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1  | INTRODUC TION

In the last decades, the number of studies in the field of re-
mote sensing of biodiversity has increased (Innes & Koch, 1998; 

Nagendra, 2001; Gillespie et al., 2008; Pettorelli et al., 2014; Turner, 
2014; Rocchini et al., 2016; Rocchini et al., 2021). This increase is 
accompanied by the development of a variety of approaches and 
methodologies to better assess multiple dimensions of biodiversity 
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Abstract
Question: Which optical traits, retrieved from biophysical models applied to Sentinel-2 
images, enable an estimation of tree species diversity based on the Spectral Variation 
Hypothesis?
Location: Coniferous mountain forest in the eastern Italian Alps.
Methods: We analyzed the PROSPECT-5 and Invertible Forest Reflectance Model 
(INFORM) biophysical parameters as retrieved from canopy reflectance data of different 
forest plots (using Sentinel-2 images for the years 2017, 2018 and 2019) as optical trait 
indicators (OTIs). We successively tested the Spectral Variation Hypothesis (SVH) for each 
retrieved OTI using the Rao's Q as heterogeneity index, validating them against Shannon's 
H values calculated as a tree species diversity index derived from in-situ collected data.
Results: We demonstrated differences among OTIs in terms of how well their vari-
ations can be linked to species diversity. In particular the variations of brown pig-
ments (Cbrown), carotenoids (Car) and chlorophyll content (Cab) can be considered 
the most relevant OTIs for the application of the SVH when using the Rao's Q as a 
proxy for tree species diversity in our study site.
Conclusions: This research underlined that the OTIs contribute differently in the 
SVH to estimate tree species diversity, highlighting significant positive correlations 
between tree species diversity and the spatial heterogeneity of the estimated pig-
ment content (Cab, Car, Cbrown).
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in different ecosystems (Turner et al., 2003; Rocchini et al., 2010; 
Lopes et al., 2017). Different authors indeed focused their research 
on the assessment of alpha, beta and gamma diversity through the 
use of remote-sensing data, achieving interesting results in various 
ecosystems (Gillespie et al., 2008; Bergen et al., 2009; Rocchini 
et al., 2018, 2019; Torresani et al., 2019; Wang & Gamon, 2019; 
Féret & de Boissieu, 2020; Laliberté et al., 2020). Furthermore, the 
availability of remote-sensing data acquired on various ecosystems, 
with increasing performances in terms of spectral/spatial/tempo-
ral characteristics, has opened new possibilities to explore com-
plex ecological processes and various dimensions of biodiversity 
(Pettorelli et al., 2014; Rocchini et al., 2016, 2018). The Spectral 
Variation Hypothesis (SVH) represents one of these approaches, 
and is gaining popularity (Palmer et al., 2002; Rocchini et al., 2010). It 
proposes that the pixel-to-pixel variability of the spectral response 
in a remotely sensed image is driven by multiple factors including 
environmental heterogeneity and diversity of leaf and canopy traits 
(biochemical and structural traits), in variable proportion depend-
ing on the scale of observation. Since these properties are related 
to species diversity, the textural variations are treated as a proxy 
of plant biodiversity (Rocchini et al., 2004). In other words, areas 
with high spectral heterogeneity (SH) in a remotely sensed image 
correspond to areas with a high environmental heterogeneity with 
a higher number of available ecological niches that can host more 
species (Palmer et al., 2002). The SVH has been tested in differ-
ent ecosystems including, to mention just a few, wetlands (Rocchini 
et al., 2004), prairie vegetation (Palmer et al., 2002), alpine forests 
(Torresani et al., 2019), grasslands (Lopes et al., 2017), tropical for-
ests (Féret & Asner, 2014) and mediterranean vegetation (Levin 
et al., 2007). Some studies proposed to test the spectral variation of 
single/multiple optical bands, others with vegetation indices com-
puted from multiple bands (e.g. Normalized Difference Vegetation 
Index [NDVI]; Madonsela et al., 2017; Torresani et al., 2019). 
Different optical data have been used to test the SVH: hyperspec-
tral data (Oldeland et al., 2010; Féret & Asner, 2014; Gholizadeh 
et al., 2018; Draper et al., 2019), multispectral satellite images from 
MODIS (Schmidtlein & Fassnacht, 2017), Landsat (Levin et al., 2007; 
Rocchini, 2007), Sentinel-2 (Torresani et al., 2018, 2019), QuickBird 
(Hall et al., 2010), ASTER (Levin et al., 2007) and SPOT (Lopes et al., 
2017). All these studies showed a strong sensor dependency of the 
SVH resulting from different spatial scales (spatial resolution and 
image extent) and spectral scales (number of bands, radiometric 
resolution, bandwidth and spectral range covered; Rocchini et al., 
2010). The SVH strongly relies on the time of acquisition of the im-
ages (season of the year) used to analyze the SH (Torresani et al., 
2019). Different studies using different images have indeed shown 
that the SH changed over the year (Madonsela et al., 2017; Rocchini 
et al., 2019; Torresani et al., 2019). For this reason it appears partic-
ularly relevant to test the SVH with images acquired over different 
seasons to understand which is the season displaying optimal cor-
relation between SH and field data.

The hypothesis also deeply depends on the index used to quan-
tify SH. Different indices have been developed for this purpose, 

each of which shows different strengths and pitfalls (Rocchini 
et al., 2010; Gholizadeh et al., 2018). Recently, the Rao's Q index 
(Rocchini et al., 2017) has been proposed as a new SH measure to 
be applied to remote-sensing data. An interesting property of this 
index is its capacity to account for both value and abundance of a 
group of pixels extracted from an image. Recently, this index has 
been tested as heterogeneity index with several data sets confirm-
ing its strengths and properties (Da Re et al., 2019; Torresani et al., 
2019, 2020).

We found different studies in the literature exploring the 
potential relationship between in-situ trait variability, spectral 
diversity, and different dimensions of biodiversity. Asner and 
Martin (2009) tested how trait variability and spectral variabil-
ity measured from airborne imaging spectroscopy changed with 
taxonomic diversity in tropical forest. Durán et al. (2019) made 
use of different methodologies combining foliar traits and hyper-
spectral data to assessed remotely sensed functional diversity 
in tropical forest across an elevation gradient. Schweiger et al. 
(2018) showed that the spectral diversity at the leaf level (de-
rived from leaf spectroscopy) is correlated to functional diver-
sity. They furthermore made use of a metric of spectral diversity 
that "describes the extent and filling pattern of the spectral space 
occupied by a plant community and thus its functional complexity" 
(Schweiger et al., 2018). To our best knowledge, very few recent 
studies explored this type of relationship with multispectral im-
ages (Rossi et al., 2020), but none of them in forest ecosystems. 
On the other hand, many studies have focused on understanding 
the relationship between the vegetation’s spectral response and 
various biophysical parameters (Féret et al., 2011; Feilhauer et al., 
2017; Schweiger et al., 2017). These biophysical parameters usu-
ally correspond to the main chemical traits driving the absorption 
at the leaf scale, such as leaf pigment content, water content and 
leaf mass per area.

One type of approach available for estimation of the vegetation’s 
biophysical properties based on spectral information is based on in-
version of radiative transfer models (RTMs) (Féret et al., 2019). These 
models aim to describe the physical interactions between incoming 
light and vegetation, including absorption and scattering. Their ver-
satility and strength depend on the vegetation and the ecosystem 
considered. The kind of remote-sensing data also influences the 
performance of the models (Verrelst et al., 2015). Different kinds 
of optical data have been used to take advantage of the capacity of 
these models for the estimation of the biophysical parameters, in-
cluding hyperspectral and multispectral data (Navarro-Cerrillo et al., 
2014). In this regard, the Sentinel-2 satellite, with its free and open 
data access policy, showed promising results for the estimation of 
different biophysical parameters (Darvishzadeh et al., 2019b,a; Xie 
et al., 2019). RTMs require input parameterization, including leaf- 
and canopy-scale biophysical properties, as well as details on the 
illumination and observation geometries, and soil and atmospheric 
properties, in order to simulate leaf optical properties or canopy 
reflectance in the forward mode. One of the most frequently used 
models at the leaf level is the PROSPECT model (Jacquemoud & 
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Baret, 1990) that proved its suitability for a broad range of leaf types. 
PROSPECT simulates the directional-hemispherical reflectance 
and transmittance spectra of a leaf over the range 400–2,500 nm, 
based on a limited set of input variables, including the leaf struc-
ture parameter (N), leaf chlorophyll content (Cab), leaf carotenoid 
content (Car), brown pigments (Cbrown), equivalent water thickness 
(EWT), and leaf mass per area (LMA) for version 5B of the model 
(Jean-Baptiste et al., 2008; Ali et al., 2016). At the canopy level, the 
INFORM (Invertible Forest Reflectance Model) model (Atzberger, 
2000) simulates the bidirectional reflectance of forest stands be-
tween 400 nm and 2,500 nm using leaf optical properties and forest 
structural parameters such as single-tree leaf area index (LAI), the 
LAI of the understorey (LAI_u), stem density (SD), average leaf angle 
(ALA), tree height (TH), and crown diameter (CD; Atzberger, 2000; 
Schlerf & Atzberger, 2006). Scaling leaf traits measured in situ up 
to the canopy level requires particular care as canopy reflectance 
is influenced by many factors (Roelofsen et al., 2013; Feilhauer 
et al., 2017). Furthermore, some traits integrated in the RTM mod-
els, and proposed as practical explanations to otherwise complex 
problems (e.g., brown pigments and N in PROSPECT; Jacquemoud & 
Baret, 1990; Feilhauer et al., 2017; Spafford et al., 2021), cannot be 
measured easily experimentally. This makes the validation of some 
retrieved optical traits challenging. These models can be used in in-
verse mode to retrieve quantitative information on the traits from 
the optical properties. One of the most popular methods for model 
inversion is the lookup table (LUT) approach (Darvishzadeh et al., 
2008). This method involves simulation of a set of spectra corre-
sponding to random or systematic combinations of the input param-
eters of a RTM, constrained by reasonable ranges, distributions and 
co-distributions. Traits corresponding to an observed spectrum are 
then defined based on the minimization of a criterion between this 
observation and the simulations included in the LUT, such as root 
mean square error (RMSE).

As previously done in other studies (Feilhauer et al., 2017) we 
considered the biophysical parameters retrieved from RTM inver-
sion on canopy reflectance data as optical trait indicators (OTIs). As 
stated by Feilhauer et al. (2017) we consider OTIs featuring themati-
cally optimized informational content, which include a large percentage 
of vegetation-related information that can be gleaned from spectral re-
flectance data. By consequence, observed relations to OTIs can be easily 
interpreted in ecological terms, and the predictive power of OTIs is as-
sumed to be high. On the other hand OTIs are considered parameters 
that cannot be verified in the field. This limitation is widely accepted 
in the context of remotely sensed vegetation indices (for example, the 
normalized difference vegetation index NDVI), simple ratios or difference 
ratios of reflectance values measured in different wavelength regions, 
which correlate with a broad range of vegetation properties (Feilhauer 
et al., 2017) To distinguish the actual traits and the optical trait in-
dicators we refer to the single OTIs with the corresponding names 
of the PROSPECT-5 and INFORM parameters described in Tables 1 
and 2.

The aim of this paper is to understand how OTIs derived from 
RTM inversion can be used as input information to compute SH and 

relate it to species diversity. For this purpose, several OTIs are esti-
mated based on the inversion of the coupled RTMs PROSPECT-5 and 
INFORM using Sentinel-2 images for the years 2017, 2018 and 2019 
in a coniferous mountain forest in the eastern Italian Alps (South 
Tyrol province). We tested SVH for each leaf biochemical and struc-
tural trait using Rao's Q as heterogeneity index and validated them 
against Shannon's H values calculated as species diversity index de-
rived from data collected in situ.

2  | METHODS

2.1 | Field data

The study area (Figure  1) is located in the Province of Bolzano/
Bozen (Italy) in the municipality of San Genesio/Jenesien (46.55° 
N, 11.32° E). Twenty 1-ha plots (100 m × 100 m) were randomly 
chosen within a dense coniferous forest at 1,100  m a.s.l. char-
acterized by a high canopy cover. Following previous study de-
signs (Oldeland et al., 2010; Torresani et al., 2018), the center and 
corners of all plots were geo-referenced with a global position-
ing system (GPS) device (spatial accuracy of ±3 m; Garmin, USA). 
From June to August 2017, trees with a diameter at breast high 
(DBH) of at least 5 cm were identified at species level. Among the 
measured trees, 95% were coniferous species, dominated by Pinus 
sylvestris, followed by Larix decidua and Picea abies. The remaining 
5% were deciduous species such as Betula alba, Corylus avellana, 
Salix caprea and Sorbus aucuparia. The number of species per plot 
varied between 4 and 11. It is furthermore worth underlining that 
the forest composition did not change in the three years of study 
of this research.

We used the Shannon's H index (Equation 1) based on the oc-
currence of tree species, to assess the in-situ species diversity. 
Shannon's H is one of the most frequently used ecological indices; 

TA B L E  1   Optical traits with the corresponding PROSPECT-5 
parameters. Range shows the ranges of OTI values used in this 
study

Optical trait
Prospect-5 
parameter Unit Range

Leaf structure 
index

N Unitless 1.1–3.3

Chlorophyll 
content

Cab g/cm−2 9–66

Carotenoid 
content

Car g/cm−2 1.8–17.6

Brown 
pigments

Cbrown Unitless 0–1.1

Equivalent 
water 
thickness

Cw g cm−2 0.0039–0.033

Dry matter 
content

Cm g cm−2 0.0027–0.033
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it is sensitive to both rarity and species abundance and has been 
used in different studies as a measure of alpha diversity (Torresani 
et al., 2019, 2020). This abundance-based diversity index, compared 
to measures of species richness (that describe the number of species 
in an area), has a better performance in representing biodiversity in 
remotely sensed images (Oldeland et al., 2010).

where H = Shannon's entropy used in ecology; n = number of species; 
and pi = proportion of species i relative to the total number of species.

The species diversity for each plot, calculated through Shannon's 
H, is summarized in Appendix S1.

2.2 | Remote-sensing data

The canopy reflectance signal of the vegetation plots was derived 
from the Sentinel-2 satellite data. This sensor system measures the 
solar electromagnetic spectrum with two satellites (Sentinel-2A and 
Sentinel-2B) from 457 nm to 2,280 nm with 13 bands. All images 
available for the years 2017 (n = 11 images available), 2018 (n = 12), 
and 2019 (n = 13) were used for this purpose, excluding images with 
suboptimal conditions of acquisition (e.g. presence of snow, shad-
ows, clouds, aerosols). For the three considered years, images from 
the 90th to the 310th day of the year (DOY) were available. The 
images were acquired from the multispectral instrument (MSI) on 
board of both satellites between 10:00 and 11:00 am (local time). 
Sentinel-2A and 2B satellite images acquired with the relative orbit 
numbers R022 and R065 and provided as 32TPS were downloaded 
from ESA's Sentinel Scientific Data Hub. For each image we selected 
the bands with 10  m  ×  10  m and 20  m  ×  20  m spatial resolution 
that were successively corrected for atmospheric, terrain and cirrus 
distortion with the Sen2Cor algorithm in order to produce bottom-
of-atmosphere reflectance images (Louis et al., 2016). The Sentinel-2 
bands with a resolution of 20  m  ×  20  m were also resampled to 
10 m × 10 m using a bilinear interpolation.

2.3 | OTIs estimation

The inversion approach used to retrieve the OTI values for each plot 
from the canopy spectra of each Sentinel-2 images followed the 
workflow defined by Feilhauer et al. (2017) (Figure 2).

For this purpose, we used a hybrid inversion based on a machine-
learning regression algorithm trained with simulated canopy re-
flectance (see Verrelst et al., 2015 for a review) obtained from the 

(1)H = −

∑

n
i= 1

pi × ln (pi)

TA B L E  2   Optical traits with the corresponding INFORM 
parameters. Range shows the ranges of OTI values used in this 
study

Optical trait
Inform 
parameter Unit Range

Single-tree LAI LAI Unitless 3–7

LAI understorey LAI_u Unitless 0–2

Stem density SD trees/ha 250–1000

Average leaf angle ALA deg 15–65

Tree height TH m 5–30

Crown diameter CD m 2–8

Solar zenith SZ degree 22.5–78.1

Relative azimuth RA degree 131.4–180

Observer zenith OZ degree 0

Fraction of diffuse 
radiation

FDR Unitless 0–1

F I G U R E  1   The study area located in the municipality of San Genesio/Jenesien (South Tyrol) Italy, with the 20 plots



     |  5 of 15
Applied Vegetation Science

TORRESANI et al.

PROSPECT-5 leaf optical model coupled with the INFORM canopy 
model. This coupled model enables the generation of a virtually un-
limited number of canopy reflectances corresponding to a diversity 
of vegetation properties and conditions of acquisition and with the 
spectral characteristics of Sentinel-2 data. We produced a lookup 
table (n = 10,000) by running the PROSPECT-5 + INFORM models 
in forward mode (Schlerf & Atzberger, 2006; Jean-Baptiste et al., 
2008). The combination of input parameters was based on random 
sampling and followed the ranges defined in Tables  1 and 2. The 

range of the parameters was derived according to the species com-
position of the plots following the information contained in the Leaf 
Optical Properties Experiment Database (LOPEX; Hosgood et al., 
1995; Féret et al., 2019) and in other related studies (Meroni et al., 
2004; Schlerf & Atzberger, 2012; Navarro-Cerrillo et al., 2014). The 
spatial resolution of the scenes simulated with INFORM was set to 
10 m × 10 m to match the Sentinel-2 data. Successively, we used the 
lookup table to train the random-forest regression model (Pal, 2005) 
to predict values of each parameter from the spectra. The retrieved 

F I G U R E  2   Flowchart representing the approach we used in this study: by inversion of the radiative models and the random-forest model 
we retrieved the OTIs for each Sentinel-2 image. The OTI heterogeneity (calculated with Rao's Q) was successively correlated by linear 
regression with Shannon's H
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values of the vegetation-related parameters were used as OTIs. The 
model for each OTI was trained using n = 5,000 samples while the 
remaining n = 5,000 were used to assess the performance of the ob-
tained regression models (R2 and RMSE). We furthermore assumed 
that some OTIs are supposed to show little variation within the year; 
this is the case for example of the N trait indicator or the OTIs related 
to the canopy structure derived from the INFORM model. For this 
reason, since our hypothesis is based on a multi-temporal approach, 
we decided a priori to focus our hypothesis on five leaf biochemical 
and structural properties derived only from the PROSPECT-5 model.

The validation of the retrieved OTIs is outside the scope of this 
study, and we assume that strong uncertainty may exist for most of 
these estimations. Some of these OTIs cannot be measured exper-
imentally as they are either model parameters introduced as prag-
matic solutions to otherwise complex problems (Feilhauer et al., 2017) 
in the case of N (leaf structure parameter used in PROSPECT), which 
is used to describe the complexity of leaf anatomy and the result-
ing scattering effects on light, or chemical compounds with no clear 
experimental protocol to perform lab measurements in the case of 
brown pigments (Cbrown; Jacquemoud & Baret, 1990; Feilhauer 
et al., 2017). The parameters retrieved from RTM inversion were 
subsequently used as input information to compute SH. The OTIs 
are considered parameters with an information content similar to 
the initial spectral data that indeed incorporate vegetation-related 
information (Feilhauer et al., 2017). Appendix S1 shows the linear 
regression between observed data in the LUT and the predicted data 
from the regression model with the related R2 and RMSE values that 
indicates the goodness of the models.

2.4 | OTI heterogeneity

The Rao's Q index was used to calculate the OTI heterogeneity 
for each plot for all the images in the considered years following 
Equation (2).

Where Qrs = Rao's Q applied to remote-sensing data, p = relative abun-
dance of a pixel value (trait's value) in a selected area (F), dij = distance 
between the ith and jth pixel values (dij= dji and dii = 0), i = pixel i and 
j = pixel j.

The distance matrix dij can be built in different dimensions, al-
lowing the consideration of more than one band or raster at a time. 
In our case, dij was calculated as a simple Euclidean distance based 
on the single band (raster trait retrieved from the radiative transfer 
models). We used and implemented the R package function spectral-
rao() (available in Rocchini et al., 2017) to retrieve a Rao's Q value for 
each 100 m × 100 m plot representing our local landscape.

The resulting values of the OTI heterogeneity were then com-
pared with the field Shannon's H based on linear correlation. 
Since our analysis was based on multiple analyses (multiple tests 
made using different images), we corrected the p-values with the 

Benjamini–Hochberg correction to get an unbiased measure of sig-
nificance (Benjamini & Hochberg, 1995). The whole approach is sum-
marized in Figure 2. Furthermore, for all the 20 plots, a time series of 
each OTI’s values for the available images was obtained (mean of the 
pixel of each plot) to understand the temporal variation within the 
year and the relation to the SVH.

Finally, in order to understand which of the OTIs’ heterogeneity 
(calculated through the Rao's Q index) shows the strongest correla-
tion with the species diversity (Shannon's H) we decided to perform 
a principal components analysis (PCA) of the single OTIs (for each 
of the three considered years). Successively we projected into the 
same PCA space the species diversity data (Shannon's H) calculated 
through the envfit function from the vegan package of R. The results 
will show how the OTIs (vectors) behave in the PCA space and which 
ones run in the same direction as the species diversity vector.

3  | RESULTS

The temporal R2 trend between Shannon's H derived from in-situ 
data and the Rao's Q index computed from each OTI for 2019, 2018 
and 2017 is presented in Figures 3,4, and 5 respectively. Figure 6 
summarizes the OTIs’ time series (calculated as the mean of the pixel 
values of each plot) for the three considered years.

Focusing on 2019 (Figure 3) the trait heterogeneity (in particu-
lar of Car, Cab and Cbrown) calculated with the Rao's Q index in a 
defined time of the year shows a correlation (through the R2) with 
the in-situ data. The correlation between Shannon's H obtained 
from field inventories and Rao's Q computed from estimated bio-
physical properties was maximum when using Cbrown computed 
from an image acquired in summer (DOY = 205, i.e., July 23, 2019; 
R2 = 0.68). Examining Cab, the highest coefficient of determination 
(R2 = 0.61) was reached when the chlorophyll content was higher, 
in this case in late summer. The curve has a similar trend diverging 
just at the beginning of the year when the Cab curve shows an un-
expected high value. Considering the Car OTI, the R2 reached the 
highest values (up to 0.62) around DOY 150, in total contrast to the 
actual OTI content that in this period was the lowest of the season. 
The Car content indeed displays a typical trend for conifer forests, 
having its highest values in winter and lowest in spring (Gamon et al., 
2016). The correlations obtained when using Cm (dry matter con-
tent) and Cw (equivalent water thickness) did not show significant 
relationships with the in-situ data, and showed moderate changes 
through the year.

In 2018 Car, Cab and Cbrown also showed the strongest correla-
tion with the in-situ data (Figure 4) in line with the results obtained 
in 2019. Cbrown showed, as in 2019, the highest R2 value in summer 
(R2 = 0.68) when the Cbrown time-series curve was at the minimum 
value. Estimated Cab time series showed seasonal variations corre-
sponding to the seasonality of the typical photosynthetic activity ob-
served for alpine coniferous forests (Torresani et al., 2019). The same 
trend was showed by the R2 curve with the highest values (between 
R2  =  0.66 and R2  =  0.69 ) in summer. The Car time series showed 

(2)Qrs =

∑

F− 1
i= 1

∑

F
j= i+ 1

dij × pi × pj
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F I G U R E  3  Year 2019: for each OTI the 
figure shows the R2 trend derived from 
the linear regression between the OTI 
heterogeneity and the in-situ tree species 
diversity (Shannon's H) and the OTI time 
series as the mean of the pixel of each plot
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F I G U R E  4  Year 2018: for each OTI the 
figure shows the R2 trend derived from 
the linear regression between the OTI 
heterogeneity and the in-situ tree species 
diversity (Shannon's H) and the OTI time 
series as the mean of the pixel of each plot



     |  9 of 15
Applied Vegetation Science

TORRESANI et al.

F I G U R E  5  Year 2017: for each OTI the 
figure shows the R2 trend derived from 
the linear regression between the OTI 
heterogeneity and the in-situ tree species 
diversity (Shannon's H) and the OTI time 
series as the mean of the pixel of each plot
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highest values in the cold months, in total contrast to the R2 time series 
where the highest values(R2 = 0.72) were found in summer.

Figure 5 shows the results for the year 2017. The Cab time se-
ries was in line with the previous considered years, having the lower 
values in winter and rising in summer. The values decreased toward 
autumn but seemed to increase again. Unfortunately, there were 
no images available to extend the time series until December. The 
R2 curve followed the trend shown in 2018 and 2019 (high in sum-
mer and low toward winter) but did now follow the trait curve as 
expected. Similar patterns were observed for Car. The trait time se-
ries was in line with the ones obtained in 2018 and 2019 (low in 
spring and high in autumn) but the R2 curve was not, indicating no 
relationship between the trait and the species diversity through the 
year. Cbrown showed a consistent and consolidated R2 curve and 
trait time series with opposite trends. The highest R2 (R2 = 0.8) was 
found indeed when the trait has the lowest value through the year.

Figure  7 summarizes the final results in order to understand 
which of the OTIs’ heterogeneity has the strongest correlation with 
the species diversity (calculated with the Shannon's H index). The 
figure shows, for the three considered years, how the OTIs’ hetero-
geneity (calculated through the Rao's Q index) and the species di-
versity index (Shannon's H) behave in the PCA space. For the three 
years, the Shannon's H vectors run in the same direction as the 
group of Cbrown OTIs. The Cbrown OTI, for this ecosystem and for 
the considered years, can be considered the OTI with the strongest 
correlation with the Shannon's H index.

4  | DISCUSSION

In this study we aimed to analyze the relation between species 
diversity in forests and the spectral variation derived from OTIs 

F I G U R E  6   Summary of three years of OTI time series as the mean of the pixel values of each plot
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estimated from physical model inversion applied on Sentinel-2 im-
ages. For this purpose, we retrieved OTIs from the inversion of the 
RTMs PROSPECT-5 and INFORM using Sentinel-2 images for the 
years 2017, 2018, 2019 in a coniferous forest in the Italian Alps. We 
tested the SVH for each retrieved OTI using the Rao's Q as heteroge-
neity index as a proxy for Shannon's H values calculated from in-situ 
species inventories.

We showed that the statistical relation between OTIs and tree 
species diversity strongly varied between OTIs and through the year. 
The inter-annual R2 trend is driven by the typical variation of the 
OTIs and not due to the change in tree species diversity that is sup-
posed to remain relatively stable unless major changes happen, such 
as clear-cuts, disease or insect infestation. That was not the case in 
our study area.

The variation of Cbrown, Car and Cab can be considered a proxy 
of tree species diversity in this kind of ecosystem. The heterogeneity 
of these OTIs at specific times of the year reflects the environmental 
heterogeneity that is linked to the tree species diversity of the forest 
(Rocchini et al., 2004; Torresani et al., 2019). In particular, the varia-
tion of Cbrown showed the highest level or relationship (highest R2) 
and strongest correlation (after the PCA analysis) with the in-situ 
tree species diversity. These brown pigments are produced in the 
leaf as a result of the degradation of fresh leaf constituents during 

senescence at the end of the leaf’s life cycle. They represent light ab-
sorption by non-chlorophyll pigments since they appear when leaves 
start to senesce (Jacquemoud & Baret, 1990). In the three consid-
ered years the variation of this OTI reached the highest value of re-
lationship with the tree species diversity, always in summer when 
the OTI time series curve was at the lower point. In winter time the 
Cbrown values increase, tending to mask the differences between 
species and making the discrimination more difficult. This difference 
might be particularly emphasized due to the presence of Larix de-
cidua and broad-leaved trees that, due to the senescence of their 
leaves and the winter leaf-off mechanism, have different Cbrown 
values compared to the conifer trees.

For the 2018, the Cab time series and the related R2 curve 
showed a similar trend with highest values in summer, correspond-
ing to the peak of the vegetation for the considered area (Torresani 
et al., 2019). Cab shows unexpectedly high values in early 2019 and 
late 2017. This small discrepancy could be driven by different factors 
such as seasonal and meteorological conditions that can modify the 
stomatal conductance, which is highly related to chlorophyll con-
tent (Matsumoto et al., 2005). The image quality, the pre-processing 
of the data, and the atmospheric and geometric corrections could 
also contribute to the small inconsistency typical of studies where 
remote-sensing data are used to assess vegetation proprieties.

F I G U R E  7  Principal components analysis (PCA) space with the OTI reference (blue vectors), the Shannon's H species diversity index 
(red vector) and the 20 study plots (white dots). For the three considered years (a, 2019; b, 2018; c, 2017) the red vectors run in the same 
direction as the Cbrown OTI vectors, particularly during summer days when the level of correlation (R2) is higher
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Carotenoids also evidenced potential for species diversity map-
ping following our approach, although the correlation obtained for 
the acquisitions from 2017 were remarkably low over the full year. 
These pigments play an important role in plants, acting as photopro-
tective and antioxidants pigments. The seasonal evolution of the leaf 
carotenoid content may vary between species, as it tends to follow 
the chlorophyll content for broad-leaved trees, while some studies 
reported the maximum carotenoid content in winter for needles in 
various conifer species. (Adams & Demmig-Adams, 1994). These 
pigments might be useful for example to distinguish broad-leaved 
and evergreen trees, especially in fall when the difference of this 
pigment between the two groups of trees increases. Although the-
oretically particularly relevant for the monitoring of taxonomic and 
functional diversity, carotenoids remain extremely challenging to 
estimate accurately from multispectral satellites such as Sentinel-2, 
and the uncertainty associated with their estimation is significantly 
higher than the uncertainty associated with the estimation of chlo-
rophyll content. First, carotenoids only absorb in the visible do-
main: only the blue band and to a lesser extent the green band of 
Sentinel-2 show potential sensitivity to changes in carotenoids, and 
the blue band shows high uncertainty due to atmospheric scattering, 
which increases exponentially from longer to shorter wavelengths. 
Hence further investigations into the sensitivity of Sentinel-2 data to 
changes in carotenoids are needed to understand if our results are 
actually explained by seasonal changes in carotenoid content.

The relationship between OTI heterogeneity and tree species di-
versity varies strongly within the year. This multi-temporal approach 
in the context of the SVH was tested by Torresani et al. (2019), high-
lighting the importance of considering different images through the 
year for the assessment of tree species diversity. In that case the 
authors tested the SVH in the same study area as used in this paper, 
comparing tree species diversity with the variation of the NDVI de-
rived from Sentinel-2 and Landsat 8 images, showing that the high-
est R2 was found in summer, at the peak of the considered vegetation 
index. Other studies not related to the SVH suggest indeed that the 
timing of data acquisition (e.g. right choice of a phenological stage) is 
fundamental for the achievement of better results in remote sensing 
of vegetation models (Feilhauer et al., 2010, 2017). The outcomes of 
the present research support these findings.

Another important aspect to underline is the data used to retrieve 
the OTI. The retrieval of the OTI through RTM inversion applied on 
Sentinel-2 data is limited compared to imaging spectroscopy data, 
due to the limited number of bands and their spectral and spatial res-
olution (Lepine et al., 2016; Shiklomanov et al., 2016). Nonetheless, 
many vegetation characteristics are related to relatively wide spec-
tral regions (Verrelst et al., 2016) and the spectral characteristics 
of the Sentinel-2 bands seem to be sufficient to assess these pro-
prieties or other morphological plant traits (Darvishzadeh et al., 
2019a,b; Rossi et al., 2020).

Some concerns might arise about the absence of in-situ valida-
tion data. Unfortunately, a full-scale validation of the retrieved OTIs 
was not possible, because the field campaign carried out in 2017 did 

not include any trait measurements. Further, as outlined above, some 
RTM parameters cannot be directly linked to field measurements. 
Due to the lack of calibrated data we consider the use of OTIs as the 
first step toward better understanding of the relationship between 
the traits’ heterogeneity and the tree species diversity in a forest 
ecosystem. Further analyses including a validation of the retrieved 
values are needed. Still, the use of OTIs without calibration/vali-
dation data has been carried out in other similar studies (Feilhauer 
et al., 2017) showing promising results. It is worth underlining that 
on the one hand, the in-situ data could be useful to calibrate the 
models, but on the other hand collected data could frequently cre-
ate uncertainty, especially when the information is transferred at the 
level of pixels (McCoy, 2005). We are aware that uncertainties in 
the estimation of leaf chemistry from physical model inversion need 
to be considered carefully. However, we have to put these uncer-
tainties in perspective and need to realize that most assessments of 
diversity are rather uncertain. In the present study we refrain from 
interpreting the retrieved OTI values in absolute terms, meaning we 
do not treat them as equally accurate as laboratory measurements 
of, e.g., chlorophyll concentrations. Still, we are convinced that the 
retrieved values can be interpreted reliably in relative or qualitative 
terms. This confidence is supported by the temporal development 
of the OTI values, which follow the expected trends in most cases, 
allowing the conclusion that such parameters can be retrieved from 
spectral data using RTM inversions. We are furthermore aware that 
the results might be sensitive to the initial values used in Tables 1 
and 2.

Another important concern that emerged in other studies 
(Torresani et al., 2019) is the small extent of the study area, a dense 
alpine coniferous forest dominated mainly by coniferous species. 
The use of a limited number of plots in similar studies is common 
and represents a typical bias of any empirical study (Rocchini, 2007). 
Gould (2000) tested the SVH in the Hood river region of the cen-
tral Canadian arctic using 17 plots of 0.5-km2 size. In their estimate, 
Torresani et al. (2019) tested the SVH using two NDVI time series 
from Sentinel-2 and Landsat 8 in the same 20 plots. Rocchini et al. 
(2004) used 22 plots to test the spectral variation of multispectral 
images to estimate the species diversity in a wetland area in Central 
Italy. This study represents another step to understand the relation 
between the spectral variability of OTIs (derived from optical data) 
and the species diversity in an alpine coniferous forest. Our test was 
the first that made use of the methodology typical of the SVH to 
assess this relationship. Different other studies focused their work. 
The outcomes of this research can probably be applied to wider 
areas on the strength of the general relation between spectral het-
erogeneity and species diversity (Rocchini, 2007; Rocchini et al., 
2010; Féret & Asner, 2014; Féret et al., 2019).

Our hypothesis was not based on directly catching species di-
versity in the field, but on using indirect measures based on environ-
mental heterogeneity. The results showed that the variability of the 
OTIs can be directly related to environmental heterogeneity, which 
in turn might be a proxy of species diversity (Torresani et al., 2019). 
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It is worth underlining that the environmental heterogeneity is not 
the only variable that affects biodiversity in forest ecosystems. Our 
objective was indeed to test the variability of the OTIs as a proxy for 
tree species diversity in a coniferous forest ecosystem.

5  | CONCLUSION

This study focused on the relation between tree species diversity and 
the heterogeneity of a set of OTIs retrieved from RTM inversion using 
the coupling of PROSPECT-5B and INFORM, for individual Sentinel-2 
images acquired in an alpine coniferous forest ecosystem during three 
years. The OTIs’ heterogeneity was calculated with the Rao's Q index. 
This research underlined that the OTIs contribute differently in the 
SVH for the estimation of tree species diversity. We demonstrated sig-
nificant positive correlations between tree species diversity expressed 
by Shannon's H and the spatial heterogeneity of estimated pigment 
content (chlorophylls, carotenoids and brown pigment content). 
Further tests based on PCA indicate that the heterogeneity of the OTI 
Cbrown has the strongest correlation to Shannon's H.

As underlined in the Discussion this study represents a first step 
to understanding the relationship between OTI heterogeneity and 
species diversity. Further studies have to be conducted in other eco-
systems, using different remote-sensing images and validation data, 
before the approach can be considered a generalizable method.

These first results, with their strength and limitations, allow us 
to better understand how the SVH behaves in forest ecosystems for 
rapid assessment of tree species diversity in topographically highly 
complex regions to guide field sampling and localization of biodiver-
sity hotspots.
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