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Abstract 8 

In the field of clustering techniques, little attention has been paid to the recovery of a set of clusters 9 

from the structure of an additive tree. To bridge this gap, this work presents an original partitioning 10 

technique which aims to reveal clusters from an additive tree that represents a large set of objects. 11 

Specifically, an algorithm that splits a tree into successive subtrees was developed, based on a ratio 12 

of the lengths of edges. The stability of the clusters obtained with this technique was then evaluated 13 

using measurements of cohesion and isolation that were generated using a bootstrapping strategy. 14 

Finally, the degree of association of each object to clusters was analyzed to gain insight into their 15 

internal structure. This analysis was performed on the results of a sorting task conducted by 156 16 

subjects, who were asked to sort 96 terms associated with the odor of wine. The methodology 17 

developed in this paper represents an innovative way to highlight groups of terms within a large set 18 

of wine odor attributes, with the ultimate goal being to improve the structure of the lexicon. 19 

1. Introduction 20 

In sensory analysis, holistic techniques involving untrained subjects for product characterization are 21 

becoming increasingly popular due to their simplicity, speed, and cost effectiveness (Delarue et al., 22 

2015; Varela & Ares, 2014). Moreover, the results obtained from these approaches have been shown 23 

to be largely similar to those obtained with a conventional profiling approach. Data collected from 24 

holistic techniques, such as free sorting or projective mapping, are usually recorded as a proximity 25 

matrix between the objects evaluated. Subsequently, a global representation is set up to highlight 26 

how the products are perceived by the subjects. Generally speaking, a set of objects can be visualized 27 

by means of either spatial or network representations on the basis of their proximity matrix. In 28 

spatial models, each object is represented as a point in a geometric space issued from a factorial 29 

approach; instead, in network models each object is represented as a node in a graph.  30 

Network representations are commonly advocated when it becomes difficult to interpret a spatial 31 

configuration in a low-dimensional space. Besides, it has been shown that factorial approaches seem 32 
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to be more appropriate for perceptual stimuli while network approaches, in particular additives 33 

trees, are more suited for conceptual objects, with a large number of features (Beller, 1990; Navarro 34 

& Lee, 2002; Pruzansky et al., 1982; Vanpaemel et al., 2010). As presented by Lahne (2020), 35 

Euclidean spatial approximations of non-Euclidean data (as binary sorting data) may produce 36 

apparent artifacts leading to a false interpretation. This is one of the reasons which explains the 37 

interest to alternative methods as network models. Furthermore, when a representation must 38 

include a large set of objects, the number of dimensions required in spatial methods is likely to make 39 

data exploration cumbersome (Shepard, 1974; Shepard & Arabie, 1979). Thus, in sociology or in 40 

cognition fields, network approaches are preferred as it yields better insights into the structure of 41 

the data (Abdi, 1990; Abdi et al., 1984; Chollet et al., 2011; Waterman et al., 1977). 42 

With regard to free sorting, most data analyses involve spatial models derived from multi-43 

dimensional scaling (Carroll & Chang, 1970; Faye et al., 2004; King et al., 1998; Lawless et al., 1995; 44 

Van der Kloot & Van Herk, 1991), correspondence and multiple correspondence analyses (Cadoret et 45 

al., 2009; Cariou & Qannari, 2018; Takane, 1981, 1982) and multiblock approaches with DISTATIS or 46 

sortCC (Abdi et al., 2007; Qannari et al., 2010). Interestingly, new approaches derived from 47 

connected graph analyses were recently proposed in the scope of holistic methods such as free 48 

sorting (Lahne, 2020) or projective mapping (Orden et al., 2019; Orden et al., 2021). In these works, a 49 

connected graph is determined so as to represent the proximity perceived among the objects by 50 

means of a strength of connections between the associated nodes of the graph. In addition, to 51 

enhance the readability of such a graph, Lahne et al. (2020) proposed a backbone extraction to 52 

represent only significant connections, i.e. those with a high strength value. Among network-based 53 

approaches, we focus on additive trees, which have been widely applied in different domains from 54 

biology to psychology. Additive trees were introduced by Buneman (1971) for filiation of 55 

manuscripts. Several algorithms were further proposed among which we can cite Sattah & Tversky 56 

(1977), Carrol & Pruzanski (1975) and De Soete (1980). For a detailed presentation of additive tree, 57 

including historical aspects, criteria, algorithms and kinds of applications, refer to Abdi (1990). Briefly, 58 

additive tree is a connected graph where every pair of objects is connected by a unique path (De 59 

Soete & Carroll, 1996 ; Sattath & Tversky, 1977). In particular, objects are represented as leaves and 60 

the path from one leave to another one reflects the dissimilarity between the two objects. This path 61 

is supported by edges connecting nodes, which can be terminal (i.e. leaves) or alternatively internal. 62 

A tree representation has the advantage to propose a parsimonious description and a convenient 63 

graphical display (Pruzansky et al., 1982). This method has been used to analyse free sorting data for 64 

semantic categorization tasks (Dubois, 2000; Koenig et al., 2020), acoustic categorization tasks 65 

(Berland et al., 2015; Guastavino, 2007), tasks related to odor categorization, both perceptually and 66 
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conceptually (Chrea et al., 2004). It was also carried out in sensory studies for product 67 

characterization (Blancher et al., 2007; Chollet et al., 2011).  68 

Along with representation techniques, clustering analysis offers a convenient way to reduce the 69 

complexity of the relationships among large sets of objects by grouping objects into homogeneous 70 

clusters. Regardless of the method used to collect information, a clustering analysis aims to group 71 

objects in such a way that similarities of objects in the same group are maximized while pairwise 72 

similarities between objects of different groups are minimized. The two techniques—similarity 73 

representation and clustering—complement each other to visualize the similarities between objects 74 

with the ultimate goal of grouping them into a small number of disjoint clusters. While the clustering 75 

of objects is currently performed using Hierarchical Ascendant Clustering (HAC) or k-means method 76 

on the initial dissimilarity matrix or dissimilarities obtained from the low-dimensional configuration, 77 

the determination of a partition from an additive tree is not straightforward. Indeed, in HAC, the 78 

splitting procedures are commonly based on the variation of an optimization criterion (or height) 79 

providing guidelines for identifying a partition. To the best of our knowledge, no clear computational 80 

strategy has yet been published with respect to the determination of clusters from an additive tree 81 

structure. To fill this gap, we propose a recursive strategy of tree rebuilding, which selects an edge to 82 

split at each step. The algorithm takes into account both the topology of the tree structure and the 83 

length of the edges between nodes. 84 

Once the partition of the objects is obtained, its stability can be evaluated using resampling 85 

techniques. In practice, a partition is assumed to be stable if small changes in the dataset do not have 86 

any significant effect on cluster membership. Among the various resampling techniques available, 87 

bootstrapping has been widely applied in sensory profiling to assess the stability of a configuration 88 

through the generation of confidence ellipses (Blancher et al., 2012; Cadoret & Husson, 2013; 89 

Courcoux et al., 2012; Rossini et al., 2012). In the present work, a bootstrapping procedure is applied 90 

to evaluate the quality of the partition obtained from an additive tree, through the use of cohesion 91 

and isolation indices (Bel Mufti et al., 2012). 92 

To illustrate our approach, we consider a free sorting task of 96 wine odor terms, with the ultimate 93 

goal of structuring these terms into a lexicon, based on a partition of these terms. Sorting tasks are 94 

easy to perform and involves a relatively intuitive method for assessing the similarities among a large 95 

set of objects. This approach has already been successfully used to establish relationships among 96 

terms (Gawel et al., 2000; Spencer et al., 2016). Several variations of the free sorting task have also 97 

been proposed to provide more insight into the similarities among objects, e.g., taxonomic free 98 

sorting (Courcoux et al., 2012; Withers et al., 2014), hierarchical free sorting (Cadoret et al., 2011; 99 
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Honoré-Chedozeau et al., 2017; Santosa et al., 2010) and multiple free sorting (Dehlholm, 2015). In 100 

our case study, a panel of 156 subjects performed a variation of a hierarchical sorting task that 101 

include 96 terms related to wine odors. The data collected from subjects were aggregated and 102 

represented as a dissimilarity matrix of 96 wine-odor terms. An additive tree representation was 103 

determined, which was subsequently partitioned into clusters of wine-odor terms. 104 

This study aims to present (a) an original method for the creation of a set of disjoint clusters from an 105 

additive tree representation, (b) a way to assess the stability of the clusters, by introducing criteria of 106 

cohesion and isolation computed with a bootstrapping strategy, and (c) guidelines for the 107 

construction of a wine-odor lexicon from a free sorting task. In the first section, the case study is 108 

introduced. Then, the methodology for the determination of a partition from an additive tree is 109 

detailed together with the stability of the partition thus obtained. Subsequently, the quality of 110 

object’ assignment to clusters is discussed by examining the degree of association of each object to 111 

its assigned cluster as well as to all other ones. Finally, the results obtained from the free sorting task 112 

dataset are discussed and compared to other existing representations of a wine-odor lexicon. 113 

2. Case study 114 

The case study pertained to the olfactory characterization of wine, and had the ultimate goal of 115 

creating a hierarchically structured sensory tool using a defined lexicon of aroma terms. A sorting 116 

task was designed to investigate the semantic relationships among the various terms. As such, this 117 

task corresponded to a word sorting procedure, as proposed by Steinberg (1967), in which subjects 118 

are asked to group together terms according to their semantic similarity. After consultation of 35 119 

scientific papers (e.g. Coulon-Leroy et al., 2017; Esti et al., 2010; Lawrence et al., 2013; Noble et al., 120 

1984), 96 terms were selected and constituted the lexicon submitted to the sorting task (the detailed 121 

list of terms is available in Koenig et al., 2020).  122 

The sorting task was performed by 156 subjects, with different levels of expertise. Among them, 72% 123 

did not belong to the viticulture sector while 28% were professionals from this sector (for more 124 

details, see Koenig et al., 2020).  125 

An ascendant hierarchical free sorting procedure (Courcoux et al., 2012; Withers et al., 2014) was 126 

adopted and designed with regard to the large number of objects considered. During the task, each 127 

subject was presented the 96 terms in the format of paper labels with “Odor of…”. First, subjects 128 

were instructed to form as many groups as they wanted. Thereafter, they were invited to merge the 129 

groups they have previously identified as many times as they wanted. This additional step aimed to 130 

reveal the semantic structure of the groups that subjects had formed in the initial step. It should be 131 

noted that in this hierarchical free sorting procedure, subjects were not instructed to iterate the 132 
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procedure until there were only two groups left. Besides, they were also allowed to merge more than 133 

two groups at each step. In practice, most of the subjects performed two or three aggregation steps.  134 

For each subject, an individual distance matrix among the 96 odor terms was computed from the 135 

hierarchical free sorting data, using cophenetic distance as in Courcoux et al. (2012). The distance 136 

between two terms is equal to the first level at which they are grouped together divided by the 137 

number of levels achieved by the subject. Thus, the first grouping associated with the initial sorting 138 

procedure corresponds to level zero. At the extremes, two objects have a cophenetic distance equals 139 

to zero if they are already grouped together at level zero, while their pairwise distance is equal to 140 

one if they are never grouped together. All in all, the later the terms are grouped together, the 141 

greater their cophenetic distance. Fig. 1 depicts the way an individual cophenetic distance matrix is 142 

computed on the basis of the sorting of five objects by one subject, with a two-steps sorting 143 

procedure. At the first step, that is to say at level zero, let us suppose that the subject performs three 144 

groups: {Apple, Pear}, {Strawberry, Raspberry} and {Cherry}. This leads to a first matrix with a 145 

pairwise distance equals to zero for two objects belonging to the same group and equals to one 146 

otherwise. Then, suppose that at level one, the subject chooses to aggregate the two latest groups 147 

into a single one: {Strawberry, Raspberry, Cherry}. The resulting distance matrix is derived following 148 

the same rationale as previously. Finally, the cophenetic distance matrix is obtained by summing up 149 

the matrices corresponding to the two levels, and by dividing each value by the number of levels set 150 

by the subject (here two). Thus, pairwise distances corresponding to objects sorted together at level 151 

zero remain to zero, the cophenetic distance between ‘Cherry’ and ‘Strawberry’, grouped at level 152 

one, is equal to ½, while the cophenetic distance between ‘Apple’ and ‘Strawberry’ is equal to one 153 

since they were never grouped together.  154 

 155 

Fig. 1: Example of free sorting of five objects, for one subject. The first step of sorting task 156 

corresponds to the top of the figure with the associated distance matrix. The second step of the 157 

sorting task is illustrated on the bottom of the figure with the associated distance matrix. On the 158 
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right, the combination of the two steps into the cophenetic distance matrix for this subject is figured 159 

out. 160 

3. Method 161 

 Notations 162 

Suppose that � subjects have sorted N objects leading to � distance matrices as illustrated in Fig. 163 

2(a). These latter ones are summed together to obtain an overall distance matrix between the N 164 

objects. Let us denote as �	this � � �	matrix (Fig. 2(b)), with ���, 	
 being the distance between the 165 

pair of objects � and 	 (with �, 	 � 	1, … ,�). Thereafter, a representation of the N objects is carried 166 

out on the basis of distance matrix � by an additive tree procedure (Fig. 2(c)). From this additive 167 

tree, a partition � of the � objects is determined (see section 3.2 for details). Let us denote �, one 168 

cluster of the partition	�. 169 

In order to evaluate the stability of the partition �, a bootstrap procedure is performed. This consists 170 

in generating � virtual panels, also called bootstrap panels and by choosing � subjects at random and 171 

with replacement from the initial panel of subjects. Thus, for the �th virtual panel, a distance matrix 172 

��	(� � 1,… , �) can be derived. �� refers to the partition of the � objects which is obtained on the 173 

basis of the additive tree set up from ��. 174 

 175 

Fig. 2: (a) distances matrices from the � subjects; (b) overall distance matrix from the � subjects, and 176 

(c) the additive tree built from the overall distance matrix. The open points correspond to the objects, 177 

positioned as terminal nodes or leaves while solid points correspond to the internal nodes.  178 

 Tree and subtree construction 179 

As described above, the overall distance matrix � is the sum of the individual matrices of the 180 

�	subjects. The representation of the � objects is therefore carried out by approximating � by an 181 
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additive tree. In such a representation, objects correspond to the leaves or terminal/external nodes 182 

of the tree (Fig. 2(c)). The distance in the tree between two objects is equal to the length of the path 183 

that joins their associated nodes (Sattath & Tversky, 1977). The configuration of an additive tree 184 

should approximate as closely as possible the observed distance between each pair (leaves or 185 

terminal nodes) with regard to the observed value in � (Abdi, 1990). Here, the Neighbor-Joining (NJ) 186 

algorithm proposed by Saitou & Nei (1987) is used to determine the additive tree, which is also called 187 

phylogenetic tree in evolutionary biology.  188 

Once the additive tree obtained, the aim is to investigate how to cut several edges in order to get a 189 

partition of the objects. In the case study considered herein, such a partition leads to retrieve groups 190 

of odor terms that synthesized all the sorting results performed by the panel of subjects. Unlike a 191 

clustering scheme, an additive tree is not rooted, which may lead to different hierarchies of 192 

partitions or clusters. To the best of our knowledge, only a few studies have explored the 193 

determination of a partition from an additive tree and authors generally adopted an empirical 194 

approach that relies on prior knowledge (Guénoche, 2011; Sattath & Tversky, 1977). Nevertheless, 195 

these approaches share a common strategy which consists in splitting several edges of the tree to 196 

create subtrees, which ultimately provides clusters. Following the same rationale, the original divisive 197 

algorithm, proposed herein, is based on recursive steps of splitting and rebuilding. Besides, a 198 

stopping criterion is defined so that the number of clusters can be automatically defined. 199 

The selection of the edge to be split is made on the basis of an internal criterion. In the context of 200 

phylogenetic trees, the choice is generally based on the length of edges (Sattath & Tversky, 1977), 201 

because in this context the length of the edges between two nodes can be interpreted as the 202 

evolutionary distance between species, either ancestral or extant. However, as underlined by 203 

Gambette et al. (2012), this choice may be irrelevant for other kind of trees such as those based on 204 

co-occurrence distances between words, and other criteria should be investigated. Among the 205 

criteria that were compared by Guénoche & Garreta (2002) and Gambette et al. (2012), two criteria 206 

seem to outperform the others. The first, denoted LengthRatio, is defined as the mean distance 207 

between all pairs in which the objects are on opposite sides of a given edge, divided by the mean 208 

distance of all pairs in which the objects are on the same side of the edge. The second, Rtrip, is the 209 

proportion of well-designed triples of objects. More precisely, three objects – say �, 	, and � with � 210 

and 	 on one side of the edge and � on the other side – are said to be well-designed if � and 	 are 211 

closer to each other than	� and �	or 		and	�.	Hereafter, we discuss only the LengthRatio criterion, as 212 

the results were similar with both criteria while the computational time required was much lower 213 

when using the LengthRatio criterion. It should be noted that this criterion can be set as an input 214 

parameter of our partitioning method which can also be applied with alternative criteria. 215 
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Using the LengthRatio splitting criterion, it is possible to select the edge that, once split, has the 216 

highest potential to reveal consistent subtrees. This principle is applied recursively leading to an 217 

algorithm which consists of the repetition of three main operations, described as follows: 218 

(a) The creation of an additive tree that represents a set of objects from their associated 219 

dissimilarity matrix. In the first step, this encompasses the entire set of terms, and only a subset 220 

of terms thereafter; 221 

(b) The division of the tree at hand into two subtrees by splitting the edge with the highest value 222 

of LengthRatio, thus creating two disjoint subsets of objects; 223 

(c) The computation of the homogeneity of each subset obtained. According to Guénoche and 224 

Garetta (2002), the homogeneity of a set of objects may be evaluated by its diameter, i.e. the 225 

maximum pairwise distance within the set. These authors also advocated the use of the diameter 226 

ratio as a useful measure of homogeneity. It corresponds to the diameter of any subset of objects 227 

divided by the diameter of the whole set of � objects of the tree. The lower the diameter ratio, 228 

the more homogeneous the subset. This latter criterion is integrated in the algorithm as a 229 

stopping rule. More precisely, a threshold value equal to 80% has been set to decide if the subset 230 

under consideration should be split further or not. As in the case of the edge to be split criterion, 231 

such a threshold is an input parameter of the algorithm which can be adapted depending on the 232 

context under study or the dataset to be analyzed. 233 

The recursive algorithm stops when there are no more candidate groups of objects for splitting, that 234 

is to say when all subsets already retrieved have a diameter ratio value lower than 80%. The partition 235 

is finally composed of the subsets of objects thus obtained.  236 

An example of the recursive algorithm is presented in Fig. 3 with the partition of five objects. A first 237 

step leads to a five-terminal nodes additive tree that represents the global dissimilarity matrix. The 238 

edge with the highest value of LengthRatio corresponds to the splitting (dashed segment) of the set 239 

of objects into two groups: {Apple,Pear} and {Cherry, Strawberry, Rasberry}. Dissimilarity matrices of 240 

each subset and respective diameter ratios are thereafter computed. The stopping criterion of 241 

homogeneity makes the cluster {Apple,Pear} to be no longer a candidate group of splitting. 242 

Conversely, the subset {Cherry, Strawberry, Rasberry} is further split into two groups: {Cherry} and 243 

{Strawberry, Raspberry}. Finally, a three clusters partition: {Apple, Pear}, {Cherry}, {Strawberry, 244 

Raspberry} is obtained from this toy example.  245 
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 246 

Fig. 3: Recursive algorithm with an example of five objects (Apple, Pear, Cherry, Raspberry and 247 

Strawberry) with two iterations, leading to a final partition into three clusters {Apple, Pear}, {Cherry}, 248 

{Strawberry, Raspberry}. 249 

The algorithm is written in R software 3.4.3 and the NJ algorithm is carried out using the nj function 250 

in the ape package (Paradis & Schliep, 2019). The algorithm is available upon request to the 251 

corresponding author. 252 

 Assessing the stability of a partition 253 

The partitioning algorithm is carried out on the basis of the distance matrix � summing up the 254 

distance matrices provided by the � subjects of the panel; this results in the determination of a 255 

partition �. In order to assess its stability, we submit it to a bootstrapping procedure on subjects. 256 

Each bootstrap sample results from the random selection, with replacement, of � subjects from the 257 

panel. As defined in section 3.1, a distance matrix �� is computed from each virtual panel of subjects 258 

(� � 1,… . �
. The corresponding additive tree is submitted to the partitioning procedure, leading to 259 

the creation of a partition ��	�� � 1,…�
. This collection of � (say 1000) “bootstrapped” partitions 260 

are then used to assess the stability of the reference partition �. Fig. 4 presents schematically how 261 

the �� partitions are obtained from a bootstrapping procedure on six different subjects.  262 
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 263 

Fig. 4 : � bootstrapping within a set of six subjects (for illustration) to obtain � distance matrices and 264 

� partitions used to assess the stability of the partition 265 

3.3.1. Cohesion and isolation of the clusters 266 

To evaluate the stability of a partition, it is necessary to measure the stability of its clusters. For this, 267 

several authors advocated the use of cohesion and isolation measures (Bertrand & Bel Mufti, 2006; El 268 

Moubarki, 2009; Lenca et al., 2008). A cluster is considered cohesive if the objects which belong to it, 269 

remain together after a perturbation of the dataset. Here, the perturbation is generated by the 270 

bootstrap resampling. Likewise, a cluster is considered isolated if two objects separated regarding 271 

this cluster remain separated after a perturbation. According to Bertrand & Bel Mufti (2006) and El 272 

Moubarki (2009), each stability measure is defined as the probabilistic measure of a quality rule. The 273 

rules for cohesion and isolation are defined as follows: 274 

- Rule for the cohesion of a cluster �:	If two objects are grouped together in cluster � of 275 

partition �, then they must be together in partition �� obtained after perturbation. 276 

- Rule for the isolation of a cluster �:	If two objects are separated according to the partition 277 

��, �̅� of � (�̅ being the complement of �), then they must also be separated in partition 278 

��	obtained after perturbation.  279 
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The probabilistic measures for both rules are respectively evaluated by:  280 

��� 	�
1
�� �  ,��

�!��! − 1
/2
%

�& 
 (1) 

'(� �
1
�� �)),��

�!�� − ��

%

�& 
 (2) 

with �  ,��  the number of pairs of objects of cluster � of �	that are also grouped together in partition 281 

�� �� � 1,… , �
; �)),��  the number of pairs of objects separated into ��, �̅� and also separated in 282 

partition ��; ��  the size of cluster � and � the total number of objects. 283 

Cohesion and isolation measures (Eq. (1) and (2)) range in value between 0 to 1; the lower the value, 284 

the lower the cohesion (isolation) of the cluster. It is worth noting that these indices rely on the 285 

principle of conditional probability (Agrawal et al., 1993). 286 

Cohesion and isolation measures are computed for each cluster C of the partition �. Subsequently, 287 

weighted sum of cluster’s cohesion and isolation indices are used to estimate respectively the 288 

cohesion and the isolation of the global partition �. Weights are introduced in order to take into 289 

account of the size of the different clusters, as reported in Appendix (Eq. (4) and Eq. (5)). Further 290 

details are given in El Moubarki (2009). 291 

As demonstrated by Bel Mufti et al. (2012), there is a tight connection between these indices and the 292 

Rand index. Indeed, the Rand index can be expressed on the basis of both cohesion and isolation 293 

measures. For more details, the equations defined by El Moubarki (2009) are reported in Appendix 294 

(Eq. (6)). In the context of free sorting data analysis, the Rand index is commonly used either to 295 

evaluate the agreement between two subjects’ partitions or as the key criterion to determine a 296 

consensus partition of the objects from the various subjects’ partitions (Courcoux et al., 2014 ; 297 

Qannari et al., 2014). Undeniably, the Rand index could also be used to compare the observed 298 

partition � with the “bootstrapped” ones,  �� . However, while the Rand index only operates at a 299 

partition level, cohesion and isolation measures provide a characterization at both levels, clusters 300 

and partition, giving better insights into the structure, as shown in Eq. (6).  301 

As we seek herein a fine analysis, criteria of cohesion and isolation are retained to characterize the 302 

stability of each cluster. Indeed, cohesion yields information on the stability of the core of each 303 

cluster: a highly cohesive cluster lumps together a strong core of objects, similar to the concept of a 304 

“strong pattern” (Diday & Simon, 1976). In addition, the isolation measure evaluates how separate 305 

one cluster is from others: in a poorly isolated cluster, the object(s) can often be moved out and 306 

assigned to other clusters.  307 
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At this stage, the analysis of cohesion and isolation values provides information on the stability of 308 

each cluster but it does not enlighten on the objects responsible for such a level of stability. 309 

3.3.2. Investigating the degree of association of objects to clusters 310 

To obtain better insight into the partition �, a deeper evaluation was made to analyze how strongly 311 

an object � is related to the cluster it belongs to. 312 

For this purpose, the empirical degree of association of an object � to a cluster � has been computed, 313 

using the same rationale of the � boostrapped partitions �� that reflect the perturbations of the 314 

dataset. Let us denote as *+,,%  the estimation of the degree of association between the objects � and 	 315 

(� - j
, i.e. the frequency of merging together � and 	 across the �� partitions (� � 1,… . �
. These 316 

values are aggregated in reference to each cluster of the initial partition � in order to compute the 317 

/+,0 criterion, defined as follows, for the 123 cluster � of �: 318 

/+,0 �	  45∑ *+,,%,∈�,,8+                  if �	 ∉ 	� (3a) 

/+,0 �	  
45: ∑ *+,,%,∈�,,8+                  if �	 ∈ 	�  (3b) 

where �0 is the size of the 123 cluster of �. 319 

For an object �, the more concentrated its distribution of /+,0	(for 1	= 1, …, ;) is, the higher its 320 

specificity (or typicality) to the cluster it belongs to.  321 

4. Results 322 

 Tree representation and clustering of odor terms  323 

The term-by-term matrix �, computed from the set of the 96 wine-odor terms on the basis of the 324 

156 subjects’ sorting data (section 3.1), was subjected to the additive tree (NJ) algorithm. The 325 

resulting unrooted tree is presented in Fig. 5.  326 
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 327 

Fig. 5: Additive tree carried out from distance matrix < of the sorting data associated with wine-odor 328 

terms. The first edge split by the recursive partitioning algorithm is indicated with a dotted double 329 

arrow. Colors represent the 21 clusters recovered by the sequential partitioning algorithm along with 330 

their clusters’ number as listed in Fig. 6.  331 

The LengthRatio criterion was calculated for all edges of the additive tree. Then, the edge with the 332 

highest value of LengthRatio was split, leading to the creation of two subtrees. From this split (see 333 

the dotted double arrow in Fig. 5), a group of 44 odor terms was distinguished from another group of 334 

52 odor terms. The splitting strategy described in section 3.2 was recursively applied. The sequence 335 

of the clusters thus obtained is schematically represented in Fig. 6. With a threshold of 80% for the 336 

stopping criterion (diameter ratio), the partition of the odor terms was ultimately composed of 21 337 

clusters (Fig. 6). Each cluster varied from 1 to 10 odor terms.  338 
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 339 

Fig. 6: Schematic representation of the successive dichotomous splitting of the 96 odor terms, leading 340 

to a partition into 21 clusters (stopping criterion threshold value equal to 80%).  341 

First of all, it appears that some clusters that were highlighted by the algorithm corresponded to 342 

well-identified branches of the global additive tree (e.g., clusters 1, 2, and 7 in Fig.5). Nevertheless, 343 

some situations did not follow the same rationale and turned out to be more complex. For instance, 344 

the term ‘Vanilla’ (dark blue, southwest position in Fig. 5) was linked in the additive tree to the 345 

branch that represented the terms ‘Spice’, ‘Pepper’, ‘Clove’, and ‘Cinnamon’ (dark green, south-346 

southwest position in Fig. 5). However, the recursive splitting algorithm grouped ‘Vanilla’ with 347 

‘Caramel’ and ‘Chocolate’ in cluster 15 (dark blue, southwest position in Fig. 5). These differences can 348 

be explained by the fact that the proposed algorithm determines the tree again at each step.  349 

 Cohesion and isolation of the partition 350 

In order to assess the stability of the 21 clusters corresponding to partition �, B bootstrapped 351 

samples of subjects were generated and B partitions, ��, (b =1…, B, with B	= 1000) were computed. 352 

Each �� partition contained between 17 and 27 clusters. 353 

Values of cohesion and isolation indices for each of the 21 clusters of � are depicted in Fig. 7, along 354 

with the cohesion and isolation measures for partition � as a whole. Clusters 1, 2, 7, 11, and 8, as 355 

well as clusters 3 and 10, showed high values of cohesion and isolation, while others appeared to be 356 
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less stable, as indicated by one or both of their cohesion and isolation values. For instance, cluster 12 357 

(brown, northwest position in Fig. 5) was associated with a very high measure of cohesion, which 358 

indicates that the objects belonging to it, namely ‘Wood’, ‘Oak’, ‘Cork’, and ‘Pine’, were always 359 

grouped together in the bootstrapped partitions. However, the isolation measure of this cluster was 360 

low because other terms were lumped with these odor terms in several �� partitions. On the 361 

contrary, cluster 14, composed of ‘Cinnamon’, ‘Clove’, ‘Spice’, ‘Pepper’, ‘Anise’, and ‘Licorice’ (dark 362 

green, southwest position in Fig. 5), appeared to be isolated but did not show a high cohesion value. 363 

This demonstrates that the objects belonging to this cluster did not usually lumped together in the 364 

bootstrapped partitions but, at the same time, hardly any terms outside of this group were grouped 365 

with them. 366 

 367 

Fig. 7: Cohesion and isolation values for the 21 clusters (circles) and for the global partition (triangle). 368 

The clusters singletons (clusters 20 and 21) are indicated by an asterisk.   369 

It should be noted that clusters 20 and 21 corresponded to singletons. These clusters were composed 370 

only of one term (‘Black olive’ and ‘Tea’, respectively). In such cases, values of cohesion cannot be 371 

computed (see Eq. (1)) and these values were set by default to 1. It is nevertheless apparent that 372 

‘Black olive’ (cluster 20) was more isolated than ‘Tea’ (cluster 21), as ‘Black olive’ formed a cluster by 373 
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itself more frequently with regard to the �� partitions than the ‘Tea’ term did. Regarding the other 374 

small-sized clusters, those that consisted of two terms (e.g. clusters 16 and 17) were among the less 375 

cohesive ones and also showed relatively low values of isolation.  376 

The analysis of the clusters’ cohesion and isolation provided a broad perspective on their stability 377 

and made it possible to identify some strong patterns, as well as to distinguish, the most instable 378 

groupings. 379 

 Degree of association of objects to clusters 380 

In order to obtain better insight into the clustering structure, we computed the degree of association 381 

of each object to its cluster. From this index, it was possible to determine whether a term highly 382 

belonged to one single cluster or whether it matched with several clusters. Fig. 8 depicts the values 383 

of /+,0 (Eq. (3)) corresponding to the degree of association of the wine-odor terms with the various 384 

clusters of partition �. Clusters are arranged in an ascending order according to their number (index 385 

1) while each line corresponds to an object, �. The darker the cell is, the higher the degree of 386 

association. In addition, distributions of three exemplifying terms (‘English candy’, ‘Vanilla’, and 387 

‘Melon’; highlighted in Fig. 8) are represented in barplots in Fig. 9. In both figures, a shading from 388 

black to white is used to represent the degree of association of objects to their clusters (see the 389 

legend of Fig. 8). Regarding the interpretation of the values associated with singleton groups (‘Black 390 

olive’ and ‘Tea’), it should be noted that both terms have obviously a degree of association equal to 391 

one according to their respective cluster, but they also present values of degree of association rather 392 

high with other clusters. 393 

In Fig. 8, dark rectangles represent the clusters whose objects presented high values of degree of 394 

association. These clusters matched exactly those with the highest measures of cohesion and 395 

isolation (e.g., clusters 1, 2, 3, 7, 8, 10, and 11). For example, ‘Citrus’, ‘Lemon’, ‘Lime’, ‘Grapefruit’, 396 

and ‘Orange’ showed values of degree of association to cluster 3 which were equal or higher than 397 

0.97.  398 

Regarding other clusters, the analysis revealed lower values of degree of association. The term 399 

‘Melon’ in cluster 4 had a relatively low degree of association with respect to the other terms of its 400 

cluster (represented by a lighter shade). Indeed, this term was almost as frequently associated with 401 

clusters 4 and 5 (Fig. 9(c)). 402 
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 403 

 Fig. 8: Degree of association values, /+,0, of an object i	to the 123 cluster, of the reference partition, 404 

� computed from the sorting data of wine-odor terms. The darker the cell is, the higher the degree of 405 

association. Dotted rectangles indicate the objects that were highlighted in Fig. 9. 406 
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Interestingly, a tight connection can be pointed out between some pairs of clusters, for instance 407 

clusters 5 and 6, clusters 9 and 10, or, even more obviously, clusters 12 and 13. Indeed, association 408 

degrees of the terms are high for their cluster and also for the cluster paired with it. The link 409 

between each pair of clusters may also be noticed in Fig. 5, as terms from these outlined clusters are 410 

already closed in the additive tree. 411 

Finally, we can note weaker patterns which were identified during the last recursive stages of the 412 

partitioning procedure (clusters 14 to 17, 19 and 21). Regarding these clusters, they did not 413 

correspond to strongly shaded rectangles. For each term included, light-shaded rectangles were also 414 

observed within several other clusters. For example, cluster 16 was especially weak, as the two terms 415 

belonging to the cluster – that is to say ‘English candy’ and ‘Honey’ – had degrees of association 416 

values only equal to 0.14 with respect to their own cluster, while ‘Caramel’ and ‘Chocolate’ terms 417 

belonging to cluster 15, had degrees of association values equal to 0.43 and 0.35 with respect to 418 

cluster 16, respectively. To illustrate this aspect, barplots of ‘English candy’ and ‘Vanilla’ are displayed 419 

in Fig. 9(a) and Fig. 9(b). In both cases, there was no clear association between the term and a single 420 

cluster.  421 

 422 

Fig. 9: Values of /+,0  for (a) ‘English candy’, (b) ‘Vanilla’, and (c) ‘Melon’. The darker the rectangle, 423 

the higher the degree of association. Number in abscissa corresponds to the clusters’ number. 424 

The analysis of each cluster of the partition on the basis of the cohesion and isolation criteria, 425 

together with the analysis of the degree of association of each term to the clusters made it possible 426 

to highlight different stability patterns among the various clusters of odor's terms.  427 
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On the one hand, clusters 1, 2, 3, 7, 8, and 11 represented highly stable clusters, with regard to both 428 

cohesion and isolation criteria. Moreover, the distributions of degrees of association, /+,0, of each 429 

term � which belonged to those clusters were clearly uni-modal. Thus, we can conclude that these 430 

clusters were composed of terms that were highly associated with the terms belonging to the cluster 431 

and well separated from the terms belonging to the other ones.  432 

On the other hand, some clusters were less stable, because of either a poor cohesion or a poor 433 

isolation value. The inspection of the degrees of association values of their terms made it possible to 434 

identify specific situations. For instance, terms from clusters 12 and 13 showed strong affinities. 435 

Merging both clusters would result in an improvement in their isolation values, however at the 436 

expense in the cohesion measure.  437 

Besides, the stopping criterion used in the recursive algorithm was based on the homogeneity of the 438 

clusters which were formed. Some clusters were identified at the very first steps (e.g. cluster 1 was 439 

formed after two splitting steps) and were homogeneous enough not to be split further. On the 440 

contrary, the small-sized cluster 16 or the singletons 20 and 21, only reached adequate homogeneity 441 

in the very last steps. We may conclude that the later the cluster is formed in the partitioning 442 

procedure, the more likely this cluster is unstable.  443 

5. Discussion 444 

The first aim of this study was to introduce a versatile algorithm for determining a partition from an 445 

additive tree. This algorithm operates in a recursive way so that, for the tree/subtree under 446 

consideration at a given step, the edge corresponding to the highest LengthRatio value is cut and two 447 

new additive trees are then computed on the basis of the terms on either side of the cut. Overall, 448 

there were differences between the clusters formed by our algorithm (listed in Fig. 6) and the 449 

branching patterns of the original additive tree (Fig. 5). In other words, if the tree had been split only 450 

on the basis of its original branching pattern, the resulting clusters would have been different. We 451 

can notice that such a difference may be due to the size of the dataset considered in this study. 452 

Indeed, the large number of terms can result in a potentially unstable ranking of the set of the 453 

LengthRatio of each edge of the additive tree. In particular, at the first iteration, some terms may 454 

seem closed in opposition to the rest of the terms because of the number of terms. As we split the 455 

tree, the number of objects in each rebuilt tree is reduced, the LengthRatio computation became 456 

more precise and the ranking of actual LengthRatio values more trustworthy. By updating the tree’s 457 

structure for each subset, and in turn updating the distribution of quality measures, we were able to 458 

select more relevant edges to split at each step.  459 
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In addition, the algorithm includes a stopping criterion to determine whether a subset of objects 460 

needs to be split further or whether it can be considered as a single cluster. A threshold value of 80% 461 

was set herein but it is worth noting that this value can be adapted depending on the dataset and the 462 

context. Other stopping rules could also be considered, including the number or the size of the 463 

clusters. For example, in Guénoche et al. (2012), the number of clusters was defined a priori. Such a 464 

criterion could be integrated in a straightforward way in the proposed algorithm.  465 

A second objective was to assess the stability of the partition. Overall, the three measures proposed 466 

here—cohesion, isolation, and degree of association—generated complementary information that 467 

contributed to an improved assessment of the quality of the partition. The analysis of cohesion and 468 

isolation enabled us to assess the stability of the clusters: cohesion was a good indicator of a strong 469 

pattern within a cluster, and isolation yielded insight into other objects that might be related to a 470 

cluster. By analyzing the values for degree of association of the objects, we were able to explain how 471 

the stability of several clusters was affected by the objects they contained. It is worth noting that, 472 

unlike the Rand index, the use of both cohesion and isolation measures provided a more 473 

comprehensive understanding of the stability of the clusters. Finally, the inspection of the values of 474 

degree of association gave additional information on the objects which were responsible for poor 475 

stability. 476 

This method generated a partition of odor terms that was largely similar to other categorizations 477 

proposed in the literature. Here, we refer more particularly to the “Wine Aroma Wheel” (Noble et al., 478 

1984, 1987), which is currently considered as the standard in the wine sector. Some clusters 479 

highlighted herein mirror, to a large extent, those reported in the literature. For example, cluster 1, 480 

composed of the floral terms ‘Acacia’, ‘Orange blossom’, ‘Jasmine’, ‘Lilac’ and ‘Rose’, is consistent 481 

with a floral odor category usually identified in the literature (Noble et al., 1987). Cluster 2 of the 482 

partition obtained was composed of terms related to dry fruit and nutty odors that are separated in 483 

the “Wine Aroma Wheel” but merged together in other reports (Caillé et al., 2017; Coulon-Leroy et 484 

al., 2017; Esti et al., 2010). Clusters related to citrus fruits, exotic fruits and red fruits (clusters 3, 4, 485 

and 6, respectively), lactic, roasted, chemical and spice terms (clusters 7, 8, 10, and 14), and aromatic 486 

plants (cluster 19) were all in line with previous work in the literature. Most of these clusters were 487 

highly stable according to the measures of cohesion and isolation.  488 

It is interesting to inspect the 'Melon' term more precisely. In the additive tree built from the initial 489 

distance matrix, ‘Melon’ was placed in a branch together with terms pertaining to cluster 5 (green, 490 

southeast position in Fig. 5). However, when the tree was rebuilt with the recursive algorithm, 491 

‘Melon’ was lumped with cluster 4 (orange, east position in Fig. 5). From a wine perspective, ‘Melon’ 492 
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is usually associated with the odors listed in cluster 4 (‘Pineapple’ or ‘Banana’) rather than with the 493 

odors belonging to cluster 5 (such as ‘Apple’ or ‘Pear’), as shown in the “Wine Aroma Wheel” of 494 

Noble et al. (1984). This result demonstrates the relevance of a strategy based on the recursive 495 

partitioning. 496 

However, some of the clusters exhibited herein have not been reported in the literature. For 497 

example, cluster 5 (hereafter called ‘other fruits’) was found to be unstable and was particularly 498 

associated with a poor cohesion measure. In the literature, the terms belonging to this cluster are 499 

often grouped together, as they are all ‘fruity’. However, several publications combine these terms in 500 

different ways. The wheel of Noble et al. (1984) distinguishes ‘Tree fruit’ from ‘Berry’, as the work of 501 

Coulon-Leroy et al. (2017) does. In Esti et al. (2010) and in “The Master Sommelier Wine Aroma 502 

Wheel©” (Aromaster, 2010), the 'Pear' and 'Apple' terms are separated from the fruit terms and 503 

form their own category called ‘Pomaceous’ or ‘Pome fruits’. All in all, there is no consensus on the 504 

categorization of these ‘other fruits’, which may explain the poor cohesion measure of this cluster. 505 

Another explanation for the poor stability of a cluster may be a high degree of variability among the 506 

subjects. Although we did not directly evaluate the degree of agreement within the panel, the 507 

bootstrapping strategy and the derived measures of stability provide a good perspective on this. As 508 

demonstrated by the stability values, all subjects were relatively consistent in their clustering of the 509 

following aromatic aspects:  citrus, floral, tropical fruit, dried fruit, white fruit, red and black fruit, 510 

vegetal, empyreumatic, spicy, mineral, chemical, lactic, woody and earthy. This observation is 511 

consistent with Noble et al.’s aroma wheel (1984). It is also consistent with cross-cultural studies 512 

showing that the semantic categorization of odors is largely similar among subjects and is mainly 513 

based on odorant sources (Chrea et al., 2004, 2005).  514 

Overall, the associated stability values were representative of the consistency of the clusters found in 515 

the literature, i.e., the clusters with poor stability values were also those that differed from one study 516 

to another. For example, cluster 16, containing ‘English candy’ and ‘Honey’ presented some 517 

discrepancies with the literature, especially for the former term. In fact, ‘English candy’ is a technical 518 

term used to describe the amylic odor of a wine (Lawrence et al., 2013) and typically associated with 519 

‘Banana’.  520 

As our panel was composed of both consumers and professionals, we assume that some of the 521 

subjects did not know the meaning of the term and therefore misclassified it, resulting in the poor 522 

stability of the cluster. To test this hypothesis, the procedure presented in the paper was performed 523 

on four homogeneous expertise segments (see Koenig et al., 2020 for more details on the segments). 524 

Overall, results were very similar between the different segments of expertise and it was possible to 525 
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find clusters of odor terms expressing each of the following aromatic aspects: citrus, floral, tropical 526 

fruit, dry fruit, white fruit, red and black fruit, vegetal, empyreumatic, spicy, mineral, chemical, lactic, 527 

woody and earthy. However, some discrepancies appeared for some terms, as ‘Banana’. Indeed, the 528 

less experts’ segment assigned the term ‘Banana’ to the cluster of tropical fruits, while the most 529 

experts’ segment associated it with the term ‘English candy’, forming a cluster characterized by amyl 530 

notes. ‘English candy’ clearly belongs to dedicated terminology related to wine tasting that is not or 531 

little used in everyday language. As a consequence, subjects with a low level of expertise are less 532 

familiar with this term and therefore have greater difficulty associating it with other terms.  533 

From a practical point of view, the method presented in this paper provides guidelines for the 534 

determination of clusters from a wine-odor lexicon. Sensory lexicons are usually structured into 535 

groups of terms that are hierarchically embedded. Moreover, most of them are arranged as wheels 536 

derived from free sorting tasks (Gawel et al., 2000; Hayakawa et al., 2010; Koch et al., 2012; Spencer 537 

et al., 2016). Sorting procedures have gained ground among researchers in sensory analysis because 538 

products can be characterized without the need for subjects to undergo training (Faye et al., 2004; 539 

Santosa et al., 2010; Withers et al., 2014). This paper presents an innovative statistical strategy for 540 

highlighting a structure within a sensory lexicon, based on data from a sorting procedure. As argued 541 

by Noble et al. (1984) and Lawless & Civille (2013), the development of a lexicon serves the purposes 542 

of unifying the language used among stakeholders and of facilitating communication among 543 

winemakers, marketing personnel, wine researchers, and consumers. The choice of the subjects used 544 

to construct the structuration of sensory lexicon is also an important issue. In our case study, the 545 

inspection on the expertise led us to consider the whole panel of subjects as only minor differences 546 

occurred between different segments of expertise (Koenig et al., 2020). Moreover, these ones were 547 

mostly due to very specific terms such as ‘English candy’. In light of these minor differences, we 548 

decided to deal with the whole dataset consisting in all the subjects. However, the choice of the 549 

subjects used is very important for the implementation of the method.   550 

In addition, with the proposition of a structured lexicon, we also may suggest the use of intermediate 551 

terms to label the clusters, as in the aroma wheel proposed by Noble (1984). For some clusters, the 552 

title is obvious and may be a term of the cluster: for example, ‘Citrus’ for cluster 3 or ‘Tropical fruit’ 553 

for cluster 4. However, it may not be so obvious for others. In order to define clusters labels, the 554 

verbalization task performed at the end of the hierarchical sorting task (data non-shown), followed 555 

by a frequency analysis of the elicited words may be used. Verbalization generated at this step can be 556 

used to describe each cluster, based on an analysis of the frequency of the terms involved in each 557 

cluster.  558 
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Finally, according to the categorization theory presented by Rosch (1973), each category of objects 559 

has an internal structure based on the typicality of objects in the category. The internal structure of 560 

categories has, to the best of our knowledge, never been considered in the construction of a wine-561 

odor lexicon. Our study confirmed that terms related to wine-odors cannot always be neatly assigned 562 

to a single cluster, and a term may present similar association values for different clusters. However, 563 

our method highlighted stable categories which can be considered more trustworthy as well as 564 

clusters that may be grouped to improve their isolation. The relationship between degree of 565 

association and typicality, as described in Rosch’s theory, is not straightforward. Typicality is related 566 

rather to the distribution of the association degree of one term than a single value. Nevertheless, 567 

values of the degree of association can provide insight into the internal structure of a cluster and 568 

should be taken into consideration in efforts to consolidate a wine lexicon and ultimately to improve 569 

sensory tools such as aroma wheels.  570 

6. Conclusion 571 

Our aim was to propose a method of categorization that was adapted to both the semantic nature of 572 

the data set and the large number of terms under study. A partitioning procedure was developed to 573 

determine a set of clusters from an additive tree. Here, this algorithm was applied on a free sorting 574 

dataset corresponding to wine-odor terms. The algorithm relies on an additive tree representation of 575 

the data which appears to be more adapted when a large number of objects is considered. The 576 

approach proposed herein provide a partition of the objects from the additive tree representation. 577 

To better characterize the quality of the partition obtained, values of cohesion, isolation, and degree 578 

of association were computed using a bootstrapping strategy.  579 

The partition highlighted by our strategy, and the measures of stability associated with it, were 580 

largely consistent with the literature, in particular compared to the aroma wheel of Noble et al. 581 

(1984). The stability measures applied here enabled a more precise assessment of the stability of the 582 

clusters and provided new perspectives for the creation of lexicons. 583 

Finally, the entire strategy presented in this paper—categorization and assessment of stability— 584 

appears to be versatile and can be easily extended to any distance matrix. This offers various 585 

perspectives of its use for a much wider scope of applications than wine-odor lexicons.  586 

Appendix 587 

The equations related to cohesion and isolation measures and their connection with the Rand index 588 

are detailed below. Let us denote ��  the size of the cluster �, � the total number of objects, ���  the 589 

cohesion value of the cluster � (Eq.(1)) and '(� the isolation value of the cluster � (Eq.(2)) 590 
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In order to estimate the cohesion, ��� (resp. the isolation, '(�
 of the global partition �, a weighted 591 

sum of clusters’ cohesion (resp. isolation) indices for each cluster is defined as in Eq. (4) (resp. Eq. 592 

(5)):  593 

��� 	�  
@A∑

4B�4B: 

C�∈� ��� 																							with		G � ∑ 4B�4B: 


C�∈�     (4) 594 

'(� 	�  
@H∑

4B�I:4B

C�∈� '(� 																									with		GC � ∑ 4B�I:4B


C�∈�     (5) 595 

Herein, G is for the total number of pairs of objects being in the same cluster of �, and GC, the total 596 

number of pairs of objects not in the same cluster. We then have G + GC � �	�� − 1
/2. 597 

Let us remark, that both ���  and '(� are estimated as the average over all the � bootstrapped trials. 598 

If we define ���,�K  as the cohesion of the cluster � of � regarding the �23 "bootstrapped" 599 

partition	��	with	�� � 1,… , �
, and, in the same vein, '(�,�K  as the isolation of the cluster � 600 

regarding ��, it turns out that: 601 

��� 	�  
%∑ ���,�K� 														with		���,�K �

4AA,KB

4B�4B: 
 C⁄        602 

'(� 	�  
%∑ '(�,�K� 																with		'(�,�K �

4MM,KB

4B�I:4B
       603 

According to the definition of �  ,��  and �)),�� 	 given in section 3.3.1. 604 

It follows that the cohesion and the isolation measures of � can be expressed as: 605 

��� 	�  
%∑ ���,�K� 														with		���,�K �

∑ 4AA,KBN
@A         606 

'(� 	�  
%∑ '(�,�K� 																	with		'(�,�K �

∑ 4MM,KBN
C	@H         607 

Let us now consider the Rand index between the reference partition � and the �23 "bootstrapped" 608 

partition	��. By definition: 609 

OP�Q�,�K 	�
IAA,KRIMM,K
I	�I: 
 C⁄            610 

where �  ,� is the number of pairs of objects put together in a same cluster in � and being also 611 

grouped in �� . But we have: �  ,� � ∑ �  ,���∈� � G  ���,�K  612 

In addition, �)),� is the number of pairs of objects separated in different clusters in � and also 613 

separated ��. But, we have: �)),� �  
C∑ �)),���∈� �	GC '(�,�K  614 

So, the Rand index between partition � and the �23 partition �� can be expressed as a weighted 615 

average of the cohesion and isolation of �, confronted with ��, as specified in El Moubarki (2009). 616 

More precisely: 617 

OP�Q�,�K 	�
@A	�S�,�KR	@H	TU�,�K

I�I: 
/C � ∑ 4B�4B: 
�S�,�KR∑ 4B�I:4B
TU�,�KB∈�B∈�
I	�I: 
    (6) 

  

This makes it possible to deduce that the average of the Rand index between the reference and 618 



25 

 

"boostrapped" partitions ��	after � resampling trials can be expressed as a function the cohesion 619 

and isolation indices for the partition � as defined in Eq. (4) and (5). 620 
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