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A B S T R A C T   

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) incessantly produced as by-products of meta-
bolism play significant roles in seed physiology. ROS (hydroxyl, superoxide radical and hydrogen peroxide) and RNS 
(nitric oxide, nitric dioxide, nitrous acid and dinitrogen tetroxide) content changes in all phases of seed life cycle that 
influence seed germination, dormancy and longevity. Recent studies illustrate that ROS and RNS are performing 
oxidative and nitrosative signaling to induce seed germination within oxidative window level. Besides, ROS/RNS- 
mediated post-translational modifications (PTM) like carbonylation, S-nitrosylation and nitration are gaining in-
terest in promoting seed germination. Understanding the signalling pathways, cross-talk with plant hormones and 
their role in promoting seed germination and dormancy alleviation could pave way for hormone engineering that 
help in crop productivity, particularly under climatic changing conditions. In addition, role of antioxidants and 
glutathione thiols in protecting from oxidative damage indicate that these compounds can be used for seed viability/ 
quality markers that aid in monitoring of crop establishment. In this review, sources of ROS and RNS, their cross-talk 
with plant hormones (prospects for hormone engineering), signalling functions pertaining to seed germination, 
dormancy and deterioration have been illustrated. In addition, seed quality markers under climatic changing con-
ditions for effective monitoring of crop stand establishment and diagnostics development have been elucidated.  

Abbreviations: ABA, abscisic acid; ABI5, abscisic acid insensitive 5; ACC, 1-aminocyclopropane-1- carboxylic acid; ACO, ACC oxidase; ANT, adenine nucleotide 
translocator; APX, ascorbate peroxidase; ASC, ascorbate; ASK-1, apoptosis signal-regulating kinase; BiP, binding protein; CAT, catalase; CDT, controlled deterioration 
treatment; CK, cytokinins; cnu1, continuous NO-unstressed-1; CO2, carbon dioxide; CPTIO, 2-4-carboxyphenyl-4,4,5,5-Tetramethylimidazoline-1-oxyl-3-oxide; CuAO, 
Copper Amine Oxidase; CYP707A, cytochrome P450 ABA 8’-hydrolase; DHAR, dehydroascorbate reductase; ER, endoplasmic reticulum; ET, ethylene; GA3ox, 
gibberellic acid oxidase; GAs, gibberelins; Gifu, Gifu Komugi; GPX, glutathione peroxidase; GSH, glutathione; GSNO, S-nitrosoglutathione; H2O2, hydrogen peroxide; 
•HO, hydroxyl radical; HS, heat stress; ISTA, International Seed Testing Association; LC–MS/MS, Liquid Chromatography-Mass Spectrometry; MAPK, mitogen 
activated protein kinase; MAPKs, mitogen activated protein kinases; MC, moisture content; MoCo, molybdenum cofactor; MT, metallothionein; NADPH, nicotinamide 
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1. Plant growth and development 

Plant growth and development are important features that are 
incessantly regulated by genotypic and environmental signals. Owing to 
its sessile habitat, plants are endowed with diverse metabolic pathways 
that allow them to grow and develop in highly variable environments 
[1]. Reactive oxygen and nitrogen species (ROS, RNS) products are few 
examples that govern the plant growth and development [2–4]. Recent 
studies substantiate that the seed quality traits such as germination 
vigour (uniform and rapid seedling emergence under a wide range of 
environmental conditions), seed dormancy and longevity are regulated 
by ROS and RNS [4,5] (Supplementary Fig. 1). Moreover, studies on free 
radicals that favouring seed germination by regulating ABA and GAs 
through transcriptional and post-translational modifications is gaining 
great interest [6]. In contrary, ROS accumulation for prolonged periods 
coupled with decline of antioxidants governs seed deterioration in 
inappropriate stored seeds [7–9]. 

Climate changing factors such as heat stress, availability of ozone 
and atmospheric carbon dioxide (CO2) perturbs redox imbalance and 
have a profound effect on photosynthetic metabolism and environ-
mental stress responses [10]. For instance, over the decades, increase in 
0.2 ◦C of average temperature has been predicted and greatly influence 
in fall of crop productivity. HS during flowering, results in complete loss 
of grain production [11]. Wang et al. [12] reported decrease of cereal 
productivity at an extent of 4–10 % occurred owing to an increase of 
annual seasonal temperature of 1 ◦C [12]. Thermo tolerance can be 
attained in plants through synthesis of heat shock proteins that are 
mediated by ROS signalling [13]. Similarly, at elevated CO2, activation 
of pathogenesis related (PR) genes and defense mechanisms are acti-
vated with concomitant increase ROS production [14]. 

ROS formed during varied abiotic and biotic stresses are regulated 
through plant antioxidant machinery, which includes enzymatic [ROS 
detoxifying enzymes namely, catalase (CAT), superoxide dismutase 
(SOD), glutathione peroxidase (GPX), ascorbate peroxidase (APX) and 
peroxiredoxin (PRX)] and non-enzymatic antioxidants (ascorbic acid, 
glutathione, phenols). In additions to these antioxidants, nitric oxide 
(NO) plays an important signalling role in photosynthesis, osmolyte 
accumulation, gene expression and protein modifications under HS 
[15]. NO regulate ROS concentration and restores the balance between 
ROS, GSNO, GSH and ascorbate. At higher concentration of ROS, NO 
induces the transcription of APX, SOD and CAT activities. In contrary, 
when ROS are required for pathogen resistance, NO may inhibit NOX, 
CAT and APX activities through S-nitrosylation of cysteine residues 
[16]. Owing to these intricate networks, gaining deeper insights on ROS 
and RNS in seed physiology is necessary. 

Understanding the signal transduction pathways driven by ROS and 
RNS for specific physiological traits is essential, which helps to address 
the problem of pre-harvest sprouting in wheat, quality seed production, 
field weathering of soybean and resurgence of recalcitrant species [17]. 
Further unravelling these signal transduction pathways in the seed could 
enable to develop an eco-friendly and cost effective techniques for seed 
germination, seed longevity and diagnostic tools for determination of 
physiological seed quality. So far, reviews have focused on ROS and RNS 
production and their role in seed physiology; but in this review, eluci-
dation of signal transduction pathways, their interactions with plant 
hormones and implications in crop productivity (translational research), 
future prospects of genome editing with new variants of CRISPR/Cas-9 
for sustainable agricultural productivity have been discussed. 

2. Dynamics of reactive oxygen species in seed life cycle 

ROS such as hydrogen peroxide (H2O2), superoxide radical (O2
.− ) and 

hydroxyl radical (HO⋅), are incessantly produced in seeds as by-products 
of various metabolic pathways [18,19]. Generally, orthodox seeds un-
dergo significant changes in moisture content during various stages of 
seed life cycle. For example, during imbibed stage the metabolic activity 

is higher, which requires water for translocation of metabolites and cell 
division. Several studies reported that mitochondria, glyoxysomes and 
NADPH oxidases of the plasma membrane are the major sources for ROS 
[20–24] (Fig. 1a). In contrary, at maturation and after ripening condi-
tions the orthodox seeds minimize their metabolic activity and require 
less water. During these conditions, the predominant sources for ROS are 
Amadori, Maillard and lipid peroxidation mechanisms, respectively [23, 
25,26] (Fig. 1b). 

ROS and RNS have been considered detrimental due to oxidative 
stress imposed on plants/seed. However, recent studies on the role of 
RNS and ROS have changed the paradigm-from toxicity molecules to 
important regulators of cellular functions [27,28]. Evidences are 
emerging that ROS and RNS coupled with plant hormones have become 
a part of signalling networks that regulates the seed germination, 
dormancy alleviation, development and ageing [29–33]. Topical studies 
pertaining to ROS have been reported that they play dual functionality, 
which implies that they act not only as a signalling molecule (at 
oxidative window limits) but also cytotoxic due to oxidative stress [34, 
35]. 

3. Role of ROS in seed germination and dormancy 

Germination is an intricate network regulated by genetic and envi-
ronmental cues. According to Bewley and Black [36] germination starts 
with uptake of water by a non-dormant and quiescent dry mature seed 
and ends with elongation of embryonic axes. During dormancy release 
process to germination capacity, H2O2 production has been observed 
during transition of seed from dormant state to a metabolically active 
state in jasmine rice (Oryza sativa L. cv. KDML 105), garden pea, sun-
flower seeds, soybean, maize, wheat and radish [3,37–39]. In addition, 
some more studies on increase in ROS content during seed germination 
implies that they have oxidative signalling function, which triggered for 
seed germination (Table 1). Here, an intriguing question is, how does the 
ROS influence the germination? 

To explain the phenomenon, it has been proposed that ROS either 
acts as a secondary messenger or directly involve in triggering a cascade 
of events that result in germination. After imbibition, the ROS levels 
shoots up and accumulation of these molecules, particularly H2O2 (more 
stable than other oxidants) could trigger the oxidation of protein 
(carbonylation including seed storage protein) that inhibits glycolysis 
and promotes the activation of pentose phosphate pathway (PPP) [48]. 
This pathway provides NADPH and supplements to thioredoxin (TRX) 
enzyme, which reduces the disulfide (S-S) bonds of proteins including 
enzymes favouring the germination [3,27,49–52]. Another mechanism 
pertaining to accumulation of H2O2 and its interaction with plant hor-
mones by mitogen activated protein kinases (MAPKs) have been illus-
trated in Fig. 2. 

Barba-Espın et al. [53] had reported positive correlation with 
abundance of PsMAPK2 transcript and endogenous levels of H2O2 and 
seed germination. Activation of MAPKs by phosphorylation could pro-
mote germination by decreasing the ABA and 1-aminocyclopropane-1--
carboxylic acid (ACC) contents with simultaneous increase in GAs [53, 
54]. Liu et al. [55] observed up-accumulation of H2O2 during imbibition 
in Arabidopsis sp. seeds showed increasing ABA catabolism genes and GA 
biosynthesis that favoured seed germination. In another study, 
dormancy alleviation of apple was done with cyanide, where decrease in 
ABA level and increase in H2O2 has been observed [56–58]. This study 
showed that the H2O2 influenced the regulation of GA biosynthesis and 
ABA catabolism during seed imbibitions, which regulate seed germina-
tion and dormancy. Further, quantitative RT-PCR (qRT-PCR) studies 
showed that the H2O2 has up-regulated the ABA catabolism genes (e.g. 
CYP707A) and decreased ABA content was observed during imbibition. 
On the other hand, H2O2 mediated up-regulation of GA biosynthesis 
genes is also observed through qRT-PCR studies. To perform this action, 
nitric oxide (NO) is also required. Evaluation of ABA catabolism mutant 
(cyp707a2) and an over-expressing Arabidopsis plant (CYP707A2-OE) 
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has been done, where the GA biosynthesis is negatively correlated with 
ABA content. GA applied exogenously is able to over-come the inhibition 
of germination at meagre concentrations of ABA; however, no signifi-
cant effect of GA was exerted when ABA concentrations are high. 

Here, the interactions between ABA and H2O2 is significant; since, 
the latter (H2O2) inactivates the ABI1 and ABI2 type 2C protein phos-
phatase enzymes that are essential for ABA signalling [59–61]. Chauf-
four et al. [62] reported that ABA deficient (nced-2569) seeds released 
more H2O2, O2

− and NO than ABA over-accumulator and showed higher 
protein oxidation in nced2569 than wild-type seeds. In contrary, the rate 
of protein oxidation was very low in cyp707ala2 seeds, which implies a 
negative correlation between ABA content and protein oxidation. 

4. Role of reactive nitrogen species in seed germination 

Nitric oxide (NO) is a gaseous free radical, which can react with 
transition metal ions and radicals that influence the cellular redox status 
[63,64]. NO upon losing or gaining an electron forms nitroxyl anion 
(NO− ) or nitrosonium (NO+), which is a part of RNS [65]. In the plant 
life cycle, particularly seed germination and seedling establishment 
process, tight control of NO concentration is an essential physiological 
event [66,67]. Plants possess effective sensing mechanisms for NO, 
which trigger specific responses in their life cycle. NO signal in plants is 
mainly sensed through S-nitrosylation reaction, which is a most relevant 
post-translational modification, occurs in the plants [65,68–70]. Cova-
lent reaction of NO with free thiols of cysteine residues in proteins leads 
to the formation of S-nitrosothiol (SNO), which induces the conforma-
tional changes of the protein that ultimately influence its stability, in-
teractions, localization and function [68,71]. Through S-nitrosylation 
reaction, NO regulates hormonal regulatory processes, which influence 
in seed germination. 

Studies have revealed that NO play an important physiological role 
in seed germination and dormancy alleviation in several species [72] 
(Table-1). Pharmacological studies have been done using NO donors 
such as sodium nitroprusside (SNP), S-nitrosoglutathione (GSNO) and 
S-nitrosothiol (SNAP; S-nitroso-N-acetyl-D,L-pencillamine) to mimic the 
effect of gaseous radical in Arabidopsis [73]. Studies showed that these 
NO donors promoted seed germination and dormancy release; whereas 
the NO scavenger cPTIO maintained the seed dormancy [74,75]. 
Moreover, studies on C4-grasses confirmed the role of NO as potential 
regulator of seed germination [76]. 

To understand the role of testa, aleurone layer and embryo in sensing 
NO signal, several studies have been conducted. Bethke et al. [79] has 
observed that the seeds devoid of testa has responded to NO indicate that 

it has no role in NO sensing, either aleurone layer cells or embryo could 
sense N. Further, the embryo and aleurone cells were treated with cPTIO 
(NO scavenger) and found that the growing isolated embryos were 
insensitive to cPTIO; while, the isolated aleurone layers have showed the 
inhibition of vacuolation. It is a general agreement that GAs favours 
vacuolation in cereals; whereas ABA inhibits the vacuolation process. 
Treatment of isolated aleurone cells with GAs restored the vacuolation, 
which indicates that the aleurone cells sense the NO for dormancy 
release [85]. 

Apart from NO, nitroxyl anion (NO− ) and nitrosonium (NO+) spe-
cies, peroxynitrite (ONOO− ) is one of the important RNS species that 
play an important role in seed germination. Reaction between NO with 
superoxide (O2

− ) gives rise to peroxynitrite that acts as oxidizing and 
nitrating agent [86]. Tyrosine nitration (ie. addition of nitro group to 
tyrosine amino acid) is predominantly observed in simultaneous release 
of ROS and NO, which alters diverse protein functions [72]. 

5. Nitric oxide and phytohormones crosstalk during 
germination 

Crosstalk of phytohormones with NO, particularly GAs, ethylene and 
ABA have prominent role in seed germination [72]. Maintenance of 
hormonal homeostasis to environmental cues is the key either to activate 
seed germination or dormancy maintenance [72]. NO induces seed 
germination through activation of GA synthesis and inhibition of ABA 
metabolism and signalling [72,89]. Decrease of endogenous NO levels 
has been observed with exogenous ABA application in tobacco and 
Arabidopsis [90–92]. Negative regulation of NO and ABA has been 
noticed in aleurone cell layer during barley seed germination [74]. 
These studies indicate that the NO accumulation is associated with 
decrease of ABA level [90]. 

Okamoto et al. [93] have studied that during seed germination NO 
induces ABA catabolism genes through upregulation of CYP707A (cy-
tochrome P450 ABA 8’-hydrolase) gene family that encode ABA 8’-hy-
droxylases. In cyp707a mutant, ABA levels has been increased, which 
indicates that NO regulates ABA through expression of CYP707A gene 
family [93]. Furthermore, SNP treatment in Arabidopsis showed 
enhanced protein levels of CYP707A but decreased with cPTIO treat-
ment, which substantiate the NO-induced ABA decrease [90]. In addi-
tion, NO alters proteins involved in ABA biosynthesis and signalling 
pathways through nitration and S-nitrosylation post-translational 
modifications [89]. Molybdenum cofactor (MoCo) sulfurase, ABA3 
(At1g16540) is an enzyme involved in sulfurylation of desulfo form of 
MoCo. This sulfurylated MoCo functions as co-factor for the abscisic 

Fig. 1. a) ROS production sites after transition from dormancy 
to germination stage. After imbibition of seed, leakage of 
electrons from mitochondria and glyoxysomes, peroxisomes, 
singlet oxygen from chloroplast are important sources. b). ROS 
production sites during dry/after ripening stage. In this phys-
iological state, glucose and amino groups derived from amino 
acid and nucleic acids are condensed to form Amadori and 
Maillard products, which are major sources for ROS production 
in addition to lipid peroxidation. [Adapted Bailly et al. [23]].   
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aldehyde oxidase that converts abscisic aldehyde to ABA [87]. Proteo-
mic analysis has showed that MoCo is the target for the tyrosine nitra-
tion to inactivate ABA synthesis during germination [72,87]. Thus, 
protein nitration might contribute in controlling the dormancy release 
and germination vigour. In addition, protein nitration is a biological 
marker for nitrosative stress and participates in signal transduction and 
protein turnover in plants [88]. 

S-nitrosylation is an important post-translational modification, 
where the thiol groups (SH) of cysteine amino acids are altered by NO to 
form S-nitrosothiols. NO during germination process modifies SNF1- 
related protein kinase (SnRK) 2.2/SnRK2.3 through S-nitrosylation, 
which are involved in ABA signalling pathway [94] (Fig. 3). Studies on 
snrk2.2/2.3/2.6 triple-mutant plants showed complete insensitivity to 
ABA, which suggest the importance of SnRK2s-mediated phosphoryla-
tion in ABA signalling [95]. In Arabidopsis seedling development, GSNO 
treatment had inactivated the SnRK2.2 kinase proteins by S-nitro-
sylation and further the S-nitrosylated ABI5 (abscisic acid insensitive 5) 
has been degraded by proteasome pathway [80]. Therefore, it is clearly 
evident that the NO promote germination through inactivation of ABA 
synthesis and signalling proteins by post-translational modifications 
[72]. On the contrary, Bethke et al. [79] studies on cell vacuolation with 
GAs and NO donors demonstrate that the NO promotes GAs biosynthesis 
through upregulation of GA3ox1 and GA3ox2 that encode gibberellic 

Table 1 
Role of reactive oxygen/nitrogen species and antioxidants in seed germination.  

S. 
No 

Radical/donor 
molecule/ 
Antioxidant 

Physiological trait References 

1. H2O2 Hydrogen peroxide produced in 
response to Zn stress and strict control 
by antioxidants resulted germination in 
Dimorphandra wilsonii 

[40] 

2. H2O2 Barley seeds were exposed to γ 
radiation and observed seedling 
development via ROS production. 

[41] 

3. H2O2 In pepper (Capsicum annuum), 
interaction and spatial differences of 
ROS and RNS lead to seed 
establishment. 

[42] 

4. H2O2 Proposed to oxidize RNA and protein 
for dormancy release. 

[24,43] 

5. O2
.− Increased levels of super oxide radical 

during germination in pea seeds (Pisum 
sativum) results in hydroxyl radical 
(O•H) production. The later radical 
loosens the cell wall and promotes cell 
elongation. 

[44,45] 

6. O.−
2 Superoxide radical alleviated 

dormancy release and favoured 
germination in barley 

[46] 

7. ⋅OH Break down of cell wall polysaccharides 
resulting seed germination. 

[47] 

8. H2O2 and O2
− In sunflower seeds, alleviation of 

dormancy associated with ROS in 
embryonic axes. ROS accumulation is 
mainly triggered by protein 
carbonylation and lipid peroxidation. 

[27] 

9. H2O2 and O2
.− In Arabidopsis thaliana, Columbia (Col) 

accession showed higher ROS content 
in non-dormant seeds than in dormant 
seeds after 24 h of imbibition 

[28] 

10. H2O2 and O2
.− In jasmine rice, increased levels of − .O2 

radical was observed in nano-primed 
seeds at 0 h. After imbibitions, 
H2O2content has been shoot up from 24 
h and observed the radicle emergence. 

[37] 

11. NO NO is involved in the process of 
dormancy release in Arabidopsis. NO 
scavenger c-PTIO strengthened 
dormancy but did not inhibit 
germination 

[74] 

12. NO NO and ROS induced promotion of 
seedling parameters and α- amylase 
activity of maize seeds 

[76] 

13. NO The seed germination and growth are 
linked with NO and ROS levels 

[77] 

14. NO NO induced Arabidopsis seed 
germination and determined that 
aleurone cells are responsible for NO 
sensing 

[78] 

15. NO S-nitrosylation triggers ABI5 transcript 
degradation to promote seed 
germination and seedling growth 

[79] 

16. SNP The nitric oxide (NO) donor sodium 
nitroprusside (SNP) significantly 
promoted germination of switchgrass 
(Panicum virgatum L. cv Kanlow) in the 
light and in the dark at 25 ◦C 

[80] 

17. SNP SNP alleviates the inhibition on wheat 
seed germination imposed by salt stress 

[81] 

18. SNP SNP at low concentration induced 
germination in Lycopersicon esculentum 
MILL. However, at high concentrations 
SNP has been inhibitory in nature 

[82] 

19. SNP and SA 
mixture 

SNP and SA induced germination in pea 
seeds and secreted enzymes to alleviate 
salt stress 

[83] 

20. NO2 NO2 induced germination in Caulanthus 
heterophyllus, Emmenanthe penduliflora, 

[84]  

Table 1 (continued ) 

S. 
No 

Radical/donor 
molecule/ 
Antioxidant 

Physiological trait References 

Phacelia grandiflora, and Silene 
multinervia 

21. SOD Study revealed SOD gene over 
expression in Nicotiana resulted 
protection against seed deterioration 
during aging 

[139] 

22. MT Expression of the PsMTA1 gene, 
encoding a metallothionein-like protein 
from Pisum sativum, confers protection 
against oxidative stress in the nucleus 
and also reduced oxidative DNA 
damage 

[140] 

23 MT and SOD Silene acaulis grown at low altitude 
conditions showed up-regulation of 
SOD and MT2 genes in rehydrated 
seeds 

[25] 

24. ASC and 
glutathione 

Increased levels of glutathione and 
ascorbate were observed during 
germination in wheat and Pinus pinea 
seeds 

[141,142] 

25. APX Ascorbate peroxidase levels increased 
during seed imbibition and 
germination 

[143] 

26. DHAR Silver maple (Acer saccharinum L.) 
recalcitrant seeds were treated with 
glutathione resulted higher 
germination and parallel enhanced 
dehydroascorbate reductase activity 

[144] 

27. Alpha-tocopherol Increased alpha-tocopherol content 
was observed in isolated soybean 
embryonic axes during storage and 
imbibition phases. 

[145] 

28. CAT Higher activity of catalase was 
observed in non-dormant barley 
cultivar- Harrington during 
germination and also found reduction 
of H2O2 levels 

[83] 

29. SOD, CAT and APX Increased superoxide dismutase 
activity observed during germination in 
neem seeds. Further, APX and CAT 
levels were increased from 9 to 12 
weeks after anthesis. 

[146] 

30. APX Ascorbate peroxidase protects 
hydrogen peroxide produced in 
differentiating peroxisomes 

[147]  
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oxidases 1 and 2 [79]. Thus, these studies corroborate that NO promotes 
germination by enhancing GAs with reduction in ABA-imposed 
dormancy [89]. 

In addition to GAs, ethylene (ET) also favours seed germination 
through crosstalk between NO and ET biosynthesis [96,97]. Gniaz-
dowska et al. [98] had observed in apple embryos that the NO has 
induced germination through ET biosynthesis. Further, it has been re-
ported that the mechanism for signalling of NO and ethylene occurs 
through S-nitrosylation of proteins such as ACC synthase (ACS) and ACC 
oxidase (ACO), respectively [99,100]. However, it is unknown how this 
S-nitrosylation reaction could affect the ACS and ACO enzymes for seed 
germination. 

NO and its role with cytokinins (CK) and polyamines (PAs) are 
limited. However, as observed in few studies, both the phytohormones 
exhibit antagonistic behaviour with NO [101]. Liu et al. [102] had 
observed elevated levels of cytokinin in Arabidopsis NO-insensitive 
mutant cnu1 (continuous NO-unstressed-1). Furthermore, they had 
treated peroxynitrate (derivative of NO) with zeatin (predominant 
cytokinin) and found that the CK suppressed the NO that lead to 
decrease in endogenous NO levels [102]. Polyamines are reported to 
regulate seed germination negatively [103]. Wimalasekera et al. [104] 
had reported NO biosynthesis through enzyme copper amine oxidase 
involved in PA catabolism. Loss-of-function mutants for CuAO1 showed 
lower NO production in response to exogenous PA application [104]. 
Interestingly, NO action on mutual regulation of ABA and GAs in seed 
germination shows similarity with ROS and other external factors 
mechanisms that promote seed germination. 

6. Seed deterioration 

During storage conditions, seeds are prone to oxidative damage that 
is mediated by ROS. Depending upon the type of seed (orthodox, in-
termediate and recalcitrant) properties, the extent of damage would be 
during storage conditions [105]. Recent studies support two putative 
mechanisms responsible for seed deterioration, which are illustrated in 
subsequent sections. 

Seed longevity is defined as the ability of seed to remain viable after 
dry storage condition. Unlike developed countries, conventionally, in 
developing countries the farmers save some of their farm produce (as 
seeds) for next season sowing and store the produce in uncongenial at-
mosphere. As a result, seeds tend to deteriorate at a faster rate partic-
ularly in soybean and peanut/groundnut (oilseeds) [106]. On the other 
hand, the farmers are unaware of the quality of seeds and sow the seed in 
the next season. Consequently, the productivity is low and indulges the 
farmers in debt drudgery. This phenomenon shows that the seed 

longevity is an important parameter for maintenance of seed quality. 
Generally, studies on seed ageing have been conducted predominantly 
either by accelerated ageing (CDT, controlled deterioration treatment) 
or natural ageing by increasing moisture content (MC) and relative 
humidity (RH). 

Studies unravelled that ageing mechanism is mainly orchestrated by 
ROS accumulation in the seed (prolonged storage or improper storage of 
seed). However, to maintain the seed viability, ROS homeostasis and 
DNA/RNA/protein repair mechanisms should operate at optimum levels 
in the embryo [25,37,107,108]. This implies that under storage/stress 
conditions ROS accumulates in the cells, which are controlled by anti-
oxidants (enzymatic and non-enzymatic). Transcriptomics study on pea 
(Pisum sativum) has revealed that seed deterioration under ageing con-
ditions begins with ROS accumulation and simultaneous decline of 
antioxidant potential of the cell [109]. 

In addition, during this process, thiol based reducing conditions have 
shifted to oxidizing conditions that could have triggered the cascade of 
events. As per the study, two possible mechanisms for seed deterioration 
governed by ROS have been elucidated (Fig. 4). In the first mechanism, 
ROS formed at ageing conditions were scavenged by glutathione-s hy-
drolase that increases the ratio of EGSSG/2GSH (oxidizing condition). 
Under these conditions, the thioredoxin-apoptosis signal regulating ki-
nase 1 (Trx-ASK 1) complex splits. Further, the ASK-1 triggers the MAPK 
cascade that leads to breakdown of nucleic acids, structural and nuclear 
proteins [109]. 

In the second mechanism of seed deterioration, programmed cell 
death (PCD) has been manifested, which is mainly triggered by calcium 
release from endoplasmic reticulum (ER). Study on transcriptome 
mapping of pea seed in ageing conditions revealed declined antioxidant 
potential and imbalance of thiol based redox couple (EGSSG/2GSH). In-
crease of GSSG has been associated with PCD and indicative of chain of 
events such as loss of mitochondrial integrity, cytochrome c release and 
caspase-3 activation [109–111]. Under oxidative stress conditions, 
protein folding is hampered in the ER lumen; consequently, the mis-
folded and unfolded proteins accumulate and trigger unfolded protein 
response (UPR). This UPR response further up-regulate the chaperones 
for protein folding machinery and mitigate stress in endoplasmic retic-
ulum [55]. Derlins are other proteins that help in targeting of misfolded 
proteins to cytosol for ubiquitination. 

Transcriptome study in pea demonstrated up-regulation of stress 
marker binding protein (BiP) and two derlin 2.2 genes during ageing. 
This indicates that the misfolded proteins are degraded by ubiquitin/26S 
proteasome system during ageing in pea [109]. Increase in cytosolic 
calcium release, cytochrome-c protein from mitochondria by activation 
of permeability transition pore (PTP), which include adenine nucleotide 

Fig. 2. Putative signal transduction pathways during germination stages. Seed dormancy can be maintained with high ABA content and the GAs content should be 
high for germination [55]. In germination process, NADPH is supplemented by Pentose phosphate pathway, which is activated by protein carbonylation. Thioredoxin 
triggers ACC and ABAs decrease with increase GAs biosynthesis, which leads to seed germination [4]. 
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translocator (ANT) and voltage dependent anion channel (VDAC). 
Further, in this study, it was observed that caspases such as papain and 
RD21 have been up-regulated, which indicates their involvement in 
degradation of structural and nuclear proteins and activation of nucle-
ases [109–111]. Nucleases degrade the RNA and fragment DNA, which 
is the hallmark for programmed cell death [112,113]. 

7. Biotechnological applications in agricultural research 

Among the factors for crop production, quality seed is one of the 
pivotal components that determines around 15–20 % of crop production 
[114]. Climate change has adverse effects on crop phenology, repro-
duction and flowering pattern, pollen viability, pollen germination, 
pattern pertinent to pollination, seed yield, seed size, seed quality, seed 
length and seed dormancy [115,116]. Moreover, environmental condi-
tions coupled with soil-borne diseases have unpredictable seedling 
emergence rate that ultimately reduces the crop productivity [116]. 

To circumvent these problems, seed priming has been showcased as a 
viable, cost-effective technique in enhancing uniform seed germination 
rate, stress resistance and crop yield [31]. Seed priming with bio-agents 

(bio-priming) [117], osmo-priming [118], halo priming [119], ROS 
priming (H2O2) [120], hydro priming [118], antioxidant priming [121], 
hormonal and growth promoting rhizobacteria priming [122,123] have 
showed significant results. Besides, plasma technique particularly 
non-thermal plasma has shown promising results in increasing the seed 
quality parameters under varied abiotic and biotic stresses [124,125]. In 
addition, we will focus on some major issues, such as the germination of 
recalcitrant species and thermotolerance, the ROS control and their 
implications in pre-harvest sprouting, the seed quality markers to 
monitor crop performance, seed production, seed longevity/storability, 
seed priming and germination and prospects of genome editing for 
sustainable seed production. 

7.1. Germination of recalcitrant species and thermotolerance 

Population increase and decrease in natural resources (arable land 
and fresh water) coupled with climatic changes imposed challenges to 
meet the food and nutrition security. At this juncture, to cater the food 
demand, translation of seed agronomic traits from lab-to-field condi-
tions is essential. Green Revolution is one of the classic examples 
attained due to introduction of semi-dwarf1 (sd1) gene in rice breeding 
programs [126–128]. Considering the potential of ROS/RNS in favour-
ing seed germination, these may be applied to enhance germination of 
recalcitrant species (unorthodox seeds) like lychee, coconut, horse 
chestnut, avocado, coffee and cacao; while for lettuce and spinach seeds 
at suboptimal temperatures [129]. 

Mutual regulation of ABA and GAs through oxidative signalling 
could be applied in inducing seed germination at low temperature 
[129]. For example, Kashiwakura et al. [130] studied the dormancy 
breaking and inducing germination in wheat pre-harvest sprouting 
(PHS) tolerant variety such as Gifu komugi (Gifu). Results show that the 
Gifu variety germinated at 15 ◦C but remained dormant at 20 ◦C after 
imbibition. Pharmacological and hormone analyses demonstrated that 
in Gifu variety, incubation at low temperatures (15 ◦C) triggered ABA 
catabolism genes (TaABA8’OH1, TaABA8’OH2) and increase in GAs 
biosynthesis gene (TaGA30 × 2) and vice versa at 20 ◦C incubation. This 
temperature dependent dormancy mechanism is mutually regulated 
between ABA and GAs controlled by ROS has huge scope for engineering 
the hormone metabolism in seeds either to suppress or enhance germi-
nation [131]. Technically, manipulation of proteins involved in signal 
transduction might be difficult, but the expression levels of hormone 
metabolism genes could be altered. Hence, realizing the mutual regu-
lation of hormones and their judicious application could alleviate 
thermo-tolerance stress [13]. 

Fig. 3. Role of reactive nitrogen species in 
regulation of seed germination. 
Arrow in red colour indicates negative regula-
tion; Arrow in green colour indicates positive 
regulation ABI5- abscisic acid insensitive 5; 
SNO ABI5- S-nitrosylated abscisic acid insensi-
tive 5; MoCo- molybdenum cofactor; NOO-
MoCo- Nitrated molybdenum cofactor; SnRK- 
sucrose non-fermenting 1 (SNF1) related pro-
tein kinases; SNO SnRKS-nitrosylated sucrose 
non-fermenting 1 (SNF1)-related protein ki-
nases; PAs- polyamines CYP707A2 : cyto-
chrome P450 ABA 80 –hydrolase; GA3ox- 
gibberellic acid oxidase ; ACC- 1-aminocyclo-
propane-1- carboxylic acid; ACO-ACC oxidase 
; CuAO- copper amine oxidase.   

Fig. 4. Putative seed deterioration pathways elucidated from microarray 
studies. 
MAPK cascade: mitogen activated protein kinase cascade; RER: Rough endo-
plasmic reticulum; ROS: reactive oxygen species. Adapted from Chen 
et al. [109]. 

S.P.J. Kumar et al.                                                                                                                                                                                                                             



Current Plant Biology 26 (2021) 100197

7

7.2. ROS control and their implications in pre-harvest sprouting 

In agriculture, seed dormancy is an important trait to control pre-
cocious germination and vivipary imparted from maternal plant. In 
cereal crops, PHS influences the grain quality and yield. For instance, in 
wheat grains precocious germination degrades starch by triggering 
α-amylase activity, which mobilizes the reserve for germination [132, 
133]. Subsequently, grain quality is reduced because of premature 
starch digestion that amounts to significant loss to the farmers. In China, 
around 80–83 % of the wheat production regions are prone to sprouting 
damage [134]. 

Another phenomenon associated with ROS is field weathering of 
soybean (Glycine max L.). In this process, soybean seeds deteriorate due 
to accumulation of ROS even when remaining in pods while associated 
with mother plants [17]. This is more intense, because of unexpected 
rains during harvest (precipitation shift) of soybean and envisages 
devising mechanisms that control ROS in weathering process. In both of 
these mechanisms, apart from ROS signal, thioredoxin enzyme is the key 
for germination process and could be targeted for development of po-
tential technology to reduce the pre-harvest sprouting (PHS) and field 
weathering. Li et al. [135] have developed antisense PTrx h gene from 
sunol grass (Phalaris coerulescens) that has close resemblance with wheat 
and expressed the gene in controlled fashion under gliadin promoter 
(Supplementary Fig. 2). The controlled expression has reduced the Trx h 
content in seeds and suppressed the PHS [135]. In another study, seed 
deterioration has been reduced by targeting thioredoxin enzyme located 
in mitochondria. Ortiz-Espin et al. [136] over expressed the mitochon-
drial thioredoxin TRXO1 gene and observed not only the decrease of 
cellular H2O2 and NO levels but also in delaying the cell death. Inter-
estingly, these features increased cellular glutathione pool and catalase 
activity to maintain in a highly reduced state. 

7.3. Seed quality markers to monitor crop performance 

In seed industry, seed quality markers are essential to monitor the 
crop performance and quality control measures. Microarray study on 
seed ageing in pea seeds revealed two significant events such as decline 
of antioxidant potential (enzymatic and non-enzymatic) coupled with 
shift in oxidizing conditions from reducing atmosphere (EGSSG/2GSH) in 
the cell [109]. Dona et al. [25] showed antioxidant potential of seeds is 
one of the reliable markers to monitor seed ageing process. To enhance 
seed longevity, seeds need effective antioxidant systems that protect 
from excessive oxidation of macromolecules [137,138]. Antioxidants 
are compounds that have the capability of scavenging the ROS either by 
enzymatic cascades (detoxify, active mechanism) or neutralization of 
pro-oxidants (passive mechanism). To remove ROS accumulated during 
resurgence of metabolism upon imbibition and inappropriate seed 
storage conditions, seeds utilize a battery of enzyme based antioxidant 
systems such as catalases, glutathione and ascorbate peroxidases, su-
peroxide dismutases, monodehydroascorbate and glutathione reduc-
tase, respectively. Several studies reported metallothionein, glutathione, 
alpha-tocopherol, phenolics (flavonoids) and ascorbic acid as antioxi-
dants during ageing [7,23] (Table-3). 

In addition to enzymatic and non-enzymatic antioxidants, carbohy-
drates [raffinose family saccharides (RFO), sucrose] and seed storage 
proteins are also reported to act as antioxidants [148–150]. Recent 
studies suggest that reduced glutathione play a major role in regulating 
the intracellular redox environment and serve as quality marker for 
viability [151]. Kranner et al. [110] had demonstrated that the mea-
surement of reducing capacity of redox couple (EGSSG/2GSH) and its 
half-cell reduction potential (EGSSG/2GSH) based on Nernst equation is an 
effective tool for cell viability and seed ageing [110]. Further, Nagel 
et al. [132] reported a strong correlation between glutathione redox and 

total germination in 26 barley genotypes, which implies that the vari-
ations in the EGSSG/2GSH can be used as a reliable marker for seed 
deterioration. 

Development of microfluidic/nanofluidic device that readily esti-
mate the half-cell potential of EGSSG/2GSH ratio could give an indication 
about seed viability [152]. Besides, antioxidant profiling with fabricated 
chips serve the function of quality determination and further, it is 
essential to enlist these parameters as quality seed markers in Interna-
tional Seed Testing Association (ISTA) procedures. Moreover, farmer 
friendly-technologies like seed priming with ROS, antioxidants, 
non-thermal plasma and rhizo bacteria could help in maintaining the 
uniform germination and rapid seedling emergence as these features are 
key determinants for successful crop stand establishment. 

7.4. Scope for genome editing for sustainable seed production 

Targeted mutagenesis with Cas9 has been interesting but limitations 
of non-targeted mutagenesis have triggered to look after new options 
[153]. New variants of Cas9 enzyme such as Cpf1 from F. novicida, 
Acidaminococcus, C2c2 from Leptotrichia shahii, and Cas9 derived from 
Francisella novicida, Streptococcus thermophiles and Staphylococcus aureus 
induced targeted mutagenesis in wheat [154], soybean [155], maize 
[156] apple and grape [130] without transgenesis in plant cell. Tar-
geting α- amylase and Trx-h genes in wheat using genome editing can 
reduce the pre-harvest sprouting [130]. Further, embracing such new 
techniques could accelerate research in seed science and breeding do-
mains [157–158]. 

8. Conclusions 

Producing crops with enhanced resilience to perturbation is urgent in 
the view of an increasing world population, predicted climate change 
and agro-ecological transitions. Although knowledge on radical meta-
bolism (ie., ROS and RNS) related to stress tolerance is available for 
model species and some crops, there is still currently no integrated 
model of the combined interaction of pre- and post-harvest environ-
mental conditions and the cellular basis of radical metabolism influ-
encing the response to stresses in seed. Genetic-based models have to be 
applied to develop a model of the impact of maternal and post-harvest 
environments on changing seed quality related to radical metabolism 
and to improve seed management from farm production to trade 
through the global seed industry market. The integration of the genetic- 
based data and radical metabolism data will provide a theoretical un-
derstanding of the heterogeneity in seed physiological quality traits 
within genetic diversity under fluctuating climate conditions. Besides, 
this study would pave way for hormone engineering through ROS/RNS 
changes that influences the seed physiology. 
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