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Abstract 13 

The relation between the environment and human activity has been the subject of many 14 

empirical studies. Complexities such as which indicators related to human activity best 15 

represent biodiversity, or time lags between socio-economic activities and biodiversity, 16 

remain unclear. This paper tackles these issues based on statistical analysis of the relationship 17 

between human activity and biodiversity at the country level in Europe. We used well-adapted 18 

statistical models to explain variations in two state indicators, two pressure indicators, and one 19 

response indicator representing biodiversity. We focused on (i) the relative efficiency of the 20 

various indicators of human activity (notably human population density, human appropriation 21 

of net primary productivity, and gross domestic product per area) in predicting the 22 

biodiversity indicators, and (ii) possible time lags between metrics representing human 23 

activity and biodiversity. Results indicate that gross domestic product per area and human 24 

population density best predict the indicators for the biodiversity state, whereas human 25 

population density best predicts the indicators of biodiversity pressure. Although the 26 

indicators for biodiversity pressure best related to present-day human activity metrics, 27 

biodiversity state reveals a time lag of approximately one century. Results suggest that drivers 28 

(human population density, density of economic activity) and pressures (land sealing) should 29 

serve as primary foci for biodiversity policies. Because of the long time lags (~ one century) 30 

between these drivers and the state of biodiversity, policies regarding biodiversity should 31 

integrate a long-term view.  32 

Keywords: species imperilment; sprawl; threatened species; socio-economic drivers; time lag  33 
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Introduction 34 

The Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services 35 

(IPBES) assessment on the state of biodiversity and ecosystems in the European region, 36 

published in 2018, reported that trends remain negative overall, with potential consequences 37 

for the economy and society (IPBES, 2018). The IPBES reached the same conclusion one 38 

year later at the global scale (IPBES, 2019). These negative trends related to five direct 39 

drivers of biodiversity change (or pressures). They are, in descending order of impact: (1) 40 

changes in land and sea use; (2) direct exploitation of organisms; (3) climate change; (4) 41 

pollution and (5) invasive alien species. Yet, the underlying societal causes of these pressures 42 

were related to indirect drivers of change, notably to governance issues, technological 43 

innovation and demographic and economic factors. Economic activity may impact 44 

biodiversity through different mechanisms. Pollution may cause various types of harm to 45 

indigenous species. Human presence and/or travel can disturb animal activity and, 46 

consequently, interfere with ecosystem processes. Encroachment of land due to urbanization 47 

and infrastructure can reduce the size of habitats to a critical level or fragment them, 48 

rendering metapopulations less viable. In the long term, the encroachment of land can also 49 

impoverish the gene pool through isolation, leading to population extinction. Which 50 

mechanisms are the most important in explaining the decline in biodiversity is not obvious. 51 

Studying which variable representing human activity correlates most to biodiversity, however, 52 

can help identify the appropriate types of corrective actions to target. 53 

In this research, we therefore sought to identify the socio-economic variables that best 54 

correlate to variables indicating current levels of biodiversity at the country scale, and the 55 

time lags between the two sets of variables. We chose to examine the country scale, as have 56 

many previous studies (e.g., Hoffmann, 2004; Konickova et al., 2006; Clause and York, 2008; 57 

Dullinger et al., 2013; Gosselin & Callois, 2018), because some of the data for analysis are 58 
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more readily available at this scale—for example, proportion of threatened and extinct species 59 

and gross domestic product. Additionally, the national scale is still the most relevant for many 60 

policies concerning biodiversity and socio-economic issues. More precisely, we addressed the 61 

following questions: 62 

(i) What are the kinetics of the impact of human activity on biodiversity? Following 63 

Dullinger et al. (2013), in hypothesizing time-lag effects between indicators of 64 

human activity and those of biodiversity, we posited that past values of socio-65 

economic variables would better explain current variations in biodiversity state 66 

indicators .  67 

(ii) Which models involving indicators of human activity best explain the values of 68 

biodiversity indicators? We hypothesized that simpler, un-transformed or merely 69 

log-transformed, models would be at least as efficient as more complex socio-70 

economic models. 71 

(iii) What variables representing human activity best explain the variations in the 72 

biodiversity indicators—for example, those depending on their proximal link with 73 

biodiversity or more general variables of human activity? We hypothesized that 74 

the human appropriation of net primary production or the proportion of sealed 75 

area, which are potentially more directly related to biodiversity, would better 76 

explain the variations of biodiversity indicators than, for example, human 77 

population density, especially for the indicators of biodiversity state. 78 

The literature relating the state of biodiversity to socio-economic drivers and pressures is now 79 

well developed. Findings indicate that drivers such as Gross Domestic Product (GDP) per 80 

capita (GDPc; Clausen and York, 2008), human population density (HPD; Brown and 81 

Laband, 2006; McKee et al., 2013; Driscoll et al., 2018), the spread of transportation 82 
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infrastructure (Konvicka et al., 2006) or income inequality (Mikkelson et al., 2007; Holland et 83 

al., 2009) correlate with various measures of biodiversity. 84 

Focusing on the link between human population density (HPD) and biodiversity, Luck (2007) 85 

reviewed the published empirical literature through a meta-analysis. The author concluded 86 

that, despite the geographic and taxonomic skew in the published literature, a positive 87 

correlation is apparent between HPD and various biodiversity metrics – mainly related to 88 

species richness. That is, the level of biodiversity is greater in densely populated zones. This 89 

correlation, however, may be due to the relation between HPD and these biodiversity metrics 90 

on the one hand, and other parameters such as ecosystem productivity or energy availability 91 

on the other. Some evidence was also apparent of negative relationships between HPD and 92 

other biodiversity metrics related to species extinction, but it was weak (Luck, 2007).  93 

 94 

In analyzing how three variables related to economic growth (GDPc, HPD and a metric 95 

related to land use intensity—human appropriation of net primary productivity (HANPP)) are 96 

related to the proportion of threatened species in European countries, Dullinger et al. (2013) 97 

proposed an explanation for the weak evidence reported by Luck (2007). That is, the 98 

relationship between current economic and biodiversity variables could be weak because the 99 

metrics of biodiversity respond to economic variables with a time lag. Dullinger et al. (2013) 100 

proposed that the relationship would become much stronger if the metrics of biodiversity were 101 

related to past economic variables. This proposal echoes the well-known notion of extinction 102 

debt in ecology (Tilman et al., 1994; Kuussaari et al., 2009), as well as the pioneer ecological 103 

studies that identified time lags in the relationship between habitat quantity and configuration 104 

and biodiversity (Chamberlain et al., 2000 ; Lindborg and Eriksson, 2004 ; Menéndez et al., 105 

2006 ; Metzger et al., 2009). Most of the latter studies were centered on habitat. Yet, the 106 

drivers of variations in past habitat could have even greater time lags for affecting 107 
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biodiversity (Essl et al., 2015), since the time lags between the initial driver and the habitat 108 

pressure should add up to the time lags between habitat and biodiversity.  109 

Even though this reasoning provided a new line of analysis, Gosselin (2015) questioned this 110 

conclusion on the basis of inadequate statistical tools. When more accurate statistical tools 111 

were used to take into account data pseudo-replication and over-dispersion, the significant 112 

relationships mostly disappeared, or at least became much less significant. Gosselin and 113 

Callois (2018) analyzed the data of Dullinger et al. (2013) together with data on extinct 114 

species, biodiversity pressure indicators (land sealing) and response indicators (the proportion 115 

of protected areas) in Europe and related them to diverse socio-economic drivers. They found 116 

a positive impact on the proportion of threatened and extinct species due to the density of 117 

“human activity” (either measured as human population density or as the gross domestic 118 

product per unit area of land, GDPa, and especially their logarithm transforms). These results 119 

were based on relationships between current socio-economic variables and current 120 

biodiversity indicators. Yet, one of the biodiversity indicators used in this study represented 121 

past events (the proportion of extinct species), and two indicators related to the accumulation 122 

of past decisions (proportion of sealed area and proportion of reserves). Also, for a fourth 123 

indicator (proportion of threatened species), past values of socio-economic variables likely 124 

predict states of biodiversity better than current values due to time lag effects (cf. supra). 125 

Identifying these time lags is a pressing question, according to the International Science-126 

Policy Platform on Biodiversity and Ecosystem Services (e.g. IPBES, 2018). Furthermore, 127 

Gosselin and Callois (2018) did not incorporate human appropriation of net primary 128 

production (HANPP), another metric used by Dullinger et al. (2013). Yet, this metric is an 129 

integrated socio-ecological indicator of land-use intensity (Haberl et al., 2013), which is 130 

closely related to population density (Krausmann et al., 2009). As such, HANPP has potential 131 

to more proximally explain the impact of human activity on biodiversity, and may therefore 132 
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better explain its variations (Haberl, 1997; Haberl et al., 2004; Vačkář et al., 2016). Finally, 133 

Gosselin and Callois (2018) did not include simpler models with the two core human activity 134 

variables (HPD and GDPa), which might better explain variations in biodiversity indicators 135 

than more complicated models. 136 

 137 

Material and methods 138 

Biodiversity indicators 139 

This study sought to relate relevant indicators of biodiversity throughout Europe to economic 140 

variables at various dates. We chose indicators that fit the Driving forces, Pressure, State, 141 

Impact, Response (DPSIR) framework, in line with Butchart et al. (2010). Even though we 142 

did not estimate the DPSIR framework explicitly, we chose five biodiversity indicators 143 

positioned in the DPSIR diagram (http://www.eea.europa.eu/publications/TEC25), for which 144 

data are readily available at national level, as follows (cf. Table SM2 for summary statistics):  145 

i. Two Pressure indicators related to land sealing: percent of surface area in the country 146 

sealed in 2009 (denoted as SEAL) and annual increase in sealing between 2006 and 147 

2009 expressed as a percentage (denoted as iSEAL); 148 

ii. Two indicators of the State and dynamics of Biodiversity: the proportion of extinct 149 

and of threatened species in each country for nine different taxonomic groups 150 

(vascular plants, bryophytes, mammals, birds, freshwater fishes, reptiles, amphibians, 151 

dragonflies and grasshoppers); 152 

iii. One Response indicator, referring here to societal response (as defined in the DPSIR 153 

framework): the percentage of terrestrial area in each country corresponding to 154 

protected areas (combining four different types of protected areas as defined by the 155 

International Union for Conservation of Nature). 156 

http://www.eea.europa.eu/publications/TEC25
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Data for this study came from the European Environmental Agency (two Pressure indicators), 157 

Eurostat (Response indicator) and Essl et al. (2013) (two State indicators). We did not 158 

consider trees as a separate taxonomic group because, at least for some countries, trees were 159 

incorporated into evaluations of vascular plants. Our analyses therefore already accounted for 160 

them in the vascular plant taxonomic group. 161 

Socio-economic variables 162 

We considered the economic variables in the study as potential drivers of the five Pressure-163 

State-Response (PSR) indicators described above. This approach agrees with the notion of 164 

indirect drivers defined by the IPBES (https://www.ipbes.net/models-drivers-biodiversity-165 

ecosystem-change). We focused attention on two classical indicators of human activity: gross 166 

domestic product (GDP) and human population density (HPD). We tested GDP per area 167 

(GDPa) as well as GDP per capita (GDPc) because Gosselin and Callois (2018) found that the 168 

density of economic activity (GDPa) had a stronger relationship with biodiversity indicators 169 

than economic development per capita (GDPc). We also included the variable built by 170 

Dullinger et al. (2013) to estimate human land use intensity: human appropriation of net 171 

primary production (HANPP), which is another measure of the spatial density of human 172 

activity likely closest to the indicators for PSR biodiversity. Table SM1 provides the list of 173 

socio-economic variables from years 1900, 1950 and 2000, found in Dullinger et al. (2013).  174 

 175 

This study considered a list of 22 countries. These countries are the same as those in Dullinger 176 

et al. (2013): Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, 177 

Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, the Republic of 178 

Ireland, Romania, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. 179 

https://www.ipbes.net/models-drivers-biodiversity-ecosystem-change
https://www.ipbes.net/models-drivers-biodiversity-ecosystem-change
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Statistical models and hypotheses 180 

Following Brown and Laband (2006) and Gosselin and Callois (2018), the strategy in 181 

this study was based on the estimation and comparison of several simple statistical models. 182 

We did not mix different metrics into a single, global metric, nor did we estimate a single 183 

statistical, multiple regression model that would have included all the variables. We thus 184 

avoided technical and interpretative problems of correlations between variables. We followed 185 

a three-step strategy to identify the best socio-economic variables in terms of predictive power 186 

and analyze their relationships with biodiversity indicators.  187 

First, we addressed the first hypothesis by estimating and comparing the first seven 188 

models described in Table 1 (Null, Economic, Log Economic, Kuznets, Log Kuznets, Area 189 

Kuznets and Log Area Kuznets) among the three different periods (1900, 1950 and 2000). The 190 

2000 versions of these models are very close to the corresponding models in Gosselin and 191 

Callois (2018). These models were among the best for which historic data were available. 192 

Economic refers to models including both GDPc and HPD, two of the main indirect drivers of 193 

change according to the IPBES (2019). The Kuznets models included different versions of 194 

GDP, as well as its square, to account for quadratic relationships with GDP and to allow for 195 

possible bell-shaped relationships with GDP, a shape known as the Environmental Kuznets 196 

Curve (Selden and Song, 1994). Except for the null model, each model incorporated two 197 

socio-economic variables related to a specific theme. We chose to limit the number of 198 

variables in the models since we only had a limited number of countries in the data set (22 199 

countries) for this study. Therefore, we included at most two socio-economic variables per 200 

model, following the n/10 guideline of Harrell (2001, p. 61) on the relationship between 201 

sample size n and number of estimated hyperparameters. The resulting models were slightly 202 

over-parametrized for state indicators (with 21 hyper-parameters estimated compared to a 203 

maximum of 19.8 according to Harrell’s rule). They were somewhat more over-parametrized 204 
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for response indicators (12 hyper-parameters compared to a maximum of 8.8 according to 205 

Harrell’s rule), and much more overparametrized for pressure indicators (5 hyperparameters 206 

compared to 2.2 according to Harrell’s rule). Our general hypotheses were that explanatory 207 

models with 1900 or 1950 data would better explain the Proportion of Extinct species, the 208 

Proportion of Sealed areas and the Proportion of Threatened species, since we expected a 209 

rather strong time lag for the effects on Biodiversity, similar to the reasoning in Dullinger et 210 

al. (2013).  211 

In the second step, we compared the best model for each indicator from the first step 212 

with simplified univariate explanatory models, HPD, Log HPD, GDPa and Log GDPa, for 213 

1900, 1950 and 2000 data. This procedure determined, first, whether the relationships could 214 

be reduced to such simple univariate models, and second, included less over-parametrized 215 

models. We also considered HANPP and Log HANPP models at the different time periods (cf. 216 

Table 1). We expected these two last models to reveal more proximal causes of variations in 217 

the indicators, especially for the two State Indicators. For these two indicators, we also 218 

included hierarchical versions of the univariate explanatory models described above. We then 219 

added a taxonomic random effect on the slope, thus estimating the mean slope across 220 

taxonomic groups as well as the standard variation across taxonomic groups of this slope. 221 

This procedure yielded models with a number of parameters similar to the models in the first 222 

step. This process allowed the relationship to vary across taxonomic groups instead of being 223 

fixed to a mean response as in the previous models. 224 

In the final step related to the third hypothesis, and only for the two State indicators of 225 

biodiversity, we compared the best model involving present explanatory variables from the 226 

first two steps with a model including the current proportion of sealed area (SEAL). This 227 

procedure determined whether SEAL could serve as a more proximal indicator of the current 228 

biodiversity state. 229 
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Figure SM1 in the Supplementary Materials section (see also Supplementary Materials 230 

in Dullinger et al., 2013 for associated graphics) displays the correlations between 231 

explanatory variables. We found mildly strong correlations among the group of GDPc 232 

variables at different dates, and stronger correlations among HANPP variables and among the 233 

group formed by GDPa and HPD variables. The latter two groups had squared Pearson 234 

correlations of at least 0.7. These correlations prevented us from formulating models 235 

including both GDPa and HPD, or the same variable at different dates.  236 

 237 

 238 

Statistical methods 239 

We paid careful attention to the potential over-dispersion of data as well as to the inclusion of 240 

random country effects, following Gosselin (2015). We therefore introduced a random 241 

country effect into the models involving repeated values per country. We assumed this effect 242 

to follow a Gaussian distribution with a zero mean and an estimated standard deviation, This 243 

approach allowed inclusion of indeterminacy between country-level explanatory variables and 244 

other, unknown, country-level determinants. We used this random country effect, for 245 

example, for the two State indicators, which provided proportions of Extinct and Threatened 246 

species for different taxonomic groups within each country. For the proportion of extinct or 247 

threatened species, we used a logit link function and a beta-binomial distribution to model the 248 

number of extinct and threatened species as a proportion of the number of native species and 249 

native minus extinct species, respectively. Each taxonomic group had separate estimated 250 

intercept and extra-binomial variation fixed parameters. For the proportion of protected areas 251 

and the percentage of sealed area and its increment, we used the zero-inflated beta 252 

distribution. This distribution is a direct sub-product of the zero-inflated cumulative beta 253 

distribution, proposed to analyze plant cover class data (Herpigny and Gosselin, 2015). For 254 
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sealed areas, we fitted a separate model for area and increment (SEAL and iSEAL) and 255 

therefore did not include a random country effect in the corresponding models. We framed the 256 

models within a Bayesian setting. For the proportion of protected areas, each category of 257 

protected area had separate estimated intercept and variance fixed parameters, but the 258 

parameter for zero inflation was the same for the different categories. 259 

We used the Stan program embedded in R 3.3.2 through the rstan library (Stan Development 260 

Team 2015) to estimate the models described above. The priors of the hyper-parameters were 261 

mostly non-informative, except for the proportion of extinct species that required an upper 262 

bound at exp(10) for dispersion levels in order to obtain converging results. All the 263 

explanatory variables were centered and scaled to ensure a residual standard deviation of the 264 

variable around one while keeping clear control over the level of scaling.  265 

The models were compared in terms of predictive capacity with the leave-one-out 266 

Information Criterion (LOOIC; Vehtari et al., 2016). For State and Response indicators, we 267 

used the marginal version of the LOOIC (Gosselin and Callois, 2018, 2019).  268 

We investigated the estimators of the socio-economic parameters with an eye toward 269 

the statistical significance and magnitude of the relationships. For statistical significance, we 270 

used Bayesian quantiles based on beta random draws (Gosselin, 2011). This paper includes 271 

only those cases with a p-value below 5%. To judge the magnitude of Odds-ratios, we 272 

analyzed the effect of an increase of one standard deviation at the linear combination level (on 273 

the log of odds ratios) for each socio-economic variable, according to guidelines adapted from 274 

Daniels et al. (1983) (see Table 5 legend for more details). These ratios are adapted to the 275 

framework for magnitude analysis proposed in ecology (e.g., Camp et al., 2008; Barbier et al., 276 

2009). 277 

Finally, to gauge the adequacy of the statistical models in relation to the data, we used 278 

sampled posterior goodness-of-fit p-values (Gosselin, 2011). These values are based on 279 
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normalized quantile residuals (Dunn and Smyth, 1996), with discrepancy functions similar to 280 

Herpigny and Gosselin (2015) and Godeau et al. (2020). We first diagnosed the distributions 281 

of the residuals or the random effects by using their mean, variance, skewness and kurtosis as 282 

discrepancy functions. Then, to diagnose potentially ill-modelled relationships for the mean or 283 

variance, we used discrepancy functions based on correlations with Hoeffding’s D statistic 284 

(Harrell, 2001). These functions determined the links between (i) the residuals and the fitted 285 

values, (ii) the residuals and each of the explanatory variables, and (iii) the square of the 286 

residuals and the fitted values. Hoeffding’s D statistic can detect correlations that include 287 

linear and non-linear relationships, and increasing or decreasing as well as non-increasing and 288 

non-decreasing relationships. Finally, we used two discrepancy functions to diagnose any 289 

spatial autocorrelation of country random effects (if they were included in the model) or 290 

residuals (if random effects were not included). We fitted a generalized least squares (gls) 291 

model with an exponentially decaying spatial autocorrelation (Pinheiro and Bates, 2000)on 292 

country random effects or residuals (functions corExp and gls in the nlme library with a 293 

nugget), then considered the range and nugget of the gls model as the two final discrepancy 294 

functions. These p-values allowed, in sum, diagnosis of the adequacy of the probability 295 

distributions used, the adequate specification of the non-linear relationship between 296 

explanatory variables and data, the correct specification of variance, the absence of additional 297 

spatial autocorrelation and, in cases where the model included country random effects, the 298 

adequacy of the probability distribution of the random effect. Given usage of around ten 299 

discrepancy functions per model, we only investigated cases with p-values below 0.005. 300 

These p-values were applied to the best model associated with each biodiversity variable. 301 

Results  302 

Overall, with Proportion of Protected Areas as a dependent variable, none of the main 303 

socio-economic models had better predictive capacity than the Null model (Table 2). For the 304 
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proportion of Extinct species, the 1900-data versions of the Log Area Kuznets, Area Kuznets, 305 

Economic and Log Economic (Table 1) models involving different combinations of three 306 

measures of human activity clearly yielded the models with the best predictive capacity 307 

(Table 2). The human activities were gross domestic product per area (GDPa), gross domestic 308 

product per capita (GDPc) and human population density (HPD). A logical ranking was also 309 

apparent over time, with 1950 models being better than 2000 models and worse than 1900 310 

models. For Threatened species, a similar result emerged, except that the Economic model 311 

had worse predictive capacity than the other socio-economic models. The 1950 and 2000 312 

models were somewhat closer to 1900 models than for Extinct species. Yet, we observed the 313 

same ranking, with 1900 yielding better models than either 1950 or 2000 (Table 2). For the 314 

share of sealed land (SEAL) and its dynamic (iSEAL), the analysis produced the reverse 315 

result, since 2000 models with economic variables were best (Table 2). The 1950 models 316 

were close to the best models for both SEAL and iSEAL, though the order of ranking was 317 

2000, 1950, 1900. 318 

Comparing these socio-economic models with simpler, univariate explanatory models 319 

(Tables 3 & 4), we found that the univariate model with Log GDPa in 1900 was best, both for 320 

Extinct and Threatened species. For Threatened species only, the log of human population 321 

density (Log HPD) in 1900 was close to this best model. For SEAL and iSEAL, HPD in 2000 322 

(log-transformed for SEAL but not for iSEAL) was the best univariate variable, even yielding 323 

the best model for SEAL (Table SM3). Both for state and pressure indicators, the indicator of 324 

human appropriation of primary production (HANPP; Dullinger et al., 2013) did not provide 325 

models with better predictive capacity than the best univariate or multivariate models (Tables 326 

3 & 4). When restricting to the relationship of present socio-economic driver variables to the 327 

two State biodiversity indicators and comparing them with the relationship between SEAL 328 

and these same indicators, we found that SEAL had better predictive properties for the 329 
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proportion of Extinct species, and was close to the best models for the proportion of 330 

Threatened species (Table SM5). 331 

Graphical representations of the relationships also indicated a better link with 1900 332 

than 2000 economic variables for Extinct and Threatened species and the reverse for SEAL 333 

and iSEAL (Figure 1). Considering the associated estimators (Table 5), results were overall 334 

less obvious with only slight differences either in estimator significance (p-value) or in the 335 

mean estimated effect of adding 1 standard deviation to the variable (first column). The only 336 

strong difference in terms of magnitude was with iSEAL. The models fitted the study data 337 

adequately since we did not detect any discrepancy between the data and the best models at a 338 

significance level fixed at p<0.005.  339 

Discussion 340 

The finding of no relationship between socio-economic variables with the Response 341 

indicator (i.e. the proportion of protected areas in European countries; Table 2) contrasts with 342 

previous literature. In a summary of results, Luck (2007) reported a negative relationship 343 

between human population density (HPD) and protected areas. The metrics considered for 344 

protected areas, however, varied from area proportion to absolute area, which was not the case 345 

in the present study, as only area proportion was used. The absence of a statistical relationship 346 

may be the outcome of conflicting mechanisms. On the one hand, economic activity and 347 

population density raise pressures for land sealing .On the other hand, they may also trigger 348 

social demand for protected areas as a reaction to the consequences of land sealing.  349 

Second, the importance of 2000 economic drivers in explaining the Pressure indicators 350 

(Tables 2 and 5) suggests their closer relationship to the current level of human population 351 

density or activity than to those in 1900. This finding was contrary to our expectations for 352 

SEAL, which we expected would integrate the cumulative effects of land sealing over many 353 
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generations and therefore more relevant to economic variables representing the past. Yet, the 354 

study of urbanization during the 20
th

 century shows that the link between human activity and 355 

land encroachment operates quite quickly. For example, in post-World War II industrial 356 

countries, land use changed radically within a time span of a few decades., Colsaet et al. 357 

(2018) reported that the most indisputable causal factors were income and population growth. 358 

This is consistent with our results (Tables 3, 5 and SM3), which show the foremost 359 

contribution of current population density on land sealing indicators. 360 

The better explanatory power of the 1900 socio-economic variables and particularly 361 

the Kuznets-like models for the current proportion of extinct species should not come as a 362 

surprise. Current extinctions reflect past events – although on a relatively unknown time scale 363 

–, which themselves are related to past pressures. We therefore expected close relationships 364 

between the proportion of extinctions and socio-economic values in 1900 or 1950. It was a 365 

priori unclear, however, whether 1900 or 1950 variables would serve as better predictors. The 366 

results, with 1900 models clearly having better predictive capacity than 1950 models (Table 367 

2), suggest, apparently for the first time, that the causes of current extinction levels are rooted 368 

further in the past. The results echo those of Konvicka et al. (2006), however, who found a 369 

correlation between butterfly extinctions and railway densities that was interpretable as an 370 

indicator of early industrialization. 371 

The similar trends for the proportion of threatened species—i.e. models involving 372 

1900 values of socio-economic variables better predicted the current proportion of threatened 373 

species than those involving 2000 values—were more surprising. These results follow the 374 

global message of Dullinger et al. (2013), but for more adequate statistical models and 375 

different variables (gross domestic product per capita (GDPc) and gross domestic product per 376 

area (GDPa) in Dullinger at al., 2013 and this study, respectively). We therefore confirm the 377 

trend for a long-term effect of socio-economic development on the state of biodiversity, and a 378 
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time lag in the relationship. Results from this study, however, do not allow precise estimate of 379 

the length of this time lag nor explanations for this phenomenon, although the time lag is 380 

apparently shorter for Threatened than for Extinct species. These empirical results are in line 381 

with the concept of extinction debt proposed by Tilman et al. (1994), substantiated by e.g. 382 

Vellend et al. (2006) and reviewed by Kuussaari et al. (2009). Findings of macro-level 383 

relationships in this study suggest that the relationship between economic drivers and 384 

biodiversity erosion may reflect such extinction debt.  385 

Results of this study also confirm Gosselin and Callois (2018), in that the two State 386 

indicators of biodiversity are mostly related with models that include either Human 387 

Population Densities (HPD) or Gross Domestic Product per area (GDPa) (Table 3).. The 388 

results also confirm the conclusions of Gosselin and Callois (2018)on the interest of these 389 

metrics as biodiversity-driver indicators, though with a logarithm transformation and a time 390 

lag of approximately one century. The results are also consistent with previous findings where 391 

HPD was significantly associated to the proportion of Threatened or Extinct species or related 392 

quantities (Hoffmann, 2004, McPherson and Nieswiadomy, 2005, Luck, 2007 and, to some 393 

extent, Pandit and Laband, 2007 and McKee et al., 2013). They also echo McKee and 394 

Chambers (2011) on the identification of GDPa rather than mere GDP as a robust variable 395 

significantly related with the number of Threatened species. These previous studies, however, 396 

did not use HPD or GDPa in 1900 but rather more recent values of HPD or GDPa. In terms of 397 

magnitude, starting with proportions of extinct species and threatened species of 3.00% and 398 

30.0% respectively, doubling GDPa in 1900 in the study models would increase these 399 

proportions to 4.15% (±0.26%) and 33.5% (±1.1%), respectively (based on estimates in Table 400 

5). We therefore consider these effects very significant and of intermediate strength.  401 

These results lead to a main conclusion that Log GDPa in 1900 is an accurate driver 402 

indicator for the two State indicators, and Log HPD in 2000 for the two Pressure indicators. 403 
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Additionally, SEAL could represent a relevant present pressure indicator for the two State 404 

indicators, since it provided relationships with either equivalent (for Threatened species) or 405 

better (for Extinct species) predictive quality than the other socio-economic variables in 2000 406 

(Table SM5). This conclusion is consistent with the considerable body of work on the impact 407 

of land encroachment and urbanization on biodiversity. Louwagie et al. (2017) showed how 408 

the process of land sealing reduces biodiversity at different levels. Given our previous results, 409 

we conjecture that past land sealing might be an even better Pressure indicator than past 410 

GDPa for current proportions of Extinct and Threatened species. This conjecture also agrees 411 

with Konvicka et al. (2006), who reported that the density of railway lines was the best socio-412 

economic predictor of past butterfly extinctions in European states. In contrast, the density of 413 

highways was not as strongly and consistently related to past butterfly extinctions. The 414 

authors interpret this result as an indication that “butterfly losses are attributable to persistent 415 

patterns of economic history rather than to the recent situation” 416 

Generalizing the results of this study to broader indicators of biodiversity yields 417 

conclusions even more pessimistic than previously reported at global levels (e.g., Butchart et 418 

al., 2010; Tittensor et al., 2014). Since the processes that reflect in the Pressure indicators 419 

(and Driver indicators in our case) are still continuing to increase, and given the time-lag 420 

between these processes and the State of biodiversity, one should not expect the State 421 

indicators to improve before many decades, if the relationships remain unchanged. This 422 

analysis using indicators reveals that biodiversity, like climate change, apparently has a strong 423 

temporal inertia in its interactions with its drivers, which highlights the urgent need for 424 

protective measures.  425 

Patterns of biodiversity loss are obviously more complex than reflected in the simple 426 

statistical models used in this paper. Yet, based on goodness-of-fit p-values, the lack of 427 

departures from the data indicates that the models are not too simple for the data at hand. In 428 
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fact, they might be too complex, especially for the two pressure indicators, as revealed by the 429 

analyses of the number of parameters estimated relative to the amount of data used (see 430 

Statistical Models and Hypotheses section). The results for the two pressure indicators should 431 

be taken with care, as they may stem from over-fitted models (Harrell, 2001). Additional 432 

analyses, for example with extended data sets with more countries or at smaller spatial scales, 433 

with diachronic data sets (e.g. McKee et al., 2013), or using a more integrated framework 434 

,such as structural equation modelling, would be useful.  435 

Policy implications 436 

Although results from this study may suggest that current policy measures may only have 437 

effects on biodiversity after decades at best, these results nevertheless provide policymakers 438 

with precious knowledge. Understanding how these systems have long time lags should help 439 

policymakers better assess the actions they take. They may integrate in their monitoring 440 

evaluations of biodiversity policies, for example, the notion that a policy may have no 441 

noticeable effect on extinction or threatened species metrics in the short term. One or two 442 

decades may not suffice. As results from this study confirm that human population density 443 

and especially GDP per area driver biodiversity, and that land sealing may be an important 444 

pressure to consider, biodiversity preservation should infuse all economic activity, and not be 445 

restricted to local actions such as protected areas.  446 

Conclusion 447 

In conclusion, the analysis presented above enable clear answers to the research questions 448 

posed in this paper. First, even at a coarse (country) scale and with a small sample, a clear 449 

lagged relationship is apparent between the State of biodiversity and the gross domestic 450 

product per area (GDPa). This finding is consistent with the first hypothesis. Considering the 451 

different results for Extinct and Threatened species, the typical time lag is apparently about 452 
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one century, though the time lag between Drivers (human presence and economic activity) 453 

and Pressure (land encroachment) appears much shorter. 454 

 455 

Second, in accordance with the second hypothesis, simple models with human population 456 

density and GDPa improved modelling predictive capacity for three pressure and state 457 

indicators out of four. These results confirm the intuition that human activity as a whole 458 

impacts biodiversity, and that more complex models do not necessarily add substantial 459 

predictive power.  460 

 461 

Third, the variables representing human activity that best explain variations in biodiversity 462 

were Log GDPa in 1900 for the two State indicators, and Log HPD in 2000 for the two 463 

Pressure indicators. In contrast with our expectations, including human appropriation of 464 

primary productivity did not improve the predictive capacity of the models over these more 465 

indirect measures of human activity. In line with our hypothesis, the above results further 466 

suggest that the causality between past human activity and the current state of biodiversity 467 

may be mediated by human pressure on the land through land encroachment. 468 

 469 

These results suggest that human population density, density of economic activity, and land 470 

sealing should serve as primary foci for environmental policies. Because of the short-term 471 

view often common for policymaking, such findings steer toward the preservation of natural 472 

lands as high priority toward effective mitigation of the loss of biodiversity. Future additional 473 

analyses with diachronic data at much finer spatial levels would refine further the estimation 474 

of time lags to help guide such policies. 475 

  476 
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Model name 1
st
 explanatory variable 2

nd
 explanatory variable 

Null - - 

Economic GDPc HPD 

Log Economic log(GDPc) log(HPD) 

Kuznets GDPc GDPc^2 

Log Kuznets log(GDPc) log(GDPc)^2 

Area Kuznets GDPa GDPa^2 

Log Area Kuznets log(GDPa) log(GDPa)^2 

GDPa GDPa – 

Log GDPa log(GDPa) – 

HPD HPD – 

Log HPD log(HPD) – 

HANPP HANPP – 

Log HANPP log(HANPP) – 

Table 1. The thirteen main statistical models estimated with their names and the explanatory 639 

variables they contain. GDPc refers to Gross Domestic Product per capita, GDPa to Gross 640 

Domestic Product per area, HPD to Human Population Density, HANPP to Human 641 

Appropriation of Primary Productivity. Further details on these variables can be found in 642 

Table SM1. 643 
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Model name Extinct 

species 

Threatened 

species 

Protected 

Areas 

SEAL iSEAL 

Null 39.47 25.26 0.00 44.51 18.34 

Economic.2000 18.51 26.24 6.75 17.45 0.00 

Economic.1950 9.67 21.47 4.51 13.20 2.17 

Economic.1900 2.54 16.81 4.66 23.26 8.84 

Log Economic.2000 16.64 10.66 5.29 0.00 4.87 

Log Economic.1950 7.82 6.91 4.69 2.65 6.07 

Log Economic.1900 0.98 4.92 4.55 14.92 9.03 

Kuznets.2000 51.70 34.38 5.75 48.00 20.62 

Kuznets.1950 42.14 39.89 4.07 49.05 22.35 

Kuznets.1900 17.44 29.48 6.54 43.84 23.31 

Log Kuznets.2000 51.78 41.30 7.46 48.02 20.77 

Log Kuznets.1950 37.60 42.44 3.01 48.35 21.91 

Log Kuznets.1900 17.87 29.78 3.72 42.90 23.00 

Area Kuznets.2000 19.52 12.87 9.39 22.76 8.65 

Area Kuznets.1950 12.46 5.45 7.89 27.95 18.51 

Area Kuznets.1900 0.75 0.00 13.64 26.13 19.83 

Log Area 

Kuznets.2000 

18.53 7.73 4.71 20.18 10.84 

Log Area 

Kuznets.1950 

7.90 5.23 4.04 19.21 15.77 

Log Area 

Kuznets.1900 
0.00 2.51 6.72 20.14 15.47 
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Table 2. Statistical comparison of the socio-economic main models considered at either 1900, 646 

1950 and 2000 (rows) to predict different biodiversity indicators (columns). Difference in 647 

Leave-one-out Information Criterion (LOOIC) values with the LOOIC of the best model 648 

fitted for the different explanatory models (by column). The lower the LOOIC, the better the 649 

model. The best model is underlined and models with a LOOIC relatively close to the best 650 

model– i.e. within six units of the best model – are in bold (as suggested in Millar, 2009). 651 

Only the models pertaining to the same target variable (models in the same column) are 652 

comparable. See Tables 1 and SM1 for the content of the models. For the first three columns, 653 

the marginal version of the LOOIC is used. 654 
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Model name Simpler 

models 

Hierarchical 

models 

Null 
39.47 - 

Economic.1900 
2.54 - 

Log Economic.1900 
0.98 - 

Area Kuznets.1900 
0.75 - 

Log Area 

Kuznets.1900 
0.00 -- 

HPD.1900 
9.04 20.66 

Log HPD.1900 
9.04 8.48 

GDPa.1900 
6.37 5.88 

Log GDPa.1900 
-1.11 -4.15 

Log GDPa.1950 
3.83 3.75 

Log GDPa.2000 
14.45 14.04 

HANPP.1900 
17.20 17.96 

lHANPP.1900 
7.06 3.48 

Table 3. Statistical comparison of the ability of additional univariate explanatory models 656 

(rows) to predict the proportion of Extinct species, both with simple models (one effect shared 657 

by all taxonomic groups; first column) and hierarchical models (effect varying among 658 

taxonomic groups as a random effect; second column). The difference between Leave-one-out 659 

Information Criterion (LOOIC) of the model and the LOOIC of the best model in Table 2 for 660 

the proportion of Extinct species is indicated. The lower the LOOIC, the better the model. The 661 

best model is underlined and models with a LOOIC within six units of the best model – i.e. 662 

relatively close to the best model – are in bold. Models in both columns can be compared 663 
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since they pertain to the same target variable. See Tables 1 and SM1 for the content of the 664 

models.  665 

  666 



33 
 

Model name Simpler 

models 

Hierarchical 

models 

Null 
25.26 - 

Economic.1900 
16.81 - 

Log Economic.1900 
4.92 - 

Area Kuznets.1900 
0.00 - 

Log Area 

Kuznets.1900 
2.51 - 

HPD.1900 
8.76 9.90 

Log HPD.1900 
-1.10 0.03 

GDPa.1900 
17.74 19.10 

Log GDPa.1900 
-1.17 0.08 

Log GDPa.1950 
4.95 5.54 

Log GDPa.2000 
6.70 8.30 

HANPP.1900 
25.79 26.36 

lHANPP.1900 
19.57 20.68 

Table 4. Statistical comparison of the ability of additional univariate explanatory models 667 

(rows) to predict the proportion of Threatened species, both with simple models (one effect 668 

shared by all taxonomic groups; first column) and hierarchical models (effect varying among 669 

taxonomic groups as a random effect; second column). The difference between Leave-one-out 670 

Information Criterion (LOOIC) of the model and the LOOIC of the best model in Table 2 for 671 

the proportion of Threatened species is indicated. The lower the LOOIC, the better the model. 672 

The best model is underlined and models with an LOOIC within six units of the best model – 673 

i.e. relatively close to the best model – are in bold. Models in both columns can be compared 674 
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since they pertain to the same target variable. See Tables 1 and SM1 for the content of the 675 

models.  676 

 677 

  678 
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Variable name Summary 

statistics of the 

estimator – 

mean (standard 

deviation) 

p-value Summary impact in log 

odds ratio of an 

increase of 1 standard 

deviation of the 

variable 

Log GDPa.1900 for Extinct 

species 
0.481 (0.096) 0.00003 0+ 

Log GDPa.1950 for Extinct 

species 

 

0.467 (0.108) 0.00003 0+ 

Log GDPa.2000 for Extinct 

species 
0.404 (0.121) 0.00145 0+ 

Log GDPa.1900 for 

Threatened species 
0.234 (0.074) 0.00176 00+ 

Log GDPa.1950 for Threatened 

 species 

 

0.234 (0.087) 0.00441 00+ 

Log GDPa.2000 for 

Threatened species 
0.238 (0.085) 0.00398 00+ 

Log HPD.2000 for SEAL 
0.856 (0.08) 0.00005 0++ 

Log HPD.1950 for SEAL 
0.846 (0.082) 0.00005 0++ 

Log HPD.1900 for SEAL 
0.791 (0.107) 0.00005 0++ 

HPD.2000 for iSEAL 
0.51 (0.107) 0.00002 ++ 

HPD.1950 for iSEAL 
0.227 (0.047) 0.00008 0+ 

HPD.1900 for iSEAL 
0.255 (0.077) 0.0018 0+ 

 679 
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Table 5. Analysis of the estimators of the best socio-economic variables at different dates for 680 

the four Biodiversity indicators that are sensitive to these variables. For magnitude analyses 681 

(last column), the results of the analyses of adding one standard variable of the best variate on 682 

odds ratios were conclusive if 95% of the odds ratio effects were in the interval  1.0;1.0  683 

(denoted as 000 and qualified as a strongly negligible effect),  5.0;5.0  (denoted as 00 and 684 

qualified as a moderately negligible effect),  1;1  (denoted as 0 and qualified as a weakly 685 

negligible effect), );1.0[   (denoted as + and qualified as a weakly positive effect), 686 

);5.0[   (denoted as ++ and qualified as a moderately positive effect), );1[   (denoted as 687 

+++ and qualified as a strongly positive effect) (as in e.g. Daniels 1983). Estimators are given 688 

for the best univariate model (first) and then for the other models with the same variable but at 689 

different dates. GDPa refers to Gross Domestic Product per area, HPD to Human Population 690 

Density (log-transformed if an “l” is added at the beginning of the name of the variable). For 691 

Extinct species, the best model is the hierarchical model, from which we consider the mean 692 

effect across the nine taxonomic groups; estimators by Taxon are provided in Table SM4. 693 

  694 
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(a) Extinct species 695 

 696 

 697 

(b) Threatened Species 698 
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 699 

 700 

 701 

 702 
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(c) SEAL 703 

 704 

 705 

(d) iSEAL 706 

 707 
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 708 

Figure 1. Graphical summary of the relationships between the best variable in 1900 (left) and 709 

in 2000 (right) and the four Biodiversity indicators showing relationships with socio-710 

economic variables. For Extinct and Threatened species, because we have multiple 711 

observations (i.e. taxonomic groups) for each country, the numbers on the y-axis are the Mean 712 

estimates of the country random effect in the Null model. Inside each Figure, we indicate the 713 

Pearson correlation – denoted as r – between the two variables. GDPa refers to Gross 714 

Domestic Product per area, HPD to Human Population Density. 715 

 716 

 717 

  718 



41 
 

Supplementary material 719 

Name of variable Explanation, unit and 

source 

Main model including the 

variable 

Summary of 

variations of the 

variable 

GDPc.2000 Gross Domestic Product 

per inhabitant in 2000 

(unit: 100,000 

International Geary–

Khamis dollar) 

Eco & Kuznets Untransformed: 

16.06 (± 6.63) 

[3.00; 24.36]  

Log: 2.65 (± 0.57) 

[1.10; 3.19] 

GDPa.2000 Gross Domestic Product 

per 1 ha in 2000 (unit: 

100,000 International 

Geary–Khamis dollar) 

Kuznets Untransformed: 

2363.55 (± 

2455.17) [273.18; 

9802.31]  

Log: 7.27 (± 1.05) 

[5.61; 9.19] 

GDPc.2000^2 Gross Domestic Product 

per inhabitant in 2000 

(unit: 100,000 

International Geary–

Khamis dollar) 

Eco & Kuznets Untransformed: 

299.87 (± 188.19) 

[9.01; 593.60]  

Log: 5.30 (± 1.15) 

[2.20; 6.39] 

GDPa.2000^2 Gross Domestic Product 

per 1 ha in 2000 (unit: 

100,000 International 

Geary–Khamis dollar) 

Kuznets Untransformed: 

1.1e+07 (± 

2.2e+07) 

[74628.41; 
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9.6e+07]  

Log: 14.54 (± 

2.11) [11.22; 

18.38] 

HPD.2000 Population density in 

2000 (unit: 

inhabitants/ha) 

Eco Untransformed: 

138.18 (± 106.34) 

[14; 454]  

Log: 4.62 (± 0.89) 

[2.64; 6.12] 

HANPP.2000 Human Appropriation of 

Primary Productivity in 

2000 (unit: %, with 

100% corresponding to 

1) 

Eco Untransformed: 

0.43 (± 0.21) 

[0.058; 0.92]  

Log: -0.99 (± 

0.59) [-2.85; -

0.079] 

GDPc.1950 Gross Domestic Product 

per inhabitant in 1950 

(unit: 100,000 

International Geary–

Khamis dollar) 

Eco & Kuznets Untransformed: 

4.25 (± 1.98) 

[1.65; 9.06]  

Log: 1.34 (± 0.47) 

[0.50; 2.20] 

GDPa.1950 Gross Domestic Product 

per 1 ha in 1950 (unit: 

100,000 International 

Geary–Khamis dollar) 

Kuznets Untransformed: 

483.71 (± 502.35) 

[51.04; 1690.87]  

Log: 5.68 (± 1.04) 

[3.93; 7.43] 

GDPc.1950^2 Gross Domestic Product 

per inhabitant in 1950 

Eco & Kuznets Untransformed: 

21.83 (± 19.98) 
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(unit: 100,000 

International Geary–

Khamis dollar) 

[2.73; 82.16]  

Log: 2.69 (± 0.94) 

[1.00; 4.41] 

GDPa.1950^2 Gross Domestic Product 

per 1 ha in 1950 (unit: 

100,000 International 

Geary–Khamis dollar) 

Kuznets Untransformed: 

474856.35 (± 

837766.19) 

[2604.67; 

2859048.12]  

Log: 11.36 (± 

2.08) [7.87; 

14.87] 

HPD.1950 Population density in 

1950 (unit: 

inhabitants/ha) 

Eco Untransformed: 

104.59 (± 77.79) 

[10; 282]  

Log: 4.34 (± 0.90) 

[2.30; 5.64] 

HANPP.1950 Human Appropriation of 

Primary Productivity in 

1950 (unit: %, with 

100% corresponding to 

1) 

Eco Untransformed: 

0.33 (± 0.18) 

[0.067; 0.73]  

Log: -1.24 (± 

0.58) [-2.70; -

0.31] 

GDPc.1900 Gross Domestic Product 

per inhabitant in 1900 

(unit: 100,000 

International Geary–

Khamis dollar) 

Eco & Kuznets Untransformed: 

2.36 (± 0.94) 

[1.22; 4.49]  

Log: 0.79 (± 0.39) 

[0.20; 1.50] 
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GDPa.1900 Gross Domestic Product 

per 1 ha in 1900 (unit: 

100,000 International 

Geary–Khamis dollar) 

Kuznets Untransformed: 

217.81 (± 224.68) 

[13.34; 817.09]  

Log: 4.85 (± 1.15) 

[2.59; 6.71] 

GDPc.1900^2 Gross Domestic Product 

per inhabitant in 1900 

(unit: 100,000 

International Geary–

Khamis dollar) 

Eco & Kuznets Untransformed: 

6.43 (± 5.05) 

[1.50; 20.18]  

Log: 1.57 (± 0.78) 

[0.40; 3.00] 

GDPa.1900^2 Gross Domestic Product 

per 1 ha in 1900 (unit: 

100,000 International 

Geary–Khamis dollar) 

Kuznets Untransformed: 

95625.60 (± 

180503.21) 

[178.06; 

667634.43]  

Log: 9.70 (± 2.30) 

[5.18; 13.41] 

HPD.1900 Population density in 

1900 (unit: 

inhabitants/ha) 

Eco Untransformed: 

79.05 (± 54.86) 

[7; 219]  

Log: 4.06 (± 0.92) 

[1.95; 5.39] 

HANPP.1900 Human Appropriation of 

Primary Productivity in 

1900 (unit: %, with 

100% corresponding to 

1) 

Eco Untransformed: 

0.32 (± 0.17) 

[0.06; 0.76]  

Log: -1.29 (± 

0.58) [-2.81; -
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0.28] 

 720 

Table SM1. List of economic variables included in the statistical models (cf. Table 2). The summary 721 

of the variations for the variables include the mean (+/- the standard deviation) and in square brackets 722 

the minimum and maximum for the variable in the model for Extinct species (these summary statistics 723 

do not include the repetition of data when a single country is included repeatedly in the analysis). All 724 

the data come from [Dullinger, 2013 ^ny #120369] (2013). 725 

  726 
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 727 

Name of variable Explanation, unit and source Summary of variations of the variable 

Extinct Number of Extinct species for 

various taxonomic groups and 

countries (data from Essl et al. 

2013) 

Summary statistics for the proportion of Extinct 

species for each taxonomic group: 

Vascular Plants: 0.018 (± 0.018) [0.0016; 0.088] 

Bryophytes: 0.024 (± 0.02) [0.00; 0.056] 

Mammals: 0.035 (± 0.032) [0.00; 0.13] 

Birds: 0.031 (± 0.023) [0.00; 0.087] 

Freshwater Fishes: 0.056 (± 0.056) [0.00; 0.15] 

Reptiles: 0.015 (± 0.032) [0.00; 0.12] 

Amphibians: 0.0025 (± 0.012) [0.00; 0.056] 

Dragonflies: 0.035 (± 0.037) [0.00; 0.10] 

Grasshoppers: 0.051 (± 0.057) [0.00; 0.22] 

Threatened Number of Threatened species 

for various taxonomic groups and 

countries (data from Essl et al. 

2013) 

Summary statistics for the proportion of 

Threatened species (excluding Extinct species) 

for each taxonomic group: 

Vascular Plants: 0.22 (± 0.13) [0.065; 0.56] 

Bryophytes: 0.23 (± 0.097) [0.072; 0.37] 

Mammals: 0.23 (± 0.10) [0.10; 0.44] 

Birds: 0.29 (± 0.11) [0.15; 0.55] 

Freshwater Fishes: 0.33 (± 0.15) [0.093; 0.57] 

Reptiles: 0.39 (± 0.26) [0.00; 0.79] 

Amphibians: 0.34 (± 0.24) [0.00; 0.89] 

Dragonflies: 0.30 (± 0.17) [0.036; 0.57] 

Grasshoppers: 0.22 (± 0.11) [0.069; 0.40] 

SEAL Percent area of country 

considered as sealed in 2009 

2.81 (± 1.98) [0.29; 8.22] 
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(source: 

http://www.eea.europa.eu/data-

and-

maps/indicators/imperviousness-

change/assessment) 

iSEAL Annual percent increase in the 

country area that was sealed 

between 2006 and 2009 (source: 

http://www.eea.europa.eu/data-

and-

maps/indicators/imperviousness-

change/assessment 

0.033 (± 0.019) [0.01; 0.089] 

PA1 Proportional area of country in 

IUCN Category 1 

0.011 (± 0.025) [0.00; 0.086] 

PA2 Proportional area of country in 

IUCN Category 2 

0.024 (± 0.03) [0.00; 0.10] 

PA3 Proportional area of country in 

IUCN Category 3 

0.0021 (± 0.0062) [0.00; 0.029] 

PA4 Proportional area of country in 

IUCN Category 4 

0.031 (± 0.04) [0.00038; 0.16] 

Table SM2. List of the biodiversity indicators used in this paper. The summary of the variations for 728 

the variables include the mean (+/- the standard deviation) and in square brackets the minimum and 729 

maximum for the variable. 730 

  731 
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 732 

Model name SEAL iSEAL 

Null 44.51 18.34 

Economic.2000 17.45 0.00 

Log Economic.2000 0.00 4.87 

Economic.1950 13.20 2.17 

Log Economic.1950 2.65 6.07 

GDPa.2000 24.30 5.36 

Log GDPa.2000 18.54 8.46 

HPD.2000 17.70 0.75 

Log HPD.2000 -2.21 2.54 

HPD.1950 11.76 5.38 

Log HPD.1950 0.07 5.53 

HANPP.2000 11.93 8.93 

Log HANPP.2000 9.31 10.61 

 733 

Table SM3. Statistical comparison of additional univariate models (rows) to predict the two 734 

pressure biodiversity indicators (columns). Difference between Leave-one-out Information 735 

Criterion (LOOIC) of the model and the LOOIC of the best model in Table 2 for the 736 

proportion of Sealed area in 2009 (SEAL) and the increase in that proportion between 2006 737 

and 2009 (iSEAL) (columns). The lower the LOOIC, the better the model. The best model is 738 

underlined and models with an LOOIC within six units of the best model – i.e. relatively close 739 

to the best model – are in bold. Only the models pertaining to the same target variable 740 

(column heading) are comparable. See Tables 1 and SM1 for the content of the models. 741 
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Variable name Taxon Summary statistics 

of the estimator – 

mean (standard 

deviation) 

p-value Summary impact in 

log odds ratio of an 

increase of 1 

standard deviation 

of the variable 

Log GDPa.1900 Vascular Plants 
0.356 (0.128) 0.00359 0+ 

Log GDPa.1900 Bryophytes 
0.509 (0.161) 0.00061 0+ 

Log GDPa.1900 Mammals 
0.516 (0.139) 0.00023 0+ 

Log GDPa.1900 Birds 
0.292 (0.151) 0.0298 0 

Log GDPa.1900 Fishes 
0.544 (0.157) 0.00045 0+ 

Log GDPa.1900 Reptiles 
0.299 (0.263) 0.12923 0 

Log GDPa.1900 Amphibians 
0.498 (0.297) 0.03758  

Log GDPa.1900 Dragonflies 
0.623 (0.217) 0.00042 + 

Log GDPa.1900 Grasshoppers 
0.691 (0.232) 0.00008 + 

Log GDPa.1950 Vascular Plants 
0.391 (0.133) 0.0032 0+ 

Log GDPa.1950 Bryophytes 
0.464 (0.159) 0.0032 0+ 

Log GDPa.1950 Mammals 
0.488 (0.141) 0.00046 0+ 

Log GDPa.1950 Birds 
0.336 (0.156) 0.02077 0 

Log GDPa.1950 Fishes 
0.536 (0.158) 0.00021 0+ 

Log GDPa.1950 Reptiles 
0.314 (0.255) 0.10858 0 

Log GDPa.1950 Amphibians 
0.5 (0.268) 0.024 + 

Log GDPa.1950 Dragonflies 
0.585 (0.209) 0.00035 + 

Log GDPa.1950 Grasshoppers 
0.589 (0.203) 0.00049 + 

Log GDPa.2000 Vascular Plants 
0.272 (0.157) 0.04517 0 
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Log GDPa.2000 Bryophytes 
0.446 (0.16) 0.00285 0+ 

Log GDPa.2000 Mammals 
0.419 (0.147) 0.00285 0+ 

Log GDPa.2000 Birds 
0.339 (0.155) 0.01933 0 

Log GDPa.2000 Fishes 
0.448 (0.157) 0.00224 0+ 

Log GDPa.2000 Reptiles 
0.317 (0.213) 0.07399 0 

Log GDPa.2000 Amphibians 
0.418 (0.234) 0.0305 0 

Log GDPa.2000 Dragonflies 
0.491 (0.199) 0.00299 0+ 

Log GDPa.2000 Grasshoppers 
0.483 (0.192) 0.00358 0+ 

 742 

Table SM4. Analysis of the estimators of the best socio-economic variables at different dates 743 

for the proportion of Extinct species, by taxonomic group. For magnitude analyses (last 744 

column), the results of the analyses of adding one standard variable of the best variate on odds 745 

ratios were conclusive if 95% of the odds ratio effects were in the interval  1.0;1.0  746 

(denoted as 000 and qualified as a strongly negligible effect),  5.0;5.0  (denoted as 00 and 747 

qualified as a moderately negligible effect),  1;1  (denoted as 0 and qualified as a weakly 748 

negligible effect), );1.0[   (denoted as + and qualified as a weakly positive effect), 749 

);5.0[   (denoted as ++ and qualified as a moderately positive effect), );1[   (denoted as 750 

+++ and qualified as a strongly positive effect) (as in e.g. Daniels 1983). The best model was 751 

the hierarchical model at date 1900. For each taxonomic group, estimated tend to decrease 752 

with date, except for Birds and Reptiles, for which they tend to increase with date, and 753 

vascular plants and amphibians, for which 1900 and 1950 estimators were very close and 754 

greater than 2000 estimator. 755 

 756 

  757 
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Model name Extinct 

species 

Threatened 

species 

Null 
22.83 17.53 

Log Economic.2000 
0.0 2.93 

Log Kuznets.2000a 
1.89 0.0 

HPD2000l 
-1.68 -4.65 

Log GDPa.2000 
-2.21 -1.03 

Log SEAL 
-10.67 -0.28 

 758 

Table SM5. Statistical comparison of additional univariate models in 2000 (rows) to predict 759 

the two state biodiversity indicators (columns). Difference in Leave-one-out Information 760 

Criterion (LOOIC) values with the LOOIC of the best model with current values of socio-761 

economic variables in Table 2, for additional univariate models involving only current values 762 

of variables for the proportion of Extinct and Threatened species. The lower the LOOIC, the 763 

better the model. The best model is underlined and models with an LOOIC within six units of 764 

the best model – i.e. relatively close to the best model – are in bold. Only the models 765 

pertaining to the same target variable (column heading) are comparable. It should be noted 766 

that for extinct species, the best present model was the bivariate model involving 767 

untransformed SEAL and iSEAL (Difference in LOOIC of -14.18). See Tables 1 and SM1 for 768 

the content of the models. 769 
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 772 

 773 

Figure SM1. Variable clustering for the explanatory variables used in the paper. The correlation metric 774 

was the Pearson correlation and the method used to summarize multiple correlations was the average 775 

method. Variables linked at a value close to one are on average closely correlated while variables 776 

linked at a value close to zero have a low level of correlation. 777 
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