Supplementary material for Genau et al.

Figure S1: Workflow of phylogenetic singly copy TF/TR screening.

Based on a proteinortho [1] run 15,388 *P. patens*, 12,478 *M. polymorpha* and 14755 *A. thaliana* orthologous groups were filtered according to single copy status in each species. These proteins were scanned further using TAPscan [2], yielding 38 proteins classified into 23 TAP (TF or TR) families (GNAT, MYB-related, SET/Sigma70-like, FHA, PcG_MSI, Jumonji_Other, IWS1, C3H, C2H2, bHLH, TANGO2, tify, TUB, WRKY, MADS, Med7, O-FucT, BES1, CCAAT_HAP3, GRAS, HMG, ARID and Med6). For these 23 families, phylogenetic inference using Neighbour-Joining with quicktree-SD [3] was performed using the proteins of *Arabidopsis thaliana, Anthoceros agrestis, Marchantia polymorpha, Physcomitrium patens* as well as *Oryza sativa* to verify single copy status in the three bryophytes of interest, leading to removal of 8 genes on account of unclear/lack of orthology. For the remaining 30 proteins initial literature and expression analyses were conducted, narrowing them down to 11 candidates (Table S1) from which 2 were selected for this study.

Figure S2: Multiple sequence alignment of the GNAT domain of HAG1.

The conserved Coenzyme A binding pocket is marked by black boxes.

		700	710	720	730	7,40	750	760
PHYPA_Pp3c10_9060V3.1/1-889	GVGSGW	DHETLLL	EALEMYGDNW	ELAEHVGT	SKSOCILOFI	RLPVEDPFLE	DMETPGTSLS	VPDPPPNL -
KLEFL_W100100_0010/1-899	DADGGW	DQETLLLL	EGLELFGDNWO	EISEHVOT	SRADCILHE	MPIEDPFLE	ELEASSTVTT	IVTDDPTAYG
SELMO_gw1.11.844.1/1-506	SDDGGW	DQETLLLL	EALEMFGDNWN	ELAEHVAT	SKAQCILHF!	KMPIEDSFLD	DVEASASITA	ASKHTEEDG
CHABR_g23440.t1/1-1173	PNSDEW	DQETLLLL	EALELYGDNWA	IE I A <mark>E H VG T</mark>	TKAQCILHFIL	RLPIEDPFLE	EMEMGGAVHT	IVDVPAAPA-
MMGU_Migut.B00247.1,p/1-925	VSGGNW	DQETLLLL	EAIEIFKDNWS	SEIAEHVAT	TKADCILHEV	MPIEDAFFN	HODENNDAPK	(ENVV <mark>P</mark> VSDS
PHODA_PDK_30s1064021g001/1-874	ASGGSW	DQETLLLL	EALELFGENWI	IEIAEHVAT	KT KAQCILHFL	2MPIEDSFLE	GEDDARNNIC	ENRDHT
PHYPA_Pp3c2_24980V3.1/1-662	VATKEN	SK <mark>et</mark> lll	EAVSRFGENWI	QVAAHVPT	RSKSECVKHF!	ELPFODSYSV	EPEEPKATRV	AGSGAAEND
SPHFA_Sphfalx0001s0385.1,p/1-781	APTKEN	SKENLLL	EALLSYGDNWN	QVACHVRS	RTGIECVKOFIL	LPFGDQFIS	ESHDTNGVVT	INHAVVL
MARPO_Mapoly0079s0052.1/1-799	STGDRM	TKETLSLL	EAIGRFGDNWI	QVADYVGT	SRGECVKOFI	RLPFGDRFLN	DAGADSPAFN	ADGERMLVDC
SELMO_estExt_fgenesh2_pg.C_230018/1-543	NSSSEM	AEETMLLL	EAISKYGDNWI	RVQQHVGS	KNRGQCVRQF	LPFGDQFLN	DLGAVSSSSF	VASKSLENG
AZOFI_hc_s0099.g044199/1-672	IPRDDW	KEELLRLL	EALTKYRENW	LIAHHVET	RSKAECIMOFM	KL <mark>PFGD</mark> QFIE	SNSLDRSMQY	(V
ANTAG_13988/1-507	LAKEEW	QQETLLLL	EGVMRHGDNW	RVSDYVGT	KTKADCVSHFIL	RLPFGDRLLG	DIDTFGDAFC	VKTD
AMBTR_scattold 00016.207/1-576	QGPVSW	DSEMLLL	EGTLKHGDDW	KIAAHVRT	SKYDCILKLI	LPFGEHLLS	NVNTKGNLEC	PKKNA · · ·
SOLLY_Solyc03g097450.2.1/1-573	NPKVNW	EAETLLLL	ESVLKHGDDW	LVTQNVKT	KSKLDCISKL	LPFGDLMLG	SIHKKFNFLD	KNREV
MMGU_Migut.100558.1,p/1-559	QTEAV	EAETLLLL	ESVLKHGDDWI	LVATNVQT	KSKQECISKL!!	LPFGDHMLG	VGHKRSRYLD	LISDIS
POPTR_Potri.015G100400.1/1-570	SNAAV	EEETLRLL	ESVSRHGNDWI	LVAQNVKT	KTKLDCISKLI	ELPFGDLILS	STYGKGNSSG	QIGST
POPTR_Potri.015G100400.3/1-526	SNAAVW	EEETLRLL	ESVSRHGNDWI	LVAQNVKT	KTKLDCISKLI	ELPFGDLILS	STYGKGNSSG	QIGST
VITVL_GSVIVT01008584001/1-563	NRGAVW	EAETLLLL	ESVLKHGDDW	ELVVQNVQT	KTKLDCISKLI	ELPFGELMLG	SSLGKSRASN	IDNT
ARATH_AT2G47620.1/1-512	SAAAVWI	EEEILLLL	ESVLKHGDDW	EL ISQSVST	SRLDCISKL!	ELPFGEFLMG	SASGRLNPSI	LTEDE····
ORYSAJAPON_LOC_0s04g40420.1/1-560	HSSSAM	DAETLLLL	EGVLKHGDDW	LIACHVRT	KNKSECIARLII	LPFGEHMLG	TVNGKLDNRL	.HKIQT
ZEAMA_GRMZM2G135410_P01/1-557	HASSAM	DTETLLLL	EGVLKHGDDWI	LIACHVRT	KNKSECIAMLII	LPFGEHMLG	TINGKEVSEL	. HINQT
PICAB_MA_10426836g0010.1/1-511	LGSDKW	DEETFLLL	EGILLYGDDWI	ISVV <mark>QHVG</mark> T	KNEADCVMKL!	HLPFGEHFMG	NAGTEGNDGF	SSNIK
PICAB_MA_10435735g0010.1/1-457	QKSVEW	DEETLVLL	EAIFLHNDDWI	CVAQHVGT	SEADCVSRF	LPFGEQYIG	NISNEVSDRF	SSNVT
GINBI_22023/1-479	QGSDKW	DQETLLLL	EAILLHNDDWI	<svaqhvgt< td=""><td>SEAVEVTREIL</td><td>LPFGEQYMS</td><td>NVGTEGSDRF</td><td>SSNIK</td></svaqhvgt<>	SEAVEVTREIL	LPFGEQYMS	NVGTEGSDRF	SSNIK
SALCU_hc_v1.1_s0116.g021044/1-588	QVADDW	MQETLRLL	EALAKYGENWI	NHVAHYVS <mark>T</mark>	KSKMQCIKRFII	RLPFGEQFLT	NLGSEISNLA	ASKNVP
AZOFI_hc_s0205.g057728/1-590	PVPDDW	MQEVLRLL	EGLAKYGENWI	QVAHYVAT	SRAECITREV	RLPFGDQFFT	NVGMETSDLV	ASRESM
AMBTR_scatfold 00022.143/1-491	TKTDRW	DKDTLLLL	EALLQYGDDWI	SVAKYVGN	KSEKEC I SRF!	KLPFGEQFVA	PLELGEEELE	SENNA · · ·
CARPA_26.13/1-414	QTKADW	DKETLQLL	EAIMHYGDDWI	RKVAQHVSG	RSEKDCITHFIL	KL PFGEEFIS	CADSGEVDDF	<pre>₹FNEM····</pre>
ZEAMA_GRMZM2G064328_P01/1-495	DAKPDW	DKETLHLL	EAVLHYGEDWI	(K <mark>VSEHV</mark> S <mark>S</mark>	RSEKDCIARFI	RLPFGEQFMG	HKEDRMRFEN	ITDDNT
PHODA_PDK_30s803861g004/1-605	LDGDSWS	DQETLLLL	EALEKYNDNWI	IE I AE HVGT	KSKAQCILHF	RLPTEDGLLE	NIELPHMAVS	SDSLK <mark>g</mark> hk <mark>p</mark>
AZOFI_hc_s0104.g044781/1-816	YDNGNWS	DHETLLL	EALEIHGDNW	EVSEFVGT	KSKAQCI SQFU	LSIEDRFFE	DMELPSSFTT	VKMK

Figure S3: Multiple sequence alignment of part of the SANT/MYB domain of SWI3A/B.

The potential DNA binding sites of the MYB domain are marked by black boxes.

Figure S4: RNA-seq expression profile of Pp*HAG1* (Pp3c2_9560V3.1, histone acetyltransferase) and Pp*SWI3A/B* (Pp3c2_24980V3.1, chromatin remodelling complex subunit).

Data are from [4], antheridia bundles from [5] and apices from this study. The highest expression of both genes can be detected in antheridia bundles, but expression in all reproductive stages shown is significantly (t-test, p < 0.05; asterisks) higher than in the vegetative control (protonema and juvenile = asexual gametophores). Expression data in archegonia, representing the female germ line [6] is not significantly higher than in vegetative tissue (data not shown because from microarray / different scale). Gametophore apices feature gametangia (female archegonia and male antheridia). Green sporophytes are pre-meiotic, brown sporophytes post-meiotic. RPKM is Reads Per Kbp (of transcript) and Million (of reads); data were generated according to standardized procedures allowing to compare across samples [7].

Transient expression of PpSWI3A/B and PpHAG1 fused to a C-terminal GFP. The white arrows indicate the nuclear localization. A protoplast transiently expressing GFP in the nucleo-/cytoplasm is shown for comparison.

Figure S6: Structure of the Pp3c2_9560, Pp3c2_24980 and Mapoly0187s0003 targeted genes.

Structure of the *Pp3c2_9560*, *Pp3c2_24980* and *Mapoly0187s0003* genes with their respective sgRNAs positions. Boxes represent the exons and black lines represent the introns. The two sgRNAs positions are indicated (in red). Green arrows represent the primers used for PCR and sequencing.

А

	1 100
Wild-Type	TCCTTCCAAGGAGGCGAAACGTAATGCGTGCGAGGTGGGGTTCTTTGGAATGAGGAGGAGGGGGGGG
Swi3a/b-1	TCCTTCCAAGGAGGCGAAACGTAATGCGTGCGAGGTGGGGTTCTTTGGAATGAGGAGGAGGAGGGGGGGG
Swi3a/b-2	TGCTTCCAAGGAGGCGAAACGTAATGCGTGCGAGGTGGGGTTCTTTGGAATGAGGAGCAGGAGTGAGGTGTGAATTCTGGTAGTTTATGGGGAGTCTTTG
Swi3a/b-3	TGCTTCCAAGGAGGCGAAACGTAATGCGTGCGAGGTGGGGTTCTTTGGAATGAGGAGCAGGAGTGAGGTGTGAATTCTGGTAGTTTATGGGGAGTCTTTG
	101 200
Wild-Turno	101 200 መመርድርድርድ አ ድርመርድርድ የመመር አመር አመርድር አ ድርመርድ አ ድርመር የመመርመመርድ አ ክድምር ዓ መርክ ም አ ሮ አ አ ድርድር አ ድርድ አ ድርድ አ ማድር አ መርክ
cwi2a/b_1	
Swi3a/b-2	
Swi3a/b-2	11000000000010010010010010010000010000010000
5w15a/D-5	
	201 300
Wild-Type	GAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG
Swi3a/b-1	GAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGGAGCGTGCCTACGGGGTGTCCCAAAGTGAGGAGGAGGAGGAGGAGGAGAGGGAACGCGGGTGTGGATGTTCC
Swi3a/b-2	GAGGAGGAGAGGAGGAGAGGAGAGGAGAGGAGAGGAGAGGAGA
Swi3a/b-3	GAGGAGGAGGAGGAGGAGAGGAGAGGAGGAGGGAGCGTGCCTACGGGGTGTCCCAAAGTGAGGAGGAGAGGGAGAGAGA
	301 400
Wild-Type	GAGCAAGAAGAGGAGGAAAGCTGGGCAGAGCGGAGTGCCGGAGCCCACTCCCGAAGGGGAATCAAATTGCGTCGGGGAAAGGAGAGGAGGATGAAAACAAT
Swi3a/b-1	GAGCAAGAAGAGGAAAGCTGGGCAGAGCGGAGTGCCGGAGCCCACT
Swi3a/b-2	GAGCAAGAAGAGGAAAGCTGGGCAGAGCGGAGTGCCGGAGCCCACT
Swi3a/b-3	GAGCAAGAAGAGCAGGAAAGCTGGGCAGAGCGGAGTGCCGGA
	401 500
Wild-Type	GGAACGTTGGAAGAAAAGGGAATGCAGAGGGGGCTCCCCCAAGAAAATGCAGAAATTAGTCACAAGAGTGACCCAGCTTCCGTGGAACCATCAGCTATACCCACAG
Swi3a/b-1	
Swi3a/b-2	
Swi3a/b-3	
	501 600
Wild-Type	CCACTCCAGAGGCTGCGACC CGGCCTGAAGCGCCTACTCAAGAGGTGTACAGAATACCCAGCTATGCAGGTGCTTGAAACTCAGAATGCCTTAGTATTCCAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGGTGTACAGAATACCCAGCTATGCAGGTGTACAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGGTGTACAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGGTGTACAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGGTGTACAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGAATGCCTTAGTATTCCAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGAATGCCTTAGTATTCCAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGAATGCCTTGAAACTCAGAATGCCTTGAAACTCAGAATGCCTTAGTATTCCAGAATGCCTTGCAGGTGTGTACAGAATGCCTGAGGTGTACAGAATGCCTGAGTGCTTGAAACTCAGAATGCCTTGAAACTCAGAATGCCTTAGTAGAATGCCAGGTGCTTGAAACTCAGAATGCCTTAGTAGAGATGCCTTGAAATGCCAGCTGAGAGGTGCTTGAAACTCAGAATGCCTTAGTATTCCAGAATGCCTTGAAATGCCTGAGAGGTGCTGAGAGGTGCTGACAGAATGCCTTAGTAGAGGTGCTGAGGTGCTGAGGTGCTGAGGTGCTGAGGTGCTGCAGGTGCTGGAGGTGCTGAGGTGCTGGCGCGCTGCGCGCGC
Swi3a/b-1	CCTGAAGCGCCTACTCAAGAGGTGTACAGAATACCCAGCTATGCAGGTGCTTGAAACTCAGAATGCCTTAGTATTCC
Swi3a/b-2	
Swi3a/b-3	
	601 700
Wild-Type	GGTGTTGTACTGGAGAATAGGGAACTGCTTGATGTATGTGTGGGGTGTGTGT
Swi3a/b-1	GGTGTTGTACTGGAGAATAGGGAACTGCTTGATGTATGTGTGGGGTGTGTGT
Swi3a/b-2	GGTGTTGTACTGGAGAATAGGGAACTGCTTGATGTATGTGTGGGGTGTGTGT
Swi3a/b-3	GGTGTTGTACTGGAGAATAGGGAACTGCTTGATGTATGTGTGGGGTGTGTGT
	701 800
Wild-Type	701 800 ARARTATGGAGGCTTGGTGGTGGTTTGTGATATGCATGGTTTARARARATARATARATARATARATARATARATA
Wild-Type Swi3a/b-1	701 800 AAAATATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGATTTAAAAAAATAAAT
Wild-Type Swi3a/b-1 Swi3a/b-2	701 800 AAAATATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGATTTAAAAAATAAAT
Wild-Type Swi3a/b-1 Swi3a/b-2 Swi3a/b-3	701 800 ARAATATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGATTTAARAAAATAAATAAATAAATAAAATCAATTCATTAACTGGTGCAA ARAATATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGATTTAARAAAATAAATAAATAAAATA
Wild-Type Swi3a/b-1 Swi3a/b-2 Swi3a/b-3	701 800 AAAATATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGATTTAAAAAATAAAT
Wild-Type Swi3a/b-1 Swi3a/b-2 Swi3a/b-3	701 800 ANANTATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGATTTAANANATAANTAANTAANTAANTAANTCAATTCATTAACTGGTGCAA ANAATATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGATTTAANAANATAANTAANTAANTAANTAANTCAATTCATTAACTGGTGCAA ANAATATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGATTGAT
Wild-Type Swi3a/b-1 Swi3a/b-2 Swi3a/b-3 Wild-Type	701 800 AAAATATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGATTTAAAAAATAAAT
Wild-Type Swi3a/b-1 Swi3a/b-3 Wild-Type Swi3a/b-1	701 800 AAAATATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGATTAAAAAAATAAAATAAAATAAAATCAATTCATTAACTGGTGCAA AAAATATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGATATGAATAAAATAAAATAAAATAAAATCAATTCATTAACTGGTGCAA AAAATATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGATGATATGAATAAAATAAAATAAAATAAAATAAAATAAAATCAATTCATTAACTGGTGCAA AAAATATGGAGACTTGGAGGTTTGTCTTGGGAGGTTTGTGATATGCATGATGATATAAAAAAAA
Wild-Type Swi3a/b-1 Swi3a/b-2 Swi3a/b-3 Wild-Type Swi3a/b-1 Swi3a/b-2	701 800 AAAATATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGGATATAGAATAAAATAAAT
Wild-Type Swi3a/b-1 Swi3a/b-2 Swi3a/b-3 Wild-Type Swi3a/b-1 Swi3a/b-2 Swi3a/b-3	701 800 ANANTATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGGATATGCATGATATAANTAANTAANTAANTAANTAANTAANTCAATTCATTAACTGGTGCAA ANANTATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGATATGCATGATATAANTAANTAANTAANTAANTAANTAANTAANTCAATTCATTAACTGGTGCAA ANANTATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGATATGCATGATATAANTAANTAANTAANTAANTAANTAANTAANTCAATTCATTAACTGGTGCAA ANANTATGGAGACTTGGAGGTTTGTTTTGGAGGTTTGTGATATGCATGATATGCATGATATAANTAANTAANTAANTAANTAANTAANTCAATTCATTAACTGGTGCAA ANANTATGGAGACTTGGAGGTTTGTCTTGGAGGTTTGTGATATGCATGATTTAANAANATAANTAANTAANTAANTAANTCAATTCATTAACTGGTGCAA 801 900 TTACGTTGTTTCCTAAGCTATCTGCCAAGGCAGTCTGCCAGTTGTGCACTTTGTTGATCGGAGTCTGAGAAACTTTGTGAATATCTTGAACCTGGAGTGTGCACTTGGTTGTGCACTTTGTTGATCGGAGTCTGAGAAACTTTGTGAATATCTTGAACCTGGAGTGTGCACTTGGTGTGTGCACTTTGTTGTGTGAATATCTTGAACCTGGAGTGTGGAATATCTTGAACCTGGAGTGTGGAGATGTCGGAGTCTGAGAAACTTTGTGAATATCTTGAACCTGGAGTGTGGACTTTGTGTGAATATCTGGAATATCTGGAATTGTGAATATCTGGAATATCTGGAATTGTGGAATTGTGGAATTTGTGAATATCTGGAATTGGGAGTTGGGAGTTGGGAGTTGGGAGTTGGGAGTTGGGAGTTGGGAGTTGGGAGTTGGGAGTTGGGAGTTGGGAGTTGGGAGTTGGGAGTTGGGAGTGGAGAACTTTGGGAATTGTGGAATTGTGGAATTGTGGAATTGGGAGTGGGAGTGGGAGGTGGAGAGGTGGGAGGTGGGAGGTGGGAGGTGGGAGTGGGAGGTGGGAGGTGGGAGGGGGG

	901	915
Wild-Type	ATGGAGTTGCA	TAGT
Swi3a/b-1	ATGGAGTTGCA	FAGT
Swi3a/b-2	ATGGAGTTGCA	FAGT
Swi3a/b-3	ATGGAGTTGCA	TAGT

В	
	1 100
Wild-Type	TCCAACGGTGATTCTCGCAGCGTAAGAATCAATCACTGCTCTAGATTGAAATGGTGGCAGAGATGGCGTCACAGCAGTTCTCGGTGACGCTGTCGCCATC
hag1-1	tccaacggtgattctcgcagcgtaagaatcaatcactgctctagattgaaatggtggcagagatggcgtcacagcagttctcggtgacgctgtcgccattctcggtggcacgctgtcgccattctcggtgacgctgtcgccattctcggtgacgtggcgtcgtcgcqtgtcgccattctcggtggcacgctgtcgccattctcggtgacgtgtgccattctcggtggcacgctgtcgccattctcggtggcacgtgtgccattctcggtggcatggtggcgtcgtggcgtggcgtggcgtggcgtggcgtggcgtggtg
hag1-2	${\tt tccaacggtgattctcgcagcgtaagaatcaatcactgctctagattgaaatggtggcagagatggcgtcacagcagttctcggtgacgctgtcgccatc}$
hag1-3	${\tt tccaacggtgattctcgcagcgtaagaatcaatcactgctctagattgaaatggtggcagagatggcgtcacagcagttctcggtgacgctgtcgccatcactgtctcggtgacgctgtcgccatcactgttctcggtgacgctgtcgccatcactgttgtcgccatcactgttgtcgccatcactgttgtcgccatcactgttgtcgccatcactgttgtcgccatcactgttgtcgccatcactgttgtcgccatcactgttgtcgccatcactgttgtcgccatcactgttgtcgccatcactgttgtcgccatcactgttgtcgccatcactgttgttgttgttgttgttgttgttgttgttgttgttgt$
	101 200
Wild-Type	GCCATCGCCATCGCCGTCGTATTCGTCATTAAGCGGGTCCAGTCAGAAACGGAAACGATCCGCGCAGGATGCTGCTGCAACGGCAGACGAGTTTGTGGCA
hag1-1	GCCATCGCCATCGCCGTCGTATTCGTCATTAAGCGGGTCCAGTCAGAAACGGAAACGGACGCCGCGCAGGATGCTGCTGCCAACGGCAGACGACGTTTGTGGCA
hag1-2	GCCATCGCCGTCGTCGTATTCGTCATTAAGCGGGTCCAGTCAGAAACGGAAACGATCCGCCAGGATGCTGCTGCAACGGCAGACGAGTTTGTGGCA
hag1-3	GCCATCGCCGTCGTCGTATTCGTCATTAAGCGGGTCCAGTCAGAAACGGAAACGATCCGCGCAGGATGCTGCTGCAACGGCAGACGAGTTTGTGGCA
	201 300
Wild-Type	AACTCCCCGAACCCCTTCCTCCAACCACCACCCCACCGCTCACAACGGTCCACCAATCTTCTCAACCGCTGGTGACCCTGTCGGCTCCCCTCAACCAGC
hag1-1	AACTCCCCGAACCCCTTCCTCCAACCACCACCACGCTCACATCAAAGCGTCCACCAATCTTCTCAC
hag1-2	AACTCCCCGAACCCCTTCCTCCAACCACCACCCCAACGCTCCACATCAAAGCGTCCACCAATCTAAACCCTAAACCCTAAACCCTAAACC
hag1-3	AACTCCCCGAACCCCTTCCTCCAACCACCACCACCACCACCACCACCAC
	201
rail a manage	
wiid-Type	ACAGCAICCGAITAIAAIGCCGITGICCICGCIGGACICGCAGCACACGCIGCCGGAAAAICCCCGGGAGCICGCIGGAGGAIGAGGACGAIGGGGGAAAA
hag1-2	
hag1-3	
	401 500
Wild-Type	401 500 TGGAGGGCATCATCACGTCATGGCGCTCAAGAATGGGCCTAGCTATGGTCGAAGGGCGATGGGGATGGGGATGAAGAG
Wild-Type hag1-1	401 500 TGGAGGGCATCATCACGTCGGTCGATGGGGGTCAAGAATGGGCCTAGCTATGGTCGGTTCGAAGGGGCGGGGGGGG
Wild-Type hagl-1 hag1-2	401 500 TGGAGGGCATCATCACGTCGTCGATGGGGGTCAAGAATGGGCCTAGCTATGGTCGGTC
Wild-Type hag1-1 hag1-2 hag1-3	401 500 TGGAGGGCATCATCACGTCGATGGGGGTCAAGAATGGGCCTAGCTATGGTCGGTC
Wild-Type hag1-1 hag1-2 hag1-3	401 500 TGGAGGGCATCATCACGTCGTCGATGGGGGTCAAGAATGGGCCTAGGTATGGTCGGAACGGCGGGGGGGG
Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type	401 500 TGGAGGGCATCATGTCGTCGGATGGGGGTCAAGAATGGGCCTAGGTAGG
Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1	401 500 TGGAGGGCATCATCACGTCATGTCGTCGGATGGGGGTCAAGAATGGGCCTAGGTTGGGATGGGGATGGGGATGGAGGAGG GTGGGGATGGGGATGGGGATGAAGAG CGGCGGTGGGGATGGGGATGGGGATGAAGAG CGGCGGTGGGGATGGGGATGGAGAGAG 501 600 GAGGACGACGATGAGGAGGAAGGGAAGGAAGAAGAAGAAGGAGGACGAAGGATAAACCTTAGTATGCCTTCGCAATCAGCGTTCT GAGGACGACGATGAGGAAGGCAACGAAGAAGAAGAAGAAGGAGGACGAAGGAAAAACCCTAAAACCTTGGTATGCCTTCGCAATCACGCGTTCT
Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2	401 500 TGGAGGGCATCATCACGTCATGGTCGATGGGGGTCAAGAATGGGCCTAGGTCGAGGGTCGAGGGGCGGGGGGGG
Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-3	401 500 TGGAGGGCATCATCACGTCATGTCGTCCGATGGGGGTCAAGAATGGGCCTAGGTAGG
Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-3	401 500 TGGAGGGCATCATCACGTCATGTCGTCGGATGGGGGTCAAGAATGGGCCTAGGTATGGTCGGGATGGGGATGGGGATGAGAGAG GTGGGGGATGGGGATGGGGATGGGGATGGAGAGAG CGGCGGTGGGGATGGGGATGGGGATGGAGAGAG CGGCGGTGGGGATGGGGATGGGGATGAAGAG 501 600 GAGGACGACGATGAGGAGGGAAGGCGAACGAAGAAGAAGAAGGAGGACGACG
Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-3	401 500 TGGAGGGCATCATCACGTCATGTCGTCGATGGGGTCAAGAATGGGCCTAGGTCGAGGTGCGAAGGGGCGGATGGGGATGGAGAAGAG
Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type	401 500 TGGAGGGCATCATCACGTCATGTCGTCCGATGGGGGTCAAGAATGGGGCCTAGGTAGG
Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1	401 500 TGGAGGGCATCATCACGTCATGTCGTCGATGGGGGTCAAGAATGGGCCTAGGTAGG
Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-1 hag1-2	401 500 TGGAGGGCATCATCACGCTCGATGGGGGTCAAGAATGGGCCTAGGTCGAGGGTGCGATGGGGATGGGGATGAAGAG
Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-1 hag1-1 hag1-2 hag1-3	401 500 TGGAGGGCATCATCACGCTCGATGGGGGTCAAGAATGGGCCTAGGTCGAGGGTCGAGGGGCGGGGGGGG
Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-2 hag1-2	401 500 TGGAGGGCATCATCACGTCAGGATGGGGGTGGGGGTGGGGGTGGGGGATGAAGAG
Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-3	401 500 TGGAGGGACTACTACGGTCATGTGGGGTCAGGATGGGGTCAGGATGGGGTCGGGATGGGGATGGGGATGGAGAGAG GTGGGGATGGGGATGGGGATGGAGAGAG
Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type	
Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-3	401 500 TGGAGGGCATCATCATCGTCGATGGGGTCGAGGATGGGGATGGGGATGGAGATGGGGATGGAGATGGGGATGGAGATGGGGATGGAGATGGGGATGGAGATGGGGAGGGAAGGGAAGGGAAGGGAAGGGAAGGCGAAGGAAGGAGG
Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-2 hag1-3 Wild-Type hag1-1 hag1-3 Wild-Type hag1-1 hag1-1 hag1-2	401 500 TGGAGGGCATCATCACGTCATGGTGCGGTCGAGAGGGGCTAAGAATGGGCCGTCGAAGGCGCGCGGGAGGGGGATGGAGGAAGAG

Figure S7: Sequence aligment of the targeted regions in the *HAG1* and *SWI3A/B* genes in the wild-type and respective mutants.

Alignment of (A) *SWI3A/B* and *swi3a/b-1*, *swi3a/b-2* and *swi3a/b-3* CRISPR-Cas targeted region, and (B) *HAG1* and *hag1-1*, *hag1-2* and *hag1-3* CRISPR-Cas targeted region. *SWI3A/B* (Pp3c2_24980); *HAG1* (Pp3c2_9560). Sequences of the sgRNAs used in this study to produce the mutants are in green (PAMs in bold). Substitutions, deletions, or insertions are indicated in red. Primers used to amplify and sequence the *HAG1* or *SWI3A/B* regions are in blue.

Figure S8: Crossing with a male infertile strain to test for male impairment.

Pp*hag1* (blue), Pp*swi3a/b* (red) and the control (Reute, green) were crossed with a male infertile strain [5]. Reute developed 100% of sporophytes per gametophore (through selfing), whereas Pp*swi3a/b* and Pp*hag1* developed no sporophytes, which is a significant reduction (asterisks) (p < 0,01, Fisher's exact test). The total number of gametophores analysed per mutant/control was 73 each. The dots indicate the rate of sporophytes per gametophore as percentage relative to the total number of gametophores.

A) While spermatozoids of Reute as control start to move and swim shortly after release, *swi3a/b* spermatozoids are unable to swim and stick together without moving away from the antheridial bundle (indicated by white arrow). B) Phase contrast images of Reute and Pp*swi3a/b*. The spermatozoids of *swi3a/b* show caviar-like structures (indicated by blue arrow); cf. Figs. 6/S11. C) The DAPI staining shows fully condensed nuclei in Reute, whereas Pp*swi3a/b* nuclei show slight structural abnormalities / show (indicated by red arrow, *cf*. Fig. 6).

Figure S11: Spermatozoid analysis via staining with NAO.

Pp*swi3a/b* antheridia release spermatozoids, which however are embedded in a matrix that may form a caviarlike bubbles (in which the condensing nucleus is surrounded by the extraplasmatic matrix in which gametes differentiate, bottom panel), and/or show incomplete cytoplasmic reduction (upper panel) (white arrows).

Figure S12: Light microscopical analysis of Ppswi3a/b antheridia.

The Caviar-like structure could be seen in 37.8% of the analyzed pictures, whereas the incomplete cytoplasmic reduction was observed in 48.8% of analyzed pictures. An overlap of caviar-like structures and incomplete cytoplasmic reduction was observed in 13.5% of analyzed pictures. 37 pictures were analyzed in total.

Figure S13: Antheridial develop in Reute and Ppswi3a/b

Antheridial development and early spermatids before origin of locomotory apparatus are identical in Reute control and Pp*swi3a/b*. A) Light micrograph (LM) longitudinal section of a developing antheridium with stalk cells (s) showing triangular apical cell (ac) and beginning of biseriate filament (bf) next to a mucilage hair (mh) (Reute). B) LM cross section of the body of an antheridium with two primary androgones (a) surrounded by newly formed jack cell (j) (Pp*swi3a/b*). C) LM longitudinal section of developing antheridium with spermatogenous tissue (st) surrounded by jacket cells (j) (Reute). D) Transmission electron micrograph (TEM) of dense spermatogenous cell full of ribosomes and endoplasmic reticulum with large nucleus (n), mitochondria (m) and two plastids (p) at the poles preparing for mitosis. Plasmodesmata (pd) are abundant in young walls (Reute). E) TEM of nascent spermatid with large nucleus (n) and dense cytoplasm containing abundant ribosomes, ER, vesicles (v), a single plastid (p) and numerous plasmodesmata (pd), surrounded by jacket cells (j) (Pp*swi3a/b*). F) Young spermatids deposit thick cell wall (*) via vesicles (v) and round out prior to developing the locomotory apparatus. Pairs of spermatids with large nuclei (n) are connected by expanded plasmodesmata that form cytoplasmic bridges (cb). Jacket cells (j) border the antheridium (Pp*swi3a/b*). Bars: A-C = 10 μ m; D-F = 2mm.

Figure S14: TEM details of mature, unreleased spermatozoids in Reute and Ppswi3a/b

Reute control in left column and Ppswi3a/b mutant in right column. A) Cross section of front of the spermatozoid showing condensed nucleus (n) and mitochondrion (m) under a broad spline (sp) composed of a band of 23 microtubules. The 9+2 flagellum (f) and microtubules (mt) that identify the insertion of the second flagellum are visible. The extraprotoplasmic matrix (epm) is homogeneous with scattered fibrils and devoid of debris. B) Cross section of the spermatozoid more or less comparable to that of A) showing mitochondrion (m) and unevenly condensed nucleus (n) under a spline (sp). Due to the disrupted development in the mutant, the numerous profiles of flagella (f) are haphazardly arranged, and the cytoplasm debris (cd) fills the extraprotoplasmic matrix (epm). C) Cross section of posterior cell profile showing two flagella (f) and a spline (sp) of +/- 12 microtubules over condensed nucleus (n). The homogeneous extraprotoplasmic matrix (epm) is devoid of cytoplasmic debris and the cytoplasmic remnants (cr) are attached to the cell. D) The mutant has multiple disruptions of the flagella (f), nuclear condensation (n), and spline arrangement (sp). The cytoplasm contains massive and irregular cytoplasmic remnants (cr) and the extraprotoplasmic matrix (epm) contains irregular fibrils and cytoplasmic debris. Bars: A-D = 0.2 μ m.

Figure S15: Pphag1 antheridia development 28 dpi.

A) Closed antheridia turned brownish and discolored. B/C) Opened antheridia released round, bulky spermatozoid agglomerates (indicated by red arrows).

Figure S16: Genotyping of *M. polymorpha hag1* mutants.

Presence of the wild type locus was tested using M187s0003_geno_fwd/M187s0003_geno_rev (Table S4). Loss of the wild type locus was verified using M187s0003_geno_fwd/ M187s0003_geno_rev2.

Figure S17: Antheridiophore development of Mphag1 mutants compared to the control.

Gametangiophores (antheridiophores) developed on top of the thallus after cold and far-red light induction for four weeks. The mutant shows compared to the wild type distorted antheridiophores, occuring before the antheridial receptacle shallowly divided into eight lobes, which has been recognized as a characteristic of antheridial maturity [8].

Figure S18: RNA-seq analysis, DEGs.

Number of DEGs 21 dpi of gametangiogenesis induction (nw = not watered), respectively two days after watering (2daw/23dpi). Each Venn diagram compares the DEGs between the two conditions 21 dpi and 2 daw. The color code indicates up-regulated DEGs (green) in the respective mutant (Pphag1/Ppswi3a/b) compared to the control as well as down-regulated DEGs (red) in the respective mutant (Pphag1/Ppswi3a/b) compared to the control.

Figure S19: Expression profile of LEA, flagella and chromatin associated DEGs.

Genes carrying annotation terms "embryogenesis", "flagella" or "chromatin" (Table S7) are shown. The expression [RPKM value] of each experiment is shown as the average of RNA-seq sample triplicates. Over all, the DEGs follow a uniform pattern. Embryogenesis/LEA DEGs show higher expression in the HAG1 mutants while flagella and chromatin related DEGs show higher expression in SWI3 mutants. See Results for details.

Tables

Table S1: Candidate gene selection analysed in terms of single copy status via Bayesian inference.

The number of *P. patens* orthologs is depicted by the arrow colour (green=one, orange=two, red=no). The table lists information of the respective gene, e.g. *P. patens*, *A. thaliana* identifier, TAPscan family, TAIR description/GO biological process [9].

TAP family	P. patens Identifier	Bayesian inference	TAIR10 id	Tair description/GO biological process
C2H2	Pp3c11_480V3.1	(↑) two paralogs	AT1G72050	Encodes a transcriptional factor TFIIIA required for transcription of 5S rRNA gene. 5S rRNA is the smallest constituent of the ribosome. Work on one of the gene models AT1G72050.2 showed that it encodes a protein with nine Cys(2)-His(2)-type zinc fingers, a characteristic feature of TFIIIA proteins. AT1G72050.2 also contains a 23 amino acid spacer between fingers 1 and 2, a 66 amino acid spacer between fingers 4 and 5, and a 50 amino acid non- finger C-terminal tail. in vitro assay demonstrated that AT1g72050.2 binds to 5S rDNA and efficiently stimulates the transcription of 5S rRNA. AT1g72050.2 also binds to 5S rRNA in vitro. AT1g72050.2 is located at several nuclear foci including the nucleolus and is absent from the cytoplasm. multicellular organism development, regulation of transcription, DNA-templated, transcription, DNA-templated
FHA	Ppc12_14900V3.1	Ť	AT5G47790	SMAD/FHA domain-containing protein ; CONTAINS InterPro DOMAIN/s: SMAD/FHA domain (InterPro:IPR008984), Forkhead-associated (FHA) domain (InterPro:IPR000253); BEST Arabidopsis thaliana protein match is: SMAD/FHA domain-containing protein (TAIR:AT5G38840.1)
GNAT	Pp3c5_21790V3.1	↓ no clear ortholog	AT2G39020	ornithine metabolic process; Although this locus shares considerable sequence similarity with the adjacent NATA1 gene (At2g39030), they appear to encode genes with different functions. NATA1 is involved in the production of N-delta-acetylornithine, but, overexpression of At2g39020 in tobacco does not lead to the formation of this defense compound. The mRNA is cell-to-cell mobile.
GNAT	Pp3c7_5970V3.1	(†) two paralogs	AT5G13780	embryo development ending in seed dormancy, response to water deprivation
GNAT	Pp3c2_9560V3.1	↑.	AT3G54610	Encodes a histone acetyltransferase that is plays a role in the determination of the embryonic root-shoot axis. It is also required to regulate the floral meristem activity by modulating the extent of expression of WUS and AG. In other eukaryotes, this protein is recruited to specific promoters by DNA binding transcription factors and is thought to promote transcription by acetylating the N-terminal tail of histone H3. The enzyme has indeed been shown to catalyse primarily the acetylation of H3 histone with only traces of H4 and H2A/B being acetylated. Non- acetylated H3 peptide or an H3 peptide that had been previously acetylated on K9 both serve as excellent substrates for HAG1-catalyzed acetylation. However, prior acetylation of H3 lysine 14 blocks radioactive acetylation of the peptide by HAG1. HAG1 is specific for histone H3 lysine 14. flower development, histone acetylation, positive regulation of transcription, DNA-templated, regulation of vegetative phase change, response to light stimulus, root morphogenesis, transcription, DNA-templated
Jumonji_Other	Pp3c23_15970V3.1	1	AT5G06550	Encodes a HR demethylase that acts as a positive regulator of seed germination in the PHYB-PIL5- SOM pathway. cell surface receptor signaling pathway, histone H4-R3 methylation, positive regulation of seed germination

Med7	Pp3c5_20850V3.1	(†) two paralogs	AT5G03500	Mediator complex, subunit Med7; FUNCTIONS IN: RNA polymerase II transcription mediator activity; INVOLVED IN: regulation of transcription from RNA polymerase II promoter; LOCATED IN: mediator complex; CONTAINS InterPro DOMAIN/s: Mediator complex, subunit Med7 (InterPro:IPR009244); BEST Arabidopsis thaliana protein match is: Mediator complex, subunit Med7 (TAIR:AT5G03220.1)
MYB-related	Pp3c2_24980V3.1	1	AT2G47620	chromatin remodelling, covalent chromatin modification, multicellular organism development, regulation of transcription, DNA-templated, transcription, DNA-templated
MYB-related	Pp3c14_5130V3.1	(†) two paralogs	AT5G06110	DnaJ domain ;Myb-like DNA-binding domain; FUNCTIONS IN: heat shock protein binding, DNA binding; INVOLVED IN: protein folding; EXPRESSED IN: 23 plant structures; EXPRESSED DURING: 13 growth stages; CONTAINS InterPro DOMAIN/s: Molecular chaperone, heat shock protein, Hsp40, DnaJ (InterPro:IPR015609), Heat shock protein DnaJ, N-terminal (InterPro:IPR001623), Heat shock protein DnaJ, conserved site (InterPro:IPR018253), MYB-like (InterPro:IPR017877), SANT, DNA-binding (InterPro:IPR01005), Myb, DNA-binding (InterPro:IPR014778), Homeodomain-like (InterPro:IPR009057); BEST Arabidopsis thaliana protein match is: DnaJ domain ;Myb-like DNA- binding domain (TAIR:AT3G11450.1) cell division, protein folding
SET/Sigma70-like	Pp3c14_4440V3.1	↑	AT1G64860	DNA-templated transcription, initiation, cellular response to light stimulus, cellular response to redox state, photosystem stoichiometry adjustment, regulation of RNA biosynthetic process, regulation of transcription, DNA-templated
TUB	Pp3c3_17070V3.1	↓ no clear ortholog	AT2G47900	cellular response to osmotic stress, regulation of transcription, DNA-templated, response to fungus, response to hydrogen peroxide, response to salt stress

Table S2: Detailed numbers of crossing analyses with a fluorescent male fertile strain to test for male impairment.

Pp*swi3a/b* and Pp*hag1* were crossed with Re-mcherry according to [10]. Shown is the number of sporophytes per gametophore (s/g) in percentage relative to the total number of gametophores, and the rate of crosses per sporophytes (c/s) in percentage relative to the total number of sporophytes. Most of the sporophytes in the Reute control derive from selfing (homozygous; hence low number of heterozygous sporophytes, c/s). In contrast, almost 100% of mutant sporophytes are heterozygous, indicating a male impairment. The cross with the male fertile strain could largely restore the phenotype in *swi3a/b* (sporophyte/gametophore ratio at least 80%), while Pp*hag1* shows a significantly reduced sporophyte ratio as compared to the control. Three independent replicates were performed for the three mutant lines as well as the control. The total number of gametophores analysed was 621 (*swi3a/b*), 770 (*hag1*) and 190 (control).

Mutant/control	replicate 1 (%)	replicate 2 (%)	replicate 3 (%)
swi3a/b_1 s/g	100.00	82.26	98.81
swi3a/b_1 cs	96.05	100.00	98.80
swi3a/b_2 s/g	100.00	79.78	87.04
swi3a/b_2 cs	100.00	97.18	100.00
swi3a/b_3 s/g	97.33	86.59	100.00
swi3a/b_3 cs	100.00	94.37	96.49
hag1_1 s/g	21.21	14.08	4.00
hag1_1 cs	100.00	100.00	100.00
hag1_2 s/g	60.61	32.89	57.14
hag1_2 cs	100.00	96.00	100.00
hag1_3 s/g	28.81	22.09	46.35
hag1_3 cs	82.35	100.00	96.63
Reute s/g	95.45	95.83	100.00
Reute cs	3.17	2.90	3.85

Table S3: see extra file describing the sources of the genome-derived protein sets used.

name	sequence $(5' \rightarrow 3')$
Mapoly0187s0003_sg1_rev	AAACAGTGGATTGTGGCTCTACCC
Mapoly0187s0003_sg2_rev	AAACCCGCAAACATGTCCAGCGTC
M13for	GTAAAACGACGGCCAGT
M13rev	GGAAACAGCTATGACCATG
Mapoly0187s0003#1	ACGTACATGAGAGTACGAAAGCA
Mapoly0187s0003#2	ATACTCCTTTGTTGCACAGATGC
Mapoly0187s0003#3	TCACGACTGCAGTACGCTC
Mapoly0187s0003_sg1_for	CTCGGGGTAGAGCCACAATCCACT
Mapoly0187s0003_sg2_for	CTCGGACGCTGGACATGTTTGCGG
Marpo_female_fwd	CACCATGGGCCTACTTGTTTCAGTCGCTGGTGG
Marpo_female_rev	TCAAAGGCTAGTGTTTCCATTACTTGGAC
Marpo_male_fwd	GCAGCTGTGTTTTGTGCAGATCGTC
Marpo_male_rev	ATTCTGACCTTACAAGAAATCCTCC
pJet_rev	GCTGAGAATATTGTAGGAGATCTTCTAG
pJet_uni_neu	CAACTGCTTTAACACTTGTGCCTG
Pp3c2_24980#1	TGCTTCCAAGGAGGCGAAAC
Pp3c2_24980#2	ACTATGCAACTCCATCACTCCAGG
Pp3c2_24980#3-EcoR1	GAATTCATGGTGAACCCGGCG
Pp3c2_24980#4-Xba1	TCTAGATGAACTGGGCGCAGGG
Pp3c2_9560#1	TCCAACGGTGATTCTCGCAG
Pp3c2_9560#2	AGGTGCTCCCGAGATACG
Pp3c2_9560#3	TCGTCAGGATCCGTTCCAATG
Pp3c2_9560#4-EcoR1	GAATTCATGCGCAAGGGGGGCC
Pp3c2_9560#5-Sal1	GTCGACTGACAAGTGTTGTGATCTGCTGACCAAC

Table S4: List of PCR primers used in this study.

Table S5: List of sgRNAs expression cassettes used in this study.

Promoter sequences are in blue, target sequences in red and tracrRNA sequences in green. For *M. polymorpha* tracerRNA and promoter were already implemented in the vectors ordered from Addgene.

Name	Sequence (5'-3')
Pp3c2_9560-sgRNA1	GTCCATTGAAGCAGACGTGTTGCGACAGGTTAGCGACGATGGGTGTAGATGTGATGTGATG TGATGGTGTGGTTCTTCCACGGCGGCGTCCTTGCGGTGGCGGAGAAGGGGGATATCCCGAAG GAGCGGCAGCGGGAGAGCACAAGCAGAAAGGGTGCAGTGAGTG
Pp3c2_9560-sgRNA2	GTCCATTGAAGCAGACGTGTTGCGACAGGTTAGCGACGATGGGTGTAGATGTGATG TGATGGTGTGGTTCTTCCACGGCGGCGTCCTTGCGGTGGCGGAGAAGGGGATATCCCGAAG GAGCGGCAGCGGGAGAGCACAAGCAGAAAGGGTGCAGTGAGTG
Pp3c2_24980-sgRNA1	GTCCATTGAAGCAGACGTGTTGCGACAGGTTAGCGACGATGGGTGTAGATGTGATGTGATG TGATGGTGTGGTTCTTCCACGGCGGCGCCCTTGCGGTGGCGGAGAAGGGGATATCCCGAAG GAGCGGCAGCGGGAGAGCACAAGCAGAAAGGGTGCAGTGAGTG
Pp3c2_24980-sgRNA2	GTCCATTGAAGCAGACGTGTTGCGACAGGTTAGCGACGATGGGTGTAGATGTGATGTGATG TGATGGTGTGGTTCTTCCACGGCGGCGTCCTTGCGGTGGCGGAGAAGGGGGATATCCCGAAG GAGCGGCAGCGGGAGAGCACAAGCAGAAAGGGTGCAGTGAGTG
Mapoly0187s0003.1_sgRNA1	CTACTACACTCCTCAACGCAAGTTCTATCTCATATCTCTGCAAGAGCTTATTCCAAGAAACT TTCTTGTGCTTCTATGCATGCCCAGGTACCTTAAGTCGCGCGCG
Mapoly0187s0003.1_sgRNA2	CTACTACACTCCTCAACGCAAGTTCTATCTCATATCTCTGCAAGAGCTTATTCCAAGAAACT TTCTTGTGCTTCTATGCATGCCCAGGTACCTTAAGTCGCGCGCG

Table S6: Detailed numbers of gametangiophore development analyses for Marchantia polymorpha.

Three independent replicates (three ECO2 boxes with two plants respectively) were analysed with regard to the mutant lines as well as the wild type (WT; m=male, f=female). The mutant lines were numbered consecutively.

Lines	Replicate 1		Repli	cate 2	Replicate 3	
2000	Plant 1	Plant 2	Plant 1	Plant 2	Plant 1	Plant 2
hag1_1	0	0	4	2	0	0
hag1_2	0	0	0	1	0	0
hag1_3	0	1	0	0	0	0
hag1_4	0	0	0	1	0	0
hag1_5	0	0	0	0	0	0
hag1_6	0	0	6	0	12	2
hag1_7	0	0	0	1	0	0
hag1_8	4	3	25	4	0	0
hag1_9	2	1	0	1	0	1
hag1_10	0	0	1	0	0	0
WT_m	32	32	20	21	49	40
WT_f	40	38	38	50	43	34

Table S7: DEGs annotated as related to embryogenesis (blue; yellow: LEA), chromatin (orange) and flagella (green).

References

- 1. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ: **Proteinortho: detection of** (co-)orthologs in large-scale analysis. *BMC Bioinformatics* 2011, **12**:124.
- 2. Wilhelmsson PKI, Muhlich C, Ullrich KK, Rensing SA: Comprehensive Genome-Wide Classification Reveals That Many Plant-Specific Transcription Factors Evolved in Streptophyte Algae. Genome Biol Evol 2017, 9(12):3384-3397.
- 3. Frickenhaus S, Beszteri B: Quicktree-SD, Software developed by AWI-Bioinformatics. In.; 2008.
- 4. Fernandez-Pozo N, Haas FB, Meyberg R, Ullrich KK, Hiss M, Perroud PF, Hanke S, Kratz V, Powell AF, Vesty EF *et al*: **PEATmoss (Physcomitrella Expression Atlas Tool): a unified gene expression atlas for the model plant Physcomitrella patens**. *Plant J* 2019.
- 5. Meyberg R, Perroud PF, Haas FB, Schneider L, Heimerl T, Renzaglia KS, Rensing SA: Characterization of evolutionarily conserved key players affecting eukaryotic flagellar motility and fertility using a moss model. *New Phytol* 2020.
- 6. Ortiz-Ramirez C, Hernandez-Coronado M, Thamm A, Catarino B, Wang M, Dolan L, Feijo JA, Becker JD: A transcriptome atlas of *Physcomitrella patens* provides insights into the evolution and development of land plants. *Mol Plant* 2015, **9**:205-220.
- 7. Perroud PF, Haas FB, Hiss M, Ullrich KK, Alboresi A, Amirebrahimi M, Barry K, Bassi R, Bonhomme S, Chen H *et al*: **The Physcomitrella patens gene atlas project: large-scale RNA-seq based expression data**. *Plant J* 2018, **95**(1):168-182.
- 8. Shimamura M: Marchantia polymorpha : Taxonomy, Phylogeny and Morphology of a Model System. *Plant and Cell Physiology* 2015, **57**(2):230-256.
- 9. Lang D, Ullrich KK, Murat F, Fuchs J, Jenkins J, Haas FB, Piednoel M, Gundlach H, Van Bel M, Meyberg R *et al*: **The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution**. *Plant J* 2018, **93**(3):515-533.
- 10. Perroud PF, Meyberg R, Rensing SA: Physcomitrella patens Reute mCherry as a tool for efficient crossing within and between ecotypes. *Plant Biol (Stuttg)* 2019, **21 Suppl 1**:143-149.