Maria Ruiz-Castell 
email: maria.ruiz@lih.lu
  
Gwenaëlle Le Coroller 
email: gwenaelle.lecoroller@lih.lu
  
Jean-Francois Landrier 
email: jean-francois.landrier@univ-amu.fr
  
Djedgiga Kerkour 
email: djedjiga.kerkour@outlook.com
  
Bernard Weber 
email: bernard.weber@labo.lu
  
Guy Fagherazzi 
email: guy.fagherazzi@lih.lu
  
Brice M R Appenzeller 
email: brice.appenzeller@lih.lu
  
Michel Vaillant 
email: michel.vaillant@lih.lu
  
Torsten Bohn 
email: torsten.bohn@lih.lu
  
Micronutrients and Markers of Oxidative Stress and Inflammation Related to Cardiometabolic Health: Results from the EHES-LUX Study

Keywords: population based study, antioxidants, adipokines, cardio metabolic health, secondary plant compounds

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Metabolic syndrome (MetS) is defined as a constellation of different metabolic disorders (including abdominal obesity, insulin resistance, high cholesterol, and high blood pressure) that increases the risk of cardiovascular diseases (CVD), the leading cause of mortality worldwide. MetS is a global health problem, affecting nearly 25% of the world's adult population (with regional variabilities) [START_REF] Saklayen | The Global Epidemic of the Metabolic Syndrome[END_REF]. It is commonly associated with chronic inflammation and high levels of oxidative stress [START_REF] Rani | Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies[END_REF]. Possible causes for MetS and associated risk factors include changes in lifestyle (e.g., sedentary lifestyle or unbalanced diet), chronic exposure to environmental pollutants, and genetic predisposition. Several studies have shown an association between a healthy diet rich in fruits and vegetables and a reduction in the risk of developing chronic diseases, including CVD, type 2 diabetes (T2D), and certain types of cancer [START_REF] Joshipura | The Effect of Fruit and Vegetable Intake on Risk for Coronary Heart Disease[END_REF][START_REF] Rees | Mediterranean' dietary pattern for the primary prevention of cardiovascular disease[END_REF]. There is also evidence of an inverse association between fruit and vegetable consumption and MetS [START_REF] Tian | Fruit and vegetable consumption and risk of the metabolic syndrome: A meta-analysis[END_REF][START_REF] Lee | Fruit and vegetable consumption and the metabolic syndrome: A systematic review and dose-response meta-analysis[END_REF]. The observed health benefits can be explained by the antioxidant and anti-inflammatory properties of the combination of certain micronutrients (e.g., vitamins and minerals), phytochemicals (e.g., polyphenols, carotenoids), and some types of fermentable fiber [START_REF] Alissa | Dietary Fruits and Vegetables and Cardiovascular Diseases Risk[END_REF], which typically relates well to the intake of fruits/vegetables from the diet [START_REF] Galan | Serum concentrations of β-carotene, vitamins C and E, zinc and selenium are influenced by sex, age, diet, smoking status, alcohol consumption and corpulence in a general French adult population[END_REF]. In parallel, studies have observed that individuals with MetS present a reduction in blood concentrations of antioxidant vitamins and phytochemicals [START_REF] Godala | The risk of plasma vitamin A, C, E and D deficiency in patients with metabolic syndrome: A case-control study[END_REF][START_REF] Ford | The Metabolic Syndrome and Antioxidant Concentrations: Findings from the Third National Health and Nutrition Examination Survey[END_REF]. This reduction could be due to the transfer of lipophilic phytochemicals, such as carotenoids and fat soluble vitamins (A, D, E, K), from the blood into fatty tissues [START_REF] Samouda | Relationship of oxidative stress to visceral adiposity in youth and role played by vitamin D[END_REF][START_REF] Landrier | Lipophilic Micronutrients and Adipose Tissue Biology[END_REF], causing a drop in the circulating proportion of these constituents in the bloodstream of individuals with more adipose tissue. Another possible explanation is the need for higher amounts of antioxidants in individuals with metabolic problems, which is also characterized by increased lipid peroxidation products (e.g., malondialdehyde (MDA) and oxidized low-density lipoprotein (ox-LDL)). These antioxidants may quench the increased levels of oxidative stress, such as reactive oxygen or reactive nitrogen species, causing a reduction in the concentration of circulating and/or stored antioxidants [START_REF] Andersen | Longitudinal associations between body mass index and serum carotenoids: The CARDIA study[END_REF]. There is also the possibility that individuals with metabolic disorders have a diet characterized by low intake of such antioxidants [START_REF] Wallström | Serum concentrations of β-carotene and α-tocopherol are associated with diet, smoking, and general and central adiposity[END_REF]. However, there is a clear relation between low dietary intake or circulating antioxidants and increased risk of chronic disease. For instance, epidemiological studies have shown positive correlations between the intake of carotenoids and lower risk of T2D [START_REF] Hamer | Intake of fruit, vegetables, and antioxidants and risk of type 2 diabetes: Systematic review and meta-analysis[END_REF], and negative correlations between carotenoid plasma levels and total mortality [START_REF] Buijsse | Plasma carotene and α-tocopherol in relation to 10-y all-cause and cause-specific mortality in European elderly: The Survey in Europe on Nutrition and the Elderly, a Concerted Action (SENECA)[END_REF] and total polyphenol intake and all-cause mortality [START_REF] Tresserra-Rimbau | Polyphenol intake and mortality risk: A re-analysis of the PREDIMED trial[END_REF]. This is supported by many in vitro and in vivo mechanistic studies showing that carotenoids can act on intracellular signaling cascades by inhibiting the formation of various downstream cytokines and/or enhancing the production of antioxidant enzymes [START_REF] Kaulmann | Carotenoids, inflammation, and oxidative stress-Implications of cellular signaling pathways and relation to chronic disease prevention[END_REF]. Results observed of the possible protective effects of antioxidant vitamins are inconclusive however, with studies showing no reduction in vitamin concentrations in individuals with MetS [START_REF] Beydoun | Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis[END_REF], sex differences [START_REF] Park | Effects of total vitamin A, vitamin C, and fruit intake on risk for metabolic syndrome in Korean women and men[END_REF], and contradictory health outcomes regarding supplementation [START_REF] Kaulmann | Carotenoids, inflammation, and oxidative stress-Implications of cellular signaling pathways and relation to chronic disease prevention[END_REF][START_REF] Lee | Vitamin E in the primary prevention of cardiovascular disease and cancer: The Women's Health Study: A randomized controlled trial[END_REF]. It should be further noted that there is a clear relation between oxidative stress and inflammation [START_REF] Khansari | Chronic Inflammation and Oxidative Stress as a Major Cause of Age-Related Diseases and Cancer. Recent Pat[END_REF][START_REF] Biswas | Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxidative Med[END_REF], with one potentially aggravating the other. The pro-inflammatory state in individuals with MetS is characterized by elevated concentrations of inflammatory markers, such as C-reactive protein (CRP), and alterations in the production of adipokines (proteins secreted by adipose tissue) [START_REF] Ouchi | Adipokines in inflammation and metabolic disease[END_REF]. This can be explained in part due to an excess in visceral fat characterized by dysfunctional adipocytes that secrete high concentrations of cytokines, such as leptin (pro-inflammatory role, though acting also as a hormone on satiety), and low concentrations of adiponectin (anti-inflammatory) [START_REF] Hajer | Adipose tissue dysfunction in obesity, diabetes, and vascular diseases[END_REF]. The present study aimed to assess possible associations between circulating concentrations of micronutrients/phytochemicals, inflammatory and oxidative stress markers, and MetS in a large subsample of the population of the European Health Examination Survey in Luxembourg.

Materials and Methods

Study Population and Design

We analyzed data from 606 randomly selected individuals (315 with MetS, 291 without MetS) from the 1529 participants of the European Health Examination Survey (EHES-LUX) [START_REF] Bocquet | Study design and characteristics of the Luxembourg European Health Examination Survey (EHES-LUX)[END_REF]. We selected the random sample stratified by MetS with the aim to produce a sample in which exposure varies. EHES-LUX is a cross-sectional population-based survey, representative of the general population, conducted between February 2013 and January 2015 in Luxembourg. The target sample of EHES-LUX was residents (excluding those who were living in institutions) of the Grand Duchy of Luxembourg, aged 25 to 64 years, who agreed to participate [START_REF] Bocquet | Study design and characteristics of the Luxembourg European Health Examination Survey (EHES-LUX)[END_REF]. For each participant, trained nurses performed a medical examination and collected health questionnaires and biological samples (hair, blood, and urine).

Examinations included blood pressure and anthropometric measurements (height, weight, waist circumference (WC), hip circumference, and thigh size), an electrocardiogram, visual acuity examination, and a spirometry. Blood samples were collected to analyze fasting blood glucose, plasma-triglycerides, plasma-cholesterol (total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C)), and thyroid hormones. Moreover, we analyzed concentrations of selected micronutrients, markers of oxidative stress, and inflammation in the 606 selected individuals. Of these, we excluded 55 individuals with values below the limit of detection for any of the outcome measures above. We also excluded from the present analysis 16 outliers (one value of CRP > 90000 mg/mL, nine values of insulin > 2000 pmol/L, four values of F2-isoprostanes > 100.000 ng/mL, two values of folic acid > 90.8 nmol/L). Thus, 508 individuals had complete biological information. From those, 504 had complete information on socioeconomic and lifestyle characteristics (280 with MetS, i.e., cases, and 224 without MetS, i.e., controls) (Figure 1). EHES-LUX was approved by the National Ethics Committee of Luxembourg (CNER, N • 201205/07) and notified to the Commission Nationale pour la Protection des Données (CNPD). All individuals approved their participation by written informed consent.
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Metabolic Syndrome

MetS was defined as having a WC ≥ 94 cm for men and ≥ 80 cm for women and at least the presence of two factors of the following: (1) total triglycerides ≥ 150 mg/dL or on related medication for both men and women; (2) HDL cholesterol < 40 mg/dL for men and < 50 mg/dL for women or being on related medication; (3) systolic blood pressure ≥ 130 or diastolic blood pressure ≥ 85 mm Hg or being on related medication for both men and women; and (4) fasting plasma glucose ≥ 100 mg/dL or previous diagnosis of diabetes for both men and women. We used the International Diabetes Federation definition [START_REF] Zimmet | A New International Diabetes Federation (IDF) Worldwide Definition of the Metabolic Syndrome: The Rationale and the Results[END_REF].

Micronutrients, Markers of Oxidative Stress, and Inflammation

We analyzed circulating concentrations of 14 micronutrients/phytochemicals and inflammatory/oxidative stress markers. Cortisol, folic acid, and vitamin D (as 25 hydroxyvitamin D) in serum aliquots [START_REF] Ford | The Metabolic Syndrome and Antioxidant Concentrations: Findings from the Third National Health and Nutrition Examination Survey[END_REF][START_REF] Hajer | Adipose tissue dysfunction in obesity, diabetes, and vascular diseases[END_REF], and 20 µL, respectively) were measured by a chemiluminescent enzymatic antibody-based method (Cobas e 602, Roche) by a local commercial laboratory with an accredited method (Laboratoires Réunis, Junglinster, Luxembourg). Vitamin A (retinol) and vitamin E (alpha-tocopherol) were also measured by this laboratory from serum aliquots (Agilent 1290 Infinity II, 30 µL) based on HPLC combined with UV-Vis detection, employing the Chromosystems 34,000 kit (Chromosystems, Munich, Germany). Total carotenoids were determined following the micro-extraction procedure with heptane, similar as described by Donaldson [START_REF] Donaldson | Development of a rapid, simple assay of plasma total carotenoids[END_REF]. In short, 100 µL of serum were mixed with 100 µL of methanol, including 1% butylated hydroxytoluene for protein precipitation, and then extracted with 120 and again with 70 µL of heptane. The combined fractions were measured at 450 and 470 nm spectrophotometrically (Spectra Max M2, Molecular Devices, San Jose, CA, USA) in a microcuvette (Micro Quartz Cuvette, Black, 0.7 mL, Spectrometer Cell; Science Outlet, Aliso Viejo, CA, USA). Quantification was carried out, assuming an average molecular extinction coefficient of 134.000 mol/(L * cm). Aliquots of the serum (50 µL) were measured for MDA based on the thiobarbituric acid (TBARS) assay, employing a commercial kit (10009055, Cayman Chemicals, Ann Arbout, MI, USA), based on fluorescence detection with an excitation wavelength of 525 nm and an emission wavelength of 565 nm (Spectra Max M2 spectrophotometer, Molecular Devices, San Jose, CA, USA). Total phenolics in serum aliquots were measured based on the Folin Ciocalteu assay, expressed as gallic acid equivalents. In short, 50 µL of serum and 80 µL of NaOH (2.5 M in 75% of methanol) were added to facilitate lipoprotein dissemblance. Following incubation at 37 • C for 30 min, 20 µL of 6.25 M metaphosphoric acid (MPA) was added and centrifuged (13,000× g, 5 min). The supernatant was removed and combined with a follow-up extraction of 250 µL of methanol (65%). Combined phases were quantified with 1:5 diluted Folin Ciocalteu reagent (Sigma Aldrich, St. Louis, MS, USA) at 750 nm in a wellplate reader (Polarstar, BMG Labtech, De Meern, The Netherlands); 8-iso-prostaglandin F2α in plasma was quantified by a direct enzyme immunoassay kit (ADI-901-091; Enzo Life Sciences AG, Villeurbanne, France). Ox-LDL in serum was measured by enzyme immunoassay (BI-20032; OLAB, Vienna, Austria). Leptin, adiponectin, CRP, and insulin in plasma (references DY398, DY1065, DY1707, DY8056, respectively) were measured using commercially available enzyme-linked immunosorbent assay kits purchased from Biotechne R&D systems (Lille, France). All quantifications were made according to the manufacturer's specifications, after preliminary dilution tests, and based on external calibration curves.

Covariates

We included age, sex (men/women), and country of birth (Luxembourg, Portugal, other EU countries, other non-EU countries) as sociodemographic variables. Socioeconomic status included the variables education level (categorized into no qualification, primary education, secondary education, and tertiary education) and job status (not working, working). Lifestyle characteristics included smoking (current smoking or quitted < 12 months, non-smokers or quitted > 12 months), alcohol consumption (non-alcohol consump-tion, ≤6 drinks/week, >6 drinks/week), and physical activity (aerobic physical activity ≥ 150 min, aerobic physical activity < 150 min per week).

Statistical Data Analysis

We used means (± standard deviation) and frequencies (%) to describe the general characteristics of the sample population. Associations between MetS and potential risk factors (e.g., age, sex, smoking history, socioeconomic status) were analyzed with Pearson's chi-squared test (χ2) or Student's t-test as appropriate. Associations between MetS and micronutrients and markers of oxidative stress and inflammation were analyzed by the Wilcoxon test for non-parametric values. All concentrations of micronutrients/phytochemicals and markers of oxidative stress and inflammation were tested for normal distribution using the Shapiro-Wilk test of normality. Concentrations were natural log-transformed to meet residual normality. We used the least absolute shrinkage and selection operator (LASSO) [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF] to select (from a total of twenty variables) the variables included in the final model by using the GLMNET package on R. The objective was to obtain the L1 penalization (λ) parameter to find the simplest model (i.e., the smallest number of coefficients) and a reduction of the bias and variance. We did a cross-validation and applied the rule of one standard error. In order to avoid over-fitting, a nonparametric bootstrapping with 1000 iterations was performed, and the selected variables were those that appeared more than 80% in all bootstrap samples. Following the selection of the variables, we calculated the odds ratios (ORs) and their 95% confidence intervals (CIs) to study the association between MetS and micronutrients, markers of oxidative stress, and inflammation. All analyses were stratified by sex. Analyses included participants with complete information for all variables. We performed a sensitivity analysis in which we replaced censored values of CRP, insulin, and leptin with the values of the detection limit divided by two. All tests were two-tailed. We considered a p-value of 0.05 as statistically significant. All analyses were performed using SAS 9.4 (SAS Institute Inc., Cary, NC, USA) and R (version 3.5.3).

Results

Participants' Characteristics

Men had higher values of weight, BMI, and waist circumference, and presented higher levels of cardiometabolic risk factors compared to women (e.g., higher systolic and diastolic blood pressure, concentration of triglycerides, total cholesterol and fasting glucose, lower concentrations of HDL-C). Nearly half of participants included in the present study had MetS (55.6% with MetS compared to 44.4% without MetS). In our study sample (N = 504), nearly 62% of men had MetS compared to 48% of women. Men also had more MetS components (e.g., hypertriglyceridemia, hyperglycemia, and low HDL-C) compared to women (Table 1). Younger participants with higher education, with a job, and who did aerobic physical activity ≥ 150 min per week were less likely to have MetS. The same results were observed when comparing men and women, with the exception of job status for women (Supplementary Table S1). N: number; SD: standard deviation; BMI: body mass index; HDL-C: high-density lipoprotein cholesterol; HbA1c: glycated hemoglobin A1c. 1 Pearson's chi-squared test for categorical variables, t-test for continuous variables. 2 Waist circumference ≥ 94 cm for men and ≥ 80 cm for women. 3 Total triglycerides ≥ 150 mg/dL or on related medication. 4 HDL cholesterol < 40 mg/dL for men and < 50 mg/dL for women or on related medication. 5 Systolic blood pressure ≥ 130 or diastolic blood pressure ≥ 85 mm Hg or on related medication. 6 Fasting plasma glucose ≥ 100 mg/dL or self-reported based on a physician diagnosis.

Association between MetS and Markers of Inflammation, Oxidative Stress, and Micronutrients

We observed differences in blood concentrations of micronutrients/phytochemicals and inflammatory/oxidative stress markers between participants with and without MetS (Table 2). Concentrations of vitamin E and A, leptin, CRP, insulin, and 8-iso-prostaglandin F2α were higher in participants with MetS. Concentrations of adiponectin and Ox-LDL were lower in participants with MetS. When stratified by sex (Figure 2, Supplementary Table S2), concentrations of vitamin E, leptin, CRP, and insulin were higher in men with MetS, whereas adiponectin and Ox-LDL concentrations were lower. Regarding women, concentrations of vitamins E and A, leptin, and CRP were higher for those with MetS, while concentrations of adiponectin and beta-carotene were lower.

In both men and women, we observed a positive correlation between CRP and leptin and insulin and vitamin E, and a negative correlation between CRP and adiponectin and vitamin D and beta-carotene (Figure 3). Leptin was positively correlated with insulin, CRP, and vitamin E, and negatively correlated with adiponectin and beta-carotene. We also observed a positive correlation between adiponectin and vitamin D and beta-carotene and cortisol, and a negative correlation between adiponectin and leptin and insulin and CRP in women.

When stratified by sex (Figure 2, Supplementary Table S2), concentrations of vitamin E, leptin, CRP, and insulin were higher in men with MetS, whereas adiponectin and Ox-LDL concentrations were lower. Regarding women, concentrations of vitamins E and A, leptin, and CRP were higher for those with MetS, while concentrations of adiponectin and beta-carotene were lower. In both men and women, we observed a positive correlation between CRP and leptin and insulin and vitamin E, and a negative correlation between CRP and adiponectin and vitamin D and beta-carotene (Figure 3). Leptin was positively correlated with insulin, CRP, and vitamin E, and negatively correlated with adiponectin and beta-carotene. We also observed a positive correlation between adiponectin and vitamin D and beta-carotene and cortisol, and a negative correlation between adiponectin and leptin and insulin and CRP in women. Leptin, adiponectin, CRP, vitamin A, age, sex, and physical activity were selected by the LASSO logistic regression as the best predictors for MetS (Table 3). For both men and women combined, a one-unit increase in log CRP was associated with a 51% increase in the odds of having MetS (OR 1.51 (95% CI: 1.16, 1.98)), and a one-unit increase in log adiponectin was associated with a 76% decrease in the odds of having MetS (0.24 (0.13, 0.46)). Moreover, adults with a one-unit increase in log leptin were 3.10 times more likely to have MetS (3.10 (2.10, 4.72)), and a one-unit increase in vitamin A was associated with a 2% increase in the odds of having MetS (1.02 (1.01, 1.03)). We observed that, in men, a one-unit increase in log CRP was associated with a 71% increase in the odds of having MetS (1.71 (1.19, 2.51)), and men with a one-unit increase in log leptin were 3.34 times more likely to have MetS (3.34 (2.15, 5.42)). For women, a one-unit increase in log CRP was associated with a 38% increase in the odds of having MetS (1.38 (0.94, 2.06)), and a one-unit increase in vitamin A was associated with a 3% increase in the odds of having MetS (1.03 (1.01, 1.05)). Moreover, women with a one-unit increase in log leptin were 3.31 times more likely to have MetS (3.31 (1.63, 7.20)), and, in women, a one-unit increase in log adiponectin was associated with an 82% decrease in the odds of having MetS (0.18 (0.07, 0.46)). Leptin, adiponectin, CRP, vitamin A, age, sex, and physical activity were selected by the LASSO logistic regression as the best predictors for MetS (Table 3). For both men and women combined, a one-unit increase in log CRP was associated with a 51% increase in the odds of having MetS (OR 1.51 (95% CI: 1.16, 1.98)), and a one-unit increase in log adiponectin was associated with a 76% decrease in the odds of having MetS (0.24 (0.13, 0.46)). Moreover, adults with a one-unit increase in log leptin were 3.10 times more likely to have MetS (3.10 (2.10, 4.72)), and a one-unit increase in vitamin A was associated with a 2% increase in the odds of having MetS (1.02 (1.01, 1.03)). We observed that, in men, a oneunit increase in log CRP was associated with a 71% increase in the odds of having MetS (1.71 (1.19, 2.51)), and men with a one-unit increase in log leptin were 3.34 times more likely to have MetS (3.34 (2.15, 5.42)). For women, a one-unit increase in log CRP was associated with a 38% increase in the odds of having MetS (1.38 (0.94, 2.06)), and a oneunit increase in vitamin A was associated with a 3% increase in the odds of having MetS (1.03 (1.01, 1.05)). Moreover, women with a one-unit increase in log leptin were 3.31 times more likely to have MetS (3.31 (1.63, 7.20)), and, in women, a one-unit increase in log adiponectin was associated with an 82% decrease in the odds of having MetS (0.18 (0.07, 0.46)). 

MetS Components and Markers of Inflammation

When examining MetS components separately (Table 4), we observed higher odds of abdominal obesity and hyperglycemia associated with leptin in both men (15.19 (7.04, 32.79)) and (15.14 (5.64, 40.62)), respectively) and women (2.08 (1.45, 2.98) and 1.97 (1.01, 3.82), respectively). Higher odds of high blood pressure were associated with leptin (1.57 (1.08, 2.27)), and higher odds of abdominal obesity were associated with CRP (2.14 (1.33, 3.45)) only in men. In women, higher odds of abdominal obesity, hypertriglyceridemia, low HDL, and high blood pressure were associated with lower concentrations of adiponectin (0.23 (0.07, 0.70), 0.21 (0.09, 0.53), 0.27 (0.11, 0.67), and 0.31 (0.13, 0.74), respectively). We also observed that, in women, vitamin A was associated with higher odds of hypertriglyc-

Discussion

In the present study, we have provided insights into the factors that may influence the development of MetS. In particular, our results reveal the necessity to target a variety of factors, such as dietary micronutrients, inflammation, and oxidative stress. Elevated circulating concentrations of CRP, leptin, insulin, and vitamin A were all positively associated with MetS and MetS components, whereas adiponectin was inversely associated. To our knowledge, this is the first study that uses the LASSO technique to identify specifically which circulating micronutrients/phytochemicals and inflammatory/oxidative stress markers are associated with MetS.

Regarding dietary micronutrients, in our study, we included serum vitamin E, polyphenols, and carotenoids based on their frequent presence in plant-based diets [START_REF] Rauma | Antioxidant status in long-term adherents to a strict uncooked vegan diet[END_REF], and vitamin A and D for their occurrence in animal-based diets [START_REF] Booth | Natural Food Sources of Vitamin A and Provitamin A[END_REF]. Contrary to observations made in other studies [START_REF] Godala | The risk of plasma vitamin A, C, E and D deficiency in patients with metabolic syndrome: A case-control study[END_REF][START_REF] Ford | The Metabolic Syndrome and Antioxidant Concentrations: Findings from the Third National Health and Nutrition Examination Survey[END_REF], our results showed higher concentrations of vitamins E and A in individuals with MetS. In the final model, only vitamin A remained statistically significant, with a positive association observed in women only. It should be noted that, compared to other studies where participants had vitamin deficiencies, in our sample, almost all participants showed concentrations of vitamins A/E within the normal values (>20 µg/dL and >500 µg/dL, respectively). The evidence regarding the association between vitamin A and MetS, however, remains inconclusive. In a recent meta-analysis, there was no association observed between vitamin A and MetS [START_REF] Beydoun | Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis[END_REF]. Ford et al. [START_REF] Ford | The Metabolic Syndrome and Antioxidant Concentrations: Findings from the Third National Health and Nutrition Examination Survey[END_REF] and Beydoun et al. [START_REF] Beydoun | Serum Antioxidant Status Is Associated with Metabolic Syndrome among U.S. Adults in Recent National Surveys[END_REF] observed similar results to the present study, although the positive association between vitamins A/E and MetS disappeared or changed after adjusting for cholesterol and triglycerides, a result that we did not observe. In this particular case, adjusting for cholesterol and triglycerides could be justified, since vitamin E is transported through LDL-C and HDL-C. This allows us to exclude variations caused by these transporters as the underlying reason. In Western societies, individuals generally obtain vitamin A from two main dietary sources: preformed vitamin A, i.e., retinol (ca. 75% of total vitamin A intake) or provitamin A in the form of carotenoids (e.g., beta-carotene, ca. 25%) [START_REF] Booth | Natural Food Sources of Vitamin A and Provitamin A[END_REF]. From our study, based on mainly healthy participants from the general population, vitamin A (mainly coming from animal sources, e.g., meat, dairy products, fish, and associated oils) could be an indicator of their type of diet. This would explain why participants with MetS showed higher concentrations of vitamin A, since their diet might be rich in animal sources and low in fruit-and vegetable-derived carotenoids. Further on this hypothesis and the results observed in other studies, we also observed lower serum levels of beta-carotene in individuals with MetS [START_REF] Beydoun | Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis[END_REF]. Studies have shown that a diet rich in carotenoids can have a protective function in the development of chronic diseases [START_REF] Ford | The Metabolic Syndrome and Antioxidant Concentrations: Findings from the Third National Health and Nutrition Examination Survey[END_REF][START_REF] Hamer | Intake of fruit, vegetables, and antioxidants and risk of type 2 diabetes: Systematic review and meta-analysis[END_REF][START_REF] Beydoun | Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis[END_REF]. This effect could be mediated by carotenoids acting as antioxidants, modulating transcription factors while also regulating inflammation [START_REF] Kaulmann | Carotenoids, inflammation, and oxidative stress-Implications of cellular signaling pathways and relation to chronic disease prevention[END_REF]. However, in our study, beta-carotene was not selected in our final model. As for carotenoids, studies have observed that higher intakes of polyphenols are associated with reduced cardiometabolic risk factors [START_REF] Del Bo | Systematic Review on Polyphenol Intake and Health Outcomes: Is there Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern?[END_REF]. In our study, we did not observe this association, although it is possible that i) our analytical test was not specific enough for dietary polyphenols, since it also detected other reduced compounds, and ii) the low bioavailability of many polyphenols impeded clear findings [START_REF] Del Bo | Systematic Review on Polyphenol Intake and Health Outcomes: Is there Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern?[END_REF].

Our results emphasize the inflammatory response related to MetS, since biomarkers of inflammation, such as CRP, adiponectin, and leptin, were selected in our final model. Levels of CRP are increased in response to inflammation and are considered an indicator of coronary risk and metabolic problems [START_REF] Pai | Inflammatory Markers and the Risk of Coronary Heart Disease in Men and Women[END_REF]. On the other hand, levels of adiponectin (secreted by adipose tissue) are reduced in response to chronic inflammation [START_REF] Ouchi | A Novel Role for Adiponectin in the Regulation of Inflammation[END_REF]. The role of adiponectin was mainly observed in women. Sex-based differences in the strength of the association between adiponectin and MetS could be explained by the fact that women had higher concentrations of circulating adiponectin compared to men. These sex differences seemed to be related to body composition and fat distribution, since women usually have less visceral adipose tissue and more subcutaneous adipose tissue than men [START_REF] Lew | Sex-Based Differences in Cardiometabolic Biomarkers[END_REF]. Both CRP and adiponectin are considered as key players in the development of MetS, characterized by an imbalance of pro-and anti-inflammatory response in favor of the first. Furthermore, we observed that leptin had the strongest association with MetS, although the main association was observed with abdominal obesity as expected, since concentrations of leptin are correlated with total body fat [START_REF] Kumari | An update on metabolic syndrome: Metabolic risk markers and adipokines in the development of metabolic syndrome[END_REF]. This association was observed in both men and women regardless of concentrations being higher in women than men. Leptin was also associated with high blood pressure in men and hyperglycemia in both men and women. Cross-sectional and prospective studies have observed an association between leptin concentrations and MetS independent of obesity [START_REF] Franks | Leptin Predicts a Worsening of the Features of the Metabolic Syndrome Independently of Obesity[END_REF][START_REF] Frühbeck | Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome[END_REF]. Leptin has different biological roles, including energy balance and endocrine function [START_REF] Charchour | Mutltifaceted biological roles of leptin[END_REF]. Studies have observed that a dysfunctional adipose tissue produces adipokines (e.g., adiponectin and leptin) in abnormal concentrations and is associated with cardiometabolic problems [START_REF] Kumari | An update on metabolic syndrome: Metabolic risk markers and adipokines in the development of metabolic syndrome[END_REF]. Leptin resistance has also been identified as a risk factor associated with MetS, similar to insulin resistance [START_REF] Könner | Selective Insulin and Leptin Resistance in Metabolic Disorders[END_REF]. Insulin concentrations were also higher in adults with MetS, though in the final model the association was not statistically significant. Although insulin resistance is a characteristic of individuals with MetS, MetS may appear without the presence of elevated insulin concentrations [START_REF] Han | A clinical perspective of obesity, metabolic syndrome and cardiovascular disease[END_REF]. This could explain why insulin was selected in our model, but its association was not statistically significant.

While inflammation was related to MetS, no marker of oxidative stress (including OxLDL, MDA, or 8-iso-prostaglandin F2α) was associated with MetS or its components. This contrasts with previous findings that have associated these markers with MetS [START_REF] Hurtado-Roca | Oxidized LDL is associated with metabolic syndrome traits independently of central obesity and insulin resistance[END_REF][START_REF] Van't Erve | Classifying oxidative stress by F(2)-isoprostane levels across human diseases: A meta-analysis[END_REF]. It is possible that the limited differences in dietary status and the overall relatively healthy population prevented an imbalance in oxidative stress homeostasis.

Limitations of the present study include the cross-sectional design of our study, which does not allow drawing conclusions about causality. Moreover, we only analyzed data from participants with complete measurements, and therefore lost information by excluding participants with incomplete data. Strengths include the individual and objective measurement of a large number of risk factors. In addition, the LASSO selection technique allowed us to select the variables that best explained the association.

Conclusions

The present study contributes to a better understanding of the key determinants (selected from a large set of possible factors of MetS). Oxidative stress, inflammation, and nutritional status are among several factors that may influence the onset of MetS, and this study emphasizes that chronic inflammation appears to best characterize individuals with MetS.
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 2 Figure 2. Concentrations of markers of dietary nutrient intake, inflammation, and oxidative stress by metabolic syndrome, stratified by sex. All concentrations were natural log-transformed with the exception of vitamin A. Original units prior to log-transformation were vitamin E (μg/dL), adiponectin (μg/dL), ox-LDL (U/dL), leptin (µ g/dL), CRP (µ g/dL), insulin (nmol/dL), and beta-carotene (nmol/dL). Ns: p-value > 0.05; * p-value ≤ 0.05; ** p-value ≤ 0.01; *** p-value ≤ 0.001; **** pvalue ≤ 0.0001. Ox-LDL: oxidized low-density lipoprotein; CRP: c-reactive protein.

Figure 2 .

 2 Figure 2. Concentrations of markers of dietary nutrient intake, inflammation, and oxidative stress by metabolic syndrome, stratified by sex. All concentrations were natural log-transformed with the exception of vitamin A. Original units prior to log-transformation were vitamin E (µg/dL), adiponectin (µg/dL), ox-LDL (U/dL), leptin (µg/dL), CRP (µg/dL), insulin (nmol/dL), and beta-carotene (nmol/dL). Ns: p-value > 0.05; * p-value ≤ 0.05; ** p-value ≤ 0.01; *** p-value ≤ 0.001; **** p-value ≤ 0.0001. Ox-LDL: oxidized low-density lipoprotein; CRP: c-reactive protein.

Figure 3 .

 3 Figure 3. Correlations between micronutrients and markers of inflammation and oxidative stress. * p-value < 0.05; ** pvalue < 0.01; *** p-value < 0.001. T.phenolics: total phenolics; MDA: malondialdehyde; Ox-LDL: oxidized low-density lipoprotein; CRP: c-reactive protein; 8-iso-PGF: 8-iso-prostaglandin-F2α. All concentrations were natural log-transformed with the exception of vitamin A, MDA, and cortisol.
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Table 1 .

 1 Cardiometabolic characteristics of the sample stratified by sex (N = 504).

		Total (N = 504)	Men (N = 272)	Women (N = 232)	p-Value 1
		Mean ± SD, N (%)	Mean ± SD, N (%)	Mean ± SD, N (%)	
	Anthropometric characteristics				
	Weight, kg	81.61 ± 18.47	88.37 ± 17.10	73.67 ± 16.83	<0.0001
	BMI, kg/m 2	28.34 ± 5.670	28.71 ± 4.830	27.90 ± 6.510	0.12
	Waist, cm	96.24 ± 15.19	101.0 ± 13.32	90.62 ± 15.36	<0.0001
	Hip size, cm	104.3 ± 11.06	102.8 ± 9.130	106.0 ± 12.78	<0.01
	Cardiometabolic risk factors				
	Systolic blood pressure, mm Hg	127.1 ± 16.63	132.3 ± 14.41	121.0 ± 17.02	<0.0001
	Diastolic blood pressure, mm Hg	81.89 ± 11.14	84.10 ± 10.93	79.28 ± 10.83	<0.0001
	Triglycerides, mg/dL	134.8 ± 81.65	160.9 ± 91.56	104.1 ± 54.18	<0.0001
	HDL-C, mg/dL	48.22 ± 13.53	42.81 ± 10.58	54.56 ± 13.86	<0.0001
	Total cholesterol, mg/dL	203.6 ± 38.53	204.6 ± 40.43	202.3 ± 36.24	0.50
	Glucose, mg/dL	101.5 ± 21.28	104.8 ± 25.73	97.53 ± 13.45	<0.0001

Table 1 .

 1 Cont. 

		Total (N = 504)	Men (N = 272)	Women (N = 232)	p-Value 1
		Mean ± SD, N (%)	Mean ± SD, N (%)	Mean ± SD, N (%)	
	HbA1c, mol/mol	38.51 ± 6.840	38.72 ± 7.960	38.27 ± 5.250	0.45
	Metabolic syndrome	280 (55.56)	169 (62.13)	111 (47.84)	<0.01
	Metabolic syndrome components				
	Abdominal obesity 2	350 (69.44)	185 (52.86)	165 (47.14)	0.45
	Hypertriglyceridemia 3	230 (45.63)	153 (66.52)	77 (33.48)	<0.0001
	Low HDL-C 4	219 (43.35)	148 (67.58)	71 (32.42)	<0.0001
	High blood pressure 5	265 (52.68)	145 (54.72)	120 (45.28)	0.76
	Hyperglycemia 6	289 (57.46)	182 (62.98)	107 (37.02)	<0.0001

Table 2 .

 2 Concentration of micronutrients and circulating markers of inflammation and oxidative stress by metabolic syndrome (N = 504).

		Metabolic Syndrome (N = 280)		Non Metabolic Syndrome (N = 224)	
		Median	Q25	Q75	Min	Max	Median	Q25	Q75	Min	Max	p-Value 1
	Markers of dietary intake											
	Vitamin D, µg/dL	0.213	0.147	0.273	0.046	0.710	0.224	0.156	0.282	0.062	0.536	0.32
	Vitamin E, µg/dL	1274	1087	1538	657.0	3100	1154	993.0	1327	587.0	2487	<0.0001
	Vitamin A, µg/dL	71.50	59.50	82.00	26.00	142.0	65.00	53.00	75.00	27.00	125.0	<0.0001
	Folic acid, nmol/dL	122.0	89.50	178.0	29.00	546.0	132.0	93.50	180.0	26.00	686.0	0.36
	Beta-carotene, nmol/dL	1078	751.0	1510	28.00	5459	1220	851.0	1822	284.0	4268	<0.01
	Total phenolics, mmol/dL	1072	1006	1144	785.3	1384	1065	1014	1125	781.2	1351	0.66
	Markers of oxidative stress											
	MDA, µM	1.101	0.847	1.389	0.171	2.605	1.102	0.807	1.343	0.132	2.520	0.49
	Ox-LDL, U/dL	0.157	0.067	0.374	0.014	1.368	0.231	0.100	0.647	0.012	1.453	<0.001
	8-Iso-prostaglandin-F2α, µg/dL	0.019	0.009	0.086	0.002	0.412	0.017	0.009	0.067	0.001	0.317	0.34
	Marker of stress											
	Cortisol, nmol/dL	4153	3243	5150	112.0	12980	4152	3346	5202	1025	16240	0.95
	Markers of inflammation											
	CRP, µg/dL	0.016	0.008	0.028	0.001	0.138	0.007	0.003	0.014	0.000	0.070	<0.0001
	Adiponectin, µg/dL	0.027	0.020	0.036	0.007	0.117	0.034	0.025	0.047	0.008	0.132	<0.001
	Markers of energy metabolism and hormones											
	Leptin, µg/dL	0.176	0.112	0.268	0.010	1.365	0.096	0.045	0.192	0.004	0.667	<0.0001
	Insulin, nmol/dL	1.148	0.760	1.761	0.180	17.97	0.919	0.540	1.228	0.157	18.00	<0.0001

N: number; Q: quartile; MDA: malondialdehyde; Ox-LDL: oxidized low-density lipoprotein; CRP: c-reactive protein; 1 Wilcoxon test.

Table 3 .

 3 Variables selected by the LASSO logistic regression, measuring the association between metabolic syndrome and micronutrients and markers of inflammation and oxidative stress (N = 504).

	Metabolic Syndrome
	Men	Women	Total
	OR (95% CI)	OR (95% CI)	OR (95% CI)

04, 1.12) 1.13 (1.09, 1.18) 1.10 (1.08,

1.14) 

Table 3 .

 3 Variables

		Metabolic Syndrome	
	Men	Women	Total
	OR (95% CI)	OR (95% CI)	OR (95% CI)

selected by the LASSO logistic regression, measuring the association between metabolic syndrome and micronutrients and markers of inflammation and oxidative stress (N = 504).
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