissociation. On this compo-
nent, a peak is visible at 550 nm corresponding to plant pigments [17]
and more particularly to anthocyanins. Other information is carried by
this component such as the red edge regions 670–720 nm [17] and the
3rd overtones of OH bonds [44] related to moisture differences in
well-watered and drought-stressed plants. All these key spectral bands
are likely to be indicators for detecting drought stress (Fig. 10B).
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4. Summary and conclusions

This study proposed a generic four-step scheme to process SI data
generated during digital plant phenotyping experiments: pre-processing,
dimensionality reduction, segmentation, and pattern recognition. A
demonstration case was presented related to drought stress detection in
Arabidopsis thaliana grown under semi-controlled conditions and moni-
tored over a period of ~2 months. The results showed that the generic
scheme allowed an early detection of drought stress. Furthermore, the
drought symptoms were quantified as the proportion of healthy and
unhealthy pixels to non-destructively identify the effect of drought 3 days
after induction. REP-ASCA was used to confirm the detection of drought
from 3 days onwards. Although the demonstration case was related to
drought stress detection, the generic scheme can be applied to any of the
other types of stress or traits commonly explored in digital phenotyping
experiments. Furthermore, the generic scheme proposed here being
flexible, users can easily replace various steps within it. If, for example,
new chemometric pre-processing approaches are developed, or if new DL
segmentation approaches appear then the user can introduce them. A key
limitation of the study is that the demonstration was performed on a
single genotype of Arabidopsis thaliana, hence, no genotype selection was
performed. Future work will involve testing this generic scheme for new
experiments involving multiple genotypes. Although this data processing
pipeline covers several steps required for modelling spectral images
related to monitoring plants under drought stress, most plant breeders
are non-experts in data processing and usually require easy to use tools to
gain abstract understanding of their breeding trials. In that case, the most
informative and easiest to understand part of the analysis was REP-ASCA
which provides an objective way to compare the effects of treatments on
the plants. Another key point to note is that, although it may seem
complicated to do the DL modelling in Python and the chemometric
analysis processing in MATLAB, this was done because DL modelling was
easier in Python than in MATLAB. However, MATLAB has also recently
provided options to use DL models developed in Python, hence, it can be
expected that in future implementations all the modelling presented in
this work will be performed within a single programming environment.

Author statement

PuneetMishra: Conceptualization; Methodology; Software;Writing -
Original Draft; Data Curation.

Roy Sadeh: Conceptualization; Methodology; Software; Writing -
Original Draft; Data Curation.

Maxime Ryckewaert: Methodology; Software; Writing - Original
Draft.

Ehud Bino: Conceptualization; Methodology; Software; Writing -
Original Draft; Data Curation.



P. Mishra et al. Chemometrics and Intelligent Laboratory Systems 216 (2021) 104373
Gerrit Polder: Conceptualization; Methodology; Writing - Review &
Editing.

Martin P. Boer: Conceptualization; Methodology; Writing - Review
& Editing.

Douglas N. Rutledge: Conceptualization; Methodology; Writing -
Review & Editing.

Ittai Herrmann: Conceptualization; Methodology; Writing - Review
& Editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This research was supported by the Wageningen University &
Research knowledge base program ‘Data Driven & High Tech.’

Dr. Idan Efroni, The Hebrew University of Jerusalem – supplying the
plant material.

References

[1] S. Dhondt, N. Wuyts, D. Inz�e, Cell to whole-plant phenotyping: the best is yet to
come, Trends Plant Sci. 18 (2013) 428–439.

[2] R. Pieruschka, U. Schurr, Plant phenotyping: past, present, and future, Plant
Phenomics (2019) 6, 2019.

[3] C. Zhao, Y. Zhang, J. Du, X. Guo, W. Wen, S. Gu, J. Wang, J. Fan, Crop phenomics:
current status and perspectives, Front. Plant Sci. 10 (2019) 714.

[4] W. Yang, H. Feng, X. Zhang, J. Zhang, J.H. Doonan, W.D. Batchelor, L. Xiong,
J. Yan, Crop phenomics and high-throughput phenotyping: past decades, current
challenges, and future perspectives, Mol. Plant 13 (2020) 187–214.

[5] F.A. van Eeuwijk, D. Bustos-Korts, E.J. Millet, M.P. Boer, W. Kruijer, A. Thompson,
M. Malosetti, H. Iwata, R. Quiroz, C. Kuppe, O. Muller, K.N. Blazakis, K. Yu,
F. Tardieu, S.C. Chapman, Modelling strategies for assessing and increasing the
effectiveness of new phenotyping techniques in plant breeding, Plant Sci. 282
(2019) 23–39.

[6] M.S.M. Asaari, P. Mishra, S. Mertens, S. Dhondt, D. Inze, N. Wuyts, P. Scheunders,
Close-range hyperspectral image analysis for the early detection of stress responses
in individual plants in a high-throughput phenotyping platform, ISPRS J.
Photogrammetry Remote Sens. 138 (2018) 121–138.

[7] M.S.M. Asaari, S. Mertens, S. Dhondt, D. Inze, N. Wuyts, P. Scheunders, Analysis of
hyperspectral images for detection of drought stress and recovery in maize plants in
a high-throughput phenotyping platform, Comput. Electron. Agric. 162 (2019)
749–758.

[8] N. Briglia, G. Montanaro, A. Petrozza, S. Summerer, F. Cellini, V. Nuzzo, Drought
phenotyping in Vitis vinifera using RGB and NIR imaging, Sci. Hortic. 256 (2019),
108555.

[9] P. Mishra, T. Feller, M. Schmuck, A. Nicol, A. Nordon, Early Detection of Drought
Stress in Arabidopsis Thaliana Utilsing a Portable Hyperspectral Imaging Setup,
2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in
Remote Sensing, WHISPERS), 2019, pp. 1–5.

[10] A. Walter, F. Liebisch, A. Hund, Plant phenotyping: from bean weighing to image
analysis, Plant Methods 11 (2015) 14.

[11] F. Fiorani, U. Schurr, Future scenarios for plant phenotyping, Annu. Rev. Plant Biol.
64 (2013) 267–291.

[12] I. Herrmann, E. Bdolach, Y. Montekyo, S. Rachmilevitch, P.A. Townsend,
A. Karnieli, Assessment of maize yield and phenology by drone-mounted
superspectral camera, Precis. Agric. 21 (2020) 51–76.

[13] L. Li, Q. Zhang, D.F. Huang, A review of imaging techniques for plant phenotyping,
Sensors 14 (2014) 20078–20111.

[14] N. Fahlgren, M.A. Gehan, I. Baxter, Lights, camera, action: high-throughput plant
phenotyping is ready for a close-up, Curr. Opin. Plant Biol. 24 (2015) 93–99.

[15] T. Roitsch, L. Cabrera-Bosquet, A. Fournier, K. Ghamkhar, J. Jim�enez-Berni,
F. Pinto, E.S. Ober, Review: new sensors and data-driven approaches—a path to
next generation phenomics, Plant Sci. 282 (2019) 2–10.

[16] G. Perich, A. Hund, J. Anderegg, L. Roth, M.P. Boer, A. Walter, F. Liebisch,
H. Aasen, Assessment of multi-image unmanned aerial vehicle based high-
throughput field phenotyping of canopy temperature, Front. Plant Sci. 11 (2020)
150.

[17] P. Mishra, S. Lohumi, H. Ahmad Khan, A. Nordon, Close-range hyperspectral
imaging of whole plants for digital phenotyping: recent applications and
illumination correction approaches, Comput. Electron. Agric. 178 (2020), 105780.
9

[18] C. Costa, U. Schurr, F. Loreto, P. Menesatti, S. Carpentier, Plant phenotyping
research trends, a science mapping approach, Front. Plant Sci. 9 (2019) 1933.

[19] S. Jarolmasjed, S. Sankaran, A. Marzougui, S. Kostick, Y.S. Si, J.J.Q. Vargas,
K. Evans, High-throughput phenotyping of fire blight disease symptoms using
sensing techniques in apple, Front. Plant Sci. 10 (2019).

[20] A. Mazis, S.D. Choudhury, P.B. Morgan, V. Stoerger, J. Hiller, Y. Ge, T. Awada,
Application of high-throughput plant phenotyping for assessing biophysical traits
and drought response in two oak species under controlled environment, For. Ecol.
Manag. 465 (2020), 118101.

[21] U. Lee, S. Chang, G.A. Putra, H. Kim, D.H. Kim, An automated, high-throughput
plant phenotyping system using machine learning-based plant segmentation and
image analysis, PloS One 13 (2018) e0196615.

[22] P. Mishra, M.S.M. Asaari, A. Herrero-Langreo, S. Lohumi, B. Diezma, P. Scheunders,
Close range hyperspectral imaging of plants: a review, Biosyst. Eng. 164 (2017)
49–67.

[23] P. Mishra, G. Polder, N. Vilfan, Close Range Spectral Imaging for Disease Detection
in Plants Using Autonomous Platforms: a Review on Recent Studies, Current
Robotics Reports, 2020.

[24] J.-B. F�eret, K. Berger, F. de Boissieu, Z. Malenovský, PROSPECT-PRO for estimating
content of nitrogen-containing leaf proteins and other carbon-based constituents,
Rem. Sens. Environ. 252 (2021), 112173.

[25] S. Jacquemoud, F. Baret, PROSPECT: a model of leaf optical properties spectra,
Rem. Sens. Environ. 34 (1990) 75–91.

[26] R.F. Lu, R. Van Beers, W. Saeys, C.Y. Li, H.Y. Cen, Measurement of optical properties
of fruits and vegetables: a review, Postharvest Biol. Technol. 159 (2020).

[27] P. Mishra, A. Biancolillo, J.M. Roger, F. Marini, D.N. Rutledge, New data
preprocessing trends based on ensemble of multiple preprocessing techniques, Trac.
Trends Anal. Chem. 132 (2020), 116045.

[28] J. Behmann, A.K. Mahlein, S. Paulus, J. Dupuis, H. Kuhlmann, E.C. Oerke,
L. Plumer, Generation and application of hyperspectral 3D plant models: methods
and challenges, Mach. Vis. Appl. 27 (2016) 611–624.

[29] J. Behmann, A.K. Mahlein, S. Paulus, H. Kuhlmann, E.C. Oerke, L. Plumer,
Calibration of hyperspectral close-range pushbroom cameras for plant phenotyping,
ISPRS J. Photogrammetry Remote Sens. 106 (2015) 172–182.

[30] C. Romer, M. Wahabzada, A. Ballvora, F. Pinto, M. Rossini, C. Panigada,
J. Behmann, J. Leon, C. Thurau, C. Bauckhage, K. Kersting, U. Rascher, L. Plumer,
Early drought stress detection in cereals: simplex volume maximisation for
hyperspectral image analysis, Funct. Plant Biol. 39 (2012) 878–890.

[31] P. Mishra, M. Schmuck, S. Roth, A. Nicol, A. Nordon, Homogenising and
Segmenting Hyperspectral Images of Plants and Testing Chemicals in a High-
Throughput Plant Phenotyping Setup, 2019 10th Workshop on Hyperspectral
Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS), 2019,
pp. 1–5.

[32] I. Herrmann, U. Shapira, S. Kinast, A. Karnieli, D.J. Bonfil, Ground-level
hyperspectral imagery for detecting weeds in wheat fields, Precis. Agric. 14 (2013)
637–659.

[33] J.M. Amigo, I. Martí, A. Gowen, F. Marini, Chapter 9 - Hyperspectral Imaging and
Chemometrics: A Perfect Combination for the Analysis of Food Structure,
Composition and Quality, Data Handling in Science and Technology, Elsevier2013,
pp. 343-370.

[34] N. Mobaraki, J.M. Amigo, HYPER-Tools. A graphical user-friendly interface for
hyperspectral image analysis, Chemometr. Intell. Lab. Syst. 172 (2018) 174–187.

[35] P. Mishra, G. Polder, A. Gowen, D.N. Rutledge, J.-M. Roger, Utilising variable
sorting for normalisation to correct illumination effects in close-range spectral
images of potato plants, Biosyst. Eng. 197 (2020) 318–323.

[36] R. Bro, A.K. Smilde, Principal component analysis, Analytical Methods 6 (2014)
2812–2831.

[37] M. Ryckewaert, N. Gorretta, F. Henriot, F. Marini, J.-M. Roger, Reduction of
repeatability error for analysis of variance-Simultaneous Component Analysis (REP-
ASCA): application to NIR spectroscopy on coffee sample, Anal. Chim. Acta 1101
(2020) 23–31.

[38] A. Savitzky, M.J.E. Golay, Smoothing and differentiation of data by simplified least
squares procedures, Anal. Chem. 36 (1964) 1627–1639.

[39] R.J. Barnes, M.S. Dhanoa, S.J. Lister, Standard normal variate transformation and
de-trending of near-infrared diffuse reflectance spectra, Appl. Spectrosc. 43 (1989)
772–777.

[40] G. Rabatel, F. Marini, B. Walczak, J.-M. Roger, VSN: variable sorting for
normalization, J. Chemometr. 34 (2020) e3164.

[41] P. Mishra, R. Sadeh, E. Bino, G. Polder, M.P. Boer, D.N. Rutledge, I. Herrmann,
Complementary chemometrics and deep learning for semantic segmentation of tall
and wide visible and near-infrared spectral images of plants, Comput. Electron.
Agric. 186 (2021), 106226.

[42] T. Cali�nski, J. Harabasz, A dendrite method for cluster analysis, Commun. Stat. 3
(1974) 1–27.

[43] M. Matzrafi, I. Herrmann, C. Nansen, T. Kliper, Y. Zait, T. Ignat, D. Siso, B. Rubin,
A. Karnieli, H. Eizenberg, Hyperspectral technologies for assessing seed
germination and trifloxysulfuron-methyl response in Amaranthus palmeri (palmer
amaranth), Front. Plant Sci. 8 (2017) 474.

[44] B.G. Osborne, Near-Infrared Spectroscopy in Food Analysis, Encyclopedia of
Analytical Chemistry, 2006.

http://refhub.elsevier.com/S0169-7439(21)00141-6/sref1
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref1
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref1
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref1
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref2
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref2
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref3
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref3
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref4
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref4
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref4
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref4
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref5
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref5
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref5
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref5
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref5
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref5
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref6
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref6
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref6
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref6
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref6
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref7
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref7
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref7
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref7
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref7
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref8
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref8
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref8
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref9
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref9
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref9
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref9
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref9
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref10
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref10
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref11
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref11
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref11
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref12
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref12
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref12
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref12
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref13
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref13
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref13
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref14
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref14
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref14
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref15
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref15
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref15
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref15
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref15
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref15
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref16
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref16
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref16
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref16
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref17
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref17
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref17
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref18
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref18
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref19
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref19
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref19
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref20
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref20
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref20
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref20
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref21
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref21
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref21
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref22
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref22
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref22
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref22
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref23
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref23
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref23
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref24
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref24
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref24
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref24
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref25
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref25
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref25
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref26
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref26
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref27
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref27
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref27
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref28
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref28
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref28
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref28
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref29
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref29
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref29
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref29
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref30
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref30
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref30
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref30
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref30
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref31
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref31
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref31
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref31
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref31
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref31
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref32
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref32
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref32
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref32
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref34
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref34
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref34
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref35
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref35
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref35
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref35
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref36
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref36
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref36
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref37
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref37
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref37
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref37
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref37
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref38
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref38
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref38
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref39
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref39
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref39
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref39
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref40
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref40
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref41
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref41
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref41
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref41
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref42
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref42
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref42
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref42
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref43
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref43
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref43
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref43
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref44
http://refhub.elsevier.com/S0169-7439(21)00141-6/sref44

	A generic workflow combining deep learning and chemometrics for processing close-range spectral images to detect drought st ...
	1. Introduction
	2. Materials and methods
	2.1. Plant material
	2.2. Spectral image acquisition
	2.3. Data analysis workflow
	2.3.1. Image preparation and pre-processing
	2.3.2. Dimensionality reduction
	2.3.3. Segmentation of plants from background soil and pots
	2.3.4. Pattern recognition during plant growth
	2.3.4.1. K-means clustering
	2.3.4.2. REP-ASCA



	3. Results and discussion
	3.1. Step 1: Image pre-processing to remove illumination effects
	3.2. Step 2: Dimensionality reduction
	3.3. Step 3: Deep semantic segmentation of plants
	3.4. Step 4: Pattern recognition over time
	3.4.1. k-mean clustering along time
	3.4.2. REP-ASCA


	4. Summary and conclusions
	Author statement
	Declaration of competing interest
	Acknowledgements
	References


