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Identification of a Nonlinear Dynamic Model of MEMS with Unstable Switching Zone

This paper focuses on the identification of nonlinear dynamic models for physical systems such as Micro-Electro-Mechanical Systems (MEMS). A first approach consists in transforming the specific inputoutput differential model of the system elaborated from physical analysis in such a way that we get a new equivalent model formulation specifically adapted to the identification problem. Thanks to the equivalence between the dynamic model and the derived identification model, the latter remains in continuous-time, with a clear physical meaning of any of its components. In this paper, we propose to compare this method with two other ones: the first one is also based on global transformation of the model and application of the least-squares minimization and the second one is the well known Continuous-Discrete Extended Kalman Filter. The comparison is made first on simulated data and then on real measurement ones.

Introduction

The modeling of physical systems such as MEMS is an important challenge, useful or even necessary for example for control [START_REF] Zhu | Modeling and control of electrostatically actuated MEMS in the presence of parasitics and parametric uncertainties[END_REF][START_REF] Liao | Closedloop adaptive control for torsional micromirrors[END_REF][START_REF] Sane | Robust control of electrostatic torsional micromirrors using adaptive sliding-mode control[END_REF][START_REF] Daqaq | Inputshaping control of nonlinear MEMS[END_REF][START_REF] Bryzek | Control issues for MEMS[END_REF] or even dimensioning purposes. In this paper, we consider a system of electrostatically actuated micro-mirror, a model of which is obtained by physical analysis. This knowledge based model depends on some physical parameters which, because of the very small size of the MEMS, can not be accurately known by direct mea-surements. In this case, identification process can be the only way to get reliable models.

General information and techniques about identification of dynamic systems will be found for example in [START_REF] Ljung | System identification: theory for the user[END_REF][START_REF] Garnier | Time-domain approaches to continuous-time model identification of dynamical systems from sampled data[END_REF]. For MEMS with dynamic behavior similar to the one under consideration in the present paper, some previous works relating to identification have been presented in a few papers, briefly described hereafter.

It was proposed in [START_REF] Wolfram | Implementation Issues on MEMS -A Study on System Identification[END_REF][START_REF] Wolfram | Model building, control design and practical implementation of a high precision high dynamical MEMS acceleration sensor[END_REF] a method of ARX type for identification, from data generated by quasi white noise inputs, of both the linear part of a discrete-time dynamic model and the nonlinear electrostatic moment for a high precision and high dynamical acceleration sensor. A nonlinear identification scheme was provided which depends on the input and LTI-system output. That algorithm only requires a matrix inversion and singular value decomposition, which makes possible to use the identification scheme for on-line estimation. By construction, the method is valid when the system is kept far from its "pull-in" behavior (namely the dynamic instability when the voltage input exceeds a critical value).

In [START_REF] Gaura | A neural network approach for the identification of micromachined accelerometers[END_REF], a neural network approach is proposed for identification of micromachined accelerometers. Due to the fact that neural networks are mainly devoted to identification of static nonlinear mappings, use has been made of the time histories of the data as network inputs. In this work, the involved nonlinear terms do not generate unstable behaviors and so, identification can be performed from stationary uniformly distributed white noise input.

Beyond these works, some problems more or less linked to identification have also been studied in a few other papers about such MEMS, see [START_REF] Veijola | Equivalent-circuit model of the squeezed gas film in a silicon accelerometer[END_REF][START_REF] Link | Identifikation von Beschleunigungsaufnehmern mit hochintensiven Stößen (Accelerometer Identification by High Shock Intensities)[END_REF] and the included references. Note that in all theses papers, data resulting from unstable behaviors, such as pull-in, cannot be taken into account in the identification process because stationarity is required. So, identification of the model in its whole, including unstable dynamics, remains an open problem [START_REF] Wolfram | Implementation Issues on MEMS -A Study on System Identification[END_REF].

The problem under consideration in the present paper is to identify, from data generated by dynamically poor input voltages such as constants, all the parameters and functional components involved in the nonlinear continuous-time dynamic model of the MEMS in its whole range, including zones of unstable behaviors. The identification process described in this paper consists first in the transformation of the input-output differential model of the system (elaborated from physical analysis) in an equivalent one well adapted to the identification problem, and then in the application of classical least squares method for the identification of the parameters of the system. This process has already been presented in [START_REF] Casenave | Identification of Nonlinear Dynamic Models of Electrostatically Actuated MEMS[END_REF] in a more complete version. In this paper, we propose to compare the results obtained with this identification method with the ones obtained with two other time continuous identification methods: the first one, also based on global transformation of the model and application of the least-squares minimization, is described in [START_REF] Fliess | An algebraic framework for linear identification[END_REF], the second one is the well known Continuous-Discrete Extended Kalman Filter.

The paper is organized as follows. In section 2 we present the physical system and its dynamic model, and state the associated identification problem. In sections 3 and 4, we respectively describe the identification process and the two other approaches to which it will be compared. Then the three methods are applied on the physical system under consideration (see section 5): the results obtained first on simulated data and then on real measurement ones are given in sections 6 and 7.

The physical system under consideration

The system under consideration is an electrostatically actuated micro-mirror1 (cf. Figure 1) which is composed in two assembled parts. The upper one is a thin plate, the mirror, linked to a thick external rigid frame by two thin and narrow arms, the springs. This part is tailored in the same microcrystalline silicon layer of a SOI (Silicon On Insulator) wafer. The lower one comprises a balance-knife-edge with two electrodes distributed on both sides of it. The two parts are assembled in such a manner that the axis of the springs and balance-knife-edge are identical. So the electrodes which are located underneath the mirror induce its rotation (left or right) when a voltage V is applied.

The development of those micro-mirrors has been conducted with Tronics Microsystems (France), a manufacturer of custom MEMS components. Several configurations of the electrodes can be envisaged, namely the case where electrodes are flat or inclined (cf. Figures 2 and3 for flat electrodes configuration). 

I θ + (µ 0 + v(θ)) θ + K θ = V 2 k(θ),
(1) with the constraint : |θ| |α| , [START_REF] Liao | Closedloop adaptive control for torsional micromirrors[END_REF] where:

• I is the inertia moment of the system,

• V 2 k(θ) is the electrostatic moment [15],
• K θ is the spring moment,

• and (µ 0 + v(θ)) θ is the viscous friction moment.

The system (1), with input V 2 and output θ, is completed by the initial conditions: θ(0) = 0 and θ(0) = 0.

(3)

Note that the expressions of the terms v(θ) and k(θ) involved in model (1) depend on the configuration of the physical system (flat or inclined electrodes), its geometry, the materials used etc. (see section 7 for a particular example).

Remark 1 In the model, θ is a negative angle.

Due to the fabrication process, essentially the gluing process of the two parts of the mirror, it is realistic to consider that the physical structure is significantly different from the ideal one, and so do the associated dynamic model ( 1). An identification process is then necessary to get a reliable model of the system. The problem of identification of model (1) (namely the identification of the inertia moment I, the electrostatic moment function k, etc.) from real measurement data is difficult for several reasons:

• the model is nonlinear, possibly singular in the sense k(θ) → ∞ when θ → α;

• a classical analysis by means of phase portraits [START_REF] Casenave | Identification of Nonlinear Dynamic Models of Electrostatically Actuated MEMS[END_REF] of this dynamic system reveals the existence of a threshold voltage, denoted V pullin , below which θ stabilizes to an angle θ stab (V ) (see Figure 4a), whereas beyond this voltage the system becomes unstable and θ quickly switches to α (see Figure 4b);

• as often with small size mechanical systems, due to the smallness of the inertia moment, the dynamic contribution of this term is quite dominated by the viscosity one (that is |I θ| ≪ |(µ 0 + v(θ)) θ|), except at the very beginning of the motion (when the speed | θ(t)| is very low). Consequently, identification of inertia moment from measurement data is a tricky task, for which a knowledge-model based method seems preferable to black-box approaches.

The proposed identification process

In this section, we describe an identification process whose aim is to estimate the parameters of model (1,3) from measurements of trajectories θ. This process has been presented in [START_REF] Casenave | Identification of Nonlinear Dynamic Models of Electrostatically Actuated MEMS[END_REF] in a more complete version including the identification of initial conditions.

Remark 2 For details relating to the mathematical notions used in the sequel, refer for example to [START_REF] Adams | Sobolev Spaces[END_REF][START_REF] Yosida | Functional analysis[END_REF][START_REF] Schumaker | Spline functions: Basic Theory[END_REF][START_REF] Ben-Israel | Generalized inverses: Theory and applications[END_REF].

On the identification technique used

The aim of this identification is multiple: indeed we try simultaneously to get a reliable model, to validate the modeling, and to estimate the physical parameters and characteristic functions of the system.

As the knowledge-model (1,2,3) is moreover naturally formulated in continuous-time domain, it encourages us to use a continuous-time identification method [START_REF] Garnier | Identification of continuoustime models from sampled data[END_REF] to solve the problem. The knowledge-model (1,2,3) has the particularity to be linear with respect to parameters I, µ 0 , K, and functions k and v: the identification process described in the sequel takes advantage of this linearity. It consists in:

• first the transformation of the input-output differential model [START_REF] Zhu | Modeling and control of electrostatically actuated MEMS in the presence of parasitics and parametric uncertainties[END_REF] in an equivalent one specifically adapted to the identification problem, thanks to the following essential properties: first, the linearity with respect to the parameters to be identified is preserved, and second, the continuous dependence on noise measurements is restored, this last property being impossible to get in the initial form of the model because of the presence of derivative operators;

• then the estimation of parameters of the model, by classical error in equation identification methods [START_REF] Garnier | Identification of continuoustime models from sampled data[END_REF][START_REF] Mahata | Identification of continuous-time errors-in-variables models[END_REF] based on least squares minimization.

The identification model

As said previously, the expression of electrostatic and viscous friction moments, that is of functions k and v, depends on the physical system under consideration. They are quite complex, and in general, it is difficult to get accurate approximations of it. So we identify these two functions under the form:

k(θ) = ∑ l c l k l (θ), (4) 
v(θ) = ∑ q µ q v q (θ), (5) 
where the parameters to be identified are the real coefficients c l and µ q . From the theoretical point of view, these sums can be finite or not and we implicitly refer to functional Hilbert spaces generated by k l and v q , to which belong the functions k and v. In the sequel, we will use the notations:

c := (c 1 , c 2 , ...) T ∈ ℓ 2 , ( 6 
) µ := (µ 1 , µ 2 , ...) T ∈ ℓ 2 , (7) k(θ) := (k 1 (θ), k 2 (θ), ...), (8) v(θ) := (v 1 (θ), v 2 (θ), ...). ( 9 
)
Thus we can write in a condensed form:

k(θ) = k(θ) c , v(θ) = v(θ) µ. ( 10 
)
Then, we transform the model ( 1) in an equivalent manner by composition with some invertible convolution operator H with impulse response h. The identification model under consideration is then given by:

(H • ∂ 2 t ) θ I + (H • ∂ t ) θ µ 0 + H( v(θ)∂ t θ) µ (11) + (Hθ) K = V 2 H( k(θ)) c.
To compensate the amplification of noise measurement by operators ∂ t and ∂ 2 t , the operator H is chosen in such a way that high frequencies are sufficiently attenuated, while middle and low frequencies are not significantly perturbed:

ĥ(ω) ∼ H.F 1 ω 2 , ĥ(ω) ∼ L.F 1, (12) 
that is H basically behaves like a second order lowpass filter.

Finally, it is obvious that, in model ( 11), the parameters can only be identified up to a multiplicative constant. So, we consider that µ 0 = 1 and denote:

λ := (I, µ, K, c) T ∈ E := R×ℓ 2 × R×ℓ 2 (13) 
the vector of parameters to be identified. The identification model [START_REF] Veijola | Equivalent-circuit model of the squeezed gas film in a silicon accelerometer[END_REF] can then be rewritten under the synthetic form:

ϕ θ λ = b θ , ( 14 
)
where:

• ϕ θ : E -→ L 2 (0, T ; R J ) is the matrix operator defined by:

ϕ θ = [ H 2 θ H( v(θ)∂ t θ) Hθ -V 2 H (k(θ)) ] , (15) with H 1 := H • ∂ t , H 2 := H • ∂ 2 t , • and b θ := -H 1 θ.
The exact (but unknown) value of λ is denoted λ 0 .

Remark 3

In practice, the available data can involve multiple trajectories θ j , j = 1 : J, obtained with different input voltages V j . Model [START_REF] Veijola | Equivalent-circuit model of the squeezed gas film in a silicon accelerometer[END_REF] can be extended to this case by considering:

θ = (θ 1 , ..., θ J ) T , ∂ t θ = (∂ t θ 1 , ..., ∂ t θ J ) T , v(θ) =    v 1 (θ 1 ) v 2 (θ 1 ) • • • . . . . . . v 1 (θ J ) v 2 (θ J ) • • •    , k(θ) =    k 1 (θ 1 ) k 2 (θ 1 ) • • • . . . . . . k 1 (θ J ) k 2 (θ J ) • • •    , and V =    V 1 0 . . . 0 V J    . ( 16 
)

The identification problem and its theoretical resolution

We consider some measurement θ m = θ + η of θ, η being an additive measurement noise. The model ( 14) then writes under the linear regression form:

b θm = ϕ θm λ + ε(λ), ( 17 
)
where ε(λ) is the error equation. The estimate λ of the unknown parameters λ is then obtained by classical least squares method:

λ = arg min λ∈E ∥ε(λ)∥ 2 L 2 (0,T ;R J ) , ( 18 
)
that is:

λ = ϕ † θm b θm , ( 19 
)
where ϕ † θm designates the pseudo-inverse of ϕ θm [START_REF] Ben-Israel | Generalized inverses: Theory and applications[END_REF]:

ϕ † θm = (ϕ * θm ϕ θm ) -1 ϕ * θm . ( 20 
)
In particular, we have from ( 14): ϕ θ λ 0 = b θ ; the estimator λ is exact when the data are noise free:

ϕ † θ b θ = λ 0 . ( 21 
)
Because operator ϕ θm depends on the measurement noise, the solution λ of [START_REF] Schumaker | Spline functions: Basic Theory[END_REF] given by ( 19) is a biased estimator of λ 0 . This bias will be negligible if the measurement noise is sufficiently small. Otherwise, bias reduction techniques have to be implemented.

Numerical formulation

In this section, we show how to implement the identification method presented in the previous section.

Discrete data interpolation

In practice only discrete-time trajectories are available, that is several sets of data {θ j,k m } k=1:K , j = 1 : J, where θ j,k m is a measurement of θ(t k , V j ) with t k+1 = t k + ∆t. To go back to a continuous-time formulation, we use cubic spline interpolations which allow to compute analytically the involved quantities (such as φ T θ j m and b θ j m introduced later). In the sequel we will denote θ j m : t → θ j m (t) the cubic spline interpolation of the set {(t k , θ j,k m )} k . We have:

θ j m = θ j + η, ( 22 
)
where θ j is the exact (unknown) trajectory solution of (11) (with V = V j ), and η is an additional noise resulting both from measurement errors and interpolation ones. In the same way, cubic spline interpolation will be made on the sets

{(t k , v q (θ j,k m )∂ t θ j,k m )} k
and {(t k , k l (θ j,k m ))} k to get a continuous-time identification problem of the form [START_REF] Schumaker | Spline functions: Basic Theory[END_REF], whose numerical solution is obtained as described here after.

Numerical resolution of problem (18)

To numerically solve the problem [START_REF] Schumaker | Spline functions: Basic Theory[END_REF], which is a priori of infinite dimension, we first have to replace the infinite sums (4,5) by truncations at finite orders L and Q:

k(θ j ) c ≃ L ∑ l=1 c l k l (θ j ), (23) 
v(θ j ) µ ≃ Q ∑ q=1 µ q v q (θ j ); (24) 
so, in the sequel, k(θ j ) and v(θ j ) will now designate the respective finite dimensional vectors:

   v 1 (θ j ) . . . v Q (θ j )    and    k 1 (θ j ) . . . k L (θ j )    . ( 25 
)
At time instant t n and for all j = 1 : J, we so consider the following identification model of finite dimension:

b θ j m (t n ) = φ T θ j m (t n ) λ + ε j (t n , λ), ( 26 
)
where:

• λ = (I, µ, K, c) T ∈ E := R × R Q ×R × R L , with µ = (µ 1 , ..., µ Q ) and c = (c 1 , ..., c L ), • φ θ j m (t n ) :=      ( H 2 θ j m ) (t n ) ( H(v(θ j m )∂ t θ j m ) ) (t n ) ( Hθ j m ) (t n ) -V 2 (t n ) ( H(k(θ j m )) ) (t n )      , (27) • b θ j m (t n ) := - ( H 1 θ j m ) (t n ), • and ε j (t n , λ) is the error equation of model in θ j m at time instant t n .
The least squares estimator λ is then given by:

λ = arg min λ∈E N ∑ n=1 J ∑ j=1 ( ε j (t n , λ) ) 2 ∆t n , (28) = Φ -1 m b m , (29) 
with:

Φ m = N ∑ n=1 J ∑ j=1 φ θ j m (t n ) φ T θ j m (t n )∆t n , ( 30 
) b m = N ∑ n=1 J ∑ j=1 φ θ j m (t n ) b θ j m (t n )∆t n . ( 31 
)
The computation of terms of φ T θ j m and b θ j m can be performed analytically, θ j m , v(θ j m ) and k(θ j m ) being some simple cubic splines (see [START_REF] Casenave | Identification of Nonlinear Dynamic Models of Electrostatically Actuated MEMS[END_REF] for details).

Because some terms of the model are dominated by the others (especially the moment of inertia as explained previously), a preconditioning matrix can be used to solve the problem. So instead of (28), the following least squares problem is considered:

Λ = arg min Λ∈E N ∑ n=1 J ∑ j=1 ( ε j (t n , DΛ) ) 2 ∆t n , (32) 
where λ = DΛ and D is a square matrix adapted to the problem. Its solution is given by:

λ = D Λ = D(DΦ m D) -1 Db m . ( 33 
)
The matrix D will be chosen empirically in order to make the matrix DΦ m D well-conditioned.

Other identification approaches

In this section, we briefly present two other continuous time identification methods which can be applied on the problem and to which the method presented in section 3 will be compared:

• The first method is a parameter identification method described in [START_REF] Fliess | An algebraic framework for linear identification[END_REF] which is also based on a global transformation of model [START_REF] Zhu | Modeling and control of electrostatically actuated MEMS in the presence of parasitics and parametric uncertainties[END_REF].

• The second one is based on the application of the Continuous-Discrete Extended Kalman Filter.

Method 1

In [START_REF] Fliess | An algebraic framework for linear identification[END_REF], a method of parametric identification of linear continuous-time systems is presented. It can be applied to the considered problem as described hereafter.

In the frequency domain, the model (1,3) is expressed by:

I [ p 2 Θ(p) -pθ(0) -θ(0) ] + µ 0 [pΘ(p) -θ(0)] + p W (p) -w(θ(0)) + K Θ(p) = V 2 K(p), ( 34 
)
where w is an antiderivative of v, and W (p), K(p) and Θ(p) are the respective Laplace transforms of w(θ), k(θ) and θ.

Differentiating twice with respect to p and then multiplying the equation by p -2 (to avoid the derivations in the time domain) leads to:

I [ 2p -2 Θ(p) + 4p -1 dΘ dp (p) + d 2 Θ dp 2 (p) ] + µ 0 [ 2p -2 dΘ dp (p) + p -1 d 2 Θ dp 2 (p) ] + 2p -2 d W dp (p) + p -1 d 2 W dp 2 (p) (35) 
+ K p -2 d 2 Θ dp 2 (p) = V 2 p -2 d 2 K dp 2 (p).
In the time domain, this last equation is then rewrit-ten, for any t ∈ R + * :

I [ 2 ∫ t 0 ∫ s 0 θ(r)drds -4 ∫ t 0 sθ(s)ds + t 2 θ(t) ] + µ 0 [ -2 ∫ t 0 ∫ s 0 rθ(r)drds + ∫ t 0 s 2 θ(s)ds ] -2 ∫ t 0 ∫ s 0 rw(θ(r))drds + ∫ t 0 s 2 w(θ(s))ds (36) + K ∫ t 0 ∫ s 0 r 2 θ(r)drds = V 2 ∫ t 0 ∫ s 0 r 2 k(θ(r))drds.
Remark 4 Note that this equation can be obtained directly in the time domain by multiplying (1) by t 2 and integrating it between 0 and t. Then, in order to make the quantities θ and θ disappear from the so-obtained equation, we only have to make some integrations by parts.

With v and k of the form [START_REF] Gaura | A neural network approach for the identification of micromachined accelerometers[END_REF] and by denoting w the antiderivative of v, we get an identification model of the linear regression form:

ψ θ λ = q θ , (37) 
where

ψ θ = [ ψ 1 θ ψ 2 θ ψ 3 θ ψ 4 θ ]
, with:

ψ 1 θ : t →[2 ∫ t 0 ∫ s 0 θ(r)drds -4 ∫ t 0 sθ(s)ds + t 2 θ(t), ( 38 
)
ψ 2 θ : t → -2 ∫ t 0 ∫ s 0 rw(θ(r))drds + ∫ t 0 s 2 w(θ(s))ds, (39) 
ψ 3 θ : t → ∫ t 0 ∫ s 0 r 2 θ(r)drds, ( 40 
)
ψ 4 θ : t → -V 2 ∫ t 0 ∫ s 0 r 2 k(θ(r))drds, (41) 
and

q θ : t → µ 0 [ 2 ∫ t 0 ∫ s 0 rθ(r)drds - ∫ t 0 s 2 θ(s)ds
] .

(42) In [START_REF] Fliess | An algebraic framework for linear identification[END_REF], the scalar equation ( 37) is then integrated several times in order to get as many equations as unknown parameters. The square system is evaluated at one time t > 0 and enables to get estimates of the unknown parameters at each time. In this paper, we consider several data trajectories, so we don't need to integrate the equation (37) to get additional equations: indeed in practice, the system of equations ψ θ j λ = q θ j , j = 1 : J will have more equations than unknown parameters. Thus the vector of parameters λ will be identified from (37) in the same way as for the identification method presented in section 3.

Method 2: Continuous-Discrete Extended Kalman Filter

The Continuous-Discrete Extended Kalman Filter can also be used to estimate the unknown parameters vector λ of model ( 1) provided that λ is declared as additional state of the model. Indeed, model ( 1) can be written under the augmented state formulation:

Ẋ = f (X, u) (43) 
with:

X =    θ θ λ    , u = V, f (X, u) =    θ 1 I ( V 2 k(θ)c -(µ 0 + v(θ)µ) θ -Kθ ) 0    .
(44) To (43) we add the discrete-time measurement output equation:

y k = h(X k ) + η k , (45) 
with:

y k = θ k m , h(X k ) = θ k , ( 46 
)
η k being the measurement noise, here supposed to have a normal Gaussian distribution:

η k ∼ N (0, σ 2 ). ( 47 
)
The application of the Extended Kalman Filter approach to this model can be explained as follows:

• initialization of X+ 0 and P + 0 ;

• for any k, update of values Xk and P - k which are the estimations of X(t k ) and P (t k ), obtained by simulation of models:

{ Ẋ = f ( X, u), X(t k-1 ) = X+ k-1 , (initial conditions) (48) 
and { Ṗ = F ( X)P + P F T ( X),

P (t k-1 ) = P + k-1 , (initial conditions) (49) 
where:

F ( X) = ∂f ∂X | X =    0 1 0 ∂f2 ∂θ | X ∂f2 ∂ θ | X ∂f2 ∂λ | X 0 0 0    , (50) with 
:

∂f 2 ∂θ | X = 1 Î ( V 2 k ′ ( θ)ĉ -v ′ ( θ)μ θ - K) , ( 51 
) ∂f 2 ∂ θ | X = - 1 Î ( µ 0 + v( θ)μ ) , ( 52 
)
∂f 2 ∂λ | X = - 1 Î [ f 2 ( X, u) v( θ) θ θ -V 2 k( θ)
] ;

(53)

• for any k update of values X+ k and P + k in the following way:

X+ k = X- k + K k (y k -h( X- k )), ( 54 
) P + k = P - k -K k H k ( X- k )P - k , ( 55 
)
where:

H k ( X- k ) = ∂h ∂X | X- k = [1 0 0], (56) 
K k = P - k H T k ( X- k ) [ H k ( X- k )P - k H T k ( X- k ) + σ 2
] -1 .

(57) j V j j V j j V j 1 18.25 10 29. [START_REF] Garnier | Identification of continuoustime models from sampled data[END_REF] 

Application to the physical system

The MEMS under consideration has flat electrodes as described in Figure 3, with α = -0.0215 rad, a 1 = 150µm, a 2 = 280µm and a 3 = 300µm. The width of the mirror is equal to 600µm and its thickness is equal to 10µm [START_REF] Camon | Fabrication, simulation and experiment of a rotating electrostaticsilicon mirror with large angular deflection[END_REF].

Available data

We describe here-after the sets of available data used for the identification process. Two types of data are considered:

• the real measurement data,

• some sets of simulated data, which will be used first to validate the methods in a case where the identification model is exact.

Real measurement data sets

Data available for identification are composed of J = 25 sets of data {θ j,k m } k=1:K with K = 251, obtained by sampling at frequency 50kHz (∆t = 2 10 -5 ) during 5ms of 25 measured trajectories of θ. The associated input voltages are fixed at a constant value V j given in table 1; thus, the system either switches or stabilizes at θ j ∞ < α depending on the value of V which are compatible with the model are used for identification. For example, in Figure 4b, the saturation zone [0.0045s, 0.005s] where θ = α is not relevant for model (1) and then is not taken into account. We denote K j the number of data of the set {θ j,k m } considered for the identification process. The measurement noise is supposed to be white gaussian, with standard deviation equal to 4.10 -5 , this value being computed from data measured when the mirror is stabilized (i.e. the angle value is constant).

Simulated data sets

These data sets have been obtained by simulation of model [START_REF] Zhu | Modeling and control of electrostatically actuated MEMS in the presence of parasitics and parametric uncertainties[END_REF][START_REF] Liao | Closedloop adaptive control for torsional micromirrors[END_REF][START_REF] Sane | Robust control of electrostatic torsional micromirrors using adaptive sliding-mode control[END_REF] in order to be similar to the real mea-surement ones. So 25 simulated trajectories θ j s associated with the same input voltage values V j as in the real measurement data case (see table 1) have been performed. For these simulations, the expression of functions k and v and the values of coefficients (normalized values, µ 0 = 1) have been chosen to be comparable to the ones obtained by identification from the real measurement data sets (see section 7), that is:

• functions k and v are defined by:

k(θ) = ∑ 6 l=1 c l θ l-1 and v(θ) = µ 1 θ 3 (58)
with:

c =         0.02 -1.4 88 3.4 × 10 3 -2.7 × 10 5 -5 × 10 7        
and µ 1 = -5.0 × 10 5 , (59)

• the inertia moment I and the stiffness K are fixed to:

I = 1.9 × 10 -5 , K = 3.8 × 10 3 . ( 60 
)
The sets of discrete data {θ j,k m } k , j = 1 : J used for identification are derived from these trajectories by addition of numerical noises {η j k } k=1:K ; we so have:

θ j,k m = θ j,k + η j k , j = 1 : J, ( 61 
)
with θ j,k = θ j s (k∆t) and ∆t = 2 × 10 -5 .

Identification model

The identification model considered in the sequel is of the form [START_REF] Veijola | Equivalent-circuit model of the squeezed gas film in a silicon accelerometer[END_REF] with:

• k(θ) identified under the form (23) with L = 6 and:

k l (θ) = θ l-1 , l = 1 : 6. ( 62 
)
• v(θ) identified under the form (24) with Q = 1 and:

v 1 (θ) = θ 3 . ( 63 
)
Indeed, a linear viscosity term µ 0 θ is not sufficient to correctly describe the viscous moment in its whole, namely when both |θ| and | θ| become large.

• for the prefiltering operator H, we consider a simple causal second order low-pass filter, with transfer function:

H(iω) = a 2 (iω + a) 2 , ( 64 
)
with a = 9.0 × 10 3 ; this value has been chosen to get a cutoff frequency such that:

1 tmax ≪ a ≪ 1 2∆t .

Parameters of the methods

We give here-after the values of the parameters used for the 3 methods previously described. For simplicity the methods are numbered from 0 to 2 following the order in which they have been described in the paper: methods 0, 1 and 2 respectively refer to methods described in section 3, 4.1 and 4.2.

Method 0

No initialization value is required, which is one of the advantages of the method. We use the reconditioning matrix (see section 3.4.2) given by: D = diag(10 -5 , 10 5 , 10 3 , 10 -2 , 1, 10 2 , 10 3 , 10 5 , 10 7 ).

(65) These matrix has been chosen in such way that all the terms of Λ have the same order of magnitude.

Method 1

Here again, no initialization value is required. For the reconditioning matrix, we use the same as for method 0 (given by (65)).

In the case of noisy data (simulated data or real measurement data), the identification model used is not exactly the model (37). In order to give the same influence in the identification process to each time instant and to each trajectory θ j , we consider the following model derived from (37):

∀j, ∀t, 1 t 2 K j ψ θj (t)λ = 1 t 2 K j q θj (t). (66) 

Method 2

The initialization values of σ, X+ 0 and P + 0 are given here after:

• the standard deviation of the measurement noise is taken equal to the approximated value computed from real measurement data (see paragraph 5.1.1), that is: σ = 4 10 -5 ;

• X+ 0 =    θ+ 0 θ+ 0 λ+ 0   ,
with θ+ 0 = θ+ 0 = 0 and λ+ 0 taken equal to the estimate λ of λ obtained with method 0;

• P + 0 = 10 -2 diag( X+ 0 ( X+ 0 ) T )
where diag(M ) stands for the diagonal matrix built from the extracted diagonal of M .

Identification quality estimation

In order to globally estimate the identification quality, the following quantity is considered:

E = ∑ j,k θj (k∆t) -θ j,k m ∑ j,k θ j,k m (67) ≃ ∑ j ∫ K∆t 0 θj (t) -θ j m (t) dt ∑ j ∫ K∆t 0 θ j m (t) dt ,
where θj is the trajectory of θ obtained by simulation of the identified model for an input voltage equal to V j . This quantity represents the cumulated relative error on all the trajectories used for the identification.

Results with simulated data

In this section, we apply the 3 methods previously described to the simulated data sets and compare the obtained results.

Identification without measurement noise

The simulated data are first supposed to be noise-free (η j k = 0): θ j,k m is the exact value of the solution of (1) at time t k = k∆t up to numerical simulation errors. In this case, as expected, the results obtained with the three methods, especially with methods 0 and 1, are very good as shown in table 2. With methods 0 ant 1, all the parameters are identified with a maximal relative error less than 0.5 (only due to numerical errors). The results obtained with method 1 are nevertheless slightly better than the ones obtained with method 0. As for the method 2, it does not enable to improve the results obtained with method 0 (from which it has been initialized). Note that the values of the cumulative relative error E are of the same order of magnitude for methods 0 and 1. In figures 5b and 6b, we can see the relative errors between the simulated data used for the identification and the trajectories simulated from the identified models for two values of V : V 7 = 27.99 V < V pullin and V 13 = 31.64 V > V pullin . The error is very small (almost always smaller than 10 -4 for methods 0 and 1) what shows the accuracy of the identified models. Finally, the relative error between the theoretical function k(θ) defined by (58,59) and its estimates is given in figure 7b. Here again, the estimation is very good.

Identification with measurement noise

We now consider the case of noisy data: η j k are supposed to be measurement noises of the form εη j k with η j k unity Gaussian white sequences and ε = 4.10 ble with the real data case presented in section 7).

The values of the parameters estimates are given in table 3. As in the noise free case, the relative errors between the noise free data and the trajectories simulated with the identified models for V = V 7 and V = V 13 are given in figures 5c and 6c. The identified electrostatic function k(θ) is also given in figure 7c.

The results are still good, but obviously less good than in the noise free case, expect for the method 2 which gives comparable results in the two cases but which still remains less accurate than the two other methods.

The difference between results of method 0 and 1 is no more so obvious. All the estimates of parameters are better with method 1 than with method 0, except the estimate of the inertia moment I. As a consequence, the trajectories simulated with the identified model are less accurate with method 1 than with method 0 at the beginning of the motion, when the contribution of the inertia moment is not dominated by the other terms. The contrary occurs at the end of the motion. Globally, the trajectories generated from the model identified with method 0 fit the data better than with method 1, as shown by the values of E. 

Results with real measurement data

Now the method is implemented on the real measurement data. The estimates of parameters obtained with the three methods are given in table 4. In figures 8b and 9b, the trajectories of θ simulated with the three identified models for V = V 7 and V = V 13 are compared with the real measurement data. Qualitatively, the obtained results are similar to the ones obtained in the case of noisy simulated data.

Here again, the model identified with method 1 is slightly less accurate than the model identified with method 0, especially at the beginning of the motion.

As for the method 2, it gives again less good results than the other methods.

Note that the values of E are greater than in the case of simulated data: the identification model being no more exact, it generates some additional identification errors which, in this case, are nevertheless reasonable.

Conclusion

In this paper, a time-continuous identification method (referred as method 0 in the paper) is compared with two others ones (methods 1 and 2) on a concrete physical example of identification of a model of micro-mirror. The method 2 is the Continuous- Discrete Extended Kalman Filter that we initialize with the identified parameters obtained with method 0: after comparison, it turns out not to improve the results obtained with method 0. In the case of noisy data, the identified model obtained with method 1 is slightly less accurate than the one identified with method 0, especially at the beginning of the motion. The inertia moment I seems to be difficult to identify with method 1. Nevertheless, this method gives good results. Note that it moreover has the advantage to suppress the initial conditions of the identification model, whether they are null or not. Finally, method 0 turns out to be the more efficient method for the problem under consideration in the paper. A more complete presentation of the method including the identification of the initial conditions can be found in [START_REF] Casenave | Identification of Nonlinear Dynamic Models of Electrostatically Actuated MEMS[END_REF], where the identified model is also validated in predictive situations. The so-obtained identified model can then be used for example in predictive controls with stringent constraints.
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 5 Figure 5: Comparison between the simulated noise free data and the trajectories simulated with the 3 identified models for V = V 7 = 27.99 V
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 6 Figure 6: Comparison between the simulated noise free data and the trajectories simulated with the 3 identified models for V = V 13 = 31.64 V
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 7 Figure 7: Comparison between the theoretical function k(θ) and the identified ones.
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 8 Figure 8: Comparison between the real measurement data and the trajectories simulated with the 3 identified models for V = V 7 = 27.99 V
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 9 Figure 9: Comparison between the real data and the trajectories simulated with the 3 identified models for V = V 13 = 31.64 V

Table 1 :

 1 Values V j of the input voltage

	19 38.94
	2 19.47 11 29.81 20 42.59
	3 20.68 12 30.42 21 45.63
	4 25.55 13 31.64 22 46.24
	5 26.77 14 32.85 23 48.68
	6 27.38 15 34.07 24 54.76
	7 27.99 16 35.29 25 60.85
	8 28.59 17 36.51
	9 28.72 18 37.72

Table 2 :

 2 Identification results obtained from simulated data in the noise free case.
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Table 3 :

 3 Identification results obtained from simulated data in the noisy case.

			1	meth. 2 exact
	Î (×10 -5 )	1.866	1.956	1.874	1.9
	μ1 (×10 5 )	-5.057	-5.045	-5.062	-5
	K (×10 3 )	3.806	3.806	3.777	3.8
	ĉ1 (×10 -2 )	1.995	1.999	1.962	2
	ĉ2	-1.456	-1.405	-1.455	-1.4
	ĉ3 (×10)	7.495	9.145	7.603	8.8
	ĉ4 (×10 3 )	1.769	3.990	1.761	3.4
	ĉ5 (×10 5 )	-3.740	-2.420	-3.728	-2.7
	ĉ6 (×10 7 )	-5.283	-4.994	-5.214	-5
	E	4.49 10 -4 5.99 10 -4 6.57 10 -3	0

Table 4 :

 4 Identification results obtained from real measurement data.
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