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Abstract
Increasing soil organic carbon (SOC) stocks is a promising way to mitigate the increase 
in atmospheric CO2 concentration. Based on a simple ratio between CO2 anthropo-
genic emissions and SOC stocks worldwide, it has been suggested that a 0.4% (4 per 
1000) yearly increase in SOC stocks could compensate for current anthropogenic 
CO2 emissions. Here, we used a reverse RothC modelling approach to estimate the 
amount of C inputs to soils required to sustain current SOC stocks and to increase 
them by 4‰ per year over a period of 30 years. We assessed the feasibility of this 
aspirational target first by comparing the required C input with net primary produc-
tivity (NPP) flowing to the soil, and second by considering the SOC saturation con-
cept. Calculations were performed for mainland France, at a 1 km grid cell resolution. 
Results showed that a 30%– 40% increase in C inputs to soil would be needed to ob-
tain a 4‰ increase per year over a 30- year period. 88.4% of cropland areas were con-
sidered unsaturated in terms of mineral- associated SOC, but characterized by a below 
target C balance, that is, less NPP available than required to reach the 4‰ aspirational 
target. Conversely, 90.4% of unimproved grasslands were characterized by an above 
target C balance, that is, enough NPP to reach the 4‰ objective, but 59.1% were also 
saturated. The situation of improved grasslands and forests was more evenly distrib-
uted among the four categories (saturated vs. unsaturated and above vs below target 
C balance). Future data from soil monitoring networks should enable to validate these 
results. Overall, our results suggest that, for mainland France, priorities should be (1) 
to increase NPP returns in cropland soils that are unsaturated and have a below target 
carbon balance and (2) to preserve SOC stocks in other land uses.
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1  |  INTRODUC TION

Increasing soil organic carbon (SOC) stock is a promising option to 
mitigate the increase in atmospheric CO2 concentration (Minasny 
et al., 2017; Zomer et al., 2017). Worldwide, the SOC stock in soils 
reaches 2400 Pg C, which is three times more than the amount of 
C contained as CO2 in the atmosphere (860 Pg C; Le Quere et al., 
2018). The ratio between annual anthropogenic emissions due to 
fossil fuel combustion (9.4 Pg C) and SOC stocks (2400 Pg C) over 
total soil depth results in a value of approximately 4‰, suggesting 
that a 4‰ yearly increase in soil C stocks could theoretically com-
pensate all anthropogenic CO2 emissions (Balesdent & Arrouays, 
1999). A more realistic calculation of the 4 per 1000 aspirational 
target for the topsoil (0– 30 cm) leads to a lower global potential 
(2.8 Pg C year−1) which is in the range of current estimates (Lal, 2010; 
Smith et al., 2013) of the total technical soil carbon sequestration 
potential (Soussana et al., 2019). Based on these calculations, and 
on the potential of soil carbon sequestration for climate change ad-
aptation and food security (Soussana et al., 2019), the ‘4 per 1000 
Initiative: soils for food security and climate’ was launched in 2015.

Meanwhile, some authors have highlighted the limits of this 
aspirational target: (1) additional C storage in soils is only possible 
during a finite period of time and on a limited space, mainly the 
areas already managed by humans (i.e. excluding permafrost and 
natural peatlands), (2) it is a reversible process, (3) increasing SOC 
requires additional N inputs because of stoichiometric constraints 
(Groenigen et al., 2017; Poulton et al., 2018) and (4) it may be ham-
pered by climate change itself which is likely to foster SOC losses 
by mineralization (Meersmans et al., 2016). Moreover, agronomic, 
economic and social barriers are likely to delay the adoption of 
farming practices fostering C storage or limit the achievable SOC 
stock increase (e.g. Amundson & Biardeau, 2018; Corbeels et al., 
2018; Lal et al., 2018; Soussana et al., 2019). Despite these limits, 
there is a growing interest in the role of increasing soil C stocks for 
climate change mitigation and large co- benefits of this option for 
climate change adaptation, reversing land degradation and desert-
ification, and enhancing food security, have been identified by the 
Intergovernmental Panel on Climate Change (Smith et al., 2019).

At the field scale, changes in SOC stocks result from an imbalance 
between C inputs (crop residues, litterfall, root exudates, manure 
application, etc.) and C outputs due to harvests, mineralization of 
organic C, leaching or erosion (e.g. Lal, 2018). Although some farm-
ing practices may reduce mineralization rates (e.g. reduced tillage, 
see a recent review by, Haddaway et al., 2017), it is generally agreed 
that the most efficient way to increase SOC stocks is to increase 
C inputs (e.g. Virto et al., 2012; Autret et al., 2016; Fujisaki et al., 
2018). This can be achieved by increasing on- field biomass produc-
tion and residue return (e.g. cover crops, Poeplau & Don, 2015), or 
by mobilizing and spreading external C resources such as manures or 
composts. Indeed, high C stock increases are often observed in ex-
periments with high rates of organic fertilization (Maillard & Angers, 
2014; Poulton et al., 2018). However, as manures are often already 
applied to soils, they do not necessarily represent a potential source 

of additional soil C gain at global scale. In a context of increasing 
competition for C resources (e.g. for food, feed, fibre or energy pro-
duction), the question arises of how much additional C is needed to 
reach the aspirational target of 4‰.

Another question is how efficient will these additional C in-
puts be in terms of accumulating stable SOC. Some SOC models 
used to characterize SOC mineralization with first- order kinetics 
processes imply that steady- state SOC stocks are proportional to 
C inputs (Paustian et al., 1997; Stewart et al., 2007). Hence, sim-
ulated steady- state SOC can increase unlimitedly with an increase 
in C inputs (Stewart et al., 2007). However, it has been proposed 
that there can be an upper limit to the capacity of soil to stabilize 
SOC as organo- mineral complexes (Cotrufo et al., 2019; Hassink, 
1997; Six et al., 2002). Indeed, interactions with mineral surfaces are 
considered to be one of the principal stabilization mechanisms of 
organic C in soils (von Lutzow et al., 2006; Schmidt et al., 2011). This 
upper limit of mineral- associated SOC was found to be related to 
the proportion of fine fractions for world soils (Hassink, 1997) and 
European soils (Cotrufo et al., 2019) but also to mineral surface area 
for New Zealand soils (McNally et al., 2017). Carbon storage beyond 
this upper limit is still possible, but in coarser and presumably more 
labile forms. This concept has been shown to be useful for estimat-
ing the SOC sequestration potential of a region under projected land 
use and land management changes (Chen et al., 2018; Wiesmeier 
et al., 2020).

The objectives of this paper are to (i) investigate the amount of 
additional C that is necessary for increasing the SOC stock by 4 ‰ 
per year during 30 years, (ii) assess the feasibility of the 4‰ target 
(increase the SOC stocks by 4‰) in terms of available net primary 
productivity (NPP) and (iii) discuss the feasibility when considering 
the SOC saturation concept (i.e. maximum SOC stabilization capacity 
by the fine silt + clay fraction). The study was performed at the coun-
try scale, and France was chosen as a case study as it is characterized 
by a wide diversity of soils, land uses and initial SOC stocks (Mulder 
et al., 2016). We used a reverse modelling approach based on RothC, 
a widely used soil C turnover model that has been evaluated in many 
climate and soil contexts relevant for mainland France (see for in-
stance Dib et al., 2014; Jenkinson & Coleman, 2008; Palosuo et al., 
2015; Smith et al., 1997). The carbon input levels needed to maintain 
current C stocks, and then to reach the 4‰ target were compared 
to the NPP of ecosystems minus anthropogenic biomass removals. 
Finally, soils were characterized in terms of SOC saturation to assess 
the efficiency of strategies aimed at reaching the 4‰ target.

2  |  MATERIAL S AND METHODS

2.1  |  Modelling the required carbon input to the 
soil

The RothC model (Jenkinson et al., 1992) was originally developed 
to simulate changes in SOC stock in arable topsoils in the long- term 
field experiments at Rothamsted Research in the UK. It was then 
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extended to model SOC turnover in grasslands and forests and eval-
uated in a variety of ecosystems in different climatic regions (Smith 
et al., 1997). The RothC model can be written as follows:

where SOC is a dimension 4 vector with four components, each com-
ponent referring to the organic carbon content in one of the four 
dynamic compartments of the RothC model: the resistant plant pool 
(RPM), the decomposable plant pool (DPM), the microbial pool (BIO) 
and the humic pool (HUM). Cin is a dimension 4 vector that represents 
the C amounts incorporated in the four dynamic pools, and F is a 4 × 4 
matrix representing SOC mineralization and carbon flows between 
pools. The type of vegetation influences the distribution of C inputs 
into the RPM and DPM pools; hence, the DPM:RPM ratio typically 
depends on the vegetation type. In RothC, four vegetation types are 
considered: croplands, improved grasslands, unimproved grasslands 
and forests with a DPM:RPM ratio of 1.44, 1.44, 0.67 and 0.25, re-
spectively. For a given total carbon input and mineralization rate, land 
use with lower values of the DPM:RPM ratio will exhibit higher total 
SOC stocks.

The RothC model, like many other first- order kinetic SOC dy-
namic models, results in equilibrium SOC stocks on the long term, 
assuming that both SOC inputs and mineralization factors are con-
stant or at least exhibit periodicity (Cordier et al., 2012; Martin et al., 
2007):

where SOC ∗, hereafter called the equilibrium or steady state, can then 
be easily calculated and depends on organic carbon (OC) input rates 
and the F matrix:

where I4 is the identity matrix of dimension 4 × 4 and C0
in
 is the vector 

of constant carbon inputs. Conversely, if estimates of SOC ∗ and F exist, 
C0
in
 can, in turn, be estimated, assuming that the soil has reached equi-

librium and that climatic conditions are constant. Note that SOC refers 
to SOC that is subject to SOC dynamics. For the RothC model, this 
dynamic SOC is a fraction of the total SOC.

where SOCtotal is the total SOC, which can be measured, and IOM the 
inert SOC, which is, according to RothC, constant over time. IOM is usu-
ally estimated using the Falloon et al. (1998) equation. Equation (2) gives:

Like in Equation (1), C0
in

 is a dimension 4 vector. For the purpose 
of simplicity, C0

in
 (and later on C4p1000

in
) hereafter refers to total carbon 

inputs into the soil, that is, the sum of the four components of this 
vector.

In the present study, we used the RothC model to estimate 
(i) the inputs of SOC that would be needed to maintain current 
SOC stocks, hypothesizing that these are at steady state and 
(ii) the increase in SOC inputs needed to reach SOC stocks in 
30 years from now, assuming a constant yearly 4‰ rate of in-
crease in SOC. Note that the steady- state hypothesis is not sup-
ported by any data since a robust dataset is not yet available for 
mainland France. It was tested at a later stage of our work when 
we compared carbon input levels estimated by RothC under this 
hypothesis and NPP levels obtained independently from RothC 
(see Section 2.3).

This procedure involving RothC was applied at every loca-
tion in France using a 1 km × 1 km raster representation. More 
specifically, at each location, we performed the following algo-
rithm, again hypothesizing that SOC stocks obtained from the 
1 km × 1 km SOC map of soils of mainland France (see below in 
Section 2.2.1), hereafter named SOC0

total
, were currently at equilib-

rium in each location:

1. Compute SOC0 as SOC0
total

− IOM = SOC0
total

− 0.049(SOC0
total

)1.139 
(Falloon et al., 1998)

2. Using Equations (2) and (3)
a. Split SOC among RPM, DPM, BIO and HUM
b. Calculate C0

in
 needed to have the observed SOC0

3. Compute SOC4p1000 as SOC0
total

⋅ (1.004)30 (4‰ increase in a 30- 
year period)

4. Estimate C4p1000

in
 needed to reach SOC4p1000

Step 4 was done using a differential evolution optimization algo-
rithm (Ardia et al., 2016). From the C4p1000

in
 estimate, the increase in 

SOC input was calculated as

Additionally, to assess the effect of climate change on SOC in-
puts needed to maintain or increase SOC stocks, RothC was run with 
two climatic datasets: observed data (1980– 2010) and simulated 
data taking into account climate change (RCP 8.5). This scenario was 
selected because it predicts the highest increase in temperature 
and cumulative CO2 emissions, with potentially important conse-
quences on SOC dynamic which is affected by both the increase in 
temperature and the increase in C inputs due to the CO2 fertilization 
effect (Meinshausen et al., 2011; Wieder et al., 2015). Furthermore, 
Schwalm et al. (2020) showed that, looking at mid- century and 
sooner, RCP 8.5 is clearly the most useful choice: it is consistent 
with historical total cumulative emissions for the present period, and 
given current and stated policies, it gives the most plausible cumula-
tive emissions for the 2030– 2050 period. Results for the observed 
1980– 2010 climatic conditions are presented first, and those for the 
8.5 RCP scenario (1980– 2010 and 2020– 2050) are further used to 
discuss the effect of climate change.

(1)dSOC(t)

dt
= F ⋅ SOC(t) + Cin(t),

lim
t→∞

SOC(t) = SOC ∗ ,

(2)SOC ∗
= (I4 − F)− 1C0

in
,

SOCtotal = SOC + IOM,

(3)C0
in
=
(

I4 − F
)

SOC ∗ .

(4)ΔCin = C
4p1000

in
− C0

in
.
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The RothC model was implemented within the RothC R package 
(Martin, 2018), GIS operations using GRASS GIS software (GRASS 
Development Team, 2018) and statistical analysis using R software 
(R Core Team, 2015).

2.2  |  Data for estimation of Cin with RothC

RothC needs several input variables to simulate carbon dynamics and 
SOC mineralization. SOC mineralization is a function of soil clay con-
tent (which drives SOC stabilization in different pools and soil mois-
ture), temperature, precipitation, potential evapotranspiration and soil 
cover (bare or covered). Soil cover drives mineralization both directly 
and indirectly through soil moisture content. Temperature drives 
mineralization directly, and precipitation and potential evapotranspi-
ration drive mineralization indirectly through soil moisture content. 
Additionally, in our framework, we needed maps of SOC in the top 
23 cm of soil (as RothC is parameterized to model SOC stocks in the 
0– 23 cm soil layer) as inputs for Equation (3), and the share of total C 
inputs between plant residues and organic fertilization since these two 
categories of C inputs is characterized by specific parameters.

2.2.1  |  Soil data

We used the data from the recently produced GlobalSoilMap products 
for France (Mulder et al., 2016), for both clay and SOC. GlobalSoilMap 
products provide estimates for, among others, the 0– 5, 5– 15, 15– 
30 cm depth layers at 90 m resolution for France. Clay and SOC data-
sets were aggregated to the 0– 23 cm layer using weighted averages 
of estimates for GlobalSoilMap layers. SOC stocks were calculated as-
suming a constant rock fragments content (2%) and estimating bulk 
density with a pedotransfer function (see Meersmans et al., 2012 for 
details). For French soils, GSM estimates of bulk density are not yet 
available mainly because of data scarcity and issues related to meas-
urement methods. The same applies for rock fragments content. 
Soil depth estimates (Lacoste et al., 2016) were used to truncate soil 
profiles on pixels. For instance, where soil depth d is less than 23 cm, 
stocks are computed on 0- d cm instead of on 0– 23 cm. All calculations 
were first performed on a 90 m resolution grid, and later aggregated 
to a 1 km resolution grid. All subsequent work was done on this 1 km 
resolution grid to reduce computation time. A finer resolution was not 
required for our study, as the maps produced were only used to ana-
lyse regional and national patterns.

2.2.2  |  Climate data

Monthly rainfall (mm month−1), reference evapotranspiration (PET, 
mm month−1) and temperature (monthly averages, in degrees 
Celsius) were averaged over the 1980– 2010 period from the French 
SAFRAN reanalysis in order to yield a reference year representing 
current climate in France on 8 × 8 km2 pixels (Quintana- Segui et al., 

2008). PET was calculated using the FAO Penman– Monteith method 
(Allen et al., 1998). Climate projections data are from the French cli-
mate model ALADIN (CNRM- CM5/CNRM- ALADIN53) for the CO2 
concentration scenario RCP 8.5. Climate projections have been de-
biased with the SAFRAN reanalysis on each pixel using a Statistical 
Downscaling Method based on a Quantile Mapping approach. PET 
was again calculated with downscaled climate data (temperature, 
relative humidity, solar radiation and wind speed).

2.2.3  |  Landcover

Landcover was estimated using ecoclimap data (Faroux et al., 
2013), at 1 km resolution (see Figure 1; Supporting Information S1). 
Ecoclimap predictions were grouped into four main categories (i.e. 
croplands, grasslands, forests and others). Simulations were only 
performed on croplands, permanent grasslands and forests. We 
distinguished improved permanent grasslands from unimproved 
permanent grasslands using data on grassland types from a previ-
ous study (Tibi & Therond, 2018), which relied on a classification 
proposed by Devun and Legarto (2011).

2.2.4  |  Management and input data scenario 
for RothC

When run in inverse mode, that is in order to estimate required 
carbon input levels to reach a given SOC level, RothC solely needs 
two input data related to management. The first one is the num-
ber of months where soils are left bare. This input variable, only 
applicable for croplands, was set to 4 months except when soils 
belonged to nitrate vulnerable zones where it was set to 2 months 
since cover crops are mandatory in these zones. The second input 
variable is the proportion of carbon inputs to the soil that consists 
of organic amendments. OC inputs to the soil are mainly the result 
of plant residues and of additions of animal manure and other or-
ganic products (hereafter referred to as organic amendments). In 
RothC, the fate of carbon provided by plant residues and organic 
amendments is specific, reflecting their difference in terms of de-
composability. Therefore, in order to use RothC with the frame-
work presented above, to estimate the amount of C input needed 
to sustain a given carbon stock, or to increase it, one needs to de-
cide the share between plant residues and organic amendments in 
C inputs. This proportion was thus prescribed, based on previous 
studies having estimated it at the regional scale for France (Tibi & 
Therond, 2018). Furthermore, we considered that the only type of 
organic amendment was farmyard manure, for which RothC pro-
vides a default composition and which represents about 60% of 
organic amendments spread on agricultural soils in France (Houot 
et al., 2014). In RothC, the OC in this organic material is split into 
the RPM, DPM and HUM pools in the following proportions: 49%, 
49% and 2%. Although another parameterization has been pro-
posed for RothC (Peltre et al., 2012), with higher HUM fraction 
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for organic amendments, taking it into account was not possible 
because spatial data on the nature of organic amendments were 
not available for our study. Organic amendments were only allowed 
on croplands and grasslands, not on forests. We also considered 
that an increase in total OC inputs during the 4‰ carbon stor-
age period (i.e. between t0 and t0 + 30 years) was only possible 
through an increase in inputs of plant residues, and not through 
increments of organic amendments. In mainland France, all animal 
manures are already spread on agricultural soils so that it is not 
possible to increase the availability of this resource (Houot et al., 
2014). Moreover, because of the low social acceptability of spread-
ing urban and industrial organic products, increasing the amount 
spread on agricultural soils is unlikely. Note that other information 
about management practices in croplands, grasslands and forests 
were used in this study, but at a later step in the process, that is, for 
estimating independently from RothC the available NPP flowing to 
the soil (see also Figure 1), which is presented in the next section.

2.3  |  Available NPP and ecosystems' 
carbon balance

To evaluate an ecosystem's ability to provide the estimated quan-
tity of C inputs needed to maintain current SOC stocks and those 
needed to reach the 4‰ target, we estimated the ecosystem's avail-
able NPP (NPPsurf) as (see also Figure 1): 

where NPP is the net primary productivity, Cbio is the amount of NPP 
allocated to increase plant biomass, Cexp are exports due to human 
activity, Cman the carbon returned through animal faeces and manure 
application, and psurf is the proportion of total C inputs into the soils al-
located to the 0– 23 cm soil layer only (which is the layer considered by 
the RothC model, and which matches, for France, the average depth of 
the plough layer; Arrouays et al., 2001). psurf was derived from recently 
published estimates of belowground NPP flows (Balesdent et al., 
2018), depending on land use, clay content, mean annual temperature 
and the mean ratio of annual precipitation to potential evapotranspi-
ration. For grasslands and croplands, Cbio was assumed to be equal to 
0 considering that, based on a yearly average, the amount of carbon in 
aboveground and belowground plant biomass remains constant in the 
long term, contrary to non- mature forest systems.

We defined the carbon balance of a given soil as the difference 
between available NPP flowing to the considered soil layer (NPPsurf

) and the soil carbon input (Cin), as estimated with the RothC model, 
needed to maintain current SOC levels or to reach the 4‰ target 
SOC stocks.

with Cin equal to C0
in
 or C4p1000

in
 (see Section 2.1 about the modelling 

framework), yielding, respectively, C0
bal

 and C4p1000

bal
.

NPPsurf and Cin were evaluated with separate methods and data 
sources, and computing the balance between them addressed the 
following question: is the carbon input to the soils required to sus-
tain current stocks or to reach the 4‰ target available? Figure 2 (5)NPPsurf =

[

NPP − Cbio − Cexp + Cman

]

⋅ psurf,

(6)Cbal = NPPsurf − Cin,

F I G U R E  1  Estimating the fraction of net primary productivity (NPP) flowing to the soil layer under consideration and comparing it with 
Cin, the amount of carbon entering the soil needed to sustain existing levels or to reach a given level of soil organic carbon (SOC stocks). 
Cin is estimated by the RothC model, in inverse mode. The balance (Cbal) was evaluated as the difference between NPPsurf and Cin. Cbio, 
increase in plant biomass carbon; Cexp, carbon exported (e.g. harvests) through human activities, including livestock breeding; Cman, carbon 
return through manure and excreta at grazing; GPP, gross primary productivity; NPPsurf, remaining NPP flowing into the surface soil layer 
considered here, with a proportion of (1- psurf) flowing to the soil layer below; Ra, vegetation autotrophic respiration; Rh, soil heterotrophic 
respiration
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summarizes this approach based on a comparison between the re-
quired carbon input, represented by the Cin variable, and the avail-
able carbon input is represented by the NPPsurf variable, estimated 
here using data about plant productivity and human activities. 
Studying the sign of C0

bal
 may lead to different conclusions depend-

ing on the hypothesis on the stationarity of SOC stocks. If C0
bal

 dif-
fers from zero, the steady- state hypothesis is currently not valid. 
C0
bal

< 0 indicates that Cin is not sufficient to sustain existing SOC 
stocks which are on a declining trend. If C0

bal
> 0, SOC stocks might 

be on an increasing trend. Alternatively, when RothC is used to 
compute C4p1000

in
, that is, carbon required to reach the 4 target after 

30 years, negative Cbal values indicate that, given NPP levels and 
human activity, there is indeed insufficient carbon to reach this tar-
get. Positive values indicate that higher targets could, indeed, be 
reached. Note that Cbal calculations were performed using a current 
database, thus based on current plant productivity and existing ag-
ricultural and forestry systems. Moreover, the proposed framework 
ignores some of the relatively minor fluxes that result in C inputs 
and outputs. These include erosion, fires, dissolved organic carbon 
leaching, methane emissions and volatile organic carbon emissions 
(see Soussana et al., 2019 for a full accounting of these components). 
This choice was made because of available data and for the sake of 

simplicity. However, as all these fluxes result in SOC losses, it might 
induce a global overestimation of the carbon balances proposed 
here. RothC itself does not represent some output fluxes including 
vertical transport in the deep layer due to bioturbation or advection 
or lateral transport due to erosion. This may also contribute to car-
bon balance overestimation but these non- represented fluxes are 
considered to be of second order compared to heterotrophic res-
piration (Jagercikova et al., 2014; Naipal et al., 2018; Warner et al., 
2019) and are particularly difficult to model at regional scales.

Several datasets were combined to yield spatial estimates of NPP,  
Cbio, Cexp and Cman on our 1 km × 1 km grid, depending on land use 
of the grid cells. Comparison of the results yielded by the different 
sources of input data was then used to discuss the uncertainty of our 
results. These datasets included NPP estimates derived from MODIS 
for the 2001– 2012 period (Zhao et al., 2005), NPP and its human ap-
propriation for the year 2006 (Plutzar et al., 2016, using the LPJml 
model for forests and grasslands and a model based on regional yield 
statistics for croplands). LPJml is a global model (GM), meaning that 
although it accounts for plant productivity variations, in managed and 
unmanaged areas, it does so less specifically than do domain models 
(DM), for example, models dedicated to grasslands and croplands. 
French inventory data were used to estimate human appropriation 

F I G U R E  2  Diagram of the proposed approach. Main input variables are current soil organic carbon stocks (SOC
0

total
), available net primary 

productivity (NPPsurf) and clay content. Two cases are considered. The first one deals with current SOC stocks and the second one with the 
4‰ target. Both the carbon balances (Cbal, Equation 6) and the carbon saturation deficit (Cdef, Equation 7) are used to assess the status of 
current SOC stocks and the feasibility of the 4‰ target. Note that the clay soil input variable is used for RothC computations for both C0

in
 

and C4p1000

in
. The steady- state hypothesis enables to estimate C0

in
 using Equation (3), the right- hand side of which is called here C ∗

in
 for the 

sake of conciseness. The expected trends of current stocks and the feasibility of the 4 do not account for possible future changes in SOC 
mineralization rates

NPPsurf
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in forests (IGN, 2018). NPP and human appropriation data yielded by 
previous simulations (Tibi & Therond, 2018) with the STICS (a crop 
model, Brisson et al., 1998, 2003) and PASIM (a pasture simulation 
model, Riedo et al., 1998) domain models were also used. Lastly, for 
the Cman variable, we used data assembled from national inventories 
to estimate organic fertilization (Tibi & Therond, 2018). How the dif-
ferent data sources were combined depending on the land use is de-
tailed in Table 1 of Supporting Information S1.

2.4  |  Estimates of SOC saturation levels and 
saturation deficit

Several studies have assessed C sequestration potential or C satu-
ration deficit (i.e. additional SOC that can be stabilized in the fine 
fraction) across different land uses (croplands, grasslands, forests) 
at large extent (Angers et al., 2011; Chen et al., 2018; Wiesmeier, 
Hübner, Spörlein, et al., 2014). We estimated the SOC saturation 
level (Csat) based on concentrations of mineral fine fractions and 
applied the equation proposed by Hassink (1997). Fine fraction 
content comprises the particle of size <20 μm (%). To estimate fine 
silt (2– 20 μm) fractions for each of our 1 km × 1 km grid cells, 
we combined GlobalSoilMap predictions of clay (<2 μm) with es-
timates of clay:fine silt ratio based on the French soil monitoring 
network data (Réseau de Mesures de la Qualité des Sols: RMQS, 
Jolivet et al., 2006). The sum of clay and fine silt fractions was 
then used in Hassink's equation to estimate SOC saturation levels. 
From the SOC content at saturation, SOC stock at saturation was 
estimated using the same method as previously explained for pre-
dictions based on the GobalSoilMap SOC content. The SOC satu-
ration deficit was then estimated as

where Csat (Mg ha−1) is the SOC stock at saturation and CHUM and CIOM 
are the SOC stock in the HUM and IOM pools as predicted by RothC 
for the current SOC stock. In so doing, we assumed that RothC's RPM 
and DPM pools are the same as particulate organic matter, by defi-
nition not included in soil organic matter bound to the fine fraction 
(Stewart et al., 2007), and further, we assumed that carbon in the BIO 
pool was negligible compared to that in the HUM and IOM pools.

2.5  |  Uncertainty analysis

Our uncertainty analysis consisted in estimating the variance of the 
4 carbon balance (C4p1000

bal
) and of the saturation deficit (Csat). We 

included all variables and parameters used in their calculation and 
for which information about variance was available. We used the 
uncertainty estimates of the clay and SOC estimates attached to 
the GlobalSoilMap data. Although uncertainty attached to the NPP 
products was not available, we explicitly included in the analysis the 
variance resulting from using different sources of NPP data. This 

variance was considered to be representative of the uncertainty as-
sociated with the current knowledge of NPP levels. We also included 
parameter- related uncertainty when it was available, that is, for pa-
rameters of the psurf function (Balesdent et al., 2018), for the param-
eters of the function used to estimate the amount of inert organic 
carbon (Falloon et al., 1998) and for the parameters of the equation 
used to estimate the carbon saturation deficit (Hassink, 1997). The 
propagation of the uncertainty attached to these input variables 
and parameters was based on an analytical formulation of Cbal and 
Csat, taking advantage, among others, of the simplicity of the RothC 
model and the availability of explicit solutions of Equation (1) (see 
Supporting Information S3). We applied a first- order Taylor analysis 
to calculate the variance of intermediate functions of Cbal and Csat, an 
approach which was previously applied in soil sciences (Heuvelink 
et al., 1989; Román Dobarco et al., 2019). Using the Taylor analysis 
enables one to approximate the variance of any continuously differ-
entiable function of a set of variables or parameters. This approach 
has the major advantage to reduce computation time (compared to 
Monte- Carlo approaches) and to facilitate the identification of the 
various sources of uncertainty. Details of our procedure are pre-
sented in Supporting Information S2.

3  |  RESULTS

3.1  |  Carbon input levels needed to maintain 
current SOC stocks

Overall, carbon inputs needed to maintain SOC stocks levels (C0
in

) 
were clearly correlated with current SOC stocks (Figure 3), as ex-
pected from Equation (3). Distributions differed among land uses 
although covering approximately the same ranges. Differences 
among means were significant for all pairwise comparisons (with 
Bonferroni correction) with mean C0

in
 values of 2.142 ± 0.004, 

2.596 ± 0.004, 2.452 ± 0.012 and 2.773 ± 0.005 Mg ha−1 year−1 for 
croplands, improved grasslands, unimproved grasslands and for-
ests, respectively.

Forests needed, on average, higher Cin values than croplands to 
sustain current SOC stocks. They exhibited greater variability than 
croplands (Figure 4). Improved grasslands and forests with high C0

in
 

values were found in plains of western France and low mountains 
of eastern France, with average to high mineralization coefficients 
and nevertheless high SOC stocks (Figure 5a– c). Some of the high-
est carbon input needs were found in western Brittany, where high 
SOC stocks are found in improved grasslands, associated with high 
mineralization coefficients related to the mild moist conditions, and 
the Landes de Gascogne forests (in south- western France) with high 
SOC stocks and sandy soils. On the opposite, other areas exhibited 
low carbon input levels, below 1.5 Mg ha−1 year−1, because of low 
SOC stocks and moderate to low mineralization levels. Such areas 
are found in improved and unimproved grasslands of south- eastern 
France and cropland areas of the Paris Basin and central parts of 
south- western France.

(7)Cdef = Csat − (CHUM + CIOM),
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3.2  |  Carbon input levels needed to reach the 
4‰ target

Additional carbon inputs needed to reach the 4‰ target (ΔCin,  
Equation 4) were, on average, 0.880 ± 0.001, 1.070 ± 0.001, 
1.049 ± 0.004 and 0.93 ± 0.00 Mg ha−1 year−1 for crops, improved 
and unimproved grasslands and forests, respectively (representing 
42%, 42%, 45% and 34% of increase, respectively).

F I G U R E  3  The amount of carbon inputs (Cin, the sum of added 
biomass and organic amendments) needed, as estimated by RothC, 
to sustain current SOC stocks as a function of initial soil organic 
carbon (SOC) stocks. Each plot gives the relationship for a specific 
land use. Carbon inputs were calculated for current climatic 
conditions (1980– 2010)

F I G U R E  4  The amount of carbon inputs into the soil (Cin),   
resulting from biomass and organic amendments, needed to 
sustain current soil organic carbon (SOC) stocks, depending 
on the land use. The Cin values are yielded by the RothC model 
run in inverse mode under current climatic conditions (1980– 
2010), based among others on the SOC map for the French 
territory
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F I G U R E  5  (a) soil organic carbon (SOC) stocks in the top 23 cm layer, 
(b) RothC mineralization modifiers, including the effect of soil moisture 
and temperature under current climatic conditions (1980– 2010). Low 
values indicate that SOC mineralization rate is low. (c) represents the 
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In our framework, the SOC stock increment needed to reach the 
4‰ target is strictly proportional to SOC0 (i.e. the current SOC stocks) 
and all locations share the same increment factor. Proportionality to 
SOC0 implied that the ranking of ΔCin values among pixels was the 
same as the ranking of C0

in
 values and the spatial structure of these 

two variables within mainland France was the same. Put differently, 
a location exhibiting a high C0

in
 value because of high SOC0 and high 

mineralization rates will also exhibit a high ΔCin value. However, some 
additional differences were found for croplands and grasslands. Some 
cropland and grassland areas had to increase Cin by up to 65% and 
136%, respectively, to reach the 4‰ target. These areas with the 
highest % increase in Cin also had the highest proportion of organic 
manure in initial carbon inputs. This was a logical consequence of our 
simulation setup, where the amount of organic amendments was not 
allowed to increase when trying to reach the 4‰ target.

Nevertheless, in most cases, for all land use types, the required % in-
crease in carbon input to the soil associated with plant residues was less 
than 50% (Figure 6, right panel). Overall, reaching the 4‰ target needed 
a minimum 24% increase in Cin from plant material returned to the field.

3.3  |  Carbon balance

In our framework, C0
in
 estimates are those needed to maintain current 

SOC stocks at steady state (and C4p1000

in
 those needed to reach the 4‰ 

target after 30 years). We compared the NPPsurf (Mg ha−1 year−1) to 
both C0

in
 and C4p1000

in
 and the difference was termed the carbon balance 

(Equation 6). The current balance C0
bal

 may be used to assess whether 
current SOC stocks are increasing or decreasing, and the 4‰ balance 
C
4p1000

bal
 indicates whether French ecosystems could provide enough 

organic matter to reach the 4‰ target. C0
bal

 and C4p1000

bal
 are given for 

each land use and each NPP data source on Figure 7, left and right 
panels, respectively. Because of the high number of pixels used for es-
timating the C0

in
 and C4p1000

in
 variables, mean values for each land use 

and each NPP estimate were all significantly different from 0, although 
absolute values of the mean were in some cases very small.

C0
bal

 was, for croplands, consistently negative across the different 
NPP estimates with a mean value of −0.5 ± 0.006, −0.8 ± 0.004 and 

−0.8 ± 0.007 Mg ha−1 year−1 for STICS DM, the GM/Stat. estimate 
(Plutzar et al., 2016, see Section 2 and the Supporting Information 
S1) and MODIS estimates, respectively (Figure 7, left). It indicated 
that available NPP was less than the estimated carbon input levels 
needed to sustain current SOC stocks and consequently was not suf-
ficient to maintain stocks at steady state. Current cropland stocks are 
hence, on average, likely to be decreasing. Improved grasslands had a 
positive balance, and a greater variability both within each NPP esti-
mate (with greater interquartile values as shown on Figure 7, left) and 
among NPP estimates, with a mean C0

bal
 of 2.2 ± 0.010, 0.1 ± 0.005 

and 1.2 ± 0.010 Mg ha−1 year−1 for the PASIM DM, the GM/Stat. and 
MODIS estimates, respectively. Unimproved grasslands were con-
sistently estimated to have positive C0

bal
, hence indicating increasing 

SOC stocks, faster with the PASIM estimate which gave a positive C0
bal

 
values of 4.4 ± 0.032 Mg ha−1 year−1. Forest soils showed a close to 
neutral balance with a mean slightly positive balance of 0.2 ± 0.007 
and a more systematically positive one of 1.5 ± 0.013 Mg ha−1 year−1 
for the GM/Stat. and MODIS estimates, respectively.

The right panel in Figure 7 gives the balance between available 
NPP and estimated C4p1000

in
 values, represented by the C4p1000

bal
 vari-

able. By definition, the carbon inputs needed for the 4‰ target are 
greater than those for the maintenance target (C4p1000

in
> C0

in
). As a 

logical consequence (see Equation 6), the carbon balance for the 
4‰ target is smaller than for the maintenance target (C4p1000

bal
< C0

bal
) 

because available NPP is, in our framework, kept constant between 
the 4‰ and the maintenance targets. in Figure 7, logically, situations 
where C0

bal
 (left panel) was negative, again had a negative balance with 

respect to the 4‰ objective (C4p1000

bal
, right panel). For croplands, the 

C budget in the context of the 4‰ target is clearly negative, meaning 
that this target may not be reached given current NPPsurf levels. For 
this land use, it would take, on average, 1.4 ± 0.007, 1.7 ± 0.005 and 
1.6 ± 0.008 Mg ha−1 year−1 additional carbon input to reach the tar-
get, for the STICS DM, the GM/Stat. and the MODIS estimates, re-
spectively. For improved grasslands and forests, the 4‰ target might 
or might not be achievable depending on the NPP estimate used. The 
GM/Stat. estimate yielded a negative mean C4p1000

bal
 for both improved 

grasslands and forests (−1.0 ± 0.006 and −0.7 ± 0.008, respectively) 
and the MODIS estimate yielded close to neutral C4p1000

bal
 for both 

F I G U R E  6  Percentage increase in the 
carbon input to the soil (Cin) associated 
with plant residues (hence excluding 
organic amendments), needed to reach 
the 4‰ target, at the end of a 30- year 
period under current climatic conditions. 
Left panel presents the value of this 
variable on mainland France. Right panel 
gives the distribution of the variable, 
depending on the land use %
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improved grasslands and forests (0.1 ± 0.011 and 0.5 ± 0.014, re-
spectively). The PASIM DM yielded a positive mean C4p1000

bal
 for im-

proved grasslands (1.1 ± 0.010). Conversely, unimproved grasslands, 
which are characterized by a rather large positive mean C0

bal
 values, 

are likely to continue to display such a positive trend in the perspec-
tive of reaching the 4‰ target.

3.4  |  Taking soil organic carbon saturation 
into account

Figure 8 plots the simulated points both in terms of carbon balance 
calculated under the 4‰ objective (C4p1000

bal
, X- axis) and the carbon 

saturation deficit for the current state (Cdef, Equation 7, Y- axis). 

F I G U R E  7  Carbon balance for the four land uses considered in this study and for the different estimates of net primary productivity 
(NPP), represented with box and whisker plots. The box gives the upper and lower quartiles and the median. Dashed bars give the upper and 
lower extremes and dots may be considered as outliers. The carbon balance (Mg ha−1 year−1) is computed like in Equation (6), with the Cin 
needed to maintain current SOC stocks on the left panel and to reach the 4‰ target on the right panel. Mean distributions are computed 
from pixels where all relevant NPP estimates are available, to grant equal weight to the various NPP estimates. Negative values indicate 
that current stocks cannot be maintained, or that the 4‰ target cannot be reached with current land management. Carbon balances 
were calculated under current climatic conditions. DM, domain models, that is, the STICS model for croplands and the PASIM model for 
grasslands; GM/Stat., NPP estimates provided by Plutzar et al. (2016), either the LPJmL global model or the model based on yield statistics, 
depending on the land use; MODIS, NPP directly derived from this product

F I G U R E  8  Carbon saturation deficit 
for the current state (Cdef) as a function of 
the carbon balance according to the 4‰ 
objective (C4p1000

bal
), one panel for each land 

use and one colour for each net primary 
productivity (NPP) estimate. A positive 
carbon balance means that the availability 
of carbon inputs makes the 4‰ target 
achievable. A positive carbon saturation 
deficit means that the soil is unsaturated, 
which means that a soil C stock increase 
is unlikely to be constrained by saturation 
and that carbon can be accumulated in 
a less labile form. For each land use and 
NPP estimates, bi- dimensional ellipsoids 
with a 90% confidence level are given. 
DM, domain models, that is, the STICS 
model for croplands and the PASIM 
model for grasslands; GM/Stat., NPP 
estimates provided by Plutzar et al. (2016); 
MODIS, NPP directly derived from this 
product
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These two variables were chosen as they reflect the capacity for 
additional C storage under stabilized forms at the beginning of the 
4‰ scenario and the ability of the ecosystems to provide enough C 
for this scenario (see also Figure 2). The combination of both defines 
four crossed categories (unsaturated, positive Y- axis values, and pos-
itive C4p1000

bal
, positive X- axis values; unsaturated and negative C4p1000

bal
;  

saturated and positive C4p1000

bal
; saturated and negative C4p1000

bal
). 

Contrary to the other data sources, Plutzar et al. (2016) provided es-
timates for the four land use classes considered in the present study 
on every single pixel. Thus, the number of pixels for which Cbalwas 
estimated using this data source was the highest. This can be seen 
in Figure 8 where the greatest spread of dots is for the GM/Stat. 
category. Croplands are mainly characterized by negative C4p1000

bal

and positive Csat, hence unsaturated soils. Forests and improved 

grasslands were characterized by diverse situations. Unimproved 
grasslands were characterized mainly by positive C4p1000

bal
. Overall, 

saturated zones are found in western Brittany, in the Landes de 
Gascogne (sandy soils under forest) and mountainous areas cov-
ered by unimproved grasslands or forests (Alps, Pyrenees, Massif 
Central, Vosges, see Figure 9). Soils of intensive cropland plains were 
mostly unsaturated (e.g. Great Paris Basin). For each land use, the 
percentage of the area under each category is given in Table 1. For 
croplands, 88.4% of the area were unsaturated in the 0– 23 cm layer, 
but with a negative C4p1000

bal
. This percentage was lower but still high 

for improved grasslands (37.5%). Conversely, 65.2% of unimproved 
grasslands fell into saturated categories (6.1% and 59.1% with a neg-
ative and positive C4p1000

bal
, respectively). For forests, 56.5% of the 

area are unsaturated, among which 25.5% with a negative C balance.

F I G U R E  9  Map of the carbon storage 
potential in France up to the 4‰ target. 
The potential was assessed by combining 
the carbon balance (C4p1000

bal
, Equation 6) 

and the soil SOC saturation deficit (Cdef,  
Equation 7). Unsaturated (vs. saturated) 
refers to soils where Cdef > 0 (vs. Cdef < 0).  
The Cbal is computed using average (of 
the GM/Stat., the MODIS and the domain 
model estimates) NPPsurf estimates

TA B L E  1  Percentage of the area per category for each land use. Saturation was considered in the current situation and the Cbal was 
calculated under the 4‰ scenario. The value in bold gives the average over all the NPP estimates available at each pixel. The two values in 
parenthesis give the minimum and maximum values over all the NPP estimates available at each pixel

Crops Improved grasslands Unimproved grasslands Forests

Saturated and negative balance 5.0 (2.5, 5.1) 16.9 (7.1, 25.6) 6.1 (5.2, 12.8) 31.7 (26.5, 36.0)

Saturated and positive balance 0.2 (0.1, 0.3) 13.0 (4.3, 21.9) 59.1 (36.0, 52.4)a  11.8 (7.5, 27.2)

Unsaturated and negative balance 88.4 (86.5, 91.4) 37.5 (20.2, 56.1) 3.5 (0.5, 8.9) 25.5 (9.1, 31.4)

Unsaturated and positive balance 6.4 (3.5, 10.6) 32.6 (14.0, 50.8) 31.3 (25.8, 56.2) 31.0 (25.2, 37.2)

a The average here is outside the minimum and maximum value interval. This comes from the fact that each estimate is not available on the same set 
of pixels. 
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4  |  DISCUSSION

Accurate estimates of the organic carbon inputs into the soils are 
crucial to properly forecast SOC changes. We will first discuss how 
our two independent estimates of carbon input into the soils, the 
first one based on available NPP and the second one representing 
the carbon input required to reach a given SOC level, compare to 
previously published values. The current status of mainland France 
SOC stocks will then be examined in light of the carbon balance of 
soils as influenced by the two carbon input estimates. The weight 
in the uncertainty of the carbon balance of several input variables, 

including NPP- based carbon input, and of several functions' param-
eters will then be discussed. Finally, we will present how climate 
change and the increase in atmospheric CO2 concentrations might 
impact the future carbon balance and, following, what is the feasibil-
ity of the 4 target.

4.1  |  Estimating carbon input into the soils

Different methods have been used to estimate carbon input to the 
soil for modelling purposes. They range from inverse modelling 

TA B L E  2  Estimated carbon input (Mg ha−1 year−1) for a range of crops and systems in different countries, adapted from Wiesmeier, 
Hübner, Dechow, et al. (2014). Results concerning our study are of two kinds (1 and 2, see below) but three other kinds may be found in the 
literature.

Agricultural system Plant Country Carbon input Source

Croplands France 2.0– 2.3 This study1

Croplands France 2.07 ± 1.43 This study2

Croplands Germany 3.8– 6.7 Wiesmeier, Hübner, 
Dechow, et al. (2014)3

Wheat France 2.5 Meersmans et al. (2013)2

Global 2.9 ± 1.3 Wang et al. (2016)2

Germany 2.4 Ludwig et al. (2007)4

USA 2.9 Johnson et al. (2006)3

Japan 3.3 Koga et al. (2011)3

Barley France 4.5 Meersmans et al. (2013)2

Germany 1.2 Ludwig et al. (2007)4

USA 3.4 Johnson et al. (2006)3

Grain- corn France 3.7 Meersmans et al. (2013)2

Belgium 3.6 Wesemael et al. (2010)3

USA 6.8 Johnson et al. (2006)3

Japan 1.8 Koga et al. (2011)3

Oats USA 2.3 Johnson et al. (2006)3

Japan 2.6 Koga et al. (2011)3

Cereals Belgium 2.4 Wesemael et al. (2010)3

Grassland Improved France 3.3– 6.0 This study1

France 2.52 ± 1.54 This study2

Unimproved France 5.5– 8.7 This study1

France 2.40 ± 1.66 This study2

Grasslands Germany 2.4 Wiesmeier, Hübner, 
Dechow, et al. (2014)3

France 5.2 Meersmans et al. (2013)2

Ireland 1.18– 3.52 Xu et al. (2011)2

Australia 2.4 Coleman et al. (1997)5

U.K. 3.24, 3.0 Coleman et al. (1997)5

1NPP − Cexp amount (see Equation 5), that is, carbon input to the soils related to the grown plants. Note that NPP –  Cexp represents carbon inputs to 
the soils for the whole soil profile when C0

in
 represents carbon input to the soil for the 0– 23 cm layer only. 

2
Cin variable which is estimated by the RothC inverse modelling procedure or for the studies other than ours based on a similar approach. 

3Use of allometric equations usually taking yield data as input variables. 
4Direct measurements. 
5Expert opinion or unexplained estimates. 
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(Meersmans et al., 2013; Wang et al., 2016), allocation functions 
(Wiesmeier, Hübner, Dechow, et al., 2014), to expert opinion 
(Coleman et al., 1997). The diversity of methods and contexts results 
in a great variety of estimates, as shown in Table 2. In our work, we 
used two different methods based on a rationale of using the relevant 
data and of characterizing the two sides of the SOC dynamics coin 
(i.e. the carbon input needed maintain or reach given SOC levels and 
SOM mineralization rates and the carbon input actually provided by 
plant productivity given its human appropriation). Overall, estimated 
carbon inputs presented here were in line with other estimates found 
in the literature (Table 2). Carbon input levels in the literature ranged 
between 1.8 (Koga et al., 2011) and 6.8 Mg ha−1 year−1 (Johnson 
et al., 2006) for croplands, and between 1.18 (Xu et al., 2011) and 
5.2 Mg ha−1 year−1 (Meersmans et al., 2013) for grasslands.

When estimated using an inverse modelling approach, the 
calculation of these carbon input levels results from the inter-
play between observed SOC stocks, the SOC mineralization 
rates and the quality of the incoming organic matter (plant resi-
dues and organic amendments). Detailed observation revealed a 
few unexpected results. For instance, SOC stocks were higher in 
unimproved (74.95 ± 0.31 Mg ha−1) than in improved grasslands 
(54.33 ± 0.07 Mg ha−1), but surprisingly, unimproved grasslands 
needed slightly less carbon inputs to maintain current stocks. 
This might be explained by the fact that unimproved grasslands 
are mainly located in high altitude regions, with lower SOM min-
eralization rates due to lower temperatures compared to other 
warmer areas (see areas in Figure 5) and also by the quality of 
incoming plant material which has to be specified in inverse mod-
elling approaches.

When estimated using plant productivity and human appro-
priation data, the variability of carbon input estimates depends on 
methodological aspects, such as the crop model or remote sensing 
processing function design and parameterization (see for instance 
Hashimoto et al., 2011 using the MODIS product) or the choice of 
input data. Comparison of our several estimates illustrates the vari-
ability that might be expected from this method (Table 3).

To conclude, one of the outcomes of our study is a quantification 
of the possible gaps between estimates based on inverse modelling 
and those based on data on plant productivity and human appro-
priation. All estimates based on inverse modelling and steady- state 
hypothesis (this study, C0

in
 estimate, Meersmans et al., 2013; Wang 

et al., 2016) might lead to biased estimates of carbon inputs for soil 
when SOC is not at steady state. French croplands exemplify this 

with a large discrepancy between carbon input estimated using 
available plant productivity and carbon input to the soils estimated 
using the RothC inverse approach.

4.2  |  What is the status of current SOC stocks?

Indeed, the C0
bal

 calculations (available NPP minus C inputs needed 
to maintain current soil C stocks, Equation 6) show that soils under 
croplands are characterized by negative carbon balances (Figure 6). 
SOC in these soils could hence be on a decreasing trend. In some 
areas where organic amendments were high, C0

in
 might be over- 

estimated because of the aforementioned mis- parameterization for 
organic amendments. Hence, for these areas, the carbon budget 
might be closer to neutral than presented here. Only a few estimates 
based on comprehensive data are available for French croplands, 
but although spatially contrasted, SOC stocks could have slightly de-
creased in the 1990's, and could have slightly increased since then. 
Modelling studies at the European scale (Ciais et al., 2010) or for 
France (Clivot et al., 2019; De Cara & Thomas, 2008) tend to con-
firm this slightly negative trend, although there is still considerable 
uncertainty depending on how the effect of agricultural practices on 
SOC levels is represented in models (Ciais et al., 2011).

Improved grasslands SOC stocks were, on average, closer to 
equilibrium, whereas unimproved grasslands consistently exhib-
ited large positive C0

bal
 values. The latter result might be surprising 

as most French unimproved grasslands have been established for 
decades and would thus be expected to have reached equilibrium. 
Soussana et al. (2010), compiled a dataset for temperate grasslands 
in which grasslands stored on average 0.05 ± 0.30 Mg ha−1 year−1 
based on inventories of SOC stocks and 0.22 ± 0.56 Mg ha−1 year−1 
according to measurements of the C flux balance. However, the ev-
idence for unimproved grasslands being a strong sink is weak and 
further studies for confirming this should be a priority. No specific 
measurements for France are currently available and it is worth 
mentioning that the diversity of situations, in terms of climate, soils 
and agricultural practices (improved vs unimproved), might even be 
greater than for croplands, as represented by the dispersion of Cin 
values in both types of grasslands (Figure 4).

Forest soils showed a consistently close to neutral or positive 
balance. Jonard et al. (2017) estimated that French forests were 
C sinks for the period 1993– 2012. The sequestration rate was 
0.35 Mg ha−1 year−1 for the forest floor and 0– 40 cm layer of mineral 

TA B L E  3  Mean (±the distance to the 2.5% and 97.5% quantiles) of net primary productivity (Mg ha−1 year−1) per land use class estimated 
by LPJmL and MODIS and the STICS and PASIM models. In parenthesis, the amount of carbon exported at harvest (mean ± the distance to 
the 2.5% and 97.5% quantiles, Mg ha−1 year−1)

Land use LPJmL/Stat. (2006) MODIS (2001– 2012) STICS/PASIM (1980– 2010)

Crops 6.4 ± 4.4 (4.3 ± 5.0) 6.0 ± 1.5 (4.0 ± 2.4) 7.5 ± 3.3 (5.1 ± 3.9)

Improved grasslands 6.3 ± 3.0 (3.0 ± 3.8) 9.1 ± 4.4 (4.4 ± 3.9) 10.9 ± 3.1 (4.9 ± 4.4)

Unimproved grasslands 5.9 ± 2.0 (0.5 ± 1.0) 9.4 ± 5.1 (1.1 ± 2.1) 9.7 ± 4.2 (1.0 ± 2.2)

Forests 6.2 ± 2.3 (1.8 ± 2.9) 8.0 ± 2.6 (2.1 ± 3.2)
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soil. Their approach was based on consecutive soil monitoring sur-
veys but did not include sites in Mediterranean forests. Although 
Jonard et al. (2017) did not observe an increase in litterfall or in be-
lowground litter production, they estimated a decrease in the de-
composition rates for litterfall and fine roots related to a decrease in 
litter nitrogen concentration and climate conditions during the study 
period. The average SOC stock of the 0– 20 cm layer of mineral for-
est soils was around 50 Mg ha−1, which is in the lower range limit of 
the SOC we estimated for most forested areas in the present study. 
The fact that forests soils exhibited higher SOC stocks in our study 
and are hence likely to require higher Cin levels might explain why we 
did not observe a greater positive Cbal for these soils.

4.3  |  Sources of uncertainty

Our analysis showed a major contribution (58%) of the uncertainty 
related to the NPP flowing into the top 0– 23 cm layer of the soils, 
to the carbon balance (Cbal), for the 4 target. The main reason for 
this relates to the substantial differences in the data source used 
for estimating NPP within each land use class (Table 3). MODIS NPP 
estimates were higher than LPJmL NPP for grasslands and forests, 
whereas for croplands, the harvest statistics- based (Plutzar et al., 
2016) NPP was slightly higher than MODIS NPP. The compara-
tively high values of MODIS estimates for forests confirm previous 
findings regarding this data source (Neumann et al., 2015). LPJmL 
estimated a slightly higher NPP for improved grasslands than for 
unimproved grasslands, but the opposite trend was observed with 
MODIS. MODIS and the harvest statistics- based NPP estimates 
were lower than STICS NPP estimates for croplands. A comparison 
of several NPP estimates found in the literature is provided in the 
Supporting Information S1. In addition to intrinsic methodological 
differences among the various NPP products, the limited temporal 
and thematic (i.e. the land use classes definition and spatial distribu-
tion used in these products) overlap between them contributes to 
explain the large contribution to the total uncertainty. Being able to 
distribute carbon inputs from NPP vertically into the soil is also of 
uttermost importance. This component, embodied in our case by the 
psurf function, represented 18% of the total variance of the C4p1000

bal
. 

More generally, the ability to estimate carbon inputs to the soil accu-
rately is crucial to the understanding of the terrestrial carbon cycle 
(Hashimoto et al., 2011) and can be, as we showed here, a major 
source of uncertainty.

Maps of soil properties are also known to carry a significant un-
certainty due to the limited soil data available to calibrate the statis-
tical models used to derive maps (Arrouays et al., 2020; Somarathna 
et al., 2017). Although for mainland France, maps of clay content 
usually exhibit higher local inaccuracy compared to SOC maps 
(Mulder et al., 2016), variance attached to clay content had a neg-
ligible impact to the overall C4p1000

bal
 uncertainty compared to the 

variance attached to the SOC maps (0.2% vs. 7.3%) and noticeably, 
the covariance between these two variables significantly contrib-
uted to reduce the C4p1000

bal
 variance, by 13%. Finally, the uncertainty 

attached to the parameters used to distinguish the inert SOC from 
the active SOC, as represented by RothC, reached on average 25% 
of the Cbal uncertainty. This result confirms the sensitivity of RothC 
simulations to this specific point (Janik et al., 2002).

Locally, the uncertainty of the carbon balance was import-
ant with an average standard error of C4p1000

bal
, at the pixel level, of 

1.16 Mg ha−1 year−1 (see also Figure 3 in Supporting Information 
S2). However, it resulted in a small uncertainty of the average 
carbon balance at the country level and by land use (with stan-
dard error on the average C4p1000

bal
 ranging between 3 × 10−5 and 

2.6 × 10−4 Mg ha−1 year−1, depending on the land use). The uncer-
tainty on the mean carbon saturation was more noticeable and sig-
nificantly influenced by the uncertainty of the soil input variables, 
and of the Hassink's and Faloon's equation parameters. At the 
country scale, 22% of the area had uncertain status (i.e. could not 
be classified as saturated or unsaturated because of the uncertainty 
attached to the carbon saturation deficit computation). However, 
despite this uncertainty, the general trends and differences among 
land uses remained robust.

4.4  |  Effect of climate change on the 
carbon balance

We evaluated the additional carbon inputs into the soils needed to 
reach the 4‰ objective (ΔCin, Equation 4) with the climate data from 
projections based on the 8.5 RCP scenario, for the 2020– 2050 pe-
riod. Climate change resulted in an overall increase in carbon input 
levels required to maintain current stocks or to reach the 4 target, 
mainly because of the effect of temperature on SOC mineralization. 
ΔCin values were, on average, 0.369 ± 0.001 Mg ha−1 year−1 higher 
compared to ΔCin assuming current climate conditions. This repre-
sents an increase in additional carbon input of 36%, caused by cli-
mate change, to reach the 4‰ target. This additional carbon input 
also equaled on average 14% of C0

in
 amounts (17%, 13%, 15% and 

12% for unimproved grasslands, improved grassslands, crops and 
forests, respectively). This increase in ΔCin was not negligible when 
compared to the C4p1000

bal
 values obtained in our work, and may limit 

the ability of many soils to reach the 4‰ target. On the other hand, 
the increase in CO2 concentrations might also result in an increase in 
plant productivity. For instance, Guenet et al. (2018) showed that a 
large increase in plant productivity (+20%) could result, at the global 
level and by 2050, from the increase in atmospheric CO2 concen-
trations. Wieder et al. (2015) concluded that an increase in plant 
productivity between +10% and +20% depends on whether nutrient 
availability was considered or not. In our work, C0

in
 values, represent-

ing carbon input needed to sustain current stocks, were on average 
11% higher when considering climate change. Hence, NPP increases 
related to CO2 concentration increase could compensate for addi-
tional SOC mineralization related to temperature increases and en-
able maintaining current stocks. However, the effect of temperature 
increase is likely to overrule the NPP increase in the perspective of 
a 4‰ target, as our results regarding the increase in ΔCin suggest. 
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These figures are nevertheless hypothetical, as it is currently dif-
ficult to assess the future trend in plant productivity on large areas 
such as France. They are expected to vary considerably spatially 
(Wang et al., 2019), resulting from spatial and temporal interac-
tions between temperature, water and nutrients availability, and 
atmospheric CO2 concentrations (Ainsworth et al., 2020). Our result 
based on a single projected climate time series should of course be 
tested using other climate projections for the same RCP scenario (as 
in Wiesmeier et al., 2016) and possibly on other RCPs. In addition 
to the choice of the specific RCP, the choice of a climate model for 
representing RCP effects at a global scale and regional models for 
downscaling climatic variables and, in turn, estimates of RothC input 
variables (temperature, precipitation and PET) is particularly critical 
given the sensitivity of the model to these factors.

4.5  |  Feasibility of the 4‰ target

As shown in Table 1, 94.8% of the cropland area were considered 
unsaturated (in terms of mineral- associated SOC), in agreement with 
the results obtained by other authors (Angers et al., 2011; Chen 
et al., 2018), but mostly with a negative Cbal. With grasslands, this 
percentage was lower than for croplands but remained high for 
improved grasslands (70.1%). The majority of soils under improved 
grasslands also showed negative C4p1000

bal
 values. These numbers sug-

gest that for croplands and improved grasslands additional C stor-
age is possible but C inputs to the soil are likely to be the limiting 
factor. Because of the high proportion of unsaturated soils in these 
two land use classes, storage would likely be in the fine fraction, and 
hence would lead to stabilized SOC stocks. This result is in line with 
several authors who claimed that restrictions due to available bio-
mass production and associated removals by human appropriation 
is one of the most severe limitations for the 4‰ objective (Poulton 
et al., 2018; Zomer et al., 2017). In unimproved grasslands, most soils 
had positive C4p1000

bal
 values (90.4%), but 59.1% were saturated. There, 

C storage occurs thanks to a positive C balance but SOC stocks are 
likely to be less stabilized, because the fine fraction is often al-
ready saturated. The situation is more contrasted for forests, with 
56.5% of the area unsaturated, among which 25.5% have a nega-
tive C budget. Saturation of areas like the pine forests in Landes de 
Gascogne (southwest France) on the sandy soils and forest in the 
Massif Central and Vosges areas was in line with the recent estimate 
made by Chen et al. (2018), although the total area was smaller in our 
study. The proportion of saturated sites in forests increased from 
43.5% to 56.9% when considering not only the current SOC stocks 
but also the 4‰ target.

This combination of two indicators (carbon balance and SOC sat-
uration) makes it possible to qualify the different regions of mainland 
France in terms of their suitability to achieve the 4‰ objective as well 
as identifying best management strategies. In croplands, the main 
limiting factor is the availability of C resources, thus highlighting the 
interest of farming practices that produce and return additional bio-
mass to the soils, such as cover crops (Poeplau & Don, 2015), straw 

management (Liu et al., 2014), increasing the duration of sown grass-
lands and agroforestry systems (Cardinael et al., 2017; Lorenz & Lal, 
2014). From a long- term perspective, plant breeding and technologi-
cal developments increasing plant productivity, especially those tak-
ing advantage of future higher atmospheric CO2 concentrations, or 
altering C management within the plant (e.g. higher root:shoot ratio; 
root exudation) may also contribute to increase C inputs in cropland 
soils (Bailey- Serres et al., 2019). Incorporating more organic wastes 
from urban or industrial sources would be another way to increase 
soil C stocks in cropland areas. In mainland France, urban and in-
dustrial wastes represent 4.6 Tg C year−1, from which only 24% are 
already spread on agricultural soils. Compared to the amount of 
animal manure (10 Tg C year−1), these figures show that urban and 
industrial wastes represent a significant source of C (ADEME, 2007; 
Marsac et al., 2018). However, using this resource is restricted based 
on soil contamination concerns and social ‘acceptability’.

For unimproved grasslands, and to a lesser extent for forests, 
one key limitation is that many soils are already saturated. A negative 
saturation deficit does not necessarily indicate that soil cannot store 
additional SOC. It merely indicates locations where an increase in Cin 
will be less likely to be associated with fine mineral particles. Cotrufo 
et al. (2019) clearly showed that the fine fraction of European grass-
lands and forest soils does reach a saturation level but not the coarse 
fraction. Once the mineral- associated SOC is saturated, any increase 
in SOC is likely to require higher increase in carbon input, compared 
to the unsaturated case, because the increase in SOC will be made 
of uncomplexed SOC, with presumably higher turnover. RothC does 
not represent this process, and any increase in SOC requires the 
same increase in organic carbon input into the soil whatever the SOC 
level. Hence, in saturated conditions, the required carbon input lev-
els, as estimated by RothC, might be underestimated.

Moreover, SOC stocks in saturated zones with a negative carbon 
balance may currently be particularly at risk of losing C (Meyer et al., 
2017). There, Cin is not high enough to maintain current stocks and 
a significant proportion of SOC is found in the uncomplexed frac-
tion. These soils are found, for instance, in western Brittany where 
the grassland- based livestock production is concentrated and where 
SOC mineralization is potentially high due to climatic conditions and 
relatively low soil clay content.

5  |  CONCLUSION

Taken together, our results show that there is a room for additional C 
storage in some mainland French soils. The aspirational target of 4‰ 
may however not be achievable in large parts of mainland France, 
both because of limited C availability in some areas (especially 
under croplands, unless land management practices are modified) 
and because of soil organic carbon saturation (i.e. physicochemical 
limitations to SOC storage in the fine mineral fractions) in others. In 
unimproved grasslands, with 65.2% of SOC saturation in topsoils, 
there is, on average, high enough NPP returns to the soil to reach the 
target, but the additional carbon would be largely stored in relatively 
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labile fractions. In other land use types, additional organic carbon 
returns to soils would be needed to reach the target. For instance, 
in croplands, where topsoils are mostly unsaturated, reaching the 
target requires additional annual biomass production and return to 
the soil (e.g. through cover crops). In forests, 43.5% of the topsoils 
are already saturated which implies that the increase in carbon re-
turns to soils could be less efficient for stabilized SOC accumulation. 
This approach makes it possible to identify vulnerable SOC stocks, 
particularly those characterized by a negative balance in saturated 
soils. The main recommendation for mainland France would be to 
prioritize NPP returns in cropland soils that are unsaturated and 
have a negative carbon balance and to protect SOC in forests and 
unimproved grasslands given their high stocks and relatively high 
saturation levels.
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