
HAL Id: hal-03326441
https://hal.inrae.fr/hal-03326441v1

Submitted on 26 Aug 2021 (v1), last revised 2 Nov 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fast estimation for robust supervised classification with
mixture model

Erwan Giry Fouquet, Mathieu Fauvel, Clément Mallet

To cite this version:
Erwan Giry Fouquet, Mathieu Fauvel, Clément Mallet. Fast estimation for robust supervised clas-
sification with mixture model. Pattern Recognition Letters, In press, �10.1016/j.patrec.2021.10.020�.
�hal-03326441v1�

https://hal.inrae.fr/hal-03326441v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 

Fast estimation for robust supervised classification with mixture models

Journal Pre-proof

Fast estimation for robust supervised classification with mixture
models

Erwan Giry Fouquet, Mathieu Fauvel, Clément Mallet

PII: S0167-8655(21)00379-2
DOI: https://doi.org/10.1016/j.patrec.2021.10.020
Reference: PATREC 8403

To appear in: Pattern Recognition Letters

Received date: 26 March 2021
Revised date: 3 September 2021
Accepted date: 18 October 2021

Please cite this article as: Erwan Giry Fouquet, Mathieu Fauvel, Clément Mallet, Fast estimation
for robust supervised classification with mixture models, Pattern Recognition Letters (2021), doi:
https://doi.org/10.1016/j.patrec.2021.10.020

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2021 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.patrec.2021.10.020
https://doi.org/10.1016/j.patrec.2021.10.020
http://creativecommons.org/licenses/by/4.0/


1

Highlights

• The Robust Mixture Discriminant Analysis model leads to
a convex optimization problem

• A consensus based formulation can be solved efficiently
using ADMM

• This formulation scales efficiently to thousands of samples

• The main limitation of the Robust Mixture Discriminant
Analysis comes from the clustering
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ABSTRACT

Label noise is known to negatively impact the performance of classification algorithms. In this paper,
we develop a model robust to label noise that uses both labelled and unlabelled samples. In particular,
we propose a novel algorithm to optimize the model parameters that scales efficiently w.r.t. the number
of training samples. Our contribution relies on a consensus formulation of the original objective
function that is highly parallelizable. The optimization is performed with the Alternating Direction
Method of Multipliers framework. Experimental results on synthetic datasets show an improvement
of several orders of magnitude in terms of processing time, with no loss in terms of accuracy. Our
method appears also tailored to handle real data with significant label noise.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Success of fully supervised machine learning algorithms de-
pends on the availability of labeled databases in order to train
the model parameters. Such databases contain samples, ex-
planatory variables, and their associated response variables.
Usually, the response variables (e.g., a categorical variable
for classification problems) are obtained through manual an-
notation. For complex problems or repetitive tasks, this is
prone to labeling errors, resulting in noise in the response vari-
ables (Frénay and Verleysen, 2014). Some studies have re-
ported noise up to 40% of noise for classification labels (Lee
et al., 2017).

Three main strategies for label noise modeling are reported
in the literature. The simpler one assumes that the mislabeling
is, conditionally to the true label, independent of the explana-
tory variables, i.e., the noise is uniform among the labels and
the probability of confusion is symmetric. A second model-
ing assumes label-dependent noise: some confusions are more
probable than others. Finally, a more realistic strategy postu-
lates that the label noise depends both on the response and ex-
planatory variables. However, its complexity has hindered its
adoption, resulting in more studies focusing on the two first
strategies (Song et al., 2020).

∗∗Corresponding author
e-mail: mathieu.fauvel@inrae.fr (Mathieu Fauvel)

The presence of noise can dramatically affect the learning
algorithm, which leads to overfit data for complex algorithms
such as deep neural networks (Zhang et al., 2016). Hence, since
the seminal paper of Frénay and Verleysen (2014), emphasis
has been put, in the machine learning community, in building
label noise resistant algorithms. Recent surveys can be found
in (Algan and Ulusoy, 2020; Han et al., 2020; Song et al., 2020).
Currently, main efforts are oriented to design dedicated strate-
gies on deep learning architectures (Yao et al., 2019), on sample
selection (Shen and Sanghavi, 2019) or combining sample se-
lection and loss correction (Song et al., 2019).

Alternatively, semi-supervised (SS) algorithms are used to
address the label noise issue. SS learning has initially emerged
to deal with databases with few labeled samples but with a large
number of unlabeled samples (Chapelle et al., 2006). It has
found recently application in learning with label noise (Bou-
veyron and Girard, 2009; Yan et al., 2016; Ding et al., 2018;
Kong et al., 2019; de Aquino Afonso and Berton, 2020; Li et al.,
2020). Most of the SS strategies rely either on iteratively col-
lecting unlabeled samples to mitigate the effect of noisy labels,
or on using a class overlap measure computed on unlabeled
samples.

Under the SS learning framework, Bouveyron and Girard
(2009) have considered two structures in the data: an unsu-
pervised modeling based on mixture models and a supervised
modeling relying on the label information. This strategy is
based on the cluster assumption from SS learning (Chapelle
et al., 2006, Chap. 1): “if some learning data have wrong
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Fig. 1. Robust Mixture Discriminant Analysis modeling: this 2-
dimensional synthetic data exemplifies the data model. The colors repre-
sent the clusters (7) and the classes (3) for the unsupervised and supervised
structures, respectively. The synthetic R matrix that links the unsuper-
vised structure to the supervised structure is given below the scatter plots.

labels, the comparison of the supervised information with an
unsupervised modeling of the data allows to detect the incon-
sistent labels” (Bouveyron and Girard, 2009). Their model is
optimized through the maximization of the log-likelihood and
provides very good results on several datasets (e.g., USPS and
Pascal VOC). However, their original constrained formulation
does not scale well with the number of samples and therefore is
not applicable to recent large-scale data.

The contribution of this letter is to describe a new algorithm
embedding such a SS framework that scales efficiently w.r.t.
the number of training samples. The proposed algorithm is
based on Alternating Direction Method of Multipliers (ADMM)
framework (Boyd, 2010). We derive a consensus-based ap-
proach of the original algorithm which exploits the convexity of
the problem. Results on simulated data demonstrate the speed-
up of the proposed algorithm by a factor larger than 100 when
the number of training is large. Then, the results on real datasets
emphasis the potential of such modeling for data with signifi-
cant label noise but also the current limitation.

The remainder of the letter is organised as follows. Section 2
presents the original model of Bouveyron and Girard (2009).
Then, the proposed algorithm is presented in Section 3. Sec-
tion 4 shows the superiority of the proposed algorithm w.r.t
the original solver on synthetic datasets and Section 5 provides
classification results on three real datasets.

2. Robust Mixture Discriminant Analysis

In the following, the data samples are denoted {x1, . . . , xN}.
We assume that they are independent realizations of a random
vector X ∈ Rd. It is also assumed that a subset of size n � N
of the data is provided with their corresponding labels {c}n`=1
represented by the random discrete variable C ∈ {1, . . . , k}.

This labeled set {(x`, c`)}n`=1 represents the supervised struc-
ture of the data (Bouveyron and Girard, 2009). The authors
also assumed the coexistence of an unsupervised structure of
K clusters, represented by the random discrete variable S ∈
{1, . . . ,K}. Both structures are illustrated in Figure 1.

Using the conventional mixture model framework, the den-
sity function of X is p(x) =

∑K
j=1 p(X = x|S = j)p(S = j). It

can be seen as a statistical representation of the data, whatever
the classes of interest. Assuming the classes fully represent the
dataset, i.e., each pixel belongs to at least one class, this yields
to :

∑k
i=1 p(C = i|S = j) = 1, ∀ j ∈ {1, . . . ,K}. Combining

these two equalities, Bouveyron and Girard (2009) defined the
Robust Mixture Discriminant Analysis (RMDA) model:

p(x) =

k, K∑

i, j=1

p(C = i|S = j)p(X = x|S = j)p(S = j). (1)

The term p(C = i|S = j) can be interpreted as the probability
that the jth cluster belongs to the ith class. For simplicity, it is
denoted ri j hereafter.

Noting ri =
[
ri1, . . . , riK

]> ∀i ∈ {1, . . . , k}, and ψ =
[
p(S =

1|X = x), . . . , p(S = K|X = x)
]>, the posterior probability of a

sample is given by:

p(C = i|X = x) = r>i ψ. (2)

The maximum a posteriori rule is used to select its correspond-
ing label.

If we suppose that the unsupervised structure is known, i.e.,
the clusters have been identified by any clustering technique,
the learning problem amounts to estimate the ri j or, through
a matrix form, R =

[
r1, . . . , rk

]>, R ∈ Rk×K . Bouveyron
and Girard (2009) have proposed to minimize the negative log-
likelihood which, after some straightforward simplification, re-
duces to the following constrained optimization problem:

min
R

n∑

`=1

− ln
(
β>` Rψ`

)

Constraint to R>1C = 1K ,
R < 0,

(3)

where 1C ∈ RC denotes the vector of ones, < denotes the
element-wise non-negative constraint and β` ∈ Rk with β`i = 1
if i = c`, otherwise β`i = 0.

In their original work, Bouveyron and Girard (2009) have
used a standard constrained gradient descent to solve Eq. (3)
(fmincon from Matlab1). The main drawback of such general
solver is it neglects the convexity of this optimization problem,
resulting in a very slow convergence. Here, we show that the
problem is convex w.r.t. R and propose a fast algorithm to solve
it, that scales well with the number of samples.

3. Global consensus with simplex constraint optimization

Bouveyron and Girard (2009) did not discuss about the con-
vexity of the optimization problem. Hence, we shall prove its

1https://fr.mathworks.com/help/optim/ug/fmincon.html
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convexity (next subsection). Then, a dedicated algorithm based
on Alternating Direction Method of Multipliers (ADMM) is
proposed.

3.1. Convexity of the minimization problem

The constraints in Eq. (3) are conventional non-negativity
and sum-to-one constraints, and therefore are known to be
convex (Boyd and Vandenberghe, 2004). The negative log-
likelihood can be written as

∑n
`=1 − ln(ω>` rv) where ω` =

vec
(
ψ`β

>
`

)
, rv = vec

(
R
)

and vec is the vectorization oper-
ator of a matrix. Such formulation stems from the fact that
β>` Rψ` = trace

(
ψ`β

>
` R

)
(Magnus, 2010). The Hessian matrix

is given by:

∂2

∂rv∂r>v

( n∑

`=1

− ln(ω>` rv)
)

=

n∑

`=1

ω`ω
>
`

(ω>
`

rv)2 ,

which is the sum of semipositive definite matrices and conse-
quently a semipositive definite matrix. Hence, the negative log-
likelihood is convex w.r.t. R. Therefore, the constraint opti-
mization problem in Eq. (3) is convex.

3.2. Consensus approach - ADMM Solver

To efficiently solve Eq. (3), we rewrite the optimization as
an equivalent consensus-based problem, but more suitable to
large-scale computing. We define (i) one R per sample and
(ii) impose a global shared variable with simplex constraints as
a global consensus (Boyd, 2010, Chap. 7). The optimization
problem can be subsequently written as:

min
R` ,Z

n∑

`=1

f`(R`) + g(Z)

Constraint to R` − Z = 0 ∀` ∈ {1, . . . , n},
(4)

where f`(R`) = − ln(β>` R`ψ`)+ for ` ∈ {1, . . . , n}, (·)+ =

max(0, ·) and g(Z) is defined as the indicator function in the
simplex S:

g(Z) =

{
0 if Z ∈ S = {Z|Z < 0,Z>1C = 1K}

+∞ otherwise. (5)

The solutions of Eq. (3) and Eq. (4) are equivalent. Here, the
idea is to separate the function to be minimized from the sim-
plex constraint. ADMM is an efficient algorithm to solve a
problem such as Eq. (4), assuming fast minimizations of ele-
mentary functions f` and g are available. Boyd (2010) provides
a comprehensive review of ADMM algorithms, and in particu-
lar for consensus problems (Chap. 7).

Following the ADMM framework, the augmented La-
grangian is:

Lρ(R1, . . . ,Rn, Z,Y1, . . . ,Yn) =

n∑

`=1

(
f`(R`) + 〈Y`,R` − Z〉F +

ρ

2
‖R` − Z‖2F

)
+ g(Z), (6)

where Y` are the Lagrange multipliers, 〈·, ·〉F is the Frobenius
inner product between two real matrices, ‖ · ‖F is its associated

norm and ρ is a penalty parameter. The resulting iterative algo-
rithm is the following:

R(t+1)
`

= arg min
R`

{
f`(R`) + 〈Y(t)

`
,R` − Z(t)〉F

+
ρ(t)

2
‖R` − Z(t)‖2F

}
,

(7)

Z(t+1) = arg min
Z

{
g(Z) +

n∑

`=1

(
〈Y(t)

`
,R` − Z〉F

+
ρ(t)

2
‖R(t+1)

`
− Z‖2F

)}
,

(8)

Y(t+1)
`

= Y(t)
`

+ ρ(t)(R(t+1)
`
− Z(t+1)), (9)

where (t) denotes the current iteration. The algorithm is ef-
ficient since each update step can be computed explicitly or
rapidly, as shown in the following.

3.2.1. R`-update
Let F` be the function to be minimized at iteration (t):

F`(R`) = − ln(β>` R`ψ`)+ + 〈Y(t)
`
,R` − Z(t)〉F

+
ρ(t)

2
‖R` − Z(t)‖2F . (10)

We assume β>` R`ψ` > 0, otherwise F`(R`) = +∞ and the cor-
responding R` cannot be a minimizer of F`. Its derivative w.r.t.
R` is:

∇R`
F`(R`) = − β`ψ

>
`

β>` R`ψ`
+ Y(t)

`
+ ρ(t)(R` − Z(t)). (11)

Let us note that β>R`ψ` = 〈β`ψ>` ,R`〉F . We are looking for R̂`

such that the gradient is canceled: such solution is also solution
of 〈β`ψ>` ,∇R`

F`(R̂`)〉F = 0. Injecting Eq. (11) in the previous
Frobenius product and arranging the terms leads to:

− ‖β`ψ>` ‖2F +
〈
β`ψ

>
` , R̂`

〉
F
〈
β`ψ

>
` ,Y

(t)
`
− ρ(t)Z(t)〉

F

+ ρ(t)〈β`ψ>` , R̂`
〉2

F = 0. (12)

Eq. (12) is a quadratic equation w.r.t.
〈
β`ψ

>
` , R̂`

〉
F whose posi-

tive root is:
〈
β`ψ

>
` , R̂`

〉

F
=

1
2

〈
β`ψ

>
` ,Z

(t) − Y(t)
`

ρ(t)

〉

F

+

√√
1
4

〈
β`ψ

>
` ,Z(t) − Y(t)

`

ρ(t)

〉2

F

+
‖β`ψ>` ‖2F
ρ(t)

=̂ ν(t)
`

(13)

A negative root cannot be a solution of Eq. (10), as previously
discussed. By plugging Eq. (13) into Eq. (11), an explicit solu-
tion for Eq. (7) is obtained:

R(t+1)
`

= Z(t) +
1
ρ(t)

(
β`ψ

>
`

ν(t)
`

− Y(t)
`

)
. (14)

The solution can be computed for all ` ∈ {1, . . . , n} in parallel,
allowing very fast computation for the R-update step.
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3.2.2. Z-update and Y`-update
The Z-update corresponds to the projection on the probabil-

ity simplex. A simple iterative method is used in this work,
based on bisection on a one dimensional function, as described
in (Parikh, 2014).

The Y`-update is explicit and can be computed in parallel for
all ` ∈ {1, . . . , n}.

3.2.3. Stopping criterion
Following the recommendation of Boyd (2010), the conver-

gence of the algorithm is monitored using the norm of the pri-
mal and dual residuals, Pr(t) and Dr(t), respectively. These
norms are computed as:

‖Pr(t)‖2F =

n∑

`=1

‖R(t)
`
− Z(t)‖2F , (15)

‖Dr(t)‖2F = nρ(t)‖Z(t) − Z(t−1)‖2F . (16)

The primal residual computes the average distance between
each R` and Z. It is a measure of the consensus. The dual
residual measures the changes in the shared variable between
two iterations. Once both residuals are sufficiently small i.e.,
below a specific threshold, the algorithm is stopped. We use the
stopping criterion proposed in (Boyd, 2010, Chapter 3.3), for
the primal and dual residuals, respectively:

ε(t)
pr =

√
nkK εabs + εrel max



√√ n∑

`=1

‖R(t)
`
‖2F ,

√
nρ(t)‖Z(t)‖F


(17)

ε(t)
dr =

√
nkK εabs + εrel‖Y(t)‖F , (18)

where εabs and εrel are two hyperparameters to be tuned. Default
values are 10−3 and 10−4, respectively.

3.2.4. Update penalty parameter strategy
In practice, a suitable value for the penalty parameter can

improve the convergence of the ADMM algorithm (Xu et al.,
2017). In this work, we use the strategy proposed in (Boyd,
2010, Chapter 3.4.1) where ρ is updated after each iteration,
based on:

ρ(t+1)=̂



τρ(t) if
∥∥∥Pr(t)

∥∥∥
F > µ

∥∥∥Dr(t)
∥∥∥

F
ρ(t)/τ if

∥∥∥Dr(t)
∥∥∥

F > µ
∥∥∥Pr(t)

∥∥∥
F

ρ(t) otherwise,
(19)

where µ and τ are hyperparameters set by the user. The ratio-
nale behind this strategy is to approximately balance the weight
between primal and dual residuals. In all reported experiments,
the values are 10.0 and 2.0, respectively.

4. Experimental results on synthetic data

4.1. Comparison with the standard solver
The proposed convex solver is compared with the original

solver (Bouveyron and Girard, 2009). We have implemented
the generic solver using the Sequential Least Squares Pro-
gramming (SLSQP) solver provided by the Scipy library in
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Fig. 2. Results on synthetic data. The colors are related to the numbers of
clusters K used in the simulation and the marker shapes are related to the
levels of label noise. The values averaged over 5 runs are reported for each
configuration.

Python (Virtanen and SciPy 1.0 Contributors, 2020) using the
Numpy array programming facility (Harris et al., 2020).

For the synthetic data set, the clusters are generated as
isotropic Gaussian samples in R2. The number of clusters K
was 20, 40, 60, 80, 100, 150, 200 for a fixed number of samples
n = 1, 000. Then, a sparse R matrix is generated to link the
clusters to a set of k = 10 classes. The effectiveness of the algo-
rithm is assessed using the root mean square error (RMSE) and
the processing time over 5 runs. The RMSE is computed as

RMSE(R̂) =

√√√
1

k × K

k, K∑

i, j=1

(ri j − r̂i j)2,

where ri j and r̂i j are the true and the estimated values, respec-
tively. The results are reported in Figure 2.

From these simulated results, we can first conclude that the
quality of the estimation of R is equivalent between the generic
solver and our proposed algorithm whatever the number of clus-
ters or the level of label noise. Hence, both algorithms converge
to a very close solution.

At the same time, our algorithm is 5 to 400 times faster than
the generic solver. As the number of clusters increases, the
size of the optimization problem also increases (expressed as
the number of parameters to estimate k × K) and the generic
solver takes increasingly time to converge: from approximately
10 seconds for K = 20 to 6,000 seconds for K = 200. Con-
versely, our approach only increases from 2 to 15 seconds, re-
spectively.

Another finding is that a higher level of label noise will gen-
erally result in a slight decrease of the processing time w.r.t.
noise-free configuration: in that case, the consensus is not
reachable and the algorithm stops earlier.

4.2. Influence of the number of samples
Another set of simulation targets to assess the scalability of

our algorithm w.r.t. the number of training samples. We per-
form similar simulations, fixing K = 100, the label noise to a
level of 30%, and increasing the number of samples from 103 to
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107 with a logarithmic step size of 10. Figure 3 shows the pro-
cessing time averaged over 5 runs2. It scales almost linearly.
Even with 107 samples, our algorithm takes less than 20 min-
utes to converge.

4.3. Influence of the hyperparameters
Figure 3 shows the effect of the stopping criterion (defined

in Section 3.2.3) on the convergence of the algorithm. For this
simulation, 10 clusters, 4 classes, and 10,000 training samples
are simulated with the same procedure without label noise. In
that case, we can see that small enough εabs and εrel values are
necessary to reach a good fit, i.e., a small RMSE.

Since the stopping criteria are normalized w.r.t. the size of
the problem (i.e., number of samples, clusters and classes), a
general comment would be to use smaller default values than
those proposed in Section 3.2.3. However, it is known that
ADMM converges quickly to a rough solution, and spends
many iterations to converge to the optimal solution (Boyd,
2010): in practice, too small values will unnecessarily increase
the processing time. For all our experiments, we found that the
values proposed in Section 3.2.3 work well.

We can conclude that our proposed solver is faster by sev-
eral orders of magnitude than the original solver (Bouveyron
and Girard, 2009), while converging to the true solution. In the
next section, the robust discriminant model is confronted with
several real datasets and competitive algorithms.

5. Results on real data

5.1. Hand-written digits
UCI ML Hand-written digits data set is a challenging hand-

written text recognition dataset (Pedregosa et al., 2011). It
is composed of 1,797 samples with 64 features (one sample
corresponds to an image of 8×8 pixels and was arranged into
a feature vector of 64 features) and 10 classes. Half of the
data have been used for the training step and the remaining
for the validation step. The robust mixture discriminant analy-
sis (RMDA) has been compared with a Quadratic Discriminant
Analysis (QDA) and a Random Forest (RF) classifiers, from

2Similar simulations with the generic solver took too much times and are
not reported.

Table 1. Hand-written digits classification results. The number indicates
the averaged overall accuracy over the 20 runs. Subscript numbers for
RMDA correspond to the number of clusters. The rows correspond to
different levels of label noise: 0.1 indicates that the probability of label
switch is 0.1 (i.e., 10% of the labels are wrong). Best results for each level
of label noise are reported in boldface, and numbers is brackets are the
variance of the overall accuracy.

0.0 0.1 0.2 0.3 0.4 0.5

RF 96.7 (0.6) 96.4 (0.6) 95.5 (0.9) 94.1 (0.9) 91.3 (1.0) 86.2 (1.9)
QDA 97.0 (0.7) 94.9 (1.6) 89.3 (1.7) 88.6 (1.0) 87.9 (1.2) 86.9 (1.3)
RMDA20 88.1 (0.9) 87.9 (1.2) 87.9 (1.1) 87.9 (1.1) 87.8 (1.2) 87.5 (1.2)
RMDA30 91.7 (0.6) 91.7 (0.7) 91.7 (0.7) 91.5 (0.9) 91.3 (0.8) 91.0 (1.2)
RMDA40 94.3 (0.6) 94.3 (0.6) 94.2 (0.7) 93.9 (1.0) 93.6 (1.1) 92.5 (1.7)
RMDA50 94.9 (0.7) 94.9 (0.8) 94.7 (0.9) 94.6 (0.9) 93.7 (1.0) 92.0 (1.7)
RMDA60 94.3 (0.5) 94.3 (0.5) 94.2 (0.6) 93.6 (1.1) 93.1 (1.4) 90.8 (2.5)
RMDA70 96.1 (0.4) 96.1 (0.4) 95.9 (0.5) 95.6 (0.8) 94.3 (1.5) 91.2 (2.0)
RMDA80 96.2 (0.4) 96.0 (0.6) 95.7 (0.6) 94.8 (1.4) 93.5 (1.6) 88.6 (2.2)
RMDA90 96.6 (0.6) 96.3 (0.7) 95.8 (1.2) 94.9 (1.3) 92.4 (2.5) 88.0 (2.5)
RMDA100 96.9 (0.6) 96.6 (0.9) 96.0 (1.1) 95.0 (1.7) 93.0 (1.9) 86.1 (2.8)
RMDA110 96.6 (0.7) 96.3 (0.7) 95.6 (1.1) 93.6 (1.3) 90.2 (1.8) 84.1 (2.6)
RMDA120 97.0 (0.5) 96.4 (0.6) 95.4 (0.9) 93.0 (1.8) 89.4 (2.2) 82.3 (3.5)
RMDA130 97.7 (0.6) 97.0 (0.9) 96.1 (1.1) 93.7 (1.7) 89.5 (2.1) 81.6 (3.1)
RMDA140 97.4 (0.7) 96.5 (1.0) 95.2 (1.6) 92.7 (1.9) 88.4 (2.1) 79.4 (2.8)
RMDA150 96.7 (0.7) 95.7 (0.9) 93.4 (2.1) 90.0 (3.1) 85.5 (2.5) 77.3 (3.3)

the Scikit-learn library (Pedregosa et al., 2011). QDA is cho-
sen because it can be considered as an extreme case of RMDA
with one cluster per class. RF is adopted for its robustness to
label noise (Pelletier et al., 2017). QDA is used with a regular-
ization parameter automatically chosen by cross-validation and
100 trees compose the RF. For RMDA, a conventional Gaussian
Mixture Model (GMM) is used to extract the clusters. Several
sizes of clusters are investigated: K ∈ {20, 30, . . . , 150}. Label
noise is introduced in the data and all experiments are run 20
times, with a random generation of training/validation sets and
uniform label noise for each run. The overall accuracy (OA) is
used to assess the classification accuracy.
The average OA is reported in Table 1. When the label noise
is null, better RMDA results are obtained for a larger number
of clusters. However, as the level of label noise increases, the
performance in terms of OA decreases for a larger number of
clusters. RMDA used with a smaller number of clusters ap-
pears more robust w.r.t. label noise. In particular, RMDA with
20 or 30 clusters is slightly affected by the label noise.
QDA performs the worst and is highly label noise dependent.
RF performs equally than RMDA for a level of label noise
lower than 0.4. For higher cases, the performance significantly
drops and RF produces worse OA than RMDA used with 30 to
80 clusters.

A by-product obtained by RMDA is the cluster assignment to
each class. From the R matrix, it is possible to associate a clus-
ter to one (or more) class. Figure 4 shows the R obtained for
RMDA coupled with GMM and 30 clusters with no label noise.
The sum-to-one and positivity constraints result in a sparse ma-
trix: most of the ri j are null. For instance, only one cluster was
assigned to the class “0”. In general, a cluster belongs to one or
two classes. Once the clusters have been identified for a given
class, it is possible to recover their mean values from the GMM
model, as shown in Figure 5. For this class, we can see that
clusters correspond to various distortion (e.g., translation, dila-
tion . . . ) of the digit “2”. It shows that RMDA properly train is
able to learn classes subject to distortion.
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Fig. 4. R matrix for RMDA30 for Hand-written digits data set (one cell=one
ri j value).

Fig. 5. Mean value for clusters belonging to Hand-written digits class “2”
(the feature vector has been reshaped as an image).

5.2. CovType

The second dataset is the Covtype dataset, which contains
581,012 samples with 54 features representing cartographic
variables (https://archive.ics.uci.edu/ml/datasets/
covertype). Seven classes of cover types are defined with a
highly unbalanced class proportion: the samples of two classes
represent 84% of the data. The experimental set-up is the same
than for Hand-written digits, except for the number of clusters.
Since the number of samples is higher, a larger number of clus-
ters is investigated, up to 300. The averaged OA are reported in
Table 2. We only report the results for some K because results
are similar for various configurations.

For this data set, RMDA performs the worst, independently
of the number of clusters used. Surprisingly, the label noise
does not affect the performances of the QDA and RMDA, while
RF is affected. Some variables of the data are categorical and
break the Gaussian assumption of QDA and GMM used with
RMDA, while RF is not affected.

This data set illustrates the dependence of the RMDA model
on a good initial clustering step: some of the classes are not rep-
resented during the clustering and hence are not recovered by
the supervised step. We have investigated several conventional
Bayesian criteria for unsupervised models based on the likeli-
hood of the clustering (e.g., AIC, BIC) but they do not provide
meaningful results: a plateau is reached, but it is not correlated
with the final classification accuracy.

5.3. Satellite Time Series

This third data set called normalized difference vegetation in-
dex (NDVI) is composed of simulated optical satellite acqui-
sitions (Pelletier et al., 2017), representing the reflectance of
agricultural vegetation over one year. 13,000 samples with 15
features are available with 13 classes. The experimental set-up
is the same than for Hand-written digits dataset (Section 5.1).
The averaged OA are reported in Table 3. We only present the

Table 2. Covtype classification results. Best results for each level of label
noise are reported in boldface, and numbers is brackets are the variance
of the overall accuracy.

0.0 0.1 0.2 0.3 0.4 0.5

RF 94.4 (0.1) 94.1 (0.0) 93.0 (0.1) 90.7 (0.1) 86.5 (0.1) 79.1 (0.1)
QDA 68.3 (0.1) 68.8 (0.1) 69.0 (0.1) 69.0 (0.2) 68.9 (0.2) 68.7 (0.3)
RMDA20 60.0 (0.1) 60.0 (0.1) 60.0 (0.1) 60.0 (0.1) 60.0 (0.1) 60.0 (0.1)
RMDA30 62.3 (0.0) 62.3 (0.0) 62.3 (0.0) 62.3 (0.0) 62.3 (0.1) 62.3 (0.1)
RMDA40 62.3 (0.1) 62.3 (0.1) 62.3 (0.0) 62.3 (0.0) 62.3 (0.0) 62.3 (0.0)
RMDA50 63.9 (0.1) 63.9 (0.1) 63.9 (0.1) 63.9 (0.1) 63.9 (0.1) 63.9 (0.1)
RMDA60 62.0 (0.1) 62.0 (0.1) 62.0 (0.1) 62.0 (0.1) 61.9 (0.1) 61.9 (0.1)
RMDA70 64.8 (0.0) 64.8 (0.0) 64.8 (0.0) 64.8 (0.0) 64.8 (0.0) 64.8 (0.0)
RMDA80 64.6 (0.0) 64.6 (0.1) 64.6 (0.1) 64.6 (0.1) 64.6 (0.0) 64.6 (0.1)
RMDA90 64.4 (0.1) 64.4 (0.1) 64.4 (0.1) 64.4 (0.1) 64.4 (0.1) 64.4 (0.1)
RMDA100 64.9 (0.0) 64.9 (0.0) 64.9 (0.0) 64.9 (0.0) 64.9 (0.0) 64.9 (0.0)
RMDA120 65.0 (0.1) 65.0 (0.1) 65.0 (0.1) 65.0 (0.1) 65.0 (0.1) 65.0 (0.1)
RMDA140 65.9 (0.1) 66.0 (0.1) 66.0 (0.1) 65.9 (0.1) 65.9 (0.1) 65.9 (0.1)
RMDA160 66.3 (0.1) 66.3 (0.1) 66.3 (0.1) 66.3 (0.1) 66.3 (0.1) 66.3 (0.1)
RMDA200 66.5 (0.1) 66.5 (0.1) 66.5 (0.1) 66.5 (0.1) 66.5 (0.1) 66.5 (0.1)
RMDA225 66.4 (0.1) 66.4 (0.1) 66.4 (0.1) 66.4 (0.1) 66.3 (0.1) 66.3 (0.1)
RMDA250 67.4 (0.1) 67.4 (0.1) 67.4 (0.1) 67.4 (0.1) 67.4 (0.1) 67.4 (0.1)
RMDA275 67.3 (0.1) 67.3 (0.1) 67.3 (0.1) 67.3 (0.1) 67.3 (0.1) 67.2 (0.1)
RMDA300 67.6 (0.1) 67.5 (0.1) 67.5 (0.1) 67.5 (0.1) 67.5 (0.1) 67.5 (0.1)

Table 3. NDVI classification results. Best results for each level of label noise
are reported in boldface, and numbers is brackets are the variance of the
overall accuracy.

0.0 0.1 0.2 0.3 0.4 0.5

RF 87.1 (0.2) 86.8 (0.2) 86.6 (0.2) 86.5 (0.3) 86.0 (0.4) 84.9 (0.5)
QDA 89.8 (0.0) 87.9 (0.3) 86.1 (0.6) 84.7 (1.0) 83.4 (1.1) 82.0 (1.3)
RMDA20 82.7 (0.0) 82.7 (0.2) 82.7 (0.2) 82.7 (0.3) 82.8 (0.7) 82.8 (0.8)
RMDA30 87.3 (0.0) 87.3 (0.2) 87.1 (0.4) 87.1 (0.4) 86.9 (0.5) 86.9 (0.7)
RMDA40 85.4 (0.0) 85.4 (0.1) 85.4 (0.1) 85.4 (0.1) 85.5 (0.3) 85.3 (0.5)
RMDA50 85.2 (0.0) 85.3 (0.1) 85.3 (0.3) 85.3 (0.3) 85.2 (0.3) 85.0 (0.5)

results for K ∈ {20, . . . , 50} because results for a larger number
of clusters are similar to those obtained with K = 50.

Similar comments for the previous datasets can be drawn.
Too small or too large numbers of clusters provide the worst
results for RMDA. Yet the algorithm is robust to label noise and
provides the best results for a level of label noise greater than
0.2. For NDVI, QDA provides the best results when the level
of label noise is limited, but it is significantly affected when the
level increases.

Figure 6 shows the mean temporal profile of one class (sun-
flower) and its associated clusters obtained from RMDA. These
by-products provide richer information of the underlying pro-
cess than only class labels: for instance, different trends are ob-
served for the cluster profiles in the second part of the years. It
indicates in that case different farmer practices associated to dif-
ferent vegetation regrowth for the second semester of the year,
whereas the first part of the year is similar for the three clusters.

6. Discussion and conclusions

A fast algorithm to optimize the Robust Mixture of Discrim-
inant Analysis parameters has been proposed in this letter. It is
based on ADMM and exploits the convexity of the loss func-
tion. Experimental results show a speed-up of several orders of
magnitude w.r.t. the initially proposed solver while providing
similar estimation accuracy. Comparisons with standard clas-
sifiers on three real-life datasets, with various levels of label
noise, confirm the potential of the method.
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Fig. 6. Mean profile for the sunflower class (NDVI dataset) and its associ-
ated cluster means from RMDA (thick continuous line). The shade regions
correspond to the mean ± the standard deviation.

However, as shown in the experiments, the RMDA is sen-
sitive to the unsupervised modelling provided by the cluster-
ing algorithms. For simulations in sections 5.1 and 5.3, the
clustering was good enough to reach good classification ac-
curacy, while in section 5.2 it was too coarse to classify cor-
rectly the data set. Hence, supervised techniques, such as cross-
validation, should be used to select an appropriated clustering,
albeit time consuming. In the results reported here, we have
applied a brute-force trial-and-error search: several number of
clusters values were investigated and the best ones were kept.
It may not be tractable for very large scale scenarios.

Current researches are oriented towards differentiable clus-
tering algorithms that can be integrated in the RMDA loss. A
full optimization of the model parameters could be performed:
the number of clusters and the parameters of the clusters would
be the parameters of RMDA, to be jointly learned with the R
matrix. Deep neural networks for clustering are a natural can-
didate for such investigations (Moradi Fard et al., 2020).
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