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Abstract: The ability of Trichoderma reesei, a fungus widely used for the commercial production of
hemicellulases and cellulases, to grow and modify technical soda lignin was investigated. By quan-
tifying fungal genomic DNA, T. reesei showed growth and sporulation in solid and liquid cultures
containing lignin alone. The analysis of released soluble lignin and residual insoluble lignin was
indicative of enzymatic oxidative conversion of phenolic lignin side chains and the modification
of lignin structure by cleaving the β-O-4 linkages. The results also showed that polymerization
reactions were taking place. A proteomic analysis conducted to investigate secreted proteins at
days 3, 7, and 14 of growth revealed the presence of five auxiliary activity (AA) enzymes in the
secretome: AA6, AA9, two AA3 enzymes), and the only copper radical oxidase encoded in the
genome of T. reesei. This enzyme was heterologously produced and characterized, and its activity
on lignin-derived molecules was investigated. Phylogenetic characterization demonstrated that this
enzyme belonged to the AA5_1 family, which includes characterized glyoxal oxidases. However,
the enzyme displayed overlapping physicochemical and catalytic properties across the AA5 family.
The enzyme was remarkably stable at high pH and oxidized both, alcohols and aldehydes with
preference to the alcohol group. It was also active on lignin-derived phenolic molecules as well as
simple carbohydrates. HPSEC and LC-MS analyses on the reactions of the produced protein on
lignin dimers (SS ββ, SS βO4 and GG β5) uncovered the polymerizing activity of this enzyme, which
was accordingly named lignin copper oxidase (TrLOx). Polymers of up 10 units were formed by
hydroxy group oxidation and radical formation. The activations of lignin molecules by TrLOx along
with the co-secretion of this enzyme with reductases and FAD flavoproteins oxidoreductases during
growth on lignin suggest a synergistic mechanism for lignin breakdown.

Keywords: Trichoderma reesei; technical lignin; copper radical oxidase

1. Introduction

Agaricomycetes have been long studied for their ability to mineralize woody biomass.
A number of representative white-rot fungi belonging to the Basidiomycetes, such as
Phanerochaete chrysosporium, Trametes versicolor, and Pleurotus ostreatus, have in particular
been analyzed because of their effectiveness in converting lignocellulosic material into
CO2, primarily due to the enzymes (see [1], 2015, and references therein) and small organic
molecules that they secrete during growth on such biomass. There is continual interest in
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obtaining fermentable sugars [2–4], high value animal feed [5], and high value chemical
precursors to replace fossil-fuel-derived compounds through environmental processes,
and the initiative towards zero waste within a circular bioeconomy framework [6]. This
continues to drive towards understanding further how secreted microbial enzymes interact
with their substrates and each other, and what factors prevent or enhance such interactions.

The impact of the connectivity of the individual components within woody and non-
woody lignocellulosic feedstocks on their biodegradability has to be understood, and the use
of proteomic, transcriptomic and secretomic tools to understand the microbial enzymatic
mechanisms is greatly expanding this knowledge [7–9]. Many recently published works
have concentrated on these-Omic approaches coupled with biochemical and microbiological
analysis for the fungal degradation of the lignocellulosic components from divergent plant
sources [7,8,10–14]. The arsenal of enzymes that these fungi secrete at different time points
of growth are still largely unknown, but their presence leads to an empirical improved boost
in saccharification for the production of biofuels or the release of small molecules of interest
for further bioconversion. Changes to the composition of the biomass have facilitated
the study of enzyme synergies and approaches for determining the systematic order of
biomass deconstruction, and especially the untangling of the lignin component from the
polysaccharides [15]. However, due to the recalcitrant nature of the lignin component,
coupled with obtaining a well-characterized native lignin through chemical extraction,
less is known about how fungi specifically degrade lignin, either native or technical from
industrial processes, compared to that from the more composite lignocellulose.

Investigations into a successive degradation pattern of wood colonization by fungi
have illustrated that the Basidiomycetes dominate the initial stages of deconstruction of
the biomass, while Ascomycetes take over this role in the later stages [16,17]. Ascomycetes
fungi are generally regarded as soft-rot degraders of various forms of plant biomass, and
compared to the basidiomycetes, their ability to degrade lignin is considered as being
limited [18,19]. Soft-rot fungi are found on a wide array of lignocellulosic substrates, such
as herbaceous plant debris (wheat straw), whereas basidiomycetous decayers are usually
restricted to wood [20]. One possibility suggested is that ascomycetes have a limited
arsenal of lignin-attacking enzymes, and so are capable of attacking only the phenolic units
in lignin which are chemically more labile than the remaining ether-linked, nonphenolic
units [20,21], which require action of stronger oxidants, such as the oxyradicals produced
by ligninolytic peroxidases or laccases in the presence of various redox mediators. In 2007,
Shary and co-workers demonstrated that the ascomycete Daldinia concentrica produced a
phenol oxidase activity that could act directly on such phenol units, and proposed that
this cleavage of the Cα-Cβ propyl side chains was one of the major mechanisms of this
fungus being able to degrade lignin [22]. Another suggestion for the production of these
oxidases is the natural production of H2O2 to act as a bactericide in the environment [23].
The coprophilous ascomycete, Podospora anserina, more known for its ability to degrade
carbohydrate, has been one ascomycete studied for its ligninolytic activities due to its
ease of culture and genetic analysis. This fungus has been shown to produce laccases,
which are involved in phenolic compound oxidation, although a role in actual lignin
depolymerization was inconclusive [24], and a catalase capable of harnessing released
hydrogen peroxide [25]. The fungus has also been shown to degrade lignin through
the reduction of β-O-4′ aryl ether linkages, a linkage that represents more than 50% of
all inter-unit linkages of native lignins (softwood: 45–50%, hardwood: 60–80%, grasses:
69–94%) [26–28]. Previously, an extracellular β-etherase capable of cleaving this bond was
isolated from an ascomycete of the genus Chaetomium [29]. Furthermore, the released
phenolics further stimulated growth of P. anserina due to augmented radical oxygen species
production [27].

As a component of the secreted enzymatic arsenal utilized by fungi, the copper radical
oxidases (CRO, previously also known as radical-copper oxidases; [30]) have generally
been regarded as an accessory enzyme in the ligninolysis process, generating H2O2 for the
heavy cleavage action of peroxidases [31]. They have subsequently been found to require
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themselves the presence of a peroxidase or catalase in a two-fold mechanistic function:
(1) to utilize the H2O2 produced during catalysis and thus avoid auto-inactivation, and
(2) for full activation of the resting state of the CRO [32–34]. The genes encoding CROs
are widely distributed in the Fungal Kingdom, and the copper-binding catalytic center is
well preserved. Five CRO subfamilies have been recognized for Basidiomycetes [35,36], all
belonging to the AA5_1 family of the CAZy classification [37,38], and clearly separate from
the galactose oxidase (GalOx) clades in AA5_2 [39], although recent studies are showing
the existence of AA5-classified oxidase from the Ascomycete Penicillium rubens with a
functional overlap between the two subfamilies [40]. Glyoxal oxidase (GLOX) has been
the most extensively studied of the AA5_1 CROs to date [32,36,41], with their ability to
utilize an array of aldehydes and α-hydroxycarbonyls as the substrates converting them in
sequential reactions to carboxylic acids [35,36].

During the published study on three basidiomycetes grown on a technical soda lignin,
Protobind 1000, a number of enzymes were identified in the secretomes specific to growth
of the fungi on lignin alone, including CROs [42]. As part of the same study, the ascomycete
Trichoderma reesei was also examined, initially as an outlier as it is known as a cellulolytic
fungus rather than a lignocellulolytic one [43]. This paper describes the identification,
cloning, heterologous expression of a CRO identified in the secretome, together with an
investigation into its substrate specificity. The relation of this enzyme to the residual
technical soda lignin after growth of T. reesei is also discussed.

2. Materials and Methods
2.1. Fungal Strain

Polyploid strain of the fungus Trichoderma reseei BRFM 1104 (QM6a) was obtained
from the International Centre of Microbial Resources, Marseille, France (CIRM-CF; https:
//www.cirm-fungi.fr, accessed 7 August 2021). The identity of the strain was checked
by morphological observations and molecular analysis of Internal Transcribed Spacer
sequences compared to Genbank [44]. The strain was maintained on potato dextrose agar
(Sigma-Aldrich, St. Louis, MO, USA) slants at 4 ◦C.

2.2. Growth on Lignin

The soda technical lignin (Protobind 1000) used in this study was produced from a
wheat straw and Sarkanda grass mix and purchased from GreenValue Enterprises LLC
(Media, PA, USA). The sample was analyzed for Klason lignin (88.1%), carbohydrates (1.9%,
of which 1.2% xylose, 0.3% arabinose, 0.1% galactose and 0.2% glucose), free phenolic
monomers (1.4%) and ash contents (1.4%) [42].

From agar slants, T. reseei was transferred and grown on potato dextrose agar plates
(Sigma-Aldrich, St. Louis, MO, USA). Cultures on minimal media plates containing 10 g/L
technical soda lignin and in submerged cultures containing 100 mL of lignin-containing
media (10 g/L technical soda lignin) were performed as previously described [42]. Control
conditions were supplemented with 1 g/L glucose and 2.5 g/L maltose for plate and liquid
cultures, respectively. All cultures were performed in duplicate.

Fungal growth on plates was followed by measuring the radial expansion of the
fungus (cm/day). Growth in liquid cultures was followed by quantifying the fungal DNA
material and relating it to the mycelial dry weight as previously described [42,45].

Residual solid material from liquid cultures was harvested and used for the character-
ization of insoluble lignin. Concentrated supernatants were used for proteomic analysis.
The flow through from the concentration step was also collected to analyze changes in the
water-soluble components of technical soda lignin.

2.3. Characterization of Residual Lignin

Ten milliliters (10 mL) of culture supernatant from day 14 of growth and the control
were used to analyze soluble lignin residues by High Pressure Size Exclusion chromatogra-
phy method (HPSEC) (Dionex Ultimate 3000, Thermo Scientific, Saint Aubin, France) and
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liquid chromatography–mass spectrometry (LC–MS) (UHPLC, Thermo Scientific; Impact II,
Bruker, Billerica, MA, USA), after extraction with ethyl acetate. The control consisted of the
culture media containing lignin in the absence of fungi and was incubated and recovered
under the same conditions.

Residual technical soda lignin PB1000 was recovered after fungal growth by the cen-
trifugation of the culture medium on day 14. The insoluble fraction was analyzed by
HPSEC and quantitative 31P NMR (Ascend 400 MHz Spectrometer, Bruker). The thioaci-
dolysis monomers p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) were also analyzed
as their trimethylsilyl derivatives by gas chromatography−mass spectrometry (GC–MS,
Saturn 2100, Varian, Palo Alto, CA, USA) as previously described [46]. The GC-MS appa-
ratus was equipped with a poly (dimethylsiloxane) capillary column (30 m × 0.25 mm;
SPB-1, Supelco, Bellefonte, PA, USA) operating in the temperature program (40 to 180 ◦C at
30 ◦C/min, then 180 to 260 ◦C at 2 ◦C/min). The determination of the thioethylated H, G,
and S monomers was performed from ion chromatograms reconstructed at m/z 239, 269,
and 299, respectively, as compared to the internal standard (heneicosane) signal measured
from the ion chromatogram reconstructed at m/z (57 + 71 + 85).

The detailed description of the analysis methods and the parameters used have been
previously described [42].

2.4. Proteomic Analysis

The proteomic analysis was performed as previously described [42] at PAPPSO plat-
form facilities (http://pappso.inra.fr/, accessed 7 August 2021) for protein identification.
LC–MS/MS analyses were performed using a NanoLC Ultra system (Eksigent, Dublin, CA,
USA) connected to a Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific) and an
Ultimate 3000 RSLC system (Thermo Fisher Scientific, Waltham, MA, USA) coupled to an
LTQ-orbitrap discovery mass spectrometer (Thermo Fisher Scientific) by nanoelectrospray
ion source on both systems.

All MS/MS spectra were integrated against the JGI databases for T. reseei v2.0 (
https://genome.jgi.doe.gov/Trire2/Trire2.home.html, accessed 7 August 2021) using the
X!TandemPipeline (X!Tandem version 3.4.3), the open search engine developed by PAPPSO
(http://pappso.inra.fr/bioinfo/xtandempipeline/, accessed 7 August 2021). Data filtering
was achieved according to a peptide E-value < 10−2, protein E-value < 10−3 and to a mini-
mum of two identified peptides per protein. As some of the proteins were only detected by
one of the used methods, identifications from both mass spectrometers were combined.

All amino acid sequences were obtained from JGI Mycocosm [47].

2.5. Phylogenetic Study and Sequence Alignments

The sequences selected to build this tree are public accessions from NCBI (https:
//www.ncbi.nlm.nih.gov/, accessed 7 August 2021) and JGI. (https://mycocosm.jgi.doe.
gov/mycocosm/home, accessed 7 August 2021). These were cleaned of their peptide
signal and WSC domain(s) (cell wall integrity and stress response components) when
present. The multi-copy sequences from a single organism have been removed to avoid
redundancy. Only one representative sequence was included. A multiple alignment was
performed using MAFFT tool (version 7) following the accuracy-oriented method and
the option maxiterate 1000 input [48]. The quality of the alignment was confirmed by the
transitive consistency score [49]. TrimAl v1.2 was used to automatically remove spurious or
misaligned sequences with the automated option [50]. The phylogenetic tree was produced
from the NGphylogeny [51] and PhyML [52] (version 3.0) and formatted using iTOL [53].
Lignin copper oxidase (TrLOx) protein domains were predicted using NCBI Conserved
Domain Search [54]. The molecular structure was modelled using Phyre2 [55] and the
images were generated using Pymol Molecular Graphics System (Version 2.0, Schrödinger,
LLC, New York, NY, USA).

http://pappso.inra.fr/
https://genome.jgi.doe.gov/Trire2/Trire2.home.html
https://genome.jgi.doe.gov/Trire2/Trire2.home.html
http://pappso.inra.fr/bioinfo/xtandempipeline/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://mycocosm.jgi.doe.gov/mycocosm/home
https://mycocosm.jgi.doe.gov/mycocosm/home
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2.6. Production of TrLOx in Pichia pastoris

The sequence encoding TrLOx (GenBank accession number: MZ436831) was previ-
ously identified in the genome of T. reesei [56]. The native signal peptide sequence was
removed (MKPSPVASLLSVSLLSLTSCHA), and the cDNA sequence was codon optimized
for P. pastoris expression and synthesized (Genewiz, Leipzig, Germany). The synthetic
gene was cloned in pPICZ alpha A (Invitrogen, Cergy-Pontoise, France) vector in the
XhoI/XbaI site in frame with both the α-factor and the His6 tag at the C terminus of the
recombinant protein. Escherichia coli strain DH5α (Invitrogen) was used for vector storage
and propagation.

pPICZαA recombinant plasmids were linearized with PmeI and used to transform
competent P. pastoris SuperMan5 cells (BioGrammatics, Carlsbad, CA, USA) by electropora-
tion. Zeocin-resistant P. pastoris transformants were then screened for protein production.
Electrocompetent cells preparation, electroporation and screening were carried out as
previously described [57] and proteins were analyzed by SDS-PAGE.

The best-producing transformant was grown in 2 L buffered complex glycerol (BMGY)
medium (10 g/L glycerol, 10 g/L yeast extract, 20 g/L peptone, 3.4 g/L yeast nitrogen base
(YNB), 10 g/L ammonium sulfate, 100 mM phosphate buffer pH 6 and 0.2 g/L of biotin) at
30 ◦C and 200 rpm to an optical density at 600 nm of 2–6. Cultures were then centrifuged
at 6000 rpm for 5 min and the pellet was dissolved in 100 mL buffered methanol-complex
(BMMY) medium (10 g/L yeast extract, 20 g/L peptone, 3.4 g/L YNB, 10 g/L ammonium
sulfate, 100 mM phosphate buffer pH 6 and 0.2 g/L of biotin) supplemented with 1 mL/L
Pichia trace minerals 4 (PTM4) salt solution. Protein production was induced at 20 ◦C
and 200 rpm by adding 3% methanol (v/v) daily for 3 days. The culture supernatant was
collected by centrifugation (4000 rpm for 10 min at 4 ◦C).

The preparation of the used media is described in the manufacturer’s manual
(Invitrogen).

2.7. Protein Purification

The pH of the collected culture supernatant was adjusted to 7.8 with NaOH (1 M)
and sterile filtered (pore size; 0.22 m; Express Plus; Merck Millipore, Guyancourt, France).
Immobilized metal affinity chromatography (IMAC) using an Äkta purifier (GE Healthcare
Life Sciences, Buc, France) was used for the purification of His-tagged TrLOx protein.
The sample was loaded onto a 5 mL HisTrap HP column prepacked with Ni Sepharose and
equilibrated with binding buffer (50 mM Tris-HCl, pH 7.8, 150 mM NaCl). The proteins
were eluted with 30% elution buffer (50 mM Tris-HCl, pH 7.8, 150 mM NaCl, 500 mM
imidazole). Recovered recombinant proteins were concentrated using 10 kDa vivaspin
concentrator (Sartorius, Aubagne, France) then dialyzed against 50 mM sodium phosphate,
pH 7.

2.8. Protein Characterization

The concentration of the purified proteins was determined spectrophotometrically at
280 nm (ε = 193,513 M−1·cm−1) using a NanoDrop 2000 spectrophotometer (Thermo Fisher
Scientific). Purified proteins were loaded onto 12% SDS-polyacrylamide gel, which was
then stained with Coomassie blue, and the molecular mass of the protein was estimated
according to the standard markers PageRuler prestained protein ladder (10 to 180 kDa;
Thermo Fisher Scientific).

2.9. Enzyme Activity

The activity of TrLOx was measured spectrophotometrically by detecting the H2O2-
dependent oxidation of ABTS (Sigma-Aldrich) by horseradish peroxidase (HRP; Sigma-
Aldrich) [36,58,59]. The reaction mixture contained 50 mM sodium tartrate buffer, pH 6,
7 units of type II HRP, 0.1 mM ABTS, 173 nM TrLOx enzyme and 5 mM of substrate.
The reaction was initiated by the addition of the substrate, and the activity was followed
spectrophotometrically at 420 nm and 30 ◦C for 2 min. TrLOx activity was tested on 70 dif-



J. Fungi 2021, 7, 643 6 of 24

ferent substrates purchased from Sigma-Aldrich including aromatic compounds, phenolics,
aldehydes, ketones, carboxylic acids, furans, saccharides, lactones and alcohols (Table 1).

Table 1. Substrate specificity of TrLOx.

Substrate Activity (nkat/mg)

Phenolic

Syringyl alcohol 0.44 ± 0.01
Caffeic acid methyl ester 0.24 ± 0.01

p-coumaric acid methyl ester 0.18 ± 0.01
Vanillin 0.12 ± 0.01

Acetovanillone 0.10 ± 0.02
Homovanillic acid 0.08 ± 0.01

Sinapic acid 0.05 ± 0.001
Isovanillin 0.05 ± 0.01

4-Ethylphenol 0.04 ± 0.01
Vanillyl alcohol 0.03 ± 0.001

p-coumaryl alcohol 0.02 ± 0.01
4-vinylguaiacol nd

p-hydroxybenzaldehyde nd
Syringol nd

Syringaldehyde nd
p-coumaric acid nd

Syringic acid nd
Sinapic acid methyl ester nd

Homovanillyl alcohol nd
Eugenol nd

Vanillyl acetone nd
Ferulic acid nd

Ferulic acid methyl ester nd
Coniferyl alcohol nd

Guaiacol nd
4-ethylguaiacol nd

Vanillic acid nd
Caffeic acid nd

Chlorogenic acid nd
Phenol nd

Carbohydrate

Xylose 1.73 ± 1.31
Galactose 1.27 ± 0.37
Glucose 0.64 ± 0.01

Raffinose 0.44 ± 0.01
Cellobiose nd
Fructose nd
Maltose nd

Maltotriose nd

Furan

Furfuryl alcohol 12.13 ± 0.29
5-Hydroxymethylfurfural 1.30 ± 0.36

5-Hydroxymethyl-2-furancarboxylic acid 0.43 ± 0.02
5-formylfuran-2-carboxylic Acid 0.30 ± 0.08

Furfural nd
Furan-2,5-dicarbaldehyde nd

Alcohol

Veratryl alcohol 5.49 ± 1.36
2-phenylethanol 4.43 ± 0.22

1-phenyl-3-propanol 1.92 ± 0.04
Glycerol 1.91 ± 0.09

Cinnamyl alcohol 0.99 ± 0.01
1-phenylethanol 0.81 ± 0.06

Sorbitol nd
(±)-2-octanol nd

Methanol nd
Diethanolamine nd
Triethanolamine nd
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Table 1. Cont.

Substrate Activity (nkat/mg)

Aldehyde, Ketone,
Carboxylic acid

Dihydroxyacetone 268.86 ± 5.71
Methylglyoxal 26.30 ± 1.15
Glyoxylic acid 1.73 ± 0.16
Veratric acid 0.93 ± 0.02

Formaldehyde 0.76 ± 0.11
Glyceraldehyde 0.64 ± 0.02

Glyoxal 0.51 ± 0.03
Acetaldehyde nd

Veratraldehyde nd
Phenyl glyoxylic acid nd

Acetone nd
Acetophenone nd

Quinone Benzoquinone (quinone) nd

Aniline Ortho-anisidine (aniline) nd

Lactone D-Xylono-1,4-lactone nd
nd: not detected.

The effect of the metal ions Cu2+, Mg2+, Ni2+, Co2+, Mn2+, Fe2+ and Zn2+ was de-
termined by measuring enzyme activity after pre-incubating the enzyme with 1 mM or
10 mM of metal for 0.5 h, 4 h and 24 h at 25 ◦C and 450 rpm shaking. The effects of the
chelating agent EDTA and the inhibitor sodium azide were determined in a similar way.

TrLOx stability in H2O2 was investigated by incubating the enzyme with different
concentrations (2, 4, 6, 8 and 10 mM) of H2O2 over different time periods (2, 4 and 24 h) at
4 ◦C. H2O2 was removed before adding the enzyme to the reaction mixture by washing the
samples with buffer in NanoSEP OMEGA membrane 10 kDa centrifugal devices (PALL,
Saint-Germain-en-Laye, France).

In both assays, the standard activity assay was followed with 10 mM dihydroxyace-
tone as substrate. Enzyme activity is given as nanokatals per milligram of protein used
in the reaction (nkat/mg), where 1 kat is the conversion rate of 1 mol of substrate per
second. Relative activity was calculated as percentage of the activity in the absence of the
tested compounds.

2.10. Steady-State Kinetics

The kinetic constants for TrLOx were determined following the standard activity test
and using dihydroxyacetone (0.005–100 mM), methylglyoxal (0.3–50 mM), galactose (0.3–
1000 mM), glycerol (0.3–1000 mM), furfuryl alcohol (1–100 mM) and 2-phenylethanol (6–50
mM) as substrates. The Michaelis-Menten plots were used to calculate the kinetic parame-
ters using OriginPro, Version 2020b (OriginLab Corporation, Northampton, MA, USA).

The generated H2O2 during TrLOx activity on the selected substrates was also mea-
sured in a coupled reaction with HRP/Amplex Red (Thermo Fisher Scientific). The reaction
was carried out as described previously with modifications [60]. A total volume of 100 µL
contained 100 mM tartrate buffer pH 6, 50 µM Amplex Red, 7.1 U/mL HRP, 173 nM TrLOx
and 1 mM substrate. The fluorescence was followed at an excitation wavelength of 560 nm
and an emission wavelength of 595 nm using a Tecan Infinite M200 plate reader (Tecan,
Männedorf, Switzerland). The slope from the standard curve relating H2O2 concentration
and fluorescence was used to calculate the amount of generated H2O2 over time (0–20 µM
H2O2; 374.34 counts/µmol).

2.11. Temperature and pH Effect

The optimum temperature was determined against dihydroxyacetone from 20 ◦C
to 80 ◦C, with 5 ◦C increments. The pH optimum was measured in sodium tartrate and
sodium phosphate buffers over a pH range of 2 to 6 and 6 to 8, respectively, in 0.5 pH
unit increments.
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The thermal stability was determined by incubating the enzyme at 30, 40, 50, 60,
and 70 ◦C for 0.5, 1, 2, 4, 6, 8, 24 and 48 h. The enzyme was cooled on ice for 5 min
before measurement.

Similarly, the pH stability was analyzed by incubating the enzyme at 4 ◦C for 1, 2, 4, 6,
8, 24 and 48 h in sodium tartrate and sodium phosphate buffers in a pH range of 2 to 6 and
6 to 8, respectively, in 0.5 pH unit increments.

The residual activities were calculated as percentage of the measured activity before
incubation.

2.12. Activity of TrLOx on Lignin Derivatives

The activity of TrLOx on the lignin-derived molecules syringol and syringyl alcohol
was investigated by LC-MS. The reaction mixtures containing 10 mM of the substrate were
incubated for 24 h at 30 ◦C and 850 rpm shaking and filtered (0.45 µm, GHP Acrodisc,
Pall Gelman, Port Washington, NY, USA) before injection analysis on UltiMate 3000 LC
system (Thermo Fisher Scientific) combined with an electrospray ionization mass spec-
trometer (ISQ-EM, Thermo Fisher Scientific). Analysis was performed using BEH C18
column (particle size 1.9 µm, length 150 mm, Waters, Milford, MA, USA). The samples
were loaded at 0.2 mL/min and 30 ◦C. Used solvents were 0.2% formic acid (solvent A)
and 100% acetonitrile (solvent B). Separation was achieved by multi-step gradient from
5–80% solvent B in 52 min. Negative and positive ion ESI–MS spectra (10–2000 m/z)
were acquired (vaporizer temperature 61 ◦C, ion transfer temperature 300 ◦C, sheath gas
pressure 21.8 psig, Auxiliary gas pressure 2.4 psig, sweep gas pressure 0.5 psig). The peaks
were assigned according to the mass of the deprotonated (negative mode) and protonated
(positive mode) ions and fragmentation pattern, and to the theoretical masses expected
after the injection of pure commercial compounds.

The activity of TrLOx on three lignin dimers was assessed by HPSEC. The reactions
were carried out for 24 h at 30 ◦C with 850 rpm shaking and 3 different lignin dimers were
used as substrates: BMA32 (SS βO4), AMA170 (SS syringaresinol) and AMA181 (GG β5).
The dimers were synthesized using previously described methods [61] for dimers BMA32,
AMA170 and [62] for dimer AMA181). The description of the HPSEC and LC-MS analysis
and the parameters used have been previously detailed [42].

3. Results and Discussion
3.1. T. reesei Growth on Lignin

The ability of T. reseei BRFM 1104 to grow on 10 g/L soda lignin derived from wheat
straw was investigated over a 14-day period. Fungal growth was observed on lignin-
containing plates and the average radial expansion on this substrate was 0.62 cm/day
(Figure S1A). Supplementing the plates with glucose increased the radial expansion rate to
0.89 cm/day and enhanced sporulation (Figure S1B). However, the typical green spores
were also observed on lignin-alone-containing plates.

The growth in liquid cultures was measured by extracting and quantifying fungal
genomic DNA. Although growth was greater in maltose-supplied medium, T. reesei was
still able to grow on lignin alone with maximum growth reached after day 3 and the
total quantified fungal genomic DNA was found to decrease overtime in both conditions
(Figure S1C). This can be explained by cell death and DNA denaturation in the minimal
culture medium containing only lignin.

The growth and sporulation in the absence of carbon source other than lignin indicates
that T. reesei can use this complex polyaromatic as a source of nutrients to complete its
lifecycle. Extensive studies on lignin modification were carried out using basidiomycetes
while ascomycetes have been described for their specificity towards plant polysaccharides.
T. reesei for example, is widely used for the commercial production of hemicellulases and
cellulases, however, very little is known about its potential role in lignin modification.
A number of studies have reported the growth and activity of ascomycetes on lignin-rich
wood substrates [27,63–66]. The fungus Phoma herbarum utilized natural LignoBoost kraft
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lignin, lignosulphonate, lignin extracted from spruce wood and synthetic lignin as a sole
carbon source [67–69]. On the other hand, only two studies involved Trichoderma strains
including T. viride, and eighteen Trichoderma strains isolated from lignocellulose composts.
The growth of T. viride on basal mineral salt agar plates supplemented with 0.5 % lignin
have been qualitatively followed and the fungi showed mycelial growth as bluish-green
patches under this condition; however, the source of the lignin substrate used was not
specified [70]. The ligninolytic activity of Trichoderma strains isolated from lignocellulose
composts have been evaluated by measuring the decolorization effect, the enzymatic
activity and the concentration of released phenolic compounds during growth on dark
post-industrial lignin (wastewater originating from the pulp and paper industry) [71]. The
release of greater amounts of phenolics during growth on this substrate was associated
with high superoxide dismutase-like and horseradish-like activities. To our knowledge,
this study represents the first report confirming that T. reesei can grow and utilize a technical
soda lignin.

3.2. Characterization of Residual Lignin

The analysis of released soluble lignin monomers and oligomers after 14 days growth
of T. reesei revealed changes in the composition of this substrate, characterized by a signifi-
cant decrease in soluble high molar mass compounds (elution time < 18 min) (Figure 1A).
LC–MS analysis confirmed that the small phenolic molecules, vanillin, p-coumaric acid and
syringaldehyde almost completely disappeared in the fungal culture (Figure S2). This was
paralleled by an increase in the lignin-derived monomers p-OH-benzaldehyde, syringic
acid, and acetosyringone. The formation of acid compounds was probably due to the
enzymatic oxidative conversion of phenolic lignin side chains. The presence of benzalde-
hyde, on the other hand, indicates that ligninolysis is happening through Cα-Cβ cleavage
reactions [72].
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Figure 1. HPSEC analysis of residual lignin substrate. (A) water-soluble residual lignin fraction and
(B) water insoluble residual lignin fraction. HPLC was performed on the ethyl acetate extracts of the
culture supernatants and pellets recovered from soda lignin after 14-day incubation with T. reesei;
chromatograms normalized on IS. Eluent tetrahydrofuran (THF), 1 mL/min; detection at 280 nm;
100 Å PL-gel column (Polymer Laboratories, 5 µm, 600 mm × 7.5 mm). The lignin control was
dissolved in the culture media in the absence of fungi and incubated under the same conditions. DP:
degree of polymerization, IS: internal standard is toluene.
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HPSEC analysis of the insoluble lignin fractions indicated the consumption of almost
all the phenolic monomers (Figure 1B). Structural analysis of this fraction revealed a de-
crease of total free phenol content and a 67% decrease in the thioacidolysis yield, suggesting
that T. reesei modified the structure of lignin by cleaving the β-O-4 linkages (Table S1).
These structural features have also been observed during growth of Podospora anserina on
lignin-rich wood substrates [26,27]. A shift in the first peak representing oligomers to a
shorter retention was observed after fungal treatment and the polymers peak accumulated
into the higher area, indicating that polymerization reactions are also taking place.

3.3. Proteomic Analysis

To link the observed structural changes to potential enzymatic activities, proteomic
analysis of the secreted proteins during growth on lignin was performed. Previously,
the production of ligninolytic enzymes by ascomycetes was mainly demonstrated by
the discoloration of structurally similar dyes and measuring enzymatic activities (lignin
peroxidase, manganese peroxidase and laccase) in the culture supernatants [27,73,74]. In
this study, we report for the first time the enzymes produced by T. reesei during growth
on technical lignin. In total, 245 proteins were identified in the secretome during growth
on lignin alone (Table S2) and the highest number of proteins was detected on day 7 of
growth (Figure 2). The induced CAZymes (95 proteins) belonged predominantly to the
glycoside hydrolases (GH) families, with 14 GHs being detected exclusively in the absence
of maltose. T. reesei also secreted two polysaccharide lyases and five carbohydrate esterases
(CE), including CE1, CE5, CE9 and CE16.
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Figure 2. Distribution of CAZymes in genome and secretome of T. reesei. (A) genome and (B) secre-
tome of T. reesei on lignin at days 3, 7 and 14 of growth. AA, auxiliary activity enzymes; GH, glycoside
hydrolases; GT, glycosyl transferases; PL, polysaccharide lyases; CE, carbohydrate esterases; AA1,
multicopper oxidases; AA2, class II lignin-modifying peroxidases; AA3, glucose-methanol-choline
(GMC) oxidoreductases; AA3_2, aryl alcohol oxidase and glucose 1-oxidase; AA3_3, alcohol oxi-
dase; AA5, copper radical oxidases; AA6, 1,4-benzoquinone reductase; AA7, glucooligosaccharide
oxidases; AA9, AA11 and AA14 lytic polysaccharide monooxygenases; AA12, pyrroloquinoline
quinone-dependent oxidoreductase; TrLOx, lignin copper oxidase.
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Out of the 31 predicted auxiliary activity CAZymes in the genome of T. reesei [38,75,76],
only 5 were detected in the secretome. Interestingly, all induced AA enzymes are hydrogen
peroxide-producers. The role of these enzymes in lignin degradation was previously lim-
ited to the generation of hydrogen peroxide for the activity of peroxidases. However, the
lack of lignin peroxidase- and manganese peroxidase-encoding genes in T. reesei and the
detection of structural changes in lignin during growth suggest a direct role of enzymes of
this type in lignin modification by this fungus. The accumulation of hydrogen peroxide
leads to the generation of highly reactive hydroxyl free radicals which are able to depoly-
merize lignin and expose functional groups that can be in turn recognized and oxidized
by these enzymes. However, H2O2 accumulation can also have a detrimental effect on
fungal cells and enzymatic activity [77]. Interestingly, one peroxidase/catalase (JGI ID
70803) and one haem-peroxidase enzymes (JGI ID 73523) were detected in the secretome.
The proteins have a signal peptide and were more abundant at day 7 of growth on lignin.
The peroxidase/catalase protein identified in T. reesei secretome shared 58 % sequence
identity (Clustal Omega; Ref. [78]) with a previously described peroxidase/catalase from
Podospora anserina (B2ASU5) which have been found to be required during growth and uti-
lization of complex biomass like wood shavings and lignin [25]. This enzyme has also been
found to play a major role in detoxifying H2O2 during vegetative growth. The secretion of
these enzymes by T. reesei counterbalance the abundant presence of H2O2-producing AA
enzymes and confers resistance to the oxidative damage during growth on lignin.

Secreted AAs included one putative aryl-alcohol oxidase (AAO)/glucose-1-oxidase
(GO) (AA3_2) and one putative alcohol oxidase (AA3_3). These enzymes belong to the
glucose-methanol-choline oxidase/dehydrogenase protein superfamily and are character-
ized by the presence of flavin adenine dinucleotide as a cofactor [79]. It has been shown that
the enzymatic demethylation of lignin by fungi results in the accumulation of methanol
which then induces the production of alcohol oxidases [80]. In addition, AAO is potentially
implicated in lignin modification by acting on lignin-derived phenolic aromatic aldehydes
and acids [81–83]. Enzyme belonging to the AA3 family were previously identified in the
secretomes of several basidiomycetes [84,85] and ascomycetes [26,86] during growth on
lignin-rich substrates.

Another detected AA enzyme during growth on lignin was 1,4-benzoquinone re-
ductase (AA6). This enzyme catalyzes the reduction reactions of extracellular quinones
producing hydroquinones that can in turn oxidize oxygen producing reactive oxygen
species [87]. AA6 enzymes have been found to be induced by vanillin, vanillate, and
quinones in the basidiomycete Phanerochaete chrysosporium [88] and are involved in the
metabolism of low-molecular weight lignin fragments [89].

A lytic polysaccharide monooxygenase (LPMO, AA9) was also detected in the secre-
tome at day 7 of growth. LPMO AA9s are known for their activity on cellulose microfibrils,
and they have been identified in the secretomes of both ascomycetes and basidiomycetes
during growth on lignocellulosic biomass [90]. Their role in lignin modification was very
recently brought into light when the H2O2 generated by LPMO was favorably used for
lignin oxidation by lignin-degrading peroxidases [91]. Interestingly, LPMO was exclu-
sively detected in the condition containing technical lignin alone. The same finding was
previously reported with Pycnoporus sanguineus and Leiotrametes menziesii [42], suggesting
a role of these enzymes not only in cellulose deconstruction, but also directly in lignin
modification. Alternatively, it could be that lignin-derived molecules are involved in the
regulation of LPMO secretion on lignocellulosic biomass. It has also been shown that lignin
polymer can act as the electron donor of LPMOs during cellulose oxidation significantly
improving the enzymatic hydrolysis of cellulose [92].

During growth on lignin, T. reesei also secreted CRO (AA5). The fungus possesses
only one gene encoding for an AA5 protein, and the enzyme was detected as early as day
3 of growth and remained detectable until day 14. The detection of this enzyme in the
secretomes of T. reesei QM6a and three of its mutants have been previously reported during
growth on cellulose fibrous as a major carbon source [93]. AA5 enzymes share similar
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tertiary structure but have very different catalytic properties and low overall sequence
similarity [36,39,58]. They include AA5_1 (GLOX and other CRO), and AA5_2 enzymes
(GalOx, raffinose oxidase and alcohol oxidases) and act on a broad range of substrates
including alcohol- and aldehyde-containing molecules. Interestingly a large group of CRO
fall within the group of “other copper radical oxidases” annotated as CRO1 to CRO6 and
which functions are still unknown [35,94]. The secretion of these enzymes was previously
reported in P. chrysosporium during growth on lignin and thin wood sections [94–96] and in
Pycnoporus sanguineus and L. menziesii during growth on the same technical lignin used in
the current study [42]. Previously reported CRO enzymes induced on lignin belonged to
CRO1 (P. chrysosporium, Pycnoporus sanguineus, L. meziesii and Polyporus brumalis) CRO2
(Pycnoporus sanguineus, L. meziesii and Polyporus brumalis), CRO4 (P. chrysosporium) and
CRO5 (Pycnoporus sanguineus, L. meziesii and Polyporus brumalis) groups [42,96]. However,
the catalytic properties and the role of these enzymes in lignin modification have never
been investigated.

3.4. Phylogenetic Analysis

As the detected AA5 was the first reported from ascomycete to be induced on technical
lignin, the enzyme was targeted for heterologous production and in vitro characterization
in the aim of elucidating its role in lignin modification. The enzyme is referred to as lignin
oxidase (TrLOx). The phylogenetic tree grouping characterized and uncharacterized AA5_1
and AA5_2 enzymes from Basidiomycetes and Ascomycetes showed a clear distinction
between the two subfamilies (Figure 3). The AA5_1 subfamily further separates into two
subgroups with the first one containing mainly AA5_1 from Ascomycetes including TrLOx
and the second AA5_1 from Basidiomycetes with few exceptions. TrLOx clusters with its
homolog from T. virens which has been recently described for its role in normal hyphal
growth and morphology [97]. However, the substrate profile of GLX1 from T. virens has
not been investigated. In addition, none of the previously produced and characterized
AA5 enzymes fell in the same subgroup containing TrLOx, suggesting possible divergent
properties of this enzyme.

To identify variations in the amino acids previously described to be involved in
catalysis such as copper coordination, and substrate recognition, TrLOx protein sequence
was aligned with functionally characterized AA5_1 and AA5_2 enzymes (Figure S3). The
alignments showed conserved copper coordinating residues (Cys252, Tyr311, Tyr533,
His534 and His618). TrLOx shared higher similarity with characterized GLOX for residues
known to be involved in catalysis and substrate recognition of D-galactose in AA5_2
enzymes [40].

TrLOx encoding sequence contained five WSC domains at the N-terminal end
(Figure S4A). The function of this domain remains poorly studied. A recent study has
shown no contribution of WSC domain to the catalytic activity of an alcohol oxidase from
Pyricularia oryzae [98]. Instead, the authors have demonstrated a role of this domain in bind-
ing the enzyme to plant and/or fungal cell wall via xylans and fungal chitin/β-1,3-glucan.
Furthermore, Crutcher et al. (2019) have shown that GLX1 from T. virens binds to chitin
but not cellulose, lignin or peptidoglycan. Previously, a role in fungal responses to cell wall
disruption, oxidation, high osmolarity, and metals stress have also been presented [99].
GLX1-silenced T. virens mutants have shown reduced sporulation, hydrophobicity and a
loss of growth directionality in the hyphal tips due to the reduced production of H2O2 [97].
Taking these results into consideration, it is possible that the role of the WSC domain in
TrLOx is to resist to the stress induced by the presence of technical lignin in the culture.

The predicted molecular structure of TrLOx generated with copper oxidase from
Colletotrichum graminicola (PDB 6RYX) as template shows the conserved residues coordi-
nating the catalytic copper ion H960, H1044, Y959, and Y737 that forms the characteristic
thioether linkage to C678 (Figure S4C) [39,100,101].
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Figure 3. Phylogenetic tree of AA5 proteins. GenBank and JGI identifiers are given for all sequences.
Subfamilies AA5_1 (green: from ascomycetes; red: from basidiomycetes) and AA5_2 (black) are
indicated. Functionally characterized enzymes are indicated with a star (*). Multiple sequence
alignment was performed using MAFFT tool and the tree was constructed using NGphylogeny
and PhyML. The branches represent evolutionary changes measured in unit of genetic divergence.
The bar at the top provides the scale of the branch length.
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3.5. Production of Active TrLOx

The best-producing P. pastoris transformants were selected and used for the large-scale
production of TrLOx. IMAC purification yielded 32.5 mg/L of the recombinant protein.
On SDS-PAGE, TrLOx showed a homogeneous single band at ≈150 kDa, 34.2 kDa larger
than the theoretical molecular weight of the protein, suggesting the presence of glycosyla-
tion (Figure S4D). This was further supported by the prediction of 8 N-glycosylation and
34 O-glycosylation sites using NetNGlyc 1.0 and NetOGlyc 4.0, respectively [102,103].

Enzymatic activity was assayed by following H2O2 production in a coupled reaction
with HRP and ABTS. This method was previously used to measure the activity of glyoxal
oxidases and galactose oxidases [36,58,59]. The specificity of TrLOx towards seventy
different substrates was tested and the enzyme showed a broad range of activity (Table 1).

The highest activity was detected on dihydroxyacetone and the screening revealed
a weak activity towards glyoxylic acid, the best previously reported substrate for GLOX
from Pycnoporus cinnabarinus [36]. On the other hand, the activity on methylglyoxal, the
best substrate for GLOX from Phanerochaete chrysosporium, was higher [58]. High activity
on benzyl alcohols which are common structures in lignin was also observed. Furfuryl
alcohol and veratryl alcohol were for example very competent substrates. Unlike other
characterized GLOX enzymes, TrLOx showed weak activity on carbohydrates. These
substrates are readily oxidized by the related enzyme, GalOx [104]. However, TrLOx was
different from AA5_2 enzymes by showing higher activity on monosaccharides, notably
xylose and no detectable activity on polysaccharides [40,105]. In addition, AA5_2 have very
weak activity towards aliphatic, aromatic, phenolic and heterocyclic compounds compared
to TrLOx [106]. Interestingly vanillin, which was found to decrease in the cultures of
T. reesei on technical lignin was also oxidized by this enzyme.

The higher activity observed with dihydroxyacetone and methylglyoxal suggests that,
in contrast to GLOX, the enzyme favors hydroxyl compounds and recognizes to a lesser
extent aldehydes. In addition, polyols were very poor substrates which was reflected by
the drastic difference in the detected activities on glycerol compared to dihydroxyacetone.
Previously, dihydroxyacetone was found to be more efficiently oxidized by AA5_2 enzymes
compared to the standard substrate galactose [107,108]. The substrate has been found to
replace the water molecule at the equatorial site of the copper center [109]. Dihydroxyace-
tone can be hydrated generating gem-diol which have been found to be favored substrates
for AA5_2 enzyme [110].

The preferential oxidation of alcohol to their corresponding aldehydes was further
confirmed by product analysis of the oxidations of 5-hydroxymethyl furfural (HMF) deriva-
tives (Figure S5). HMF is particularly important as by-product from biorefineries that
can be transformed into high-value building blocks for green chemistry. The products
of the oxidation of HMF and HMFCA by TrLOx were 2,5-furandicarboxaldehyde (DFF)
and 5-formyl-2-furan carboxylic acid (FFCA), respectively, and no further conversion of
DFF and FFCA was observed. TrLOx clearly favors the oxidation of the alcohol group of
these substrates, further highlighting the difference with other AA5_1 enzymes such as
GLOX [34]. Our results suggest that enzymes originating from the same subfamily AA5_1,
namely TrLOx and GLOX, possess orthogonal activities and are potential candidates for
one-pot conversion of HMF to furandicarboxylic acid (FDCA). The oxidation of the alcohol
groups of HMF and HMFCA was previously reported for a newly characterized AA5_2
enzyme exhibiting aryl alcohol oxidase activity [101].

Kinetic analyses using preferred substrates revealed a classical Michaelian trend ex-
cept for galactose and glycerol which appear as strictly linear plots (Figure S6). The highest
catalytic efficiency was obtained on dihydroxyacetone (Kcat/Km = 5.89 s−1mM−1). How-
ever, TrLOx showed higher affinity to 2-phenylethanol (Km = 12.32 mM), methylglyoxal
(Km = 11.03 mM) and furfuryl alcohol (Km = 6.72 mM) compared to dihydroxyacetone
(Km = 24.16 mM) under the used conditions (Table 2).
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Table 2. Kinetic parameters of TrLOx with different substrates. Standard deviations are presented as
plus–minus values.

Substrate Vmax
(nkat/mg) Km (mM) Kcat (s−1) Kcat/Km

(s−1 mM−1)

Dihydroxyacetone 2455.81 ± 56.25 24.16 ± 1.44 142.19 5.89
Methylglyoxal 46.84 ± 6.39 11.03 ± 2.84 1.08 0.10

Furfuryl alcohol 13.28 ± 1.56 6.72 ± 1.91 0.31 0.05
2-Phenylethanol 11.23 ± 1.53 12.32 ± 5.18 0.26 0.02

H2O2 generation correlated with the measured activities on the selected substrates
with the highest rate being detected in the reaction on dihydroxyacetone (Figure S7).
The detected fluorescence peaked and then declined during the course of the reaction. This
effect has been found to be triggered by different factors including the fluorescent product
resorufin being itself a substrate for HRP, substrate inhibition and inactivation of HRP at
high concentrations of hydrogen peroxide leading to a bell-shaped titration curve with
hydrogen peroxide concentration range of 0.01 to 600 µM [111] as observed in this study,
notably with dihydroxyacetone.

3.6. Biochemical Properties

The effect of different metal ions, metal chelator and sodium azide on the stability
and activity of TrLOx was investigated after treating the enzyme with 10 mM of each
molecule for 4 and 24 h (Figure 4A). Treatment with 10 mM Cu2+ for 4 h resulted in
4.5 times increase in enzymatic activity. Previously, adding copper sulfate to shake flask
cultivations was found to double GalOx activity in the cultivation medium [112]. However,
unlike TrLOx, copper treatment of purified AA5_2 enzymes did not increase their specific
activity [105,112]. Recombinant AA5 enzymes have been found to contain a mixture of
fully coordinated proteins and apo-enzymes lacking copper [113]. The increase in activity
for TrLOx suggests that the purified enzyme is not fully coordinated by Cu2+ ions from the
culture media. No significant effect was observed with any of the other tested molecules
after 4 h of incubation. The enzyme activity was reduced by 70% and 60% after 24 h
of incubation with Co2+ and Fe2+, respectively. The loss in activity observed with the
copper chelator EDTA (56%) was comparable to previously published data obtained on a
recombinant GalOx from Fusarium sambucinum [59]. However, unlike this enzyme which
was completely inactive after incubation with sodium azide (5 mM; 5 min), TrLOx was
significantly more stable retaining 60% of its activity after 24 h of incubation. Azide is
thought to inhibit GalOx by replacing the water molecule in the catalytic center of the
enzyme and blocking the substrate’s binding site [114].

The stability of TrLOx over time in the presence of increasing concentrations of H2O2
was also investigated (Figure 4B). The enzyme was stable after incubation for two hours in
up to 8 mM of H2O2. A concentration-dependent decrease in residual activity was observed
with increased incubation time and the enzyme was completely inactive after 24 h with
10 mM H2O2. The inhibition of the AA5_1 enzyme GLOX by exogenous H2O2 has been
previously reported. TrLOx was significantly more stable than GLOX from P. chrysosporium
(25% residual activity directly after adding 2.1 mM exogenous H2O2 at pH 6) and GLOX2
and GLOX3 from P. cinnabarinus (less than 10% residual activity after 24 h of incubation
with 8 mM H2O2) [34,41].
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range of 4–8 (Figure 6A). TrLOx retained 34% of its activity after incubation at 40 °C for 8 
h and was stable at 30 °C (Figure 6B). No activity was detected when the enzyme was 
exposed to temperatures above 60 °C. The conditions under which TrLOx showed highest 
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Dihydroxyacetone was used to determine the optimum pH and temperature for the ac-
tivity of TrLOx. The highest activity was detected at pH 6.5 (Figure 5A) and 45 ◦C (Figure 5B).
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TrLOx was very sensitive to acidic pH, the enzyme showed high stability in a pH
range of 4–8 (Figure 6A). TrLOx retained 34% of its activity after incubation at 40 ◦C for
8 h and was stable at 30 ◦C (Figure 6B). No activity was detected when the enzyme was
exposed to temperatures above 60 ◦C. The conditions under which TrLOx showed highest
activity were comparable to previously characterized P. cinnabarinus GLOX enzymes (pH 6
and 50 ◦C) [36]. In addition, TrLOx was more stable at 30 ◦C and less stable at temperatures
exceeding 50 ◦C compared to P. cinnabarinus GLOX. Similarly, P. chrysosporium GLOX has
shown highest activity at pH 6 and a sharp decrease in activity at pH below 5.5 [115].
However, P. chrysosporium GLOX has completely lost activity at pH 7.5 and was not active
in phosphate buffer. In comparison, AA5_2 enzymes have shown higher activity at pH 7–8
and the activity was halved at pH 6 [40,101,105]. Similarly to TrLOx, characterized AA5_2
enzymes have also shown reduced thermal stability.
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3.7. Does TrLOx Modify Lignin?

Previous studies have presumed a role of CROs in lignin modification either directly
or through the generation of hydrogen peroxide. Crutcher et al. (2019) have recently
ruled out this hypothesis by showing that GLX1 from T. virens was not implicated in the
breakdown of lignin as the enzyme was unable to bind lignin. However, the direct activity
of CROs on this substrate and its derivatives and the resulting structural modifications
have never been explored.

In this paper, the activity of TrLOx was investigated for the first time on syringol,
syringaldehyde, and three lignin dimers: BMA32 (SS βO4), AMA170 (SS syringaresinol)
and AMA181 (GGβ5). The tested dimers represent the major structural units in the polymer.
TrLOx activity was followed by LC-MS and HPSEC. The HPSEC analysis showed that
TrLOx had no activity on AMA170 (SS ββ), whereas it had an activity on AMA181 (GG
β5) and BMA32 (SS βO4) (Figure 7), showing oligomers with polymerization degree (PD)
up to 10. The LC-MS analysis confirmed that the observed reactions are oligomerization
and oxidation of functional groups (alcohols into aldehydes). Concerning BMA32, though
the main products formed are dimers and trimers of the initial substrate (PD 4 and 6),
the detection of some oligomers by LC-MS with higher degree of polymerization (observed
with the SS βO4 substrate) suggest that some bonds’ cleavage might occur during the
treatment or that the monomers present as traces in the initial material are involved in
the oligomerization. It seems that the reactivity of the systems depends on the dimer
type, which indicates enzymes specificities towards the functional groups present in
these molecules. The activity of TrLOx was also compared to GLOX2 from Pycnoporus
cinnabarinus for which no activity was noticed towards the three dimers compared to TrLOx.

In nature, plants incorporate numerous lignin monomers to form lignin by oxida-
tion and coupling of monolignol radicals with the radicals on the phenolic ends of the
lignin polymer. This reaction is initiated by the action of plant oxidative enzymes such
as O2-dependent laccases and H2O2-dependent peroxidases and it serves not only for
the production of lignin polymers but also to link this structure to the polysaccharides in
the cell wall. Lignin polymerization was also previously reported in fungal cultures on
lignin [73] and it was associated with the oxidation of lignin phenoxy radicals by secreted
fungal laccases in the cultures [74]. The observed oxidation of the phenolic moieties of
syringol to form syringol dimers shows that TrLOx polymerizes lignin following the same
mechanism (Figure S8A). The enzyme seems to favor the oxidation of the hydroxy moiety
of the hydroxymethyl group in syringyl alcohol (Figure S8B). In the case of lignin dimers,
it is difficult to determine the exact coupling sites. However, the absence of activity on
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AMA170 suggest that the coupling most likely occurs between the oxidized alcohol groups
at the hydroxypropenyl side chain and at the C4 position of the syringyl and guaiacyl units
of BMA32 and AMA181, respectively (Figure 7). The oxidized new radical will then react
either with new dimers or oligomers formed in the reaction resulting in oligomers with
PD up to 10. This is further supported by the measured activity on cinnamyl alcohol and
vanillin (Table 1). Regarding in-vivo conditions, polymerization is thought to be prevented
by the presence of cooperative enzymes acting as quenchers to radical species. Several
flavin adenine dinucleotide (FAD)-containing enzymes have been described to reduce
phenoxy radicals and prevent lignin re-polymerization, including glucose oxidase [116], ve-
ratryl alcohol oxidase [117], cellobiose dehydrogenase [118], and pyranose-2-oxidase [119].
The latter not only prevented repolymerization, but also showed depolymerizing activity
on lignosulfonate. This suggests that polymerizing enzymes such as laccase and TrLOx
might act by activating lignin hydroxyl radicals for degradation by other secreted enzymes.
Interestingly, one aryl-alcohol oxidase (AAO)/glucose-1-oxidase (GO) and one alcohol
oxidase (AA3_3) were co-secreted with TrLOx in the cultures of T. reesei on technical soda
lignin, further supporting this hypothesis. In addition, T. reesei secreted a 1,4-benzoquinone
reductase which might be involved in the reduction of reactive phenoxy radicals and/or
quinones formed during lignin breakdown converting them into more stable molecules.
The effect of combined AA6 and lignin peroxidase on the depolymerization of technical
lignins was very recently investigated and the study revealed that AA6 can to some extent
limit the lignin re-polymerization by lignin peroxidase [120]. Further studies investigating
the synergistic activity of TrLOx and the above-mentioned enzymes on lignin molecules
are required to elucidate the mechanism behind lignin modification.
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The results in this study also introduced for the first time the potential of TrLOx for
the synthesis of new homomolecular or heteromolecular molecules. Current applications
in the biopolymer field include dye synthesis [121], cotton fibers functionalization [122],
and hydrogels production for drug delivery and water treatment [123]. Such biopolymers
are perfect examples of sustainable biotechnological application.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jof7080643/s1, Figure S1: T. reesei growth on technical soda lignin, Figure S2: LC-MS analysis
on water-soluble lignin fraction, Figure S3: Sequence alignment of 11 functionally characterized AA5
enzymes with TrLOx, Figure S4: Structural characteristics of TrLOx, Figure S5: HPLC analysis of
TrLOx reactions on HMF and HMFCA, Figure S6: Michaelis–Menten plots for the activity of TrLOx
on the different tested substrates, Figure S7: H2O2 production overtime in the reaction of TrLOx
on different substrates, Figure S8: LC-MS chromatograms of the reaction of TrLOx on Syringol and
Syringyl alcohol. Table S1: Total phenolic and thioacidolysis yields of water-insoluble residual lignin
after exposure to T. reesei, Table S2: Identified CAZymes in the secretomes during growth of T. reesei
on technical lignin.
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