Characterization of complex phenolic compounds in rapeseed and sunflower biomass generated during biorefinery
Xiaoxi Yu, Hélène Sotin, Nathalie Marnet, Sylvain Guyot

To cite this version:
Xiaoxi Yu, Hélène Sotin, Nathalie Marnet, Sylvain Guyot. Characterization of complex phenolic compounds in rapeseed and sunflower biomass generated during biorefinery. Bio2Actives-From Biomass and Bioengineering from actives to ingredients, Jul 2017, Quimper, France. hal-03325742

HAL Id: hal-03325742
https://hal.inrae.fr/hal-03325742
Submitted on 25 Aug 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Characterization of complex phenolic compounds in rapeseed and sunflower biomass generated during biorefinery

Xiaoxi Yu, Hélène Sotin, Nathalie Marnet, Sylvain Guyot
INRA UR1268 BIA - Polyphenols, Reactivity, Processes, F-35653 Le Rheu, France

Introduction
In addition to lipids, proteins and polysaccharides, rapeseed and sunflower seeds are known to contain significant amounts of phenolic compounds. They are located both in the kernels and in their fibrous hulls. After oil production, valorization of those phenolic compounds can be considered due to their putative health benefits. Previous studies reported that the concentration of some complex polyphenols such as condensed tannins in rapeseed hulls tends to decrease with advanced plant maturity. They may be oxidized or form strong interactions with other polymers in the plant (proteins, polysaccharides). Our work aims at evaluating the applicability of acidolysis methods (i.e. direct phloroglucinolysis and butanol-HCl acidolysis) for determining complex phenolic compounds in rapeseed and sunflower biomass (oil cake and hull).

Main phenolic compounds in the rapeseed

Kernel: sinapine, sinapic acid and sinapoyl glucose

Hull: condensed tannins & flavonols

Main phenolic compounds in the sunflower

Kernel: chlorogenic acids

Hull: few information (Possibly "oxidized polyphenols")

Materials and methods

<table>
<thead>
<tr>
<th>Rapeseed</th>
<th>% oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed</td>
<td>47.1</td>
</tr>
<tr>
<td>Oil cake</td>
<td>1.5-2.3</td>
</tr>
<tr>
<td>Hull</td>
<td>23.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sunflower</th>
<th>% oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed</td>
<td>47.7</td>
</tr>
<tr>
<td>Oil cake</td>
<td>2.2</td>
</tr>
<tr>
<td>Hull</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Seed, oil cake, hull of rapeseed/sunflower Delipidation

Phloroglucinolysis reaction

Analysis by Ion Trap LC-MS

Butanol-HCl reaction

Analysis by colorimetry

Complex phenolic oxidation products

Oligomers

Procyanidins

Polymers

Results

- For rapeseed hull, the reaction products of butanol-HCl assay present spectral profile close to cyanidin (confirmed by LC-MS)
- Presence of condensed tannins
- The phloroglucinolysis assay confirm the presence of procyanidin in the rapeseed hull.
- Less or no condensed tannins were detected in rapeseed oil cakes and in sunflower samples.

Conclusions

- After delipidation, phloroglucinolysis or butanol-HCl reaction can be applied directly on rapeseed or sunflower samples for the determination of complex phenolic compounds (e.g. condensed tannins).
- Contrary to rapeseed hulls, few condensed tannins were detected in rapeseed oil cakes and in sunflower samples.
- Further work will be done to improve the estimation of oxidized polyphenolic compounds.

Acknowledgement

This work was performed, in partnership with the SAS PIVERT (PHENOLEO Project), within the frame of the French Institute for the Energy Transition (Institut pour la Transition Énergétique - ITE) PIVERT (www.institut-pivert.com) selected as an Investment for the Future ("Investissements d'Avenir"). This work was supported, as part of the Investments for the Future, by the French Government under the reference ANR-09-IAH.