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Introduction

The olfactory system per se comprises three main levels, 
which are the olfactory mucosa (OM, i.e. the peripheral level) 
located in the nasal cavities, the olfactory bulb (OB, first central 
relay) and the piriform cortex (primary cortical level). The nasal 
cavities comprise several turbinates (3 in Human, 4 in rat or 
mouse), which are lined with the the respiratory mucosa and 
OM. In terrestrial animals, the nose samples odorant molecules 
in the inhaled air. The crucial initial step which governs the odor 
perception is that of the interaction between odorant molecules 
with specialized receptors, expressed by the olfactory sensory 
neurons (OSNs) lying in the OM. Through our natural rhythm of 
breath, the odorant molecules are captured by the mucus covering 
the OM and then, reach the cilia of OSNs and bind with molecular 
odor receptors (ORs). In terrestrial animals ORs are devoted to 
airborne odorants. Over the animal kingdom, the number of gene 
encoding ORs varies between species.

Odors are very complex stimuli which are mainly raised by 
mixtures of odorant chemical compounds displaying different 
degree of volatility. The volatility is directly related to a substance’s 
vapor pressure  at a given temperature; substances with higher 
vapor pressure vaporizing more readily than a substance 
with a lower vapor pressure. Thus, for a given combination of 
odorant molecules, the compounds compete with each other  

 
for constituting the gaseous phase; this competition depending 
on both individual volatility properties and ratios in which, the 
compounds are present. Altogether this will result in a unique 
and precise fragrance of an odor item. The quasi infinite variety of 
odorant compounds and their combinations, combined with the 
wide range of their volatility properties imply that the olfactory 
system must be thus highly sensitive and highly adaptable to new 
items. Lastly, the olfactory system must be operating very early 
in the organism life since it intervenes in numerous survival 
behaviors like predator avoidance, the bounding of the young to 
the mother and foraging behavior which starts at birth by the 
nipple research [1].

In addition to having to face limitless and constantly moving 
stimuli, the peripheral olfactory system needs to regenerate. 
Indeed, in the nose, OSNs are in direct contact with the air of 
our external environment and can be damaged by thermal, 
chemical or pathogen agression. Such a deleterious exposition 
is compensated by the fact that these neurons are continuously 
and cyclically renewed along the life with no apparent synchrony 
in terms of proliferation, differentiation and neurogenesis [2]. 
Their median turnover is every 6-8 weeks, even if some OSN 
probably live a longer time as recently demonstrated, which 
strongly arguments for selective bias in their turn-over [3]. Such 
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a renewal capacity could keep the system in a homeostatic state 
through a strict conservative pathway, as ORs are mainly chosen 
stochastically among hundreds of possible [4] or instead can 
be paired with plasticity in expression of ORs, to better fit with 
a changing environment. During their maturation, neo-OSNs 
would be “educated” by the surrounding adult OSNs. Indeed, odor 
induced activities of the latter might direct their OR expression 
choice [5-7]; an established mechanisms which would ensure 
both continuation and plasticity. OR expression could also be 
modulated independently from the OSNs’ cyclic renewal, by the 
olfactory environment, experience and internal parameters in 
vertebrates (for recent reviews, see Lucero et al., 2013; Bryche et 
al. [8]) as well as in invertebrates [9]. 

In this review, we chose to present data on olfactory 
enrichment rather than deprivation because results are difficult 
to interpret and sometimes counterintuitive; deprivation 
likely triggering compensatory mechanisms [10]. Peripheral 
experienced induction or imprinting In olfaction, a major issue 
that implements and modulates the perception and contributes 
to the immediate and long-term adaptation of organisms to their 
environment is plasticity, which occurs from peripheral captors, 
i.e. OSNs and ORs. However, much attention has been paid on 
plasticity mechanisms occurring in higher brain areas [11-14] 
and much less is known about peripheral mechanisms.  

Perceptual olfactory plasticity, dealing with peripheral 
changes driven by experience, has been originally described in 
human adults, thanks to the works of Wysocki and collaborators 
in eighties: when patients displaying androstenone specific 
anosmia were exposed to androstenone for some minutes, three 
times a day during six weeks, they restored their perception to 
this odorant [15]. These changes have been termed “experienced 
incidental induction” or imprinting [16] and, because anosmia 
was suspected to result from genetic deficit in peripheral captors, 
they have been assigned to the olfactory system periphery. 
Wysocki and colleagues [15] had following theory: exposure to 
androstenone would result in sensitization of OSNs by stimulating 
and selecting the expression of specific ORs with higher odor-
binding affinity. As proposed for androstadienone for which 
receptors of different affinities co-exist, changes in perceived 
odor quality would result from their differential activation upon 
repetitive exposures [17]. The periphery involvement has been 
then endorsed in experiments reporting that chronic exposures 
to odorants increased the peripheral olfactory responses 
(measured through electro-olfactograms, EOG) in anosmic/
hyposmic mice and humans [18,19]. More recently, olfactory 
training [20- 22] and aversive learning in humans (Cavazzana 
et al. 2018) have been shown to increase OSNs’ responses and 
olfactory performances for conditioned stimulus, in normosmic, 
hyposmic or anosmic subjects. Noteworthy is that conditioning 
has probably stronger impacts on inherent experience-dependent 
olfactory performances than passive exposure. 

However, because these studies are mainly concerned with 
anosmic or hyposmic subjects and animals, and rely to a limited 

number of odorants in conditions which are rarely natural, one 
may wonder whether such a phenotypical plasticity of peripheral 
neural responses and perception is a general phenomenon. 

How Perceptual plasticity linked with functional 
changes at captors’ level is generalizable 

A piece of response lies in literature gathered in both 
invertebrates and vertebrates. After 10 days in water odorized 
with phenyl ethylic alcohol (PEA), salmons displayed a place 
preference for that water and an increased OSN responsiveness 
to PEA [16]. Similarly, in zebrafish, early exposure to PEA results 
in long-term changes in the number of neuronal precursors and in 
the level of expression for a subset of ORs [23,24]. In honeybees, 
pairing linalool and 9-oxo-decenoic acid (queen pheromone) 
with glucose reward down-regulated the expression of two ORs 
(the generalist OR 151 responding to linalool and the pheromone 
specific OR11), while peripheral electro-antennograms (EAGs: 
populational response of OSNs in insects, equivalent to EOGs in 
vertebrates) to these odorants were reduced [25] by contrast, 
similar learning of odor mixtures led to increased [26,27] or 
constant EAGs [28,29].  

In rats, the voltage-die-sensitive peripheral response to a 
conditioned stimulus (CS) increased after conditioning [30]. 
In addition, early olfactory enrichment using daily exposure to 
multiple odorants increased OSNs’ reactivity, both to previously 
experienced odorants and to novel ones [31]. 

In mice, effects of odorant exposure on ORs’ number and 
sensitivity are contradictory depending on the context (either 
passive or active, via a positive or negative associative learning, 
through a continuous or discontinuous exposure). Indeed, mice 
passively exposed to octanal showed peripheral desensitization to 
CS (decreased in EOG amplitude) as well as behavioral habituation 
and down-regulation of proteins involved in peripheral 
transduction [32]. In mice passively exposed to lyral, the number 
of OSNs expressing MOR23 was down-regulated, while the 
remaining MOR23 endowed-OSNs expressed a higher density of 
this OR and increased excitability to lyral without impacting EOGs 
[33]. By contrast, aversive or fear learning or -place preference 
conditioning using odorant as CS enhanced both peripheral and 
behavioral responses [34-36]. Moreover, associative conditioning 
increased OSNs’ excitatory outputs towards the olfactory bulb 
(OB) and detection abilities for CS [37]. More especially, such 
experiments increased CS-dedicated ORs’ number and transmitter 
release probability from activated OSNs, enlarged glomerular size, 
reduced OB presynaptic inhibition mediated by GABAb receptors 
[34,38] and the incidence of lateral inhibition in OB interneurons; 
this latter effect can even lead to a lesser discrimination resulting 
in a generalization of the fear reaction to several nearby stimuli 
[39]. Such effects can be either reversed following extinction 
training [40] or persist over time and can even be transmitted 
to the next generation, through still unknown mechanisms [41]. 
When performed in the perinatal period, which could be assumed 
to a positive associative learning due to motherly presence, odor 
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exposure also influences glomerular refinement and functioning 
with contrasted effects on OSNs/ORs numbers and epithelium 
responsivity [33,42,44-47]. Therefore, in both juvenile and 
adult animals, olfactory imprinting can induce changes in odor 
peripheral processing and perception. However, the perinatal 
period seems to be particularly sensitive to remodeling, thanks to 
a critical period for OSNs’ axon wiring of the olfactory bulb (OB), 
in mice from birth to weaning [48-50].

Other experiments did not experimentally manipulate the 
olfactory environment of animals but reported observations 
linked to natural changing in chemical environments, linked to 
season changes, feeding states or breeding period. Thus, European 
starlings show seasonal differences in their ability to respond to 
odor cue [51]. In Drosophila, the expression of chemoreceptor 
genes such as OBPs proteins was shown to change with age, 
reproductive state and social interaction [52]. In the mosquito, 
blood meals were shown to induce a general reduction in antennal 
transcript levels of chemosensory genes, although a subset of ORs 
was modestly enhanced after feeding [53]. In honeybees, some 
results suggested that scent environment may regulate floral 
scent perception in honeybees [54]. Although none of these study 
have investigated odor learning and olfactory receptor expression 
per se, they support that experience-induced olfactory receptor 
plasticity is likely a phenomenon occurring in all animals that 
should manage changing odor environments. 

Mechanisms Underlying Plasticity in OR Expression  

These mechanisms have been mostly studied in animals, 
insects and rodents and recent experiments done in invertebrates 
and vertebrates established a clear relationship between changes 
in perception and OR expression. In insect, when submitted 
to an olfactory learning paradigm consisting in pairing the 
queen pheromone with glucose reward, the expression of the 
specific OR was downregulated while the peripheral OSN global 
electrophysiological response was reduced [25]. Although down-
regulation of some ORs following odor chronicle passive exposition 
intuitively makes sense, it may seem counter-intuitive during 
memory formation resulting from an olfactory learning. However, 
a reduced number of ORs can be sufficient for the detection of 
familiar odorant. Correspondingly, it would be advantageous 
to have other ORs comparatively up-regulated; for example, to 
ensure that new floral scents are detected, allowing honeybees to 
adapt to their ever-changing scent environment [55,56].  

The observed modulations in single or populational OSNs’ 
responses to environmental stimulation could result from various 
mechanisms that are starting to be deciphered. As olfactory 
imprinting should be considered in light of activity-dependent 
survival as for other neuronal systems, it becomes clear that 
olfactory experience influences not only the survival but also 
the density of OSNs in the mucosa [57-60].  But, as mentioned in 
the previous section, effects of environmental exposure to single 
odorants, often used at high concentrations, are not always clear, 
OSNs’ number or OR expression level being either increased, 

decreased or sometimes stable [33,42-44-47]. Few experiments 
have been conducted by manipulating complex but “natural” 
environments: when male and female mice are housed separately 
for an extended period, substantial differences in OR expression 
and OSN abundance are observed, most specifically for sexually 
dimorphic odors [61]. 

Two recent reports reconcile most studies by showing 
that only a fraction of OSN subtypes are selectively regulated 
by olfactory stimulation, that not all the epithelial zones are 
concerned and that the method of exposure, discontinuous or 
continuous, could be critical for inducing a functional plasticity. 
Indeed, changes in OSN repertoire abundance [62] as well as, 
birth rates of neurons expressing given ORs [63], would be highly 
dependent on olfactory stimulation type, occurring only when it 
is discontinuous. Along this line, in rabbit neonates, conditioned 
using mammary pheromone odorant [64], the increase of OSNs’ 
response to CS supports an increase of either the density of ORs 
dedicated to CS processing or of the number of OSNs expressing 
such ORs (mainly through an activity dependent orientation in OR 
selection in newly mature OSNs) or both.  

Thus, given the diversity of protocols and animal species which 
originated the studies of incidental induction, it is difficult to draw 
a general pattern. However, the analysis of the literature currently 
leads to consider induction as a generic phenomenon, with a 
“positive side” (enhancement of olfactory abilities) that would 
mainly occur after discontinuous exposure and/or conditioning, 
whereas passive and continuous exposure to odor cues would 
rather reveal a “negative side” (loss in olfactory reactivity or 
habituation). It can be proposed that such plasticity while, rather 
leading to a stronger processing of experienced reinforced stimuli, 
would drive the expression of the most adapted peripheral 
captors [65]; this selection could potentially lead to quantitatively 
reduce their number.  In conjunction, the system would favour the 
detection of new odors (new experiences) at captor level. Such a 
hypothesis would be perfectly adapted to the olfactory system, a 
sensory system approached by a quasi-infinite number of stimuli. 
Moreover, olfactory training appears as a potent tool to increase 
as well as to restore specific olfactory abilities from the periphery 
[66]. Such a training effect can be then reinforced throughout 
activity-dependent associated events at the OB glomerular level, 
resulting in synaptic reorganization Cheethem & Belluscio [67]; 
Inoue et al. [68]. 

As a possible mechanism linking olfactory environment and 
OR gene expression, the epigenetic DNA modifications could 
participate to long-term large-scale neuronal plasticity in a 
controlled manner specific to each OSN. In mice, H2be, a histone 
variant which is overexpressed in inactive OSN, regulates their 
transcriptional program and shortens their life span [59]. A de 
novo DNA methyltransferase Dnmt3a is required for proper 
methylation of genes upon neuronal stimulation in OSN [69]. These 
epigenetic marks could also be involved in the transgenerational 
heritability of odor fear as observed by Dias & Ressler [41].  
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Conclusion

As a conclusion, let us remember the sentence of Brennan 
& Keverne [70] who wrote “the olfactory system adaptability is 
extravagantly supported by the vast deployment of olfactory 
receptor’s genes and neurogenesis phenomena” and let us add 
that the whole literature demonstrates that such a deployment 
is not vain because from the periphery, the olfactory function 
appears quite singular with regard to its incredible capacities of 
repair and functional adaptation [71].
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