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Flavan-3-ols (catechin monomers and procyanidins) are the main class of polyphenols in apples and are found in high concentrations in cider apple varieties. They are known to be involved in bitterness and astringency in apple-based beverages, and also contribute to polyphenol nutritional intake.

Therefore, highly purified flavan-3-ol fractions isolated from raw materials are needed to study their various properties. For this purpose, a gentle strategy combining pH-zone-refining centrifugal partition chromatography (pH-ZRCPC) and preparative reversed-phase liquid chromatography (Prep-RPLC) was developed to recover one hundred milligrams of a high purity apple flavan-3-ol fraction.

First, pH-ZRCPC fractionation in descending mode was optimized to remove hydroxycinnamic acid derivatives using a biphasic mixture composed of ethyl acetate/nbutanol/water (3/2/5, v/v). Trifluoroacetic acid and sodium hydroxide were used as retainer and eluter, in the upper and lower phases, respectively. Secondly, Prep-RPLC separation was carried out in isocratic mode at 20% ACN to remove dihydrochalcones. Finally, from one gram of a crude polyphenol extract, four hundred and nine milligrams of a highly purified

Introduction

Polyphenols are a huge family of complex secondary metabolites exclusively synthesized in the plant kingdom. Based on their chemical structure, they are subdivided into several classes including flavonoids. These ones are the most common class of polyphenols in the human diet. The main dietary source of flavonoids is fruit (in particular berries and citrus fruits) and vegetables, but a large amount can also be found in dark chocolate, extra-virgin olive oil, and some beverages (tea, coffee, wine, and apple cider) [START_REF] Del Rio | Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases[END_REF][START_REF] Guyot | Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices[END_REF]. In recent decades, numerous studies have established their health benefits. In particular, flavan-3-ols, are the most structurally complex subclass of flavonoids which have been recognized as antihypertensive agents [START_REF] Quinones | The blood pressure effect and related plasma levels of flavan-3-ols in spontaneously hypertensive rats[END_REF].

They have been also reported to have multiple biological effects, mainly attributed to their antioxidant properties, as they can act as chain breakers or radical scavengers [START_REF] Rice-Evans | Molecular mechanisms of the antioxidant effects of in vivo metabolites of flavan-3-ols[END_REF]. Moreover, mounting evidence indicates that a higher intake of flavan-3-ols rich foods is closely linked to a reduction in chronic-degenerative diseases such as type 2 diabetes, cardiovascular diseases, and some types of cancer [START_REF] Zamora-Ros | Dietary Intakes of Individual Flavanols and Flavonols Are Inversely Associated with Incident Type 2 Diabetes in European Populations[END_REF][START_REF] Zamora-Ros | Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study[END_REF]. Moreover, procyanidins (i.e. flavan-3-ol oligomers and polymers or condensed tannins), can interact with other macromolecules such as polysaccharides or proteins [START_REF] Bourvellec | Interactions between Polyphenols and Macromolecules: Quantification Methods and Mechanisms[END_REF]. This property is responsible for the perception of astringency resulting from interactions of tannins with salivary proteins [START_REF] Soares | Reactivity of Human Salivary Proteins Families Toward Food Polyphenols[END_REF], the formation of haze and precipitates in beverages [START_REF] Millet | Heat-unstable apple pathogenesis-related proteins alone or interacting with polyphenols contribute to haze formation in clear apple juice[END_REF], as well as the inhibition of enzymes and the reduced digestibility of macromolecules [START_REF] Peng | Tea polyphenols: Enzyme inhibition effect and starch digestibility[END_REF].

Cider apples are naturally rich in several classes of polyphenols including flavan-3-ols (FA), hydroxycinnamic acid derivatives (HCA), flavonols (FO), and dihydrochalcones (DHC), whereas anthocyanins (AN) are generally found in lower concentration. The different structures are presented in Table 1. 5'-O-caffeoylquinic acid (CQA) is the most common HCA, with average amounts close to 640 mg/kg of fresh matter (FM) [START_REF] Sanoner | Polyphenol profiles of French cider apple varieties (Malus domestica sp.)[END_REF]. The main DHC are phloridzin and phloretin xyloglucoside with average amounts close to 40 and 30 FM mg/kg, respectively. FO and AN are mainly located in peel and are present in low concentrations in apple juices and ciders [START_REF] Price | A comparison of the flavonol content and composition in dessert, cooking and cider-making apples; distribution within the fruit and effect of juicing[END_REF]13]. In cider apples, flavan-3-ols are divided into two subclasses. The monomeric forms, namely the catechins, include mainly (-)-epicatechin with average contents of 350 mg/kg FM, and (+)-catechin in much lower concentrations around 50 mg/kg FM. The second flavan-3-ol subclass includes catechin oligomers and polymers, namely procyanidins or condensed tannins. They are comprised mainly of (-)epicatechin units and are the most abundant polyphenols in both table and cider apples with an average concentration ranging from half a gram to several grams per kg FM, depending on the varieties. Their average degree of polymerization (aDP) is generally between 4 and 7, except for some cider apple varieties that exhibit aDP up to 50 [START_REF] Sanoner | Polyphenol profiles of French cider apple varieties (Malus domestica sp.)[END_REF].

The need to recover pure and native tannin fractions from various raw materials or applederived products is essential to explore their numerous properties such as tanning properties, nutritional effects, and biological activity. However, this task is particularly difficult due to their polydisperse nature and the balance between their hydrophilic and hydrophobic characters that finally vary little between classes. For instance, reversed-phase HPLC with a classical gradient using a water/organic solvent mixture elutes apple procyanidins throughout the chromatogram without any clear separation from HCA, FO, or DHC phenolic classes [START_REF] Guyot | Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French cider apple variety (Malus domestica var. Kermerrien)[END_REF].

Only procyanidin oligomers could be observed as well-resolved peaks.

Many studies have been conducted to purify and fractionate condensed tannins. Gel filtration chromatography with Sephadex ® LH-20 or Toyopearl HW40F has been used to fractionate procyanidins and phenolic acids directly from cider [START_REF] Castillo-Fraire | Preparative fractionation of 5 `-O-caffeoylquinic acid oxidation products using centrifugal partition chromatography and their investigation by mass spectrometry[END_REF] or apple [START_REF] Yanagida | Fractionation of apple procyanidins by size-exclusion chromatography[END_REF]. Several studies have succeeded in isolating procyanidin oligomers from different plant sources using this technique [START_REF] Mcmurrough | Semipreparative chromatographic procedure for the isolation of dimeric and trimeric proanthocyanidins from barley[END_REF][START_REF] Brown | Facile Purification of Milligram to Gram Quantities of Condensed Tannins According to Mean Degree of Polymerization and Flavan-3-ol Subunit Composition[END_REF]. However, all these conventional methods are tedious, time-consuming, and solventwasting, with the risk of losing some of the tannins through irreversible adsorption on the solid chromatographic phases. Others methods have been developed to selectively adsorb the tannin fractions on miscellaneous materials such as polyvinylpolypyrrolidone [START_REF] Dong | Adsorption Behavior of the Catechins and Caffeine onto Polyvinylpolypyrrolidone[END_REF][START_REF] Folch-Cano | Structural and thermodynamic factors on the adsorption process of phenolic compounds onto polyvinylpolypyrrolidone[END_REF][START_REF] Mcmurrough | Adsorption by Polyvinylpolypyrrolidone of Catechins and Proanthocyanidins from Beer[END_REF] or deacetylated glucomannan [START_REF] Mcmurrough | Adsorption by Polyvinylpolypyrrolidone of Catechins and Proanthocyanidins from Beer[END_REF]. However, the desorption of tannins is either difficult or too drastic leading to their degradation. Indeed, desorption of tannins from deacetylated glucomannan is possible by increasing the pH but leads to their partial degradation through autoxidation [START_REF] Liu | Adsorption of tannin from aqueous solution by deacetylated konjac glucomannan[END_REF]. 
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Interestingly, Centrifugal Partition Chromatography (CPC) is an alternative tool to isolate tannins from complex mixtures. This method, which does not need a solid adsorbing support for the fractionation, can be performed by adapting the two-phase solvent system to separate target components according to their partition coefficients [START_REF] Ito | Golden rules and pitfalls in selecting optimum conditions for high-speed countercurrent chromatography[END_REF]. Few studies have been devoted to the separation of polyphenols using this technique [START_REF] Esatbeyoglu | Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography[END_REF][START_REF] Glinski | Fractionation of cocoa procyanidins according to the degree of polymerization by Centrifugal Partition Chromatography[END_REF][START_REF] Koëhler | Preparative isolation of procyanidins from grape seed extracts by high-speed counter-current chromatography[END_REF][START_REF] Li | Preparative separation of cacao bean procyanidins by high-speed counter-current chromatography[END_REF][START_REF] Zhang | Preparative isolation of monomer catechins and oligomer procyanidin fractions from grape seed extracts by high-speed counter-current chromatography, 37th[END_REF]. Esatbeyoglu et al. [START_REF] Esatbeyoglu | Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography[END_REF] successfully purified procyanidin dimers from cocoa bean extract using CPC. However, in this particular case, the crude extract used for the fractionation contained neither hydroxycinnamic acid derivatives nor highly polymerized procyanidins [START_REF] Esatbeyoglu | Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography[END_REF]. Furthermore, Kohler et al. managed to separate oligomeric tannins (dimers to tetramers) from grape seeds after removal of polymeric procyanidins using solvent precipitation [START_REF] Koëhler | Preparative isolation of procyanidins from grape seed extracts by high-speed counter-current chromatography[END_REF]. Last, several studies deal with the fractionation of apple procyanidins using CPC, but the separation was conducted on an initial extract containing only flavanols without other phenolic classes [START_REF] Shibusawa | High-speed countercurrent chromatography of apple procyanidins[END_REF][START_REF] Shibusawa | Separation of apple procyanidins into different degrees of polymerization by high-speed counter-current chromatography[END_REF][START_REF] Shibusawa | Separation of apple catechin oligomers by CCC[END_REF].

pH-ZRCPC is a recent CPC separation technique developed by Ito et al. as a preparative purification method for the separation of compounds whose electric charge is pH-dependent [START_REF] Ito | pH-zone-refining countercurrent chromatography[END_REF]. In addition to the conventional CPC principle, this technique is based on the fractionation of ionisable compounds (acids or bases). For the fractionation of acidic organic compounds, an acid (retainer) and a base (eluter) are added in low concentrations to the stationary and mobile phases, respectively. Initially, the crude extract is acidified with the retainer whose pKa has to be lower than that of the analytes to be fractionated. This acidification converts the analytes into their protonated forms, which are preferentially partitioned in the stationary apolar phase. Following injection, the elution with the aqueous mobile phase containing the basic eluter triggers a deprotonation process. Consequently, organic acids become less hydrophobic and are better partitioned in the mobile phase. The fractionation principle is properly described by Ito [START_REF] Ito | pH-zone-refining counter-current chromatography: Origin, mechanism, procedure and applications[END_REF]: the retainer in the stationary phase is gradually neutralized by the eluter in the mobile phase, forming a sharp retainer border that travels along the column at a constant rate, substantially lower than that of the mobile phase.

The analytes are eluted after the retainer border, according to their pKa and hydrophobicity, as fused rectangular peaks. Compared with conventional CPC, pH-ZRCPC has many advantages such as a higher sample loading capacity, minimum overlap of rectangular peaks, and concentration of analytes initially present in low amounts (considered as contaminants) as sharp peaks at the rectangular peak boundaries [START_REF] Ito | pH-zone-refining counter-current chromatography: Origin, mechanism, procedure and applications[END_REF][START_REF] Sun | Optimisation and establishment of separation conditions of organic acids from Usnea longissima Ach. by pH-zone-refining countercurrent chromatography: Discussion of the eluotropic sequence[END_REF]. This technique has been used to separate various kinds of natural products such as fluorescein-type compounds [START_REF] Weisz | Preparative separation of 1,3,6-pyrenetrisulfonic acid trisodium salt from the color additive D&C Green No. 8 (pyranine) by pH-zone-refining counter-current chromatography[END_REF][START_REF] Oka | Purification of Food Color Red No. 106 (acid red) using pH-zone-refining countercurrent chromatography[END_REF], basic compounds [START_REF] Wang | Large-scale separation of alkaloids from Corydalis decumbens by pH-zone-refining counter-current chromatography[END_REF], peptides [START_REF] Ma | Peptide separation by pH-zone-refining countercurrent chromatography[END_REF], polar alkaloids [START_REF] Ma | pH-zone refining counter-current chromatography of polar catecholamines using di-(2-ethylhexyl)phosphoric acid as a ligand[END_REF][START_REF] Wang | Preparative isolation of alkaloids from Dactylicapnos scandens using pH-zone-refining counter-current chromatography by changing the length of the separation column[END_REF][START_REF] Sun | Preparative separation of quaternary ammonium alkaloids from Coptis chinensis Franch by pH-zone-refining counter-current chromatography[END_REF][START_REF] Renault | Isolation of indole alkaloids from Catharanthus roseus by centrifugal partition chromatography in the pH-zone refining mode[END_REF][START_REF] Fang | A general ionic liquid pH-zone-refining countercurrent chromatography method for separation of alkaloids from Nelumbo nucifera Gaertn[END_REF], highly-polar sulfonic acids [START_REF] Weisz | Preparative separation of isomeric sulfophthalic acids by conventional and pH-zone-refining counter-current chromatography[END_REF], and organic acids [START_REF] Sun | Optimisation and establishment of separation conditions of organic acids from Usnea longissima Ach. by pH-zone-refining countercurrent chromatography: Discussion of the eluotropic sequence[END_REF][START_REF] Wang | Preparative separation of cichoric acid from Echinacea Purpurea by pH-zone-refining counter-current chromatography[END_REF][START_REF] Wang | Large-scale separation of salvianolic acid B from the Chinese medicinal plant Salvia miltiorrhiza by pHl-zone-refining countercurrent chromatography[END_REF][START_REF] Dong | A general separation method of phenolic acids using pH-zone-refining counter-current chromatography and its application to oat bran[END_REF]. Studies have been carried out to isolate caffeoylquinic acid isomers [START_REF] Ma | Preparative separation of caffeoylquinic acid isomers from Lonicerae japonicae Flos by pH-zone-refining countercurrent chromatography and a strategy for selection of solvent systems with high sample loading capacities[END_REF] or to separate CQA from caffeic acid [START_REF] Lu | Separation of chlorogenic acid and concentration of trace caffeic acid from natural products by pH-zone-refining countercurrent chromatography[END_REF] using pH-ZRCPC, but the solvent systems and parameters were only optimized to fractionate HCA without taking into account the recovery of tannins.

The aim of this work was to obtained a highly purified flavan-3-ol fraction containing catechin monomers and procyanidin oligomers but devoid from others phenolic components.

For this purpose, a gentle strategy combining pH-zone-refining centrifugal partition chromatography (pH-ZRCPC) and preparative reversed-phase liquid chromatography (Prep-RPLC) was developed. First, pH-zone-refining CPC (pH-ZRCPC) was used for the primary fractionation to remove HCA from a crude apple polyphenolic extract, as hydroxycinnamic acid derivatives are more ionisable than other phenolic compounds due to their carboxylic function. Secondly, preparative reversed-phase liquid chromatography (Prep-RPLC) was used to recover the high purity flavan-3-ol fraction.

Material and methods

Reagents

Acetonitrile, ethyl acetate, butan-1-ol, and methanol were purchased from Carlo Erba Reagents (Val de Reuil, France). Formic Acid was provided by Sigma-Aldrich (St. Louis, MO). Sodium hydroxide 50% was purchased from VWR BDH Prolabo (Fontenay-sous-Bois, France), and Trifluoroacetic acid from Thermo Fisher (Kandel, Germany). Ultrapure Water was purified using the Elga Purelab system (Labelians, Nemours, France). The others reagents used for preparation of the crude apple polyphenolic extract and phloroglucinolysis are listed in Millet et al. [START_REF] Millet | Self-aggregation of oxidized procyanidins contributes to the formation of heat-reversible haze in apple-based liqueur wine[END_REF] and Le Deun et al. [START_REF] Le Deun | HPLC-DAD-MS Profiling of Polyphenols Responsible for the Yellow-Orange Color in Apple Juices of Different French Cider Apple Varieties[END_REF], respectively. (+)-catechin (CAT), (-)-epicatechin (EC), 5-O -caffeoylquinic acid (CQA), 4-O-para-coumaroylquinic acid (PCQ), and phloridzin (PLZ) standards were provided from Sigma-Aldrich (St. Louis, MO). Hyperoside (QCE-3-O-GAL), procyanidin dimer B1 (PA_B1) and procyanidin dimer B2 (PA_B2) standards were obtained from Extrasynthese (Genay, France).

Preparation of the crude apple polyphenol extract

Phenolic compounds were extracted from a French cider apple cultivar, named 'Marie Menard', which is known for its high polyphenol content, close to 32 g/kg dry matter (DM), and in particular procyanidins (close to 20 g/kg DM with aDP 4.6) [START_REF] Devic | Kinetics of Polyphenol Losses During Soaking and Drying of Cider Apples[END_REF]. Extraction was carried out according to the method described by Millet et al. [START_REF] Millet | Self-aggregation of oxidized procyanidins contributes to the formation of heat-reversible haze in apple-based liqueur wine[END_REF]. Briefly, non-oxidized apple juice was produced from 'Marie Menard' cider apples collected from our experimental orchard (IFPC, France). The clarified juice was loaded on an Amberlite FPX66 resin (Rohm and Haas Company, Philadelphia, USA) primarily to remove sugars, organic acids, and salts, and to retain polyphenols. After rinsing the resin with acidified water (1‰ v/v acetic acid), the polyphenolic fraction was subsequently eluted using 96% ethanol. The solvent was removed using rotary evaporation and the concentrated polyphenol fraction was freeze-dried.

The detailed polyphenol composition of this crude extract of total native polyphenols, named "TotPP", was characterized using UPLC-UV/Visible-MS (see section 2.5). The method adapted from Guyot et al. enabled the concentrations of the phenolic compounds to be measured including hydroxycinnamic acids derivatives, catechins (monomers), low molecular weight procyanidins, dihydrochalcones, and flavonols [START_REF] Guyot | Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French cider apple variety (Malus domestica var. Kermerrien)[END_REF]. The total flavan-3-ol concentration (including catechin monomers and procyanidins) and the average polymerization degree (aDP) were determined using UPLC-UV/Visible-MS analysis of the procyanidin cleavage products after phloroglucinolysis [START_REF] Kennedy | Analysis of proanthocyanidin cleavage products following acidcatalysis in the presence of excess phloroglucinol[END_REF], as described by Le Deun et al. [START_REF] Le Deun | HPLC-DAD-MS Profiling of Polyphenols Responsible for the Yellow-Orange Color in Apple Juices of Different French Cider Apple Varieties[END_REF]. Phloroglucinolysis is a depolymerization technique that allows to specifically quantify terminal and extension units of procyanidins present in samples and fractions. The aDP of flavan-3-ols corresponds to the molar ratio of total units on terminal units.

pH-zone-refining centrifugal partition chromatography (pH-ZRCPC)

Determination of partition coefficients in solvent systems

A preliminary experiment was conducted using four biphasic solvent systems adapted from Oka [START_REF] Oka | Systematic Search for Suitable 2-Phase Solvent Systems for High-Speed Countercurrent Chromatography[END_REF] to determine the partition coefficient of the target compounds for a conventional CPC (without the addition of an acid or base in the solvent system). The solvent systems used were ethyl acetate:n-butanol:water with 5/0/5, 3/2/5, 2/3/5, and 1/4/5 (v/v) named systems A, B, C and D, respectively.

The TotPP extract was dissolved at 2 g/L in a mixture of methanol/water (50/50). One mL of solution was distributed in 10-mL glass tubes and evaporated under vacuum using a Genevac (Model EZ-2). Two mL of upper and lower phases were added to the residues for each biphasic solvent system tested and the mixtures were vigorously vortexed. After standing for 30 minutes to allow phase separation, 1 mL aliquots of each phase were transferred to 1.5-mL Eppendorf tubes and evaporated to dryness under vacuum using a Genevac. Then, they were resolubilized in 400 µL of methanol/water 50:50 supplemented with formic acid 1% and analysed using UPLC-UV/Visible-MS. The partition coefficients K were calculated as follows by considering a CPC in descending mode.

K = AU / AL

Where AU and AL are the UPLC-UV peak areas of the compound considered in the upper and lower phases, respectively (measured at 280 nm for FA and DHC, and 320 nm for HCA).

To assess the relevance of using pH-ZRCPC for the fractionation of the different classes of polyphenolic compounds, the same procedure was applied adding an acid or base to the extract solubilized in the biphasic mixture. To determine the partition coefficient at a relatively elevated pH (noted Kbase), sodium hydroxide was added and the pH measured in the aqueous phase. Two "elevated" pH were thus defined (about 5 and 8). Moreover, to determine the partition coefficient at acidic pH (noted Kacid), trifluoroacetic acid (TFA) was added to adjust the pH to 2 in the aqueous phase. Kacid was only determined for systems A and B.

Preparation of a two-phase solvent system for pH-ZRCPC

A biphasic solvent system consisting of ethyl acetate/n-butanol/water (3/2/5, v/v) was used.

After vigorously shaking and leaving the mixture to thoroughly equilibrate in a separatory funnel until complete phase separation, the upper and lower phases were separated. Two retainer/eluter concentration ratios were tested. For the first pH-ZRCPC (CPC1), trifluoroacetic acid was added to the upper organic phase to obtain a final concentration of 2 mmol/L, and 50% sodium hydroxide was added to the lower aqueous phase to obtain a final concentration of 0.5 mmol/L (measured pH = 7.1). For the second pH-ZRCPC (CPC2), the TFA and NaOH concentrations were set at 10 mmol/L (measured pH = 7.36 for the lower phase).

Sample preparation from the crude apple extract

The solution for pH-ZRCPC was prepared as follows: 1 g of crude sample was dissolved in 5 mL of stationary phase (containing 5 µL TFA) and 5 mL of lower phase (without sodium hydroxide). The solution was filtered on a 0.45 µm PTFE membrane before fractionation using pH-ZRCPC.

Apparatus

pH-zone-refining CPC was carried out using an FCPC200 ® apparatus provided by Kromaton Technologies (Rousselet-Robatel, Annonay, France) equipped with a semi-preparative column of 200 mL (actual volume: 189 mL). The CPC system was coupled to a Gilson (Middleton, WI, USA) PLC 2020 preparative gradient pumping system comprising a binary high-pressure pump, a Rheodyne injection valve equipped with a 20 mL sample loop, a dualwavelength UV detector, and a fraction collector.

pH-ZRCPC procedure

The pH-ZRCPC was carried out in descending mode (head-to-tail). The column was initially filled with the acidified organic stationary phase at a flow rate of 5 mL/min and a constant rotation speed of 1200 rpm. The crude apple extract solution was then injected and the fractionation was initiated by immediately pumping the aqueous mobile phase (sandwich injection mode). The eluter concentration depended on the CPC experiment considered. After an elution time of ten minutes, the elution solvent was continuously collected in a series of glass tubes (15 mL every 3 minutes). The final extrusion step of the column was achieved by pumping the organic phase after 250 min for CPC1 and 115 minutes for CPC2. Collection of the elution solvent was continued in the same way during the extrusion step.

The pH was determined manually using a portable pH meter (model 713, Metrohm, Hersiau, Switzerland) in aqueous CPC sample tubes only (from 16 to 259 minutes for CPC1 and 16 to 127 minutes for CPC2) because the pH values of the collected fractions became somewhat erroneous in the organic mobile phase during the extrusion step. When the pH exceeded 5, collected sample tubes were acidified to pH 3 to avoid autoxidation. Only CPC sample tubes of interest were analysed using UPLC-UV/Visible-MS to determine their phenolic composition according to the UV signals at 280 nm and 320 nm. When no absorbance was observed, the fractions were not analyzed. For the CPC, the choice of pooling or not the fractions collected was determined according to their detailed polyphenol composition obtained using UPLC-UV/Visible-MS analysis. After pooling, the fraction was concentrated under vacuum to remove any organic solvents. The aqueous concentrate was freeze-dried before the preparative reversed-phase chromatography step.

Preparative Reversed-Phase HPLC

The ultimate purification step was achieved using preparative scale reversed-phase HPLC with the same preparative HPLC gradient pumping system (PLC2020) as described in 2.3.4.

For this fractionation, the pumping system was coupled to a preparative column (length, 220 mm; diameter, 47 mm) packed with Lichrospher 100 RP-18, 12 µm (Merck, Darmstadt, Germany).

The CPC2 pH-ZRCPC extract was solubilized in 5 mL acetonitrile/H2O 20/80 acidified with formic acid 1% and filtered on a 0.45 µm PTFE membrane. The whole volume was injected onto the preparative column at ambient temperature with a flow rate set at 40 mL/min. The solvents comprised 0.1% (v/v) formic acid (A) and acetonitrile acidified with 0.1% (v/v) formic acid (B). The chromatographic conditions were as follows: 0-30 min, 20% B isocratic; 30-35 min, linear gradient to 90% B; 35-40 min, 90% B isocratic, then reconditioning column to 20% B. The UV signal was monitored at 280 nm and 320 nm. The elution fractions were collected manually and were analysed using UPLC-UV/Visible-MS.

The fractions containing only flavan-3-ols were pooled, evaporated under vacuum to remove any solvents, and freeze-dried. Finally, the purified flavan-3-ol extract was fully characterized as described above for the crude apple extract.

UPLC-UV/Visible-MS Analyses

All samples (crude, intermediate, and purified extracts) were analysed using the Acquity Ultra Performance LC System (Waters, Milford, MA) equipped with a degasser, a binary solvent manager, an autosampler, and a PDA detector used in the 190 nm -500 nm range and connected to a Quattro Premier XE triple quadrupole mass spectrometer. The latter was equipped with an electrospray ionization source used in negative mode. Nitrogen was used as the nebulizer and desolvation gas. The source parameters were as follows: capillary voltage, 3 kV; cone voltage, 30 V; cone gas flow, 50 L/h; desolvation gas flow, 500 L/h; source temperature, 150°C; desolvation temperature, 250°C. Data were collected and processed using MassLynx software (V 4.0). Samples (2 µL) were injected onto a UPLC reversed-phase column, Acquity UPLC BEH C18 (100 mm × 2.1 mm, 1.7 μm, Waters), with a flow rate of 0.35 mL/min and a column temperature set at 30 °C. The eluent was a gradient of 0.1% (v/v) formic acid (A) and acetonitrile acidified with 0.1% (v/v) formic acid (B). The elution gradient was applied as follows: initial, 3% B; 0-1 min, linear gradient to 7% B; 1-8 min, linear gradient to 13% B; 8-10 min, 13% B isocratic; 10-15.5 min, linear gradient to 20% B; 15.5-19 min, linear to 45% B followed by washing and reconditioning of the column. Under these chromatographic conditions, CQA and (+)-catechin are coeluted and were separated by applying the same elution gradient at a higher column temperature (45°C) thus allowing their quantification. Phenolic compounds were identified by LC-UV-MS analysis comparing the retention times, UV-Visible spectra, and molecular ions with those of available standards. Quantification was performed by integrating peaks on UV-visible chromatograms at 280 nm for flavan-3-ols and DHC, at 320 nm for HCA, and at 350 nm for FO. CAT, EC, PA_B2, CQA, PLZ and QCE-3-O-GAL were quantified according to their own calibration curves. Quantification of others compounds was carried out using a reference compound in the same phenolic class displaying a very similar UV-Visible spectrum. So, EC was used to quantify procyanidin trimer C1 (PA_C1), unknown procyanidin trimer (DP3) and procyanidin tetramer (DP4). Procyanidin dimer B5 (PA_B5) was quantified using the response factor of PA_B2. FO were quantified using the one of QCE-3-O-GAL.

Results and Discussion

A crude polyphenol extract (TotPP) was prepared from a polyphenol-rich cider apple juice and its detailed polyphenol composition was determined. This extract was used as the starting material for optimizing preparative fractionation of apple polyphenols using pH-ZRCPC followed by reversed-phase preparative HPLC. First, several biphasic solvent systems, also including variations in TFA and NaOH concentrations, were tested on an analytical scale for the liquid/liquid fractionation of this extract. This allowed the partition coefficients of major phenolic compounds to be determined and the most suitable solvent system for pH-ZRCPC to be selected on a preparative scale. An intermediate extract no longer containing HCA was thus obtained and finally purified using Preparative HPLC producing a final extract named "MM-FA".

Detailed polyphenol composition of the crude apple extract (TotPP) obtained from a

French cider apple juice purified on resin.

The TotPP extract comprised mainly three classes of phenolic compounds. As shown in table 2, HCA, which corresponds to the sum of CQA and PCQ (4-O-p-coumaroylquinic acid), accounted for more than one-third of the total polyphenol content (35.9%), followed by catechins and some procyanidin oligomers (26.5%), and dihydrochalcones (2.6%) (Table 2).

The UPLC-UV/Visible-MS results obtained after the phloroglucinolysis reaction allowed the flavan-3-ol content to be assessed, which represented 463.3 g/kg of the dried crude extract with an average polymerization degree of 3.3. Therefore, from this crude polyphenol extract, an efficient fractionation procedure would allow the recovery without prior phloroglucinolysis of about 46% of flavan-3-ols, a part of procyanidins corresponding to oligomers from DP2 to DP4 (192.1 g/kg) and another part to the half of the procyanidins (198.2 g/kg) that were not quantified using direct reversed-phase UPLC analysis.

Optimization of a two-phase solvent system for pH-ZRCPC

For a solute distributed between two solvent phases, the partition coefficient K is usually expressed as the ratio of the amount in the stationary phase to that in the mobile phase, as in conventional liquid chromatography. The fractionation of two compounds using conventional CPC requires selecting a solvent system for which the ratio of partition coefficients K is greater than 1.5, with K values ideally ranging from 0.2 to 5.0. Thus, the K values of the main compounds present in the crude polyphenol extract "TotPP" were first determined for a set of 11 solvent systems adapted from the Oka classification [START_REF] Oka | Systematic Search for Suitable 2-Phase Solvent Systems for High-Speed Countercurrent Chromatography[END_REF], in descending mode (mobile aqueous phase). With less polar solvent systems, all the polyphenol K values were lower than 1, suggesting that they were mainly partitioned in the aqueous phase (data not shown).

Phenolic compounds are, therefore, generally fractionated with polar solvent systems [START_REF] Berthod | Polyphenols in countercurrent chromatography. An example of large scale separation[END_REF]. Table 3 shows the partition coefficients of each phenolic compound according to systems A to D. With system A, CQA and PCQ showed K values of 0.38 and 0.82, respectively. Therefore, it seems possible to isolate them from monomers (CAT, EC) and some of the procyanidin oligomers (PA_B5 and DP3) whose K values exceeded 1.7. However, the main procyanidin oligomers (PA_B2, PA_C1, DP4, and PA_B1) exhibited K values lower than 1, indicating that system A was not suitable for separating these compounds from HCA. Additionally, systems B to D were not selected in classic CPC mode as all the K values measured were too high. Finally, regarding the strong disparity in K values, these solvent systems would not enable the separation of HCA without losing the catechin monomers and procyanidin oligomers.

Kacid and Kbase were estimated to assess the applicability of the two-phase solvent systems. For successful separation using pH-ZRCPC, it is necessary to have Kbase << 1 and Kacid >> 1, for an acidic analyte [START_REF] Ito | pH-zone-refining countercurrent chromatography[END_REF]. In other words, the molecule considered has to exhibit a polarity sufficiently different between its ionised and neutral forms to deeply modify its K values by modifying its acidity for a given solvent system. System A was discarded because Kacid was too low for all the compounds quantified in this system at pH 2 (Table 3). For system B, Kacid was much higher than 1 and Kbase dropped significantly when the pH was adjusted to 7.9. At first glance, this solvent system was suitable for pH-ZRCPC. However, we noticed the appearance of an orange colour after adding sodium hydroxide to the crude apple extract, suggesting autoxidation of some of the phenolic compounds in those alkaline conditions. This was confirmed using UPLC-UV/Visible-MS analysis by comparing the amounts of phenolic compounds in the solvent systems before and after alkalization. When the aqueous phase was basic (measured pH = 7.93), degradation of procyanidins, and (-)-epicatechin (EC) occurred (Table 4). We also noticed an increase in catechin (CAT) content, which is likely caused by the epimerisation of (-)-epicatechin into (-)-catechin due to the alkaline conditions [START_REF] Ishino | Epimerization of Tea Catechins under Weakly Acidic and Alkaline Conditions[END_REF].

To avoid the autoxidation of phenolic compounds, we decided to reduce the pH of the aqueous phase to 5.2. As the pKa of CQA and PCQ are 2.6 and 3.4, respectively, these molecules are almost totally ionised at pH 5.2, making pH-ZRCPC possible. For this pH (5.2), neither a colour change nor a decrease in polyphenol content was observed, showing a satisfactory recovery of polyphenols (4). The new Kbase values at pH 5.2 for CQA and PCQ were suitable for solvent system B, although they were not largely below 1 (0.42 and 0.51, respectively). Kbase values were very similar for solvent systems C and D (Table 3).

Fortunately, the distribution of procyanidins in the two phases did not change extensively and the Kbase was still higher than 1, making pH-ZRCPC possible with these three systems.

Finally, it was not necessary to determine Kacid with the solvent systems C and D for a practical reason: at pH 5.2, after shaking, the phases of these two systems were not totally separated suggesting they were not suitable for CPC fractionation. Finally, among the solvent systems tested, system B, with a pH shift from 2.15 to 5.2, was the most appropriate for our purpose. 

First pH-ZRCPC fractionation (CPC1)

One gram of crude apple extract was fractionated using pH-ZRCPC with the biphasic solvent system B selected above composed of ethyl acetate/n-butanol/water (3/2/5, v/v). Reverse displacement mode was used by choosing the lower aqueous phase as the mobile phase (descending mode or head-to-tail). The TotPP extract was solubilized at acidic pH to prevent autoxidation of the phenolic compounds. In addition, to keep the pH below 5.2 during elution, a first fractionation was conducted with a low concentration of NaOH (0.5 mM) in the aqueous mobile phase. We deliberately chose a higher retainer concentration to ensure that the phenolic compounds would be in their protonated form. Figure 1a shows the chromatogram of CPC1 with 2.3 mM of TFA in the organic stationary phase and 0.5 mM of sodium hydroxide in the aqueous mobile phase. A large peak was eluted between 100 and 190 minutes and was attributed to HCA due to the intense UV signal observed at 320 nm and the UPLC-MS analyses of the CPC fractions from a to g (supplementary data). However, the pH curve was not consistent with what was expected for pH-ZRCPC. The pH curve should be flat throughout the HCA elution time and the characteristic rectangular shape of the peak was not observed. In addition, CPC sample tubes analyses showed that the main procyanidin (PA_B2) eluted at 172 min in fraction f and coeluted with HCA. This confirmed that these conditions were not suitable for the efficient separation of hydroxycinnamic acids derivatives from procyanidin oligomers. These results can be interpreted with regards to the study of Ito et al., as the eluter plays the role of a counterion for the target compound the molar concentration of the eluter largely determines the molar concentration of each target compound in the fraction.

Therefore, a higher eluter concentration yields a higher concentration of each target compound in a shorter elution time. However, if the concentration of the target compound exceeds its solubility in the stationary phase, the target compound will precipitate in the column and plug the channel, thereby damaging the column [START_REF] Ito | pH-zone-refining countercurrent chromatography[END_REF]. In our case, the concentration of OH -ions, which played the role of counterions for the target compounds, was not high enough based on the theoretical amounts of HCA to be fractionated (360 mg).

Second pH-ZRCPC fractionation (CPC2)

Considering the parameters that were likely responsible for the failure of CPC1 fractionation, another pH-ZRCPC, named CPC2, was carried out with the same quantity of sample injected and increasing the retainer and eluter concentrations to 10 mM for each phase of the biphasic solvent system. Indeed, Ito et al. showed that these equimolar concentrations of retainer and eluter (10 mM) produce satisfactory separation in most cases [START_REF] Ito | pH-zone-refining countercurrent chromatography[END_REF]. The retainer concentration was high enough to ensure the protonation of all ionizable phenolic compounds and therefore to promote their trapping in the organic stationary phase. In addition, the eluter in the aqueous mobile phase allowed the progressive neutralization of the retainer (H + ) and the displacement of the ionisable compounds from the stationary phase to the aqueous mobile phase.

In comparison with CPC1, increasing the eluter concentration considerably shortened the retention time (Figure 1b). After the solvent front of the mobile phase (sharp peak at 37 min), two zones could be clearly distinguished. UV chromatograms at 280 nm and 320 nm showed an almost rectangular peak eluted from 49 to 100 minutes with a stable pH value at 4.4. We also noticed a small sharp shoulder at the end of the large rectangular peak (retention time at 97 min). The UPLC-MS analyses revealed that the rectangular peak corresponded to CQA (fractions 2 to 8), and the sharp shoulder corresponded to PCQ (supplementary data). The UV signal at 320 nm was in accordance with the presence of HCA, whose maximum absorbance wavelength is about 320 nm. In these conditions, fractions containing CQA and PCQ overlapped.

After 100 min, as the pH exceeded 5, the fractions were immediately acidified to avoid autoxidation of phenolic compounds. Then, elution-extrusion was started manually at 115 min. This elution-extrusion mode, which consists in replacing the aqueous mobile phase with the organic phase, has already been used for pH-ZRCPC to elute more hydrophobic compounds and reduce the elution time [START_REF] Bu | pH-zone-refining elution-extrusion countercurrent chromatography: Separation of hydroxyanthraquinones from Cassiae semen[END_REF]. The second zone, from 128 min to 164 min, was a set of three intense co-eluting peaks showing high absorbance at 280 nm and only weak absorbance at 320 nm, suggesting that they were mainly flavan-3-ols. Indeed, UPLC-MS analyses revealed that the first one was composed of procyanidin dimer PA_B2 with XPL (dihydrochalcone), which also explained the weak signal at 320 nm (fractions 12 and 13). The second one comprised (-)-epicatechin, procyanidin trimer PA_C1, and procyanidin tetramer DP4 (fraction 14). The third one was composed of PLZ, PA_B5, CAT, and DP3 (Fractions 15 to 18). For these fractions, the signal at 320 nm showed two co-eluting peaks due to the existence of PLZ and several quercetin glycosides (whose λmax is at 350 nm). The latter, present in very low quantities in the TotPP extract (and not quantified), were clearly detected by UPLC-UV/Visible-MS due to the enrichment by pH-ZRCPC. Lastly, the UPLC-MS analyses of fractions 9 and 10 highlighted that the procyanidin dimer PA_B1 was eluted before extrusion, after the elution of HCA. These results suggest that the solvent system should be improved to also recover this procyanidin dimer.

Finally, the CPC fractions between 109 min and 166 min were pooled to obtain 532 mg of extract. This quantity was above the expected amount (489 mg). This difference could be explained by the formation of salts (sodium trifluoroacetate). We consider that we succeeded in obtaining an intermediary extract containing the flavan-3-ols representative of the initial extract, with dihydrochalcones and flavonols.

Ultimate purification using Preparative HPLC

As XPL, PLZ, and flavonols are less polar compounds than procyanidin oligomers, they can be easily separated from procyanidins using Reversed-phase HPLC with a C18 column. Salts produced during pH-ZRCPC are also removed by being eluted at the beginning of the reversed-phase HPLC. The pH-ZRCPC extract was solubilized in 20% acetonitrile. With isocratic chromatographic conditions at 20% acetonitrile as well, all procyanidin oligomers were eluted earlier than the other phenolic compounds. The UV 280 nm chromatographic profile was divided into 3 zones (Figure 2). The analyses of fractions showed that procyanidin oligomers and catechin monomers were eluted in the first one ranging from 6.5 min to 22.2 min (see supplementary data), only 0.15% of unwanted compounds were present in those

Conclusion

CPC combined with a pH-displacement mode and followed by preparative reversed-phase chromatography is an efficient methodology for the quantitative purification of flavan-3-ol monomers and oligomers. The method was particularly relevant to properly discard on a preparative scale, hydroxycinnamic acid derivatives, dihydrochalcones and flavonols from a crude apple polyphenol extract. In this study, a highly purified flavan-3-ol fraction (409 mg) was obtained. Purification yield was 73% and the purity, estimated to 83%, is likely underestimated considering the presence of hydration water. The quantitative analyses of catechin monomers and procyanidin oligomers, as well as their structural characterization (free, terminal and extension FA units) showed that the end fraction was clearly representative of the initial composition of the crude apple extract. The pure extract will prove to be of great use to investigate both organoleptic and nutritional properties of flavan-3-ols monomers and oligomers present in apple and apple-derived beverages. 
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Fig. 1 .

 1 Fig.1. pH-ZRCCC chromatograms of the crude sample from 1 g TotPP extract. solvent system used: ethyl acetate/n-butanol/water (3/2/5, v/v); flow rate: 5 mL/min; revolution: 1200 rpm. a: 2.3 mM of TFA in the stationary phase and 0.5 mM NaOH in the mobile phase. b: retainer and eluter at 10 mM in the stationary and mobile phases, respectively. The graphics with thick and thin lines correspond to the UV signals at 280 and 320 nm, respectively (primary axis).

Fig. 2 .

 2 Fig.2. Preparative reversed-phase HPLC chromatogram of pH-ZRCPC extract (532 mg). Bold line: UV signal at 280 nm; thin line: UV signal at 320 nm (primary axis). The dotted line corresponds to the acetonitrile gradient (%).

Fig. 3 .

 3 Fig.3. Comparison of analytical chromatographic profiles at 280 nm of the TotPP extract (dotted line) and the MM-FA extract after pH-ZRCPC followed by preparative HPLC (full line). UV signal was normalized regarding the more intense peak of each chromatogram.
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Table 2 .

 2 Composition of phenolic compounds in TotPP and MM-FA extracts (results expressed in g/kg of dry extract) and structural characterization of flavan-3-ols.

	Phenolic compounds	TotPP	MM-FA extract
	CQA	344	-
	PCQ	14.9	-
	EC	68.7	137.6
	CAT	4.3	7.1
	PA_B1	10.3	9.8
	PA_B2	105.7	204.9
	PA_B5	5.7	10.7
	PA_C1	43.4	90.2
	DP3	1.5	2.6
	DP4	25.5	63.2
	XPL	18.1	-
	PLZ	8.0	-
	Other procyanidins assayed after phloroglucinolysis	198.2	298.9
	Total polyphenols purity (%)	84.8	82.5
	Total flavan-3-ols purity (%)	46.3	82.5
	Structural characterization of flavan-3-ols:		
	(-)-epicatechin as PA extension units (%)	70	67.5
	(-)-epicatechin as free or PA terminal units (%)	26.8	29.1
	(+)-catechin as free or PA terminal units (%)	3.2	3.4
	aDP	3.3	3.1

CQA: 5'-O-caffeoylquinic acid; PCQ: 4-O-para-coumaroylquinic acid; EC: (-)-epicatechin, CAT: (+)-catechin; PA_B1: procyanidin dimer B1; PA_B2: procyanidin dimer B2; PA_B5: procyanidin dimer B5; PA_C1: procyanidin trimer C1; DP3: unknown procyanidin trimer; DP4: procyanidin tetramer; XPL: phloretin 2'-Oxyloglucoside; PLZ: Phloridzin. PA: procyanidin. aDP: average degree of polymerization.

Table 3 .

 3 Partition coefficients of phenolic compounds in TotPP extract according to different solvent systems: Ethyl acetate/n-butanol/water (v/v) with A (5/0/5), B (3/2/5), C (2/3/5), and D (1/4/5).

	Solvent	pH	Partition	Phenolic compounds										
	system		Coefficient												
				CQA	PCQ	EC	CAT	PA_B1	PA_B2	PA_B5	PA_C1	DP3	DP4	XPL	PLZ
	A	2.06	Kacid	0.89	1.69	2.64	1.85	0.24	0.57	2.38	0.39	1.98	0.19	0.23	5.87
	A	4.02	K	0.38	0.82	2.51	2.13	0.30	0.60	2.58	0.35	1.78	0.15	0.23	6.55
	B	2.15	Kacid	7.34	14.71	24.51	13.29	4.24	14.90	34.93	16.39	-	15.20	8.47	47.11
	B	4.27	K	3.23	4.16	12.71	14.2	2.79	8.31	-	13.36	-	16.21	8.29	54.81
	B	5.20	Kbase	0.42	0.51	12.27	11.07	3.77	8.38	37.09	13.19	-	16.41	8.14	52.43
	B	7.93	Kbase	0.00	0.01	0.25	0.07	0.05	0.07	0.14	0.04	-	0.03	0.04	0.13
	C	4.33	K	2.95	4.11	10.58	12.05	2.42	6.94	36.61	11.08	-	12.64	10.47	55.76
	C	5.25	Kbase	0.44	0.55	10.19	8.35	3.43	6.92	24.57	10.63	-	14.29	9.98	49.51
	D	4.27	K	2.87	4.10	7.22	10.11	1.41	4.08	20.61	5.69	-	5.24	9.35	40.65
	D	5.23	Kbase	0.42	0.56	7.04	6.83	1.98	4.24	14.72	5.99	-	6.05	9.23	49.47
		CQA: 5'-O-caffeoylquinic acid; PCQ: 4-O-para-coumaroylquinic acid; EC: (-)-epicatechin, CAT: (+)-catechin; PA_B1: procyanidin dimer B1;	
		PA_B2: procyanidin dimer B2; PA_B5:procyanidin dimer B5; PA_C1: procyanidin trimer C1; DP3: unknown procyanidin trimer; DP4:	
		procyanidin tetramer; XPL: phloretin 2'-O-xyloglucoside; PLZ: Phloridzin.							

Table 4 .

 4 Remaining phenolic compounds (%) in the two alkalized solvent system B compared to system B without adding a base.

	Compound pH 7.9 pH 5.2
	CQA	59	88
	PCQ	55	100
	EC	60	100
	CAT	184	89
	PA_B1	80	126
	PA_B2	64	104
	PA_B5	33	83
	PA_C1	67	104
	DP3	0	86
	DP4	66	108
	XPL	81	100
	PLZ	86	101
	CQA: 5'-O-caffeoylquinic acid; PCQ: 4-O-para-coumaroylquinic acid; EC: (-)-epicatechin,
	CAT: (+)-catechin; PA_B1: procyanidin dimer B1; PA_B2: procyanidin dimer B2; PA_B5:
	procyanidin dimer B5; PA_C1: procyanidin trimer C1; DP3: unknown procyanidin trimer;
	DP4: procyanidin tetramer; XPL: phloretin 2'-O-xyloglucoside; PLZ: Phloridzin.
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Phenolic classes

Compounds Average contents (mg.kg -1 FM) [Min; Max] fractions. Consequently, they were pooled to obtain the final extract, named MM-FA extract.

The second one from 22.2 min to 33 min corresponded to dihydrochalcones and flavonols.

The third zone was not recovered as it corresponded to the washing of the column.

Composition and structural characterization of MM-FA extract

The MM-FA extract (409 mg) was purified from 1 g of the initial crude extract. Overlaying the TotPP and MM-FA chromatograms (Figure 3) showed that our strategy enabled the enrichment of flavan-3-ols without HCA (CQA and PCQ) and dihydrochalcones (XPL and PLZ). UPLC-UV/Visible-MS analysis confirmed that none of them were present in the final purified extract. The final tannic powder was characterized and thus can be considered as a pure apple flavan-3-ol extract. The catechin monomers (EC and CAT) and individually quantifiable procyanidin oligomers (from DP2 to DP4) represented 14.5 % and 38.1% of the purified extract (MM-FA), respectively (Table 2). Procyanidin dimer B2 alone accounted for 20.5 % of the fraction. Other minor peaks were also observed. They corresponded to other procyanidin oligomers from DP3 to DP6. HPLC-UV/Visible-MS analysis after phloroglucinolysis allowed the total flavan-3-ols content to be determined, which represented 825 g/kg. Therefore, others procyanidin oligomers and polymers not separated by direct analysis using UPLC represented circa 30% of the extract. Noticeably, as previously mentioned for freeze-dried procyanidin extracts [START_REF] Guyot | Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states[END_REF], a significant quantity of bound water (estimated at 2-3 water molecules per catechin unit constituting the procyanidin structures) likely remained present in the purified extract after freeze-drying [START_REF] Czochanska | Polymeric proanthocyanidinsstereochemistry, structural units, and molecular-weight[END_REF]. This probably explains the 82.5% of total polyphenols in the final MM-FA extract. Complementary information was provided regarding the nature and proportions of the flavan-3-ols units entering in the composition of the MM-FA extract (Table2). Indeed, extension units were exclusively (-)epicatechin accounting for 67.5% of total FA units. Terminal procyanidin units or free catechin units were essentially (-)-epicatechin (29%), (+)-catechin accounting only for 3%.

Lastly, the recovering of flavan-3-ols, corresponding to the ratio of the quantity of flavan-3ols in the final extract (337 mg) on the one in 1 g of crude extract (463 mg) was 73%. This percentage of recovery is satisfactory, considering that a part of PAB1 was not totally recovered, and that there were unavoidably losses during the numerous steps of this methodology (fraction analysis, remaining in the syringe during injection, highly polymerized procyanidins more hydrophobic and eluting later during preparative RP-HPLC). Despite this, the average polymerization degree (aDP) of the flavan-3-ols determined in the MM-FA extract (3.1) was very close to that of the initial TotPP extract (3.3) (Table 2).