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23 
Abstract 24 
Tropical forests store 40-50% of terrestrial vegetation carbon1. Spatial variations in aboveground live 25 
tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane 26 
forests2. Owing to climatic and soil changes with increasing elevation3, AGC stocks are lower in 27 
tropical montane compared to lowland forests2. Here we assemble and analyse a dataset of 28 
structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. 29 
We find that montane sites in the AfriMont plot network have a mean AGC-stock of 149.4 Mg C ha-1 30 
(95% CI 137.1-164.2), comparable to lowland forests in the African Tropical Rainforest Observation 31 
Network4 and about 70 per cent and 32 per cent higher than averages from plot networks in 32 
montane2,5,6 and lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds 33 
higher than the IPCC default values for these forests in Africa8. We find that the low stem density 34 
and high abundance of large trees of African lowland forests4 is mirrored in the montane forests 35 
sampled. This carbon store is endangered: we estimate that 0.8 million ha of old-growth African 36 
montane forest have been lost since 2000. We provide country-specific montane forest AGC stock 37 
estimates modelled from our plot network to help guide forest conservation and reforestation 38 
interventions. Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich 39 
ecosystems. 40 
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Main text 43 
Tropical forests cover less than 10% of the global land area yet store 40–50% of terrestrial 44 
vegetation carbon1 and contribute more than one third of primary productivity11 so are a key 45 
component of the global carbon cycle12,13. There is substantial variation in carbon stocks across the 46 
biome, with lowland forests in Africa and Borneo storing more carbon per unit area than lowland 47 
forests in the Neotropics4,7. This variation arises partly from structural differences: the signature 48 
feature of African forests is their low stem density but relatively high abundance of large trees (>70 49 
cm diameter) which store large quantities of carbon, while Bornean forests are characterised by high 50 
stem density and basal area4,14,15. 51 
 52 
Despite increased understanding of biogeographic differences in tropical lowland forests, patterns of 53 
spatial variation in carbon stocks remain poorly understood in the 880,000 km2 of tropical montane 54 
forests located ≥ 1,000 m asl2. Montane forests are expected a priori to have lower aboveground live 55 
tree biomass carbon (AGC) stocks than lowland forests because (1) temperature decreases with 56 
increasing elevation, reducing net primary productivity and slowing nutrient recycling, (2) long 57 
periods of cloud immersion in montane forests suppresses productivity, (3) soil waterlogging slows 58 
nutrient recycling and (4) high epiphyte load, local wind exposure in crests and nutrient-limited soils 59 
limit tree size and increase investment in roots over shoots3. While forest inventory plots provide 60 
some support for these assumptions2 data from African mountain regions are exceptionally sparse. 61 
Indeed, in the most recent IPCC guidelines, there is no specific AGC default value for old-growth 62 
montane forests in Africa: the value given of 89.3 Mg C ha-1 is simply a mean of secondary and old-63 
growth forests found ≥ 1,000 m asl8. Mountain areas also pose special challenges for remote-sensing 64 
approaches for estimating carbon stocks, as radar data are affected by geometric distortions16 while 65 
steep slopes bias spaceborne LiDAR estimates towards overestimating canopy height17. These issues 66 
are reflected in the limited correlation between estimates of AGC-stocks at mountain locations from 67 
different recent remote-sensing derived carbon maps (Supplementary Information Table S1).     68 
 69 
Better understanding of montane carbon stocks is important for many African countries, particularly 70 
in eastern Africa where montane forests represent most of the extant evergreen old-growth forest 71 
cover. Quantifying carbon stocks in these ecosystems is critical for estimating national carbon losses 72 
from deforestation and forest degradation18. Quantifying carbon stocks in old-growth montane 73 
forests also serves to constrain potential carbon uptake by restored natural forests, given the high 74 
commitment of most African nations to the Bonn Challenge effort to restore 150 million ha of 75 
degraded and deforested lands by 2020 (see Table 1), and 350 million by 2030.  76 
 77 
Here we measured, compiled and analysed a new dataset of 226 plot inventories spanning 44 sites 78 
in 12 African countries, covering most major mountain regions on the continent (the “AfriMont” 79 
dataset). Plots range from 800 to 3,900 m asl to include submontane forests (800-1,000 m asl) in 80 
smaller mountains closer to the ocean19,20. For all plots, stem diameter and species were recorded 81 
for each tree ≥10 cm diameter at breast height (or above buttress) following standard methods21. 82 
Tree height was sampled in 23 montane sites, allowing variation in height-diameter allometry to be 83 
incorporated into the calculation of aboveground biomass. A total of 72,336 stems with diameter 84 
≥10 cm were measured. For each tree, we computed AGC (in Mg C ha-1) according to standard 85 
procedures (see methods). 86 
 87 
We find that the mean plot-level AGC-stock across sampled African tropical montane forests is 149.4 88 
Mg C ha-1 (95% confidence interval (CI) 137.1-164.2), two-thirds more than the IPCC default value of 89 
89.3 Mg C ha-1. Our estimates are robust to subsampling our dataset (Extended Data Fig. 1) and 90 
excluding small plots (Extended Data Fig. 2) and are not affected by the sampling strategy used to 91 
establish plots in each study site (Extended Data Fig. 2). Comparing our dataset to previous 92 
syntheses of montane2,5,6 and lowland7 forest plot networks reveals that tropical montane forests in 93 



 

 

Africa have significantly higher AGC-stocks per unit area than both montane (95% CI = 50.4 – 71.9 94 
Mg C ha-1) and lowland  (95% CI = 124.0 – 147.9 Mg C ha-1) forests in the Neotropics, and that they 95 
do not differ significantly from lowland forests in Africa (95% CI = -27.6 – 9.6 Mg C ha-1) (Fig. 1, Table 96 
S2). The similar AGC-stocks in montane and lowland forests in Africa contrasts with the Neotropics 97 
and Southeast Asia, where carbon stocks are lower in montane forests than lowland forests (albeit 98 
not significantly different in Southeast Asia due to the small sample size, Fig. 1). These differences 99 
are robust to accounting for differences in elevation among montane datasets: removing African 100 
plots 800-1,000 m asl slightly reduces estimated montane forest AGC-stock to 145.0 Mg C ha-1 (95% 101 
CI 129.6 – 163.2), but observed differences in AGC-stock among continents remain when plots are 102 
restricted to elevations well represented in all continents (Extended Data Fig. 3). 103 
 104 
The characteristic structural properties of lowland African forests (relatively low stem density and 105 
greater importance of large trees compared to elsewhere in the tropics4) are also evident in the 106 
African montane forests we sampled. In these montane forests mean stem density is 483.3 stems ha-107 
1 (± 177.7 s.d.) and mean basal area is 39 m2ha-1 (± 14.8 s.d.). We find a high density of large stems 108 
(>70 cm diameter, 19.1 stems ha-1 ± 15.4 s.d.) which contribute 35.3% (95% CI = 29.6 – 41.8 %) to 109 
plot-level AGC-stock (Fig. 2). The contribution of large trees to plot-level AGC-stock is also similar in 110 
montane and lowland Africa (95% CI of difference in square-root transformed proportional 111 
contribution of large trees between lowland and montane forests = -0.100 - 0.075, P = 0.80). There 112 
was no significant difference in the proportional contribution of any other size class to AGC-stocks 113 
between our montane dataset and 132 lowland plots from the AfriTRON network (P≥0.24, Table S3), 114 
although greater variation among plots is observed in montane forests (Fig. 2).  115 
 116 
To investigate if elevation affected AGC or forest structure, we modelled these variables as functions 117 
of elevation using random slopes mixed-effects models. This approach allows intercepts and 118 
relationships to vary among sites, which would be expected as mountains can have very different 119 
climate at the same elevation due to proximity to the ocean (generally the further, the drier) and 120 
because of the mass-elevation or telescopic effect22 (larger mountains are better at warming the 121 
atmosphere above them). We found that AGC, stem density or density of large stems (>70 cm 122 
diameter) were not significantly related to elevation (Fig. 3, Table S4). Across sites these non-123 
significant relationships were all negative, although there was some variation in strength and 124 
direction amongst sites (Fig. 3). Similarly, in the Neotropics and Southeast Asia montane forest plot 125 
datasets, AGC was not significantly correlated with elevation (Extended Data Fig. 4).  126 
 127 
To assess potential environmental drivers of AGC-stock variation across the AfriMont plot network, 128 
we related AGC to climate, soil and topography. We found that AGC-stocks increased with annual 129 
precipitation (albeit not statistically significantly), decreased with soil fertility and were higher in 130 
plots which were locally at higher elevation than their surroundings (Extended Data Fig. 5). 131 
Relationships with other environmental variables were non-significant (Extended Data Fig. 5). 132 
Although global datasets might not capture fine-scale variation in climate or soils in mountain 133 
regions23, leading to regression dilution24, the general absence of strong climate effects combined 134 
with the lack of significant effect of elevation on AGC-stocks suggest that the high AGC-stock of 135 
African montane forests is a pervasive phenomenon across a wide environmental gradient. 136 
 137 
Although the AfriMont dataset covers most major mountain areas in tropical Africa (Fig. 4), some 138 
areas remain under-sampled relative to forest extents (Extended Data Fig. 6), resulting in some 139 
differences between the environmental conditions sampled by our plot network and the wider 140 
montane forest biome in Africa (Extended Data Fig. 7). Notably, the absence of plots from montane 141 
forests of eastern Democratic Republic of the Congo (Fig. 4, Extended Data Fig. 6) means that the 142 
AfriMont dataset samples forests are, on average, at higher elevations, and that are cooler and 143 
cloudier than the wider montane forest biome in Africa (Extended Data Fig. 7). Using relationships 144 



 

 

with environmental variables (Extended Data Fig. 5) to predict AGC-stocks in each 1-km grid cell 145 
containing montane forest gives a mean (weighted by remaining forest cover) AGC-stock of 176.9 146 
Mg C ha-1 (± 32.0 s.d.) for the tropical montane forest biome in Africa. This indicates that the 147 
estimate we report based on our AfriMont plot network data (149.4 Mg C ha-1) is conservative.    148 
 149 
Several mechanisms could explain the high AGC-stock of montane forests in the AfriMont plot 150 
network. Firstly, large herbivores such as elephants (Loxodonta spp.) can have profound effects on 151 
forest structure by consuming biomass, destroying small stems, dispersing seeds and transporting 152 
nutrients25. Studies for lowland forests suggest that elephants can increase carbon stocks26,27. We 153 
tested if AfriMont plots with known elephant presence as of 2019 had significantly higher AGC-154 
stocks, but found that they had significantly lower AGC-stocks, although significant differences were 155 
not observed in some countries (Extended Data Fig. 8). While the initial ecosystem response to 156 
elephant removal might be greater AGC-stocks due to reduced biomass consumption and small-stem 157 
destruction, the longer-term effects might differ. We were unable to fully disentangle such effects, 158 
as we lacked details on both i) time since elephant extirpation, and ii) elephant abundance and its 159 
determinants (see Table S5). 160 
 161 
A second potential explanation is a relatively low frequency of large-scale abiotic disturbances, 162 
allowing trees time to grow large and stands to self-thin, as is seen in lowland African forests4. For 163 
example, tropical cyclones are largely absent in mainland Africa (except in Mozambique28) and lava 164 
flows are limited even in the active volcano of Mt Cameroon29. Although fine-scale variability in 165 
landslide risk limits comparisons across large spatial scales, there are fewer areas with high landslide 166 
susceptibility in mountains in tropical Africa than in the Andes and most mountain ranges in 167 
Southeast Asia30. If forests have been ecologically stable over evolutionary timescales, tree species 168 
may be adapted to grow slowly but potentially reaching great sizes31. On Mt Kilimanjaro 169 
Entandrophragma individuals reach enormous heights and ages32. This low frequency of large-scale 170 
abiotic disturbances contrasts with the Andes and several mountains in Southeast Asia (e.g. Barisian 171 
mountains in western Sumatra), which are tectonically active, so the trees there are adapted to 172 
sudden disturbance followed by intense competition to get established and grow. Future monitoring 173 
of the AfriMont plot network will help determine the extent to which the high biomass of African 174 
tropical montane forests results from them being dynamic and productive, or adapted to stability. 175 
 176 
A third potential explanation could be the presence of conifers33. Mixed conifer/broad-leaved forests 177 
tend to have greater basal area than purely broad-leaved forests due to a more effective use of light 178 
and other resources34. Podocarpaceae can be found in montane forests across the tropics35. Despite 179 
having fewer species in Africa than in other continents36, these could be more abundant at the site-180 
level. However, there is no pantropical comparative study on Podocarpaceae abundance in tropical 181 
montane forests. In our dataset there was no significant correlation between plot-level AGC-stock 182 
and conifer (Podocarpaceae) abundance (Extended Data Fig. 9). Other explanations could be 183 
continental differences in mountain terrain (more gentle slopes or plateau regions in Africa) or types 184 
of montane forests investigated (less cloud forest existing/sampled in Africa). Within our dataset, 185 
slope did not have a significant effect on AGC-stocks (Extended Data Fig. 5). Contrary to the 186 
Neotropics37, there is no high-resolution map of cloud forests available for Africa, so while we found 187 
no relationship between AGC-stock and cloud frequency (Extended Data Fig. 5), we were unable to 188 
investigate differences in AGC-stock between cloud forest vs non-cloud forest plots.  189 
 190 
To understand the policy implications of our findings for African countries, we calculated montane 191 
(≥800 m asl) forest cover change between 2000 and 2018, using forest cover from ref.38 clipped to 192 
'primary humid forest' from ref.39. We show that tropical montane forests represent most -or all- 193 
evergreen old-growth forests found in ten African countries (Fig. 4), and that the Democratic 194 
Republic of the Congo has two thirds of the remaining 16 million ha of montane forests in Africa. 195 



 

 

Over 0.8 million ha (5%) have been lost in Africa since 2001, with the highest losses in the 196 
Democratic Republic of the Congo (536,000 ha), Uganda (65,000 ha) and Ethiopia (62,000 ha) (Fig. 4, 197 
Table 1). In terms of percentage, Mozambique and Côte d'Ivoire lost over 20% of their montane 198 
forests over this period (Fig. 4, Table 1). In some sites, however, a larger proportion of montane 199 
forests was lost before 2000, e.g. in Taita Hills in Kenya40. If absolute country-level deforestation 200 
rates continue, a further 0.5 million ha of tropical montane forests will be lost by 2030. 201 
 202 
African tropical montane forests are not only carbon-rich, but they also harbour some of the highest 203 
concentrations of biodiversity and endemism in the world9,10. They are important ‘water towers’ as, 204 
located at the headwaters of numerous river systems, including the Congo and the Nile, they 205 
regulate timing and magnitude of runoff9. They also regulate local temperatures41 and provide 206 
numerous other services to people in the surrounding landscapes9. Clearly, more should be done to 207 
avoid the destruction of these important ecosystems. Logging, mining and clearing land for farming, 208 
but also political unrest and militia presence have affected -and continue to affect- these forests, e.g. 209 
in Itombwe Mts in the Democratic Republic of the Congo42. Protected areas are known to help 210 
reduce deforestation in the tropics43. Beyond protected areas, other forest conservation 211 
mechanisms could be implemented, including effective carbon finance. Previous IPCC AGC-stock 212 
estimates for montane forests in Africa (89.3 Mg C ha-1) may have contributed to low incentives for 213 
carbon finance mechanisms in these ecosystems. Our study shows the far greater carbon storage 214 
potential in these tropical montane forests, which will be even higher if soil carbon stocks are 215 
considered (e.g. > 200 Mg C ha-1 of organic carbon occurs in the top 0-30 cm soil on Mt Cameroon44 216 
and in the Usambara Mts, Tanzania45). 217 
 218 
As well as conserving the remaining montane forests, efforts to restore them are critical. Forest 219 
restoration at one of our sites, Kibale National Park in Uganda, indicates the potential for rapid AGC 220 
accumulation46. Our study shows the high potential AGC-stock these montane forests can attain. The 221 
possible co-benefits of forest restoration, notably water regulation, control of soil erosion and 222 
landslides and biodiversity conservation should also be considered. Most African nations are 223 
committed to the Bonn Challenge; Ethiopia leading with 15 million ha committed (Table 1). We 224 
provide country-specific estimates of potential AGC-stocks based on forests sampled in the AfriMont 225 
dataset to help guide such interventions (Table 1, Extended Data Fig. 10). Caution is needed when 226 
scaling-up our estimates to the landscape scale, as not all forests are closed-canopy old-growth and 227 
structurally intact. Remote sensing or ancillary data (landcover maps, spatial environmental data) 228 
could be used to identify e.g. exotic plantations, degraded or bamboo forests, and thus help create 229 
detailed AGC maps at different spatial scales18,47. A closer collaboration between air-borne, space-230 
borne and ground approaches (such as the AfriMont and AfriTRON plot networks) is key for accurate 231 
quantification and monitoring of landscape-scale tropical forest AGC-stocks, particularly in mountain 232 
regions. 233 
 234 
Our newly compiled dataset and analysis provides a large-scale quantification of AGC-stock in 235 
African tropical montane forests, indicating it to be on average substantially higher than previously 236 
thought. While there is variation around this mean AGC-stock within and across sites, it is not 237 
systematically related to elevation. Apart from helping refine country-level estimates, IPCC 238 
guidelines and ground-calibration of remote-sensing estimates, continued on-the-ground monitoring 239 
of the AfriMont plot network will help determine ecosystem dynamics and carbon residence time in 240 
these extraordinarily carbon-rich forests, as well as their responses to climatic changes. 241 
  242 
  243 



 

 

Figures main document 244 

 245 
  246 
Fig. 1 ǀ Pantropical variation in aboveground carbon stocks sampled by plot networks in montane 247 
(≥ 800 m asl) and lowland (< 800 m asl) tropical forests. Data from this study for African montane 248 
forests (n = 226 plots, this study), montane forests in the Neotropics (n = 131) and Southeast Asia (n 249 
= 32) are from ref.2,5,6 , lowland forests in Africa (n = 290), the Neotropics (n = 416) and Southeast 250 
Asia (n = 60) arewfrom ref.7. Coloured points show the AGC-stock in each plot, with point size 251 
proportional to square-root plot area. Black points show means for each continent-elevation 252 
category estimated using linear mixed-effects models with site as a random effect, and lines show 253 
95% confidence intervals around means. Letters indicate signficiant differences between continent 254 
elevation category combinations (linear mixed-effects models with site as a random effect, P < 0.05).  255 
 256 
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 258 
Fig. 2 ǀ Proportion of plot-level aboveground carbon stock and stems accounted for by each size 259 
class in montane and in lowland forests in Africa. Statistically significant differences in contribution 260 
of each size class between montane and lowland forest plot networks are shown by asterisks (linear 261 
mixed-effects model, P < 0.05). NS = non-significant difference. Montane (n = 226), lowland (n = 262 
132). The thick line shows the median, and boxes cover the interquartile range (IQR). Values > 1.5 263 
times IQR away from the IQR are shown by points. 264 
 265 
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 267 
Fig. 3 ǀ Variables as a function of elevation. a-c Relationship between elevation and plot-level AGC 268 
stock (a), stem density (b) and stem density of large stems (>70 cm diameter; c) for the AfriMont 269 
dataset. Note log-scale of y-axis. Each response variable was log-transformed and modelled as a 270 
function of elevation with a linear mixed-effect models with random slopes. The dashed line shows 271 
the relationship across sites (non-significant in all cases, P ≥ 0.3, Table S4), while the black lines show 272 
the relationship within each site. Point sizes are proportional to square-root plot area. A polynomial 273 
model allowing a non-linear relationship with elevation was also tested but not supported over the 274 
linear model in any case (P ≥ 0.7, Table S4). The absence of a significant relationship with elevation is 275 
robust to removing the two highest elevation sites, Rwenzori and Virunga (Table S4). DBH diameter 276 
at breast height. 277 
 278 
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280 
Fig. 4. ǀ Old-growth evergreen humid forests in lowland and montane tropical Africa. Forest 281 
extends circa 2018. Note that montane includes submontane forests (800-1,000 m asl, light purple). 282 
Montane forests represent most (or all) evergreen humid old-growth forest in ten African nations: 283 
Burundi, Ethiopia, Kenya, Rwanda, Tanzania, Uganda and Zimbabwe (included in AfriMont); and 284 
Zambia, Malawi and South Sudan (no plot data available). Forest cover extracted from ref.38 and 285 
clipped to ‘primary humid forest’ using ref.39. See Table 1 for country-level absolute estimates. 286 
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Table 1 ǀ Remaining forest area and aboveground carbon estimates for montane and lowland 288 
tropical forests in Africa 289 

 290 

 291 
Forest cover circa 2018 was extracted from ref.38 and clipped to ‘primary humid forest’ using ref.39. 292 
Montane forest lost covers the period 2000-2018. Mean aboveground carbon (AGC, in MgC ha-1) 293 
estimates for montane (or lowland) forests were estimated from AfriMont and AfriTRON plot 294 
network data. Mean AGC values are in boldface, 95% confidence intervals in parentheses. For details 295 
on sites and plots used see Table S5. Bonn Challenge pledges for 2030 not yet available. 296 
a Ref.48 report 192 MgC ha-1 for lowland. 297 
b Few plots sampled, or very small plots sampled, AGC estimates may not be robust, see Extended 298 
data Fig. 10. 299 
c Data from neighbouring Liberia.  300 
dMontane forest loss in Mozambique, Uganda and Zimbabwe represents 27%, 13% and 10% of the 301 
existing montane forest in 2001, respectively. Montane forest loss in Côte d'Ivoire (no plot data 302 
available) was estimated to be 21% for the same period. 303 
e Ref.49 report 132.2 MgC ha-1 for lowland.  304 

 305 

  306 

Country Montane 
(ha) 

Montane 
lost (ha) 

Montane AGC 
(MgC ha-1, 95% 

CI) 

Montane 
sites 

(plots) 

 
Lowland 

(ha) 
Lowland AGC 

(MgC ha-1, 95% 
CI) 

Lowland 
plots 

Bonn 
Challenge 
by 2020 

(ha) 

Burundi 25,000 300 94 (47-176) 1 (7)  0 
 0 2 million 

Cameroon 840,000 30,200 153 (121-195) 7 (37)  17.7 million 166 (151-185) 72 12 million 

DRC 10.2 million 536,500 129 (84-202) 2 (37)  90 million 158 (135-183) 48 8 million 

Ethiopia 1.7 million 62,100 165 (124-215) 8 (25)  145,000 a 0 15 million 

Guinea 29,000 1,700 314 (147-616)b 1 (2)  193,000 157 (122 – 206)c 24 2 million 

Kenya 568,000 44,100 
104 (79-136) 

8 (38)  37,000 
 0 

5.1 
million 

Mozambique 18,000 6,600 d 226 (146-384) b 3 (4)  93,000 e 0 1 million 

Nigeria 42,000 1,400 120 (47-309) b 1 (1)  1.8 million 161 (105-262) 2 4 million 

Rwanda 53,000 300 106 (65-168) 2 (11)  0 
 0 2 million 

Tanzania 587,000 13,900 
175 (129-234) 

6 (29)  130,000 
128 (101-163) 16 

5.2 
million 

Uganda 427,000 64,600 d 
158 (111-209) 

6 (23)  18,000 
 0 

2.5 
million 

Zimbabwe 7,000 800 d 203 (108-363) 1 (12)   <1,000   0 2 million 
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 418 
Methods 419 
AfriMont or montane Africa dataset 420 
We compiled forest inventory plot data from the African Tropical Rainforest Observatory Network 421 
(AfriTRON; www.afritron.org ), with data curated at www.ForestPlots.net50,51 and the TEAM 422 
network52, as well as from numerous site-specific publications detailed in Table S5 and mapped in 423 
Fig. 4. Plots were selected for the analysis when conforming to the following criteria: ≥800 m asl, 424 
closed-canopy evergreen wet or moist tropical forest, geo-referenced, old-growth and structurally 425 
intact (not impacted by recent selective logging, fire or coffee cultivation), with no exotic species 426 
present (e.g. Eucalyptus or Pinus spp.), all trees ≥10 cm diameter measured and majority of stems 427 
identified to species. We included plots from Virunga Massif in Rwanda/Uganda even when not 428 
100% closed-canopy due to high abundance of naturally-occurring bamboo. In all plots, tree 429 
diameter was measured at 1.3 m along the stem from the ground, or above buttresses if present. In 430 
23 sites tree height was sampled in the field for some stems, using a clinometer or a laser. Families 431 
and species names follow the African Plant Database (http://africanplantdatabase.ch). The AfriMont 432 
dataset consists of 72,336 stems, of which 92.9% were identified to species, 98.4% to genus and 433 
98.5% to family. This dataset represents a standardised safe long-term repository of valuable 434 
historical data (four sites initially considered could not be included because tree-level data had 435 
already been lost by data owners).  436 
 437 
AfriTRON or lowland Africa dataset  438 
The 132 lowland-forest plots are all from AfriTRON4,13,53. They were selected using the same criteria 439 
as above (but with elevation <800 m asl), restricted to countries for which we also had montane 440 
plots plus neighbouring countries where the mountains span international borders (e.g. Mt Nimba 441 
spans Guinea and Liberia). The dataset includes 51,305 stems, of which 89.6% were identified to 442 
species, 97.3% to genus and 97.7 % to family. The plot data were retrieved from forestplot.net on 443 
06/01/2019. The plot locations and details are in Table S6. 444 
 445 
Literature dataset 446 
We compiled data on AGC-stocks in tropical lowland and montane forests to compare to the 447 
AfriMont data. Data for lowland forests came from ref.7 and consisted of all multi- and single-census 448 
plots that were <800 m asl. Data for montane forests were obtained from ref.2, with additional data 449 
from Venezuela (ref.5) and Colombia (ref.6). Montane plots were defined as ≥800 m asl; elevation 450 
was not provided for the Colombian dataset so plots were selected based on the forest type, and 451 
these plots were excluded from analyses requiring elevation. To avoid double counting plots, 452 
Venezuelan and Colombian plots were removed from the ref.2 dataset. 453 
 454 
Aboveground carbon  455 
For each tree in the montane dataset we used the published allometric equation by ref.54 to 456 
estimate aboveground biomass. This allometric equation was created using data from directly 457 
harvested trees at 58 sites across the tropics, including eight sites with elevation ≥800m asl (range 458 
900-3,000m asl including sites in Africa). We then converted this biomass to carbon, assuming that 459 
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aboveground carbon (AGC, in Mg C ha−1) is 45.6% of aboveground biomass55. AGC for each plot was 460 
estimated as the sum of the AGC of each living stem, divided by planimetric plot area (in hectares). If 461 
field measurements of slope were unavailable, we converted surface to planimetric area extracting 462 
slope from the NASA's Shuttle Radar Topography Mission (SRTM) product. We excluded tree ferns, 463 
bamboo and palms, as these were not measured in all plots. Ref.54 includes tree diameter, wood 464 
mass density and tree height. The best taxonomic match wood density of each stem was extracted 465 
from a global database56,57 following ref.53. For some sites, all trees in a plot had been sampled for 466 
height. If this was not the case, but some field measurements of height were available (typically ten 467 
stems per diameter class), we constructed a site-specific height-diameter model, using a Weibull 468 
equation following ref.58. If no field measurements of height were available, we constructed a 469 
cluster-specific height-diameter model, using a Weibull equation, as explained in Table S7 in 470 
Supplementary Information. The same approach was used to calculate aboveground biomass for 471 
lowland forests. For these, height was estimated using a Weibull equation following ref.58. 472 
 473 
Small plots and data subsampling 474 
For 22 sites where plots were small (<0.2 ha), we aggregated plots to groups of about 0.2 ha based 475 
on their geographic proximity, elevation, environmental affinity and the co-authors’ knowledge of 476 
the site, to help reduce the variation among plots at site level. This is because the presence of an 477 
extremely large tree in a small plot can result in overestimates of AGC59. We investigated if using the 478 
aggregated-plot approach affected AGC-stock estimates at the site level, and this was not the case 479 
(Extended Data Fig. 2). We also investigated if including small plots affected the continental mean 480 
AGC-stock estimates, as small plots have greater edge surface, and there is a tendency of some field 481 
teams to include large trees inside plots when laying out the boundaries60. Including small plots did 482 
not significantly affect our continental mean AGC-stock estimates (Extended Data Fig. 2). We also 483 
explored the sensitivity of our continental mean AGC-stock estimates to data subsampling. Data 484 
were resampled at different sample sizes either at plot level (sampling with replacement) or at site 485 
level (sampling without replacement). The number of plots (n=226) and the number of sites (n=44) 486 
we sampled indicate that our estimates of AGC-stock at the continental level are robust (Extended 487 
Data Fig. 1). They are also not affected by the fact that we included plots 800-1,000 m asl (Extended 488 
Data Fig. 3). 489 
 490 
Size classes 491 
For all plots, we computed the proportion of AGC which was distributed in each size-diameter class, 492 
using the classes of ref.15. We also computed stem density, basal area, density of large trees (>70 cm 493 
diameter, named SD70 in stems ha-1) and Podocarpaceae abundance (in percentage of plot-level 494 
basal area). 495 
 496 
Environmental variables and their effects 497 
Climate variables (temperature annual mean and seasonality, and precipitation mean and 498 
seasonality, i.e. Bio1, 4, 12 and 15) were extracted from WorldClimV261 at 30 arc-sec (~1-km) 499 
resolution. Mean temperature values were adjusted for the difference in elevation between the plot 500 
and the wider 1-km grid cell using the lapse rate of -0.005°C m-1. We obtained data on cloud cover 501 
from ref.62 and lightning frequency (0.1 degree, ~11 km) from the Lightning Imaging Sensor (LIS) very 502 
high resolution climatology63. Values for soil variables (cation exchange capacity, CEC, representing 503 
soil fertility, and percentage clay representing soil texture) were extracted from SoilGrids64 (~1-km 504 
resolution) and a depth-weighted mean taken for values from 0 to 30 cm depth to give a single value 505 
of each soil variable per plot. Elevation was obtained from SRTM (at 3 arc-second resolution, ~90 m). 506 
Topographic metrics were calculated from elevation data using the terrain function in the raster R 507 
package version 3.3-6. These were slope and topographic position index (TPI). TPI is the difference 508 
between the elevation of the plot and the mean value of the eight surrounding grid cells – positive 509 
values indicate locally high locations and negative values indicate locally low locations. Where small 510 



 

 

plots were aggregated for analysis, environmental variables were extracted for the ungrouped plot 511 
locations, and then an area-weighted mean taken to obtain a plot-level value. 512 
 513 
Elephant and conifer effects on AGC-stocks 514 
For the current elephant presence in the AfriMont plots, we created a binary variable 515 
(presence/absence) based on co-authors knowledge of elephant ranges and elevation distribution at 516 
each site as of 2019. Co-authors estimated that elephants were present in 2019 in 54 plots in 12 517 
sites in five countries (see Table S5). For all plots which had at least one individual in the 518 
Podocarpaceae family (47 plots, 16 sites, 7 countries), we computed the contribution of 519 
Podocarpaceae to plot basal area and AGC-stock in terms of percentages.  520 
 521 
Estimating forest cover and loss 522 
We obtained estimates of forest cover and loss in the years 2000 through to 2018, using the ‘loss 523 
year’ dataset of the Global Forest Change database, version 1.6 (ref.38). To exclude plantation 524 
forests, ‘dry’ forests (e.g. miombo woodland) and degraded forests, we applied the ‘primary humid 525 
forest’ mask developed by ref.39. We distinguished montane from lowland forests using an 526 
elevational cut-off of 800-m elevation, using the SRTM v3 product at 1 arc-sec resolution (snapping 527 
to the ref.38 grid of the same resolution). Where there were gaps in the 1 arc-sec SRTM product, we 528 
filled these using a 1 arc-sec bilinear interpolation of the (gapless) 3 arc-sec SRTM product. Areal 529 
estimates of forest cover and loss were calculated at 30-m resolution using the Africa Sinusoidal 530 
projection. To estimate future forest loss by year 2030, we extrapolated absolute country-level 531 
deforestation rates for the period 2000-2018 (in ha per year). 532 
 533 
Investigating AfriMont representativeness 534 
To quantify AfriMont sampling effort within the montane forest biome in Africa, we used the map of 535 
tropical montane forest extent (see above) and calculated the amount of remaining forest in each 1-536 
degree grid-cell. By dividing the area sampled in the AfriMont dataset by the proportion of this 537 
biome in a grid-cell, we calculated the expected sampling intensity if sampling was proportional to 538 
remaining forest extent. To assess how representative our plot network was of the environmental 539 
conditions of the wider tropical montane forest biome in Africa, we extracted the environmental 540 
data (climate and soil variables presented above) at ~1-km resolution from grid-cells that contained 541 
montane forest. We then visually compared the distribution of each variable in our dataset to its 542 
distribution across the biome (Extended Data Fig. 7). 543 
 544 
AfriMont vs global AGC maps 545 
We extracted alternative AGC estimates for the AfriMont plots (unaggregated, n=666) from four 546 
different sources: Harris et al. (ref.65) (30-m resolution, dated 2000), the European Space Agency 547 
Climate Change Initiative Biomass map66 (100-m resolution, 2017), Saatchi, et al. (ref.67) (1-km 548 
resolution, 2007/8) and Avitabile et al. (ref.68) (1-km resolution, circa 2000-2010). Most of the 549 
AfriMont plots were sampled between 2000 and 2019 (Table S5). Where the plots were found within 550 
a single map pixel, we extracted that value. Where plots were larger than the pixel size, we averaged 551 
the values from the surrounding pixels weighted according to the proportion of the pixel that was in 552 
the plot. 553 
 554 
Statistical analysis 555 
Data were analysed using linear mixed-effects models, with site as a random effect. Site was 556 
included as a random intercept in all models, and as a random slope where relationships were 557 
assessed against elevation. Allowing the slope of the elevation effect to vary amongst sites in this 558 
way captures the a priori expectation for slopes to differ among sites, for example due to mass 559 
elevation effects. The effect of plot size on variation was accounted for by weighting observations by 560 
a power transformation of plot size; this was estimated during model fitting using the varPower 561 



 

 

function in the nlme R package (ref.69), and then models refitted using the lme4 R package (ref.70) 562 
using these estimated weights. Confidence intervals and P-values for mixed effects models 563 
parameters were estimated by bootstrapping models (1,000 iterations) using the 564 
bootstrap_parameters function in the parameters R package (ref.71). AGC-stocks, stem density and 565 
SD70 were natural-log transformed (a small constant was added to SD70 before log transforming to 566 
avoid log-transforming zeros) to meet assumptions of normality and avoid heteroscedacity. Likewise, 567 
the proportional contribution of each size class was square-root transformed. Differences in AGC-568 
stocks between all combinations of lowland and montane forests amongst continents were assessed 569 
using Tukey post-hoc tests implemented in the multcomp R package (ref.72). Relationships between 570 
AGC-stocks and environmental variables were investigated by fitting all subsets of the full model 571 
with all environmental covariates and averaging the best supported (difference in Akaike 572 
information criterion from the best supported model ΔAIC<4) models (using dredge and movel.avg 573 
functions in the MuMIn R package (ref.73). We used these relationships with climate and soil to 574 
predict AGC-stocks in each 1-km grid cell containing montane forests (holding topographic variables 575 
at their dataset wide mean), and then took the forest-area weighted mean of these to obtain a 576 
single mean for the tropical montane forest biome in Africa. Differences in AGC-stocks between 577 
plots with and without elephants were tested using t-test with AGC-stocks natural-log transformed. 578 
We investigated if Podocarpaceae abundance (in terms of basal area) and plot AGC-stocks were 579 
significantly correlated using Spearman's rank correlation coefficient. To investigate if sampling 580 
design affected AfriMont AGC-stock estimates we used ANOVA to test whether site-level mean AGC-581 
stocks differed according to the sampling strategy used to establish plots at that site. To explore the 582 
relationship between AfriMont AGC-stock estimates and global maps, and among these global maps, 583 
we used Spearman’s rank correlation test. 584 
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Extended Data 819 
 820 

821 
Extended Data Fig. 1 ǀ Sensitivity of mean aboveground carbon stock estimates to data 822 
subsampling. AfriMont plot data were resampled at different sample sizes either at plot level 823 
(sampling with replacement) or at site level (sampling without replacement). N = 1,000 resamples 824 
for each sample size. 825 
 826 
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 827 
Extended Data Fig. 2 ǀ Effect of plot area, aggregation procedure and plot design on estimates of 828 
aboveground carbon stocks across the AfriMont plot network. (a) Relationship between 829 
aboveground carbon stocks and plot area of plots prior to aggregation. The red line shows the fit of a 830 
locally weighted regression model (span = 0.75) relating these variables, with dashed lines showing 831 
the standard errors. (b) Variation in aboveground carbon stocks using either all plots prior to 832 
aggregation (unaggregated), plots prior to aggregation but excluding those < 0.2 ha (unaggregated, > 833 
0.2 ha) or the aggregated plots used in the main analyses (aggregated). (c) Effects of plot design on 834 
aboveground carbon stocks (each site represents one dot). Sampling strategies include random or 835 
stratified random, plots positioned along transects, plots established within elevation bands, 836 
subjective measures such as choosing an area of forest considered representative of the wider area, 837 
and other strategies (one plot sampled per site or unclear strategy). Carbon stocks (log-transformed) 838 
did not differ significantly between sites with different sampling strategies (ANOVA: F4,39 = 0.432, P 839 
= 0.785). For specific site information see Table S5. 840 
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843 
Extended Data Fig. 3 ǀ Robustness of differences in tropical montane forest aboveground carbon 844 
(AGC) stocks among continents based on plot networks to differences in elevation. (a) Elevations 845 
of montane forests plots sampled in each continent. Violin plots show the distribution of data, with 846 
boxplots showing the median and interquartile range of elevation in each continent. (b) Effect of 847 
removing submontane plots (800-1,000 m asl) and high elevation plots (> 2,200 m asl, approximately 848 
the upper quartile of elevations for the African montane plot dataset) on AGC-stocks in montane 849 
forests sampled by plot networks in each continent. Mean AGC-stocks and 95% confidence intervals 850 
are shown as estimated by models using i) all data, ii) excluding plots 800-1,000 m, and iii) restricting 851 
plots to 1,000-2,200 m. Means for all plots differ from the analysis in Fig. 1 as literature plots without 852 
elevation data (plots in Colombia) were excluded from this analysis. Point symbols are proportional 853 
to square-root plot area. N = 324 plots.  854 
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 857 
Extended Data Fig. 4 ǀ Relationship between aboveground carbon (AGC) stocks and elevation for 858 
tropical montane forests in each continent based on plot networks. Dashed lines show 859 
relationships from a linear mixed-effects model of log-transformed AGC-stocks as a function of 860 
elevation, continent and their interaction. Site was included as a random effect, and AGC-stock – 861 
elevation relationships allowed to vary among sites. Lines show fitted slopes across sites. Neither the 862 
overall relationship between elevation and AGC-stocks (slope = -0.039 [95% CI = -0.127 – 0.057], P = 863 
0.420) nor interactions between elevation and continent (Southeast Asia, change in slope = -0.074 [-864 
0.294 – 0.149], P = 0.503; Neotropics, change in slope = 0.006 [-0.132 – 0.149], P = 0.913) are 865 
statistically significant. N = 324 plots.  866 
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 869 
Extended Data Fig. 5 ǀ Environmental drivers of aboveground carbon stocks across the AfriMont 870 
plot network. Coefficients are from a linear mixed-effects model with site as a random intercept. 871 
Results are following all-subsets regression and model averaging, in which variables that do not 872 
appear in well supported models are given coefficients of zero, leading to shrinkage in model 873 
coefficients. Statistically significant relationships (P < 0.05) are indicated with asterisks. TPI refers to 874 
topographic position index (positive values indicate higher than surroundings, negative values 875 
indicate lower than surroundings). T_mean: annual mean temperature, T_seasonality: temperature 876 
seasonality, Precip_total: annual precipitation, Precip_seasonality: precipitation seasonality. 877 
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880 
Extended Data Fig. 6 ǀ Expected sampling effort if effort was distributed in proportion to the area 881 
of tropical montane forest biome in Africa. Data are summarised at 1-degree resolution. Upward 882 
triangles show grid-cells where AfriMont sampling effort is more than double expected effort, 883 
downward triangles show grid-cells where AfriMont sampling effort is less than half expected effort. 884 
Circles denote AfriMont sampling effort being between half and double expected effort. The extent 885 
of the tropical montane forest biome was defined as closed-canopy forests ≥ 800 m asl in December 886 
2018, extracted from ref.38 and clipped to ‘primary humid forest’ using ref.39. This grided map differs 887 
from Fig. 4 as numerous grids have very little tropical montane forest. 888 
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891 
Extended Data Fig. 7 ǀ Differences in the environmental conditions sampled by the AfriMont plot 892 
network and the tropical montane forest biome in Africa. The extent of the biome was defined as 893 
closed-canopy forests ≥ 800m asl in December 2018, extracted from ref.38 and clipped to ‘primary 894 
humid forest’ using ref.39. Environmental variables for the biome were extracted at ~1-km 895 
resolution. 896 
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899 
Extended Data Fig. 8 ǀ Differences in aboveground carbon (AGC) stocks in AfriMont plots located in 900 
montane forests with and without elephants. a) Differences across all plots. AGC-stocks are 901 
statistically significantly lower in forests with elephants (t-test, t = 3.5, df=83.5, P = 0.001). The thick 902 
line shows the median, and boxes cover the interquartile range (IQR). Values > 1.5 times IQR away 903 
from the IQR are shown by points. b) Differences in countries where elephants are present in at least 904 
one of the montane sites studied. Black squares show means in each country in forests with or 905 
without elephants – solid lines denote statistically significant differences (t-tests, P < 0.05). Elephant 906 
presence in 2019 was estimated by co-authors (see Table S5).  907 
 908 
  909 



 

 

910 
Extended Data Fig. 9 ǀ Relationship between aboveground carbon (AGC) stocks and 911 
Podocarpaceae. (a) Relationship between AGC-stocks and Podocarpaceae basal area across plots in 912 
the AfriMont network, expressed as a percentage of total plot basal area. These variables are not 913 
significantly correlated (rs = 0.083, n = 226, P = 0.212). (b) Distribution of plots with at least 20% 914 
basal area of Podocarpaceae (black points) in relation to elevation and AGC-stocks. AGC-stocks are 915 
not significantly related to elevation or Podocarpaceae basal area (Linear mixed effects model, P = 916 
0.152 and 0.132 respectively). 917 
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 921 
Extended Data Fig. 10 ǀ Within country variation in aboveground carbon stocks based on the 922 
AfriMont plot network. Error bars show means and 95% confidence intervals estimated by linear 923 
mixed-effects models. Modelled means not shown for countries with fewer than five plots. Point size 924 
is proportional to plot area. 925 
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